JP2012041211A - Polycrystalline silicon wafer and method for casting the same - Google Patents

Polycrystalline silicon wafer and method for casting the same Download PDF

Info

Publication number
JP2012041211A
JP2012041211A JP2010181733A JP2010181733A JP2012041211A JP 2012041211 A JP2012041211 A JP 2012041211A JP 2010181733 A JP2010181733 A JP 2010181733A JP 2010181733 A JP2010181733 A JP 2010181733A JP 2012041211 A JP2012041211 A JP 2012041211A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
casting
silicon wafer
chamber
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010181733A
Other languages
Japanese (ja)
Inventor
Yoshio Murakami
義男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2010181733A priority Critical patent/JP2012041211A/en
Priority to KR1020110080553A priority patent/KR20120016591A/en
Publication of JP2012041211A publication Critical patent/JP2012041211A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide polycrystalline silicon enabling to inhibit reduction of conversion efficiencies of solar cells by using the same as a substrate of the solar cells and a method for casting the same.SOLUTION: The polycrystalline silicon is characterized by having ≤1.0×10atoms/cminterlattice oxygen concentration measured by the FT-IR method (ASTM F121-79) and ≤3% reduction rate of the solar cell conversion efficiencies when using a polycrystalline silicon wafer as the substrate. The method for casting the polycrystalline silicon is characterized by the low oxygen content in a cooled copper mold and the low partial oxygen pressure in a chamber.

Description

本発明は、多結晶シリコンウェーハ及びその鋳造方法に関し、特に、格子間酸素濃度が低く、太陽電池の基板として用いることにより、太陽電池の変換効率の低下を抑制できる多結晶シリコンウェーハ及びその鋳造方法に関する。   TECHNICAL FIELD The present invention relates to a polycrystalline silicon wafer and a casting method thereof, and in particular, a polycrystalline silicon wafer having a low interstitial oxygen concentration and capable of suppressing a decrease in conversion efficiency of a solar cell by using it as a solar cell substrate and a casting method thereof. About.

現在、太陽電池の製造用の基板としては、主にシリコン結晶が用いられている。
シリコン結晶には単結晶と多結晶とがあり、単結晶シリコンを基板として用いた太陽電池は、多結晶シリコンを基板としたものと比較して、入射した光エネルギーを電気エネルギーにする変換効率が高いという特徴がある。
この単結晶シリコンは、無転位の高品質な結晶を製造するため、一般にチョクラルスキー法によって製造されるが、このチョクラルスキー法による製造は、コストが高くなるという問題がある。また、一般に多結晶の鋳造の場合よりも、単結晶の成長中には、石英坩堝からの酸素の混入が高くなる傾向があり、問題点の1つと考えられている。
At present, silicon crystals are mainly used as substrates for manufacturing solar cells.
Silicon crystals include single crystals and polycrystals, and solar cells using single crystal silicon as a substrate have a conversion efficiency that converts incident light energy into electrical energy compared to those using polycrystalline silicon as a substrate. It is characterized by being expensive.
This single crystal silicon is generally produced by the Czochralski method in order to produce dislocation-free high-quality crystals. However, the production by this Czochralski method has a problem of high cost. In general, oxygen is more likely to be mixed from the quartz crucible during single crystal growth than in the case of polycrystalline casting, which is considered to be one of the problems.

一方、多結晶シリコンを製造する方法としては、キャスト法が知られている(例えば特許文献1)。
キャスト法による多結晶シリコンの鋳造では、ルツボ内で原料である高純度シリコンを加熱溶解し、ボロン等のドーパントを均一添加して、ルツボの中で凝固させる。ルツボは、耐熱性及び形状安定性が求められるため、一般に石英が用いられる。
このキャスト法に一方向性凝固法を適用することにより、結晶粒の大きい多結晶シリコンを得ることが可能となる。
On the other hand, a casting method is known as a method for producing polycrystalline silicon (for example, Patent Document 1).
In the casting of polycrystalline silicon by the casting method, high-purity silicon as a raw material is heated and dissolved in a crucible, and a dopant such as boron is added uniformly and solidified in the crucible. Since crucibles are required to have heat resistance and shape stability, quartz is generally used.
By applying a unidirectional solidification method to this casting method, it is possible to obtain polycrystalline silicon having large crystal grains.

