WO2012022231A1 - 一种多传感器视觉测量系统的刚性杆全局校准方法及装置 - Google Patents

一种多传感器视觉测量系统的刚性杆全局校准方法及装置 Download PDF

Info

Publication number
WO2012022231A1
WO2012022231A1 PCT/CN2011/078166 CN2011078166W WO2012022231A1 WO 2012022231 A1 WO2012022231 A1 WO 2012022231A1 CN 2011078166 W CN2011078166 W CN 2011078166W WO 2012022231 A1 WO2012022231 A1 WO 2012022231A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
rigid rod
sensor
visual
vision
Prior art date
Application number
PCT/CN2011/078166
Other languages
English (en)
French (fr)
Inventor
张广军
刘震
魏振忠
孙军华
谢梦
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US13/393,555 priority Critical patent/US8964027B2/en
Publication of WO2012022231A1 publication Critical patent/WO2012022231A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • G06T2207/30208Marker matrix

Definitions

  • the invention relates to a global calibration technology in a multi-sensor vision measurement system, and in particular to a method and a device for global calibration of a rigid rod of a multi-sensor vision measurement system. Background technique
  • Vision sensors are widely used due to their large range, non-contact, fast speed, flexible system and high measurement accuracy.
  • the measurement range of a single vision sensor is limited, so when the measurement range is large, multiple vision sensors can be used.
  • this measurement system is often referred to as a multi-sensor vision measurement system.
  • the distance between the individual vision sensors is generally far apart and there is no common field of view. Therefore, when measuring with multiple vision sensors, global calibration is required, ie: determine the positional relationship between the individual vision sensors and unify them into the same coordinate system.
  • the commonly used global calibration methods for multi-sensor vision measurement systems are: unified method of the same name coordinate, unified method of mediation coordinates and world coordinate unique method; wherein, the same name coordinate unified method, using a set of coordinates of the same name to calculate each visual sensor coordinate system The rotation matrix and the translation vector to the global coordinate system; the mediation coordinate unified method, through the multiple intermediate coordinate system transformation to complete the unification of the visual sensor coordinate system to the global coordinate system; the world coordinate unique method, directly using the feature points in the global coordinate system Local calibration of each vision sensor in the system under measurement to unify local calibration and global calibration.
  • the main object of the present invention is to provide a method and a device for global calibration of a rigid rod of a multi-sensor vision measurement system, which can not only improve the global calibration accuracy, but also be suitable for global calibration of a multi-sensor vision measurement system in a large workspace. wide range.
  • the present invention provides a rigid rod global calibration method for a multi-sensor vision measurement system, the method comprising:
  • the rigid rod with two targets fixed is placed in front of the two vision sensors more than nine times. Each time the visual sensor separately captures the corresponding target image, the target feature point image coordinates are extracted, and each target feature point is calculated respectively.
  • the transformation matrix between the two vision sensors is calculated by taking the positional relationship between the targets as a constraint.
  • the method before the rigid rod is placed in front of the two vision sensors, the method further comprises: fixing the target on the rigid rod, adjusting the length of the rigid rod and the position of the target, so that the two visual sensors to be calibrated can be clear Capture the corresponding target image.
  • the visual sensor has more than two; the method further includes: arbitrarily selecting two visual sensors as visual sensors to be calibrated each time; each visual sensor corresponding to one target, and capturing a target image corresponding to the target .
  • each vision sensor performs distortion correction of the image according to a calibration result of the internal parameters of the vision sensor.
  • the calculation of the transformation matrix between the two vision sensors is: calculating a rotation matrix, a translation vector; establishing an objective function with a minimum re-projection error, and solving a nonlinearity of the rotation matrix and the translation vector by using a nonlinear optimization method; Optimize the solution to get the transformation matrix between the two vision sensors.
  • the target is fixed to the rigid rod by a target clamping mechanism, a universal joint, and a rigid rod transfer fixing device.