しかし、キャスト法は、溶融したシリコンと石英ルツボとが接触することによって不純物汚染が生じることがあり、また、キャスト法は造塊法であるため、連続した鋳造が困難であることから、生産効率の低下を招くという問題がある。   However, in the casting method, impurity contamination may occur due to the contact between the molten silicon and the quartz crucible, and since the casting method is an ingot-making method, continuous casting is difficult, so production efficiency There is a problem of causing a decrease in

これに対し、溶融シリコンが鋳型にほとんど接触することなく、シリコン結晶を鋳造することのできる電磁鋳造法が知られている(例えば、特許文献2)。
図1は、電磁鋳造法に用いる電磁鋳造装置の一例を模式的に示す断面図である。
図1に示すように、チャンバ1は、内部の発熱から保護されるように二重壁構造の冷却容器になっており、中央部に冷却モールド2、誘導コイル3、ヒータ4が配置されている。
図示例で、冷却モールド2は、銅の水冷筒体であり、上部を除いて周方向に複数分割され、無底である。
また、図示例で、誘導コイル3は、冷却モールド2の外周側に同芯に周設されて、同軸ケーブル(図示せず)で電源に接続される。
図示例で、ヒータ4は、冷却モールド2の下方に同芯に設けられ、冷却モールド2から引き下げられるインゴット5を加熱して、インゴット5の引き下げ軸方向に所定の温度勾配を与える。
On the other hand, there is known an electromagnetic casting method capable of casting a silicon crystal with almost no molten silicon in contact with a mold (for example, Patent Document 2).
FIG. 1 is a cross-sectional view schematically showing an example of an electromagnetic casting apparatus used in the electromagnetic casting method.
As shown in FIG. 1, the chamber 1 is a double-walled cooling container so as to be protected from internal heat generation, and a cooling mold 2, an induction coil 3, and a heater 4 are arranged at the center. .
In the illustrated example, the cooling mold 2 is a copper water-cooled cylinder, and is divided into a plurality of parts in the circumferential direction except the upper part, and has no bottom.
Further, in the illustrated example, the induction coil 3 is concentrically provided on the outer peripheral side of the cooling mold 2 and connected to a power source by a coaxial cable (not shown).
In the illustrated example, the heater 4 is provided concentrically below the cooling mold 2, heats the ingot 5 pulled down from the cooling mold 2, and gives a predetermined temperature gradient in the pulling axis direction of the ingot 5.

図1に示す装置を用いて、多結晶シリコンを鋳造するには、まず、冷却モールド2にシリコン材料6を装入し、次いで、誘導コイル3に交流電流を流す。
冷却モールド2は、周方向に分割され、各素片は互いに電気的に分離されているため、各素片内で電流ループを形成し、該電流が冷却モールド2内に磁界を発生する。
これにより、電磁誘導加熱によってシリコン材料が溶解され、シリコン融液7が溶製される。
In order to cast polycrystalline silicon using the apparatus shown in FIG. 1, first, the silicon material 6 is charged into the cooling mold 2, and then an alternating current is passed through the induction coil 3.
The cooling mold 2 is divided in the circumferential direction, and the respective pieces are electrically separated from each other. Therefore, a current loop is formed in each piece, and the current generates a magnetic field in the cooling mold 2.
Thereby, the silicon material is melted by electromagnetic induction heating, and the silicon melt 7 is melted.

ここで、冷却モールド2内のシリコン材料は、冷却モールド2の内壁がつくる磁界と溶融シリコン表面の電流との電磁気的相互作用によって、冷却モールド2の径方向内側への力を受けるため、冷却モールド2とは非接触の状態で溶解されることとなり、冷却モールドからの不純物汚染が防止され、またインゴット5の下方への引き下げが容易となる。   Here, the silicon material in the cooling mold 2 receives a force inward in the radial direction of the cooling mold 2 due to the electromagnetic interaction between the magnetic field created by the inner wall of the cooling mold 2 and the current on the surface of the molten silicon. 2 is melted in a non-contact state, impurity contamination from the cooling mold is prevented, and the ingot 5 can be easily pulled down.

ここで、溶融シリコンを凝固させるに当たっては、溶融シリコンとインゴットを下部で保持する引き下げ装置8を下方へ移動させる。誘導コイル3の下端から離間するにつれ、誘導磁界が小さくなり、発熱量及び上記の径方向内側への力が小さくなり、冷却モールド2による冷却効果によって、溶融シリコン7が外周側から凝固していき、これを下方へ引き抜いていく。
引き下げ装置の下方への移動に合わせて、冷却モールド2へシリコン材料を連続的に追加装入して、シリコン材料6の溶解及び凝固を継続していくことにより、多結晶シリコンの連続鋳造が可能となる。
なお、多結晶シリコンウェーハの導電性は、ドーパントを添加したシリコン材料6を装入することによって、制御することができる。
p型多結晶シリコンウェーハの鋳造には、ドーパントとしてボロン、ガリウム、アルミニウムなどの溶融原料を用い、n型多結晶シリコンウェーハの鋳造には、ドーパントとしてリン、砒素、アンチモンなど溶融原料を用いることができる。
Here, in order to solidify the molten silicon, the lowering device 8 that holds the molten silicon and the ingot at the lower part is moved downward. As the induction coil 3 is moved away from the lower end of the induction coil 3, the induction magnetic field is reduced, the amount of heat generation and the above-mentioned radial inward force are reduced, and the molten silicon 7 is solidified from the outer peripheral side by the cooling effect of the cooling mold 2. , Pull this down.
As the lowering device moves downward, continuous addition of silicon material to the cooling mold 2 and continuous melting and solidification of the silicon material 6 allows continuous casting of polycrystalline silicon. It becomes.
The conductivity of the polycrystalline silicon wafer can be controlled by inserting a silicon material 6 to which a dopant is added.
For casting p-type polycrystalline silicon wafers, molten raw materials such as boron, gallium and aluminum are used as dopants. For casting n-type polycrystalline silicon wafers, molten raw materials such as phosphorus, arsenic and antimony are used. it can.

ところで、上記のキャスト法や電磁鋳造法によって製造された多結晶シリコンウェーハを太陽電池用の基板として用いた場合、太陽電池における光エネルギーから電気エネルギーへの変換効率が、時間経過と共に低下するという問題がある。   By the way, when the polycrystalline silicon wafer manufactured by the above casting method or electromagnetic casting method is used as a substrate for a solar cell, the conversion efficiency from light energy to electric energy in the solar cell decreases with time. There is.

この原因の1つは、非特許文献1に記載のように、基板にボロンと酸素とが含有されていることにより、太陽光の照射時に、ボロンと酸素の複合体からなる欠陥が発生すること(Light Induced Degradation)に起因すると考えられている。   One of the causes is that, as described in Non-Patent Document 1, when the substrate contains boron and oxygen, a defect composed of a complex of boron and oxygen occurs when irradiated with sunlight. It is thought to be caused by (Light Induced Degradation).