  • the invention also provides a rigid rod global calibration device for a multi-sensor vision measuring system, comprising: a target, a target clamping mechanism, a universal joint, a rigid rod transfer fixing device, and a rigid rod of a retractable length; wherein
  • the rigid rod further comprises two solid rods and one hollow rod, the two solid rods are nested in the hollow rod, and the solid rod and the hollow rod are fixed by bolts;
  • the target is clamped on the target clamping mechanism, and the target clamping mechanism with the target is mounted on the universal connector, and the target can be arbitrarily rotated on the universal connector;
  • the universal joint is fixed to the solid rod of the rigid rod by a rigid rod transfer fixing device.
  • the target, the target clamping mechanism, the universal joint, and the rigid rod transfer fixing device are both.
  • the rigid rod global calibration method and device for the multi-sensor visual measurement system fixes the target on the rigid rod, adjusts the length of the rigid rod and the position of the target, and uses the positional relationship of the two targets on the rigid rod to be the constraint condition.
  • the transformation matrix between the two vision sensors is solved, and the global calibration of the multi-sensor vision measurement system is realized by the two-two calibration method.
  • the practical application of the invention is flexible and convenient, and the rigid rod can be flexibly adjusted according to the position of the visual sensor, so that the visual sensor at different positions can capture a clear target image, thereby being applicable to the global working environment of the multi-sensor visual measurement system. Calibration, wide range of applications; and, global calibration High degree.
  • FIG. 1 is a schematic structural view of a rigid rod global calibration device of a multi-sensor visual measurement system according to the present invention
  • FIG. 2 is a schematic diagram showing the implementation process of a rigid rod global calibration method for a multi-sensor visual measurement system according to the present invention
  • FIG. 3 is a schematic diagram showing an implementation principle of a rigid rod global calibration method for a multi-sensor visual measurement system according to the present invention
  • Figure 4 is a schematic view showing the coordinate system of the rigid rod in the present invention.
  • FIG. 5 is a schematic diagram showing the effect of a one-dimensional target image captured by a vision sensor according to an embodiment of the invention. detailed description
  • the basic idea of the present invention is: placing a rigid rod with two targets fixed in front of two vision sensors nine times or more, each time each visual sensor separately photographs a corresponding target image, extracts image coordinates of the target feature points, and respectively calculates The three-dimensional coordinates of each target feature point in the corresponding visual sensor coordinate system; thereafter, the transformation matrix between the two visual sensors is calculated by taking the positional relationship between the targets as a constraint.
  • placing the rigid rod in different positions or moving the rigid rod is actually placing the target at different positions or moving the target.
  • the positions of the two targets fixed on the rigid rod are adjusted before the global calibration, specifically: first fixing the target on the rigid rod, then adjusting the length of the rigid rod and the position of the target, so that the two visual sensors to be calibrated A clear corresponding target image can be captured; afterwards, the positional relationship of the target is unchanged during the global calibration process, ie: the position of the target on the rigid rod is no longer moving or turning, and moving the rigid rod only moves the target relative to the visual sensor Different locations.
  • Two vision sensors are randomly selected from a plurality of vision sensors as visual sensors to be calibrated to achieve global calibration of the multi-sensor vision measurement system.
  • the rigid rod global calibration device of the multi-sensor visual measurement system of the present invention is shown in FIG. 1 and includes: two targets 11, two target clamping mechanisms 12, two universal connectors 13, and two rigid rod transfer fixing devices. 14.
  • the global calibration device is mainly used for assisting the visual sensor to complete global calibration, and the main features of the global calibration device include:
  • the two targets 11 are known sizes and are respectively clamped on the two target holding mechanisms 12, and the center points of the two rows of black and white checkers on the target 11 in Fig. 1 are target feature points;
  • Two target holding mechanisms 12 equipped with the target 11 are mounted on the two universal joints 13, and the target 11 can be arbitrarily rotated on the universal joint 13;