図2は、ボロンをドーピングした、抵抗率1.5Ωcmのp型多結晶シリコンウェーハで、FT−IR法(ASTM F121−79)で測定した格子間酸素濃度が異なるものを複数用意し、該多結晶シリコンウェーハを基板に用いた太陽電池の初期変換効率Aと光照射24時間後の変換効率Bとの比((A-B)/A)×100(%)で定義される変換効率の低下率を求める実験を行った結果を示す図である。
なお、ここでいう、「変換効率」は、太陽電池のセル単位面積当たりに照射した光エネルギーE1とセル単位面積当たりから取り出される変換後の電気エネルギーE2との比(E2/E1)×100(%)で定義される。
FIG. 2 shows a p-type polycrystalline silicon wafer doped with boron and having a resistivity of 1.5 Ωcm, which has multiple interstitial oxygen concentrations measured by the FT-IR method (ASTM F121-79). Obtain the conversion efficiency reduction rate defined by the ratio ((AB) / A) × 100 (%) of the initial conversion efficiency A of solar cells using silicon wafers as the substrate and the conversion efficiency B after 24 hours of light irradiation. It is a figure which shows the result of having conducted experiment.
The `` conversion efficiency '' here is the ratio of the light energy E1 irradiated per cell unit area of the solar cell and the converted electric energy E2 taken out per cell unit area (E2 / E1) × 100 ( %).

図2に示すように、太陽電池の変換効率は3%以上低下していることがわかる。
また、多結晶シリコンウェーハとして酸素濃度の低いウェーハを用いても、太陽電池の変換効率の低下率を大きく低減することはないこともわかる。
このように、従来、多結晶シリコンウェーハの格子間酸素濃度が微量であっても、その微量の酸素がボロンとの複合体を形成してしまうものであると考えられていた。
As shown in FIG. 2, it can be seen that the conversion efficiency of the solar cell is reduced by 3% or more.
It can also be seen that even when a wafer having a low oxygen concentration is used as the polycrystalline silicon wafer, the rate of decrease in conversion efficiency of the solar cell is not greatly reduced.
Thus, conventionally, even if the interstitial oxygen concentration of the polycrystalline silicon wafer is very small, it was considered that the small amount of oxygen would form a complex with boron.

特開平6―64913号公報JP-A-6-64913 特開2007−019209号公報JP 2007-019209 A

Prog. Photovolt: Res. Appl. 2005, 13, 287-296Prog. Photovolt: Res. Appl. 2005, 13, 287-296

本発明の目的は、太陽電池の基板として用いることにより、太陽電池の変換効率の低下を抑制できる多結晶シリコンウェーハ及びその鋳造方法を提供することにある。   The objective of this invention is providing the polycrystalline silicon wafer which can suppress the fall of the conversion efficiency of a solar cell by using it as a board | substrate of a solar cell, and its casting method.

発明者らは前記課題を解決すべく、鋭意究明を重ねた。
その結果、まず発明者は、電磁鋳造法においては、シリコン融液と銅モールドとが非接触状態で鋳造されるにも関らず、酸素含有率の低い銅モールドを用いることにより、多結晶シリコンウェーハの格子間酸素濃度を大幅に低減させることができることを見出した。
さらに、酸素含有率の低い銅モールドを用いるに当たり、チャンバ内の酸素分圧を低減させることも有効であることも知見した。
The inventors have made extensive studies to solve the above problems.
As a result, first, in the electromagnetic casting method, the inventor used polycrystalline silicon by using a copper mold having a low oxygen content even though the silicon melt and the copper mold were cast in a non-contact state. It has been found that the interstitial oxygen concentration of the wafer can be greatly reduced.
Furthermore, when using a copper mold having a low oxygen content, it has also been found that it is effective to reduce the oxygen partial pressure in the chamber.

そして、発明者は、これまでの通説に捉われずに、太陽電池用の基板に用いる多結晶シリコンウェーハ中の酸素濃度をさらに極端に小さくしたところ、酸素とボロンが複合体を形成するのを抑制して、該複合体に起因する太陽電池の変換効率の低下を大幅に抑制することができることの新規知見を得た。   And the inventor made the oxygen and boron form a complex when the oxygen concentration in the polycrystalline silicon wafer used for the substrate for the solar cell was further reduced extremely without being bound by the conventional theory. The new knowledge that it can suppress and can suppress significantly the fall of the conversion efficiency of the solar cell resulting from this composite_body | complex is acquired.

本発明は、上記の知見に立脚するものであり、その要旨構成は、以下の通りである。
(1)FT−IR法(ASTM F121−79)で測定した格子間酸素濃度が1.0×1017atoms/cm3以下の多結晶シリコンウェーハであり、該多結晶シリコンウェーハを基板として用いた太陽電池の変換効率の低下率が3%以下であることを特徴とする、多結晶シリコンウェーハ。
The present invention is based on the above findings, and the gist of the present invention is as follows.
(1) A solar cell using a polycrystalline silicon wafer having an interstitial oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less measured by the FT-IR method (ASTM F121-79) and using the polycrystalline silicon wafer as a substrate A polycrystalline silicon wafer characterized by a reduction rate of the conversion efficiency of 3% or less.

(2)チャンバの誘導コイル内に、軸方向の少なくとも一部が周方向で複数に分割された無底の銅の冷却モールドを配置し、前記誘導コイルによる電磁誘導加熱により、前記冷却銅モールド内にシリコン融液を溶製し、前記シリコン融液を凝固させつつ下方へ引き抜く、多結晶シリコンの鋳造方法において、
前記冷却銅モールドの酸素含有率が低く、且つ前記チャンバ内の酸素分圧が低いことを特徴とする、多結晶シリコンの鋳造方法。
ここで、「銅モールドの酸素含有率が低い」とは、従来用いられていた、酸素含有率100〜500(質量ppm)程度の銅モールドより酸素含有率が低いことをいう。
(2) A bottomless copper cooling mold in which at least a part in the axial direction is divided into a plurality of portions in the circumferential direction is disposed in the induction coil of the chamber, and the inside of the cooling copper mold is subjected to electromagnetic induction heating by the induction coil. In the casting method of polycrystalline silicon, the silicon melt is melted and drawn downward while solidifying the silicon melt.
A method for casting polycrystalline silicon, wherein the cooling copper mold has a low oxygen content and a low oxygen partial pressure in the chamber.
Here, “the oxygen content of the copper mold is low” means that the oxygen content is lower than that of a conventionally used copper mold having an oxygen content of about 100 to 500 (mass ppm).

(3)前記冷却銅モールドの酸素含有率が50(質量ppm)以下であり、且つ前記チャンバ内の酸素分圧が0.01kg/cm2以下であることを特徴とする、上記(2)に記載の多結晶シリコンの鋳造方法。 (3) The oxygen content of the cooling copper mold is 50 (mass ppm) or less, and the oxygen partial pressure in the chamber is 0.01 kg / cm 2 or less. Casting method of polycrystalline silicon.

本発明の方法によれば、FT−IR法(ASTM F121−79)で測定した格子間酸素濃度の低い多結晶シリコンウェーハを鋳造することができる。
この多結晶シリコンウェーハを基板として用いることにより、時間経過に伴う変換効率の低下を低減した太陽電池を実現できる。
According to the method of the present invention, a polycrystalline silicon wafer having a low interstitial oxygen concentration measured by the FT-IR method (ASTM F121-79) can be cast.
By using this polycrystalline silicon wafer as a substrate, it is possible to realize a solar cell in which a decrease in conversion efficiency with the passage of time is reduced.

電磁鋳造法に用いる装置の一例を示す断面図である。It is sectional drawing which shows an example of the apparatus used for an electromagnetic casting method. p型多結晶シリコンウェーハの格子間酸素濃度と太陽電池の変換効率の低下率との関係を示す図である。It is a figure which shows the relationship between the interstitial oxygen concentration of a p-type polycrystalline silicon wafer, and the fall rate of the conversion efficiency of a solar cell. p型多結晶シリコンウェーハの格子間酸素濃度と太陽電池の変換効率の低下率との関係を示す図である。It is a figure which shows the relationship between the interstitial oxygen concentration of a p-type polycrystalline silicon wafer, and the fall rate of the conversion efficiency of a solar cell.

以下に、本発明を導くに至った実験結果について詳述する。
まず、本発明者は、電磁鋳造法がシリコン材料と銅モールドとが非接触状態で鋳造される方法であるにも関らず、銅モールドに、従来用いられていた銅モールドより酸素含有率が低いものを用いることにより、多結晶シリコンウェーハの格子間酸素濃度を低減させ得ることを知見した。また、同時にチャンバ内の酸素分圧を低減させることが有効であることを併せて知見した。
表1は、酸素含有率(質量ppm)の異なる銅モールドを複数用意し、それぞれの銅モールドで電磁鋳造法により、チャンバ内の酸素分圧の様々な条件の下で、ボロンをドーピングした抵抗率1.5Ωcmのp型の多結晶シリコンを鋳造し、多結晶シリコンウェーハの格子間酸素濃度をFT−IR法(ASTM F121−79)で測定した結果を示している。
なお、従来の銅モールドの酸素含有率は100〜500(質量ppm)程度である。
また、チャンバ内の酸素分圧は、チャンバ内のアルゴンガス置換を繰り返し行うことにより低減したものである。
The experimental results that led to the present invention are described in detail below.
First, the inventor found that although the electromagnetic casting method is a method in which a silicon material and a copper mold are cast in a non-contact state, the copper mold has a higher oxygen content than a conventionally used copper mold. It has been found that the interstitial oxygen concentration of a polycrystalline silicon wafer can be reduced by using a low one. At the same time, it has been found that it is effective to reduce the oxygen partial pressure in the chamber.
Table 1 shows the resistivity of boron doped with various copper molds with different oxygen contents (mass ppm), each of which was electromagnetically cast under various conditions of oxygen partial pressure in the chamber. The figure shows the results of casting 1.5-Ωcm p-type polycrystalline silicon and measuring the interstitial oxygen concentration of the polycrystalline silicon wafer by the FT-IR method (ASTM F121-79).
In addition, the oxygen content rate of the conventional copper mold is about 100-500 (mass ppm).
The oxygen partial pressure in the chamber is reduced by repeatedly performing argon gas replacement in the chamber.

Figure 2012041211
Figure 2012041211

表1に示すように、ウェーハの格子間酸素濃度は、チャンバ内の酸素分圧が、0.01kg/cm3以下で、且つ銅モールドの酸素含有率を50質量ppm以下とすることによって1.0×1017atoms/cm3以下に低減させることができることがわかる。
これは、シリコン中に含まれる酸素は、シリコン融液が高温状態のときの短時間のモールドとの接触による経路と、シリコン融液がその後比較的低温に至るまでの間での、チャンバ内の雰囲気からの経路との、2つの異なる経路から混入すると考えられるからである。
なお、リン等をドーピングした抵抗率3Ωcmのn型多結晶シリコンの場合も上記と同様の条件で試験を行い、同様の条件の下で、多結晶シリコンウェーハの格子間酸素濃度を1.0×1017atoms/cm3以下とすることができた。
As shown in Table 1, the interstitial oxygen concentration of the wafer is 1.0 × 10 5 when the oxygen partial pressure in the chamber is 0.01 kg / cm 3 or less and the oxygen content of the copper mold is 50 mass ppm or less. It can be seen that it can be reduced to 17 atoms / cm 3 or less.
This is because the oxygen contained in the silicon is in the chamber between the path due to the contact with the mold for a short time when the silicon melt is at a high temperature and until the silicon melt subsequently reaches a relatively low temperature. It is because it is thought that it mixes from two different routes, the route from the atmosphere.
In the case of n-type polycrystalline silicon having a resistivity of 3 Ωcm doped with phosphorus or the like, the test was performed under the same conditions as described above, and under the same conditions, the interstitial oxygen concentration of the polycrystalline silicon wafer was 1.0 × 10 17. atoms / cm 3 or less could be achieved.

発明者は、上記の如くして、格子間酸素濃度が1.0×1017atoms/cm3以下の多結晶シリコンウェーハを鋳造できるに至り、これらを基板とする太陽電池を複数製造して、上記の変換効率の低下を評価する実験を行った。その評価結果を図3に示す。
なお、実験に用いた多結晶シリコンウェーハは、ボロンをドーピングした、抵抗率1.5Ωcmのp型ウェーハである。
As described above, the inventor has been able to cast a polycrystalline silicon wafer having an interstitial oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less, and manufactured a plurality of solar cells using these as substrates. An experiment was conducted to evaluate the decrease in conversion efficiency. The evaluation results are shown in FIG.
The polycrystalline silicon wafer used in the experiment is a p-type wafer having a resistivity of 1.5 Ωcm doped with boron.

図3に示すように、酸素濃度が1.0×1017atoms/cm3以下の範囲では、酸素濃度が低くなるにつれ、急激に太陽電池の変換効率の低下を抑制することができることがわかる。
本発明によれば、表1に示すように、1.0×1016〜1.0×1017atoms/cm3の範囲の格子間酸素濃度のウェーハを製造することができるため、このウェーハを基板として用いることにより、太陽電池の変換効率の低下率を3%以下まで大幅に低下させることができる。
なお、酸素濃度が1.0×1017atoms/cm3以下のn型多結晶シリコンウェーハでも同様に上述の太陽電池の変換効率の低下率を評価する試験を行い、変換効率の低下率が3%以下となることがわかった。
As shown in FIG. 3, it can be seen that when the oxygen concentration is in the range of 1.0 × 10 17 atoms / cm 3 or less, the decrease in conversion efficiency of the solar cell can be rapidly suppressed as the oxygen concentration decreases.
According to the present invention, as shown in Table 1, since a wafer having an interstitial oxygen concentration in the range of 1.0 × 10 16 to 1.0 × 10 17 atoms / cm 3 can be produced, this wafer can be used as a substrate. As a result, the reduction rate of the conversion efficiency of the solar cell can be significantly reduced to 3% or less.
In addition, even in an n-type polycrystalline silicon wafer having an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less, a test for evaluating the reduction rate of the conversion efficiency of the above-described solar cell was similarly conducted, and the conversion efficiency reduction rate was 3% or less. I found out that

1 チャンバ
2 冷却モールド
3 誘導コイル
4 ヒータ
5 インゴット
6 シリコン材料
7 溶融シリコン
8 引き下げ装置
1 chamber
2 Cooling mold
3 induction coil
4 Heater
5 Ingot
6 Silicon material
7 Molten silicon
8 Pulling device

Claims (3)

FT−IR法(ASTM F121−79)で測定した格子間酸素濃度が1.0×1017atoms/cm3以下の多結晶シリコンウェーハであり、該多結晶シリコンウェーハを基板として用いた太陽電池の変換効率の低下率が3%以下であることを特徴とする、多結晶シリコンウェーハ。 Conversion efficiency of a solar cell using a polycrystalline silicon wafer having an interstitial oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less measured by FT-IR method (ASTM F121-79) and using the polycrystalline silicon wafer as a substrate A polycrystalline silicon wafer having a decrease rate of 3% or less. チャンバの誘導コイル内に、軸方向の少なくとも一部が周方向で複数に分割された無底の銅の冷却モールドを配置し、前記誘導コイルによる電磁誘導加熱により、前記冷却銅モールド内にシリコン融液を溶製し、前記シリコン融液を凝固させつつ下方へ引き抜く、多結晶シリコンの鋳造方法において、
前記冷却銅モールドの酸素含有率が低く、且つ前記チャンバ内の酸素分圧が低いことを特徴とする、多結晶シリコンの鋳造方法。
A bottomless copper cooling mold in which at least a part in the axial direction is divided into a plurality of portions in the circumferential direction is disposed in the induction coil of the chamber, and silicon fusion is performed in the cooling copper mold by electromagnetic induction heating by the induction coil. In the casting method of polycrystalline silicon, the liquid is melted and pulled down while solidifying the silicon melt.
A method for casting polycrystalline silicon, wherein the cooling copper mold has a low oxygen content and a low oxygen partial pressure in the chamber.
前記冷却銅モールドの酸素含有率が50(質量ppm)以下であり、且つ前記チャンバ内の酸素分圧が0.01kg/cm2以下であることを特徴とする、請求項2に記載の多結晶シリコンの鋳造方法。 3. The polycrystalline silicon according to claim 2, wherein the oxygen content of the cooling copper mold is 50 (mass ppm) or less, and the oxygen partial pressure in the chamber is 0.01 kg / cm 2 or less. Casting method.
JP2010181733A 2010-08-16 2010-08-16 Polycrystalline silicon wafer and method for casting the same Withdrawn JP2012041211A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010181733A JP2012041211A (en) 2010-08-16 2010-08-16 Polycrystalline silicon wafer and method for casting the same
KR1020110080553A KR20120016591A (en) 2010-08-16 2011-08-12 Polycrystalline silicon wafer and casting method of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181733A JP2012041211A (en) 2010-08-16 2010-08-16 Polycrystalline silicon wafer and method for casting the same

Publications (1)

Publication Number Publication Date
JP2012041211A true JP2012041211A (en) 2012-03-01

Family

ID=45838823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181733A Withdrawn JP2012041211A (en) 2010-08-16 2010-08-16 Polycrystalline silicon wafer and method for casting the same

Country Status (2)

Country Link
JP (1) JP2012041211A (en)
KR (1) KR20120016591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143868A (en) * 2015-02-05 2016-08-08 信越化学工業株式会社 Rear face junction type solar cell
WO2019231062A1 (en) * 2018-05-29 2019-12-05 엘지전자 주식회사 Compound semiconductor solar cell and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143868A (en) * 2015-02-05 2016-08-08 信越化学工業株式会社 Rear face junction type solar cell
WO2019231062A1 (en) * 2018-05-29 2019-12-05 엘지전자 주식회사 Compound semiconductor solar cell and method for manufacturing same

Also Published As

Publication number Publication date
KR20120016591A (en) 2012-02-24

Similar Documents

Publication Publication Date Title
US20080210156A1 (en) Casting method for polycrystalline silicon
JP5493092B2 (en) Method for producing gallium oxide single crystal and gallium oxide single crystal
WO2011100879A1 (en) Monocrystalline silicon material co-doped with gallium and indium or co-doped with gallium, indium and germanium for solar batteries and manufacturing method thereof
JP2008156166A (en) Method for casting and cutting silicon ingot
EP1742277A2 (en) Polycrystalline silicon for solar cells and method for producing the same
TWI510683B (en) Apparatus and method for the production of ingots
US9546436B2 (en) Polycrystalline silicon and method of casting the same
KR20190043626A (en) Compound semiconductor and method for manufacturing compound semiconductor single crystal
JP2012041211A (en) Polycrystalline silicon wafer and method for casting the same
CN103060902B (en) Direct forming prepares method and the silicon chip direct-forming device of band silicon
JP6046780B2 (en) Method for producing polycrystalline silicon ingot
WO2012111850A1 (en) Polycrystalline wafer, method for producing same and method for casting polycrystalline material
Huang et al. Feasibility of directional solidification of silicon ingot by electromagnetic casting
JP2012056826A (en) Electromagnetic casting method of silicon ingot
KR20120052855A (en) N-type polycrystalline silicon wafer, n-type polycrystalline silicon ingot and method of manufacturing same
TW201708634A (en) Polycrystalline silicon column and polycrystalline silicon wafer
EP2470693B1 (en) Process for production of multicrystalline silicon ingots by induction method
Huang et al. Electrical resistivity distribution of silicon ingot grown by cold crucible continuous melting and directional solidification
WO2011104796A1 (en) Polycrystalline silicon for solar cell
JP2012171820A (en) Polycrystalline wafer and method for producing the same, and method for casting polycrystalline material
Kurinec et al. Emergence of continuous Czochralski (CCZ) growth for monocrystalline silicon photovoltaics
WO2012011159A1 (en) Process for continuously casting silicon ingots
Riemann et al. Floating zone crystal growth
KR20120031421A (en) Electromagnetic casting method for silicon ingot
Lee et al. The current status in the silicon crystal growth technology for solar cells

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105