  • the rigid rod is composed of a hollow rod 16 and two solid rods 15 nested in the hollow rod.
  • the two solid rods 15 can move freely within the hollow rod 16 to reach the telescopic rigid rod and adjust the length of the rigid rod.
  • the two solid rods 15 and the hollow rods 16 are respectively fixed by bolts; a4) the two universal joints 13 are respectively fixed to the two ends of the solid rods 15 of the rigid rods by the rigid rod transfer fixing device 14;
  • the rigid rod global calibration device is placed in front of the two visual sensors to be calibrated, and the two solid rods 15 in the hollow rod 16 are moved in the rigid rod so that the visual sensor can be photographed.
  • the image of the target 11 is fixed, and then the hollow rod 16 and the two solid rods 15 are fixed by bolts, and then the steering head in the universal joint 13 is adjusted, so that the visual sensor can capture a clear image of the target 11; wherein the target One-dimensional targets can be used, and the one-dimensional target is exemplified below.
  • the present invention also provides a rigid rod global calibration method, the main features of which are:
  • Step 201 Calibrate the internal parameters of all the visual sensors separately.
  • Step 202 arbitrarily select two vision sensors among the plurality of vision sensors as the vision sensors to be calibrated.
  • the selected visual sensors are called visual sensor 1 and visual sensor 2, respectively corresponding to two targets pre-fixed on the rigid rod - one-dimensional target 1 and one-dimensional target 2; fixing the target Specifically on the rigid rod: two one-dimensional targets are fixed on the universal joint by a clamping mechanism, and the universal joint is fixed on the rigid rod by a rigid rod transfer fixing device.
  • Step 203 Adjust the length of the rigid rod and the target position so that each vision sensor can clearly capture the corresponding target image.
  • the length of the rigid rod is adjusted so that the two one-dimensional targets respectively fall into the field of view of the corresponding visual sensor; the position of the target is adjusted, so that each visual sensor can clearly capture the corresponding one-dimensional target image.
  • adjusting the length of the rigid rod it is also necessary to tighten the bolts of the solid rod and the hollow rod on the rigid rod to fix the length of the rigid rod; the field of view of the one-dimensional target falling into the corresponding visual sensor means:
  • FIG. 3 is a schematic diagram of an implementation principle of a global calibration method for a rigid rod of a multi-sensor visual measurement system according to the present invention.
  • the visual sensor 1 and the visual sensor 2 respectively correspond to a one-dimensional target 1 and a one-dimensional target 2, and the visual sensor 1 can "Look” to all of the one-dimensional target 1, but “see” less than one-dimensional target 2; visual sensor 2 can "see” to all of the one-dimensional target 2, but “see” is less than one-dimensional grass mark 1.
  • ⁇ 3 ⁇ 4 ;3 ⁇ 4 be the vision sensor 1 coordinate system
  • 2 x. 2 ⁇ 2 is the visual sensor 2 coordinate system
  • ⁇ ⁇ ⁇ is the image coordinate system of the visual sensor 1
  • ⁇ ⁇ ⁇ is the image coordinate system of the visual sensor 1
  • cl is the image coordinate system of the visual sensor 2
  • w are the rotation matrix of the visual sensor 2 coordinate system to the visual sensor 1, respectively
  • panning vector is the vision sensor 1 coordinate system, 2 x. 2 ⁇ 2 coordinate system, ⁇ ⁇ ⁇ is the image coordinate system of the visual sensor 1, is the image coordinate system of the visual sensor 2, 2, cl , w are the rotation matrix of the visual sensor 2 coordinate system to the visual sensor 1, respectively And panning vector.
  • a u , B u , C u are the three-dimensional coordinates of the one-dimensional target 1 feature point in the coordinate system of the visual sensor 1 when the i-th position of the rigid rod is placed;
  • a 2i , B 2i , C 2i are respectively in the rigid rod
  • the one-dimensional target 2 feature point is in three-dimensional coordinates in the coordinate system of the visual sensor 2.
  • the operations of calibrating the internal parameters of the visual sensor, selecting the visual sensor, and adjusting the length of the rigid rod and the position of the target as described in the above steps 201 to 203 are pre-processing operations before global calibration.
  • Step 204 Two visual sensors respectively capture corresponding one-dimensional target images, each visual transmission The sensor performs distortion correction of the image based on the calibration result of the internal parameters of the vision sensor.
  • Step 205 respectively solve the three-dimensional coordinates of each one-dimensional target feature point in the corresponding visual sensor coordinate system.
  • V ⁇ i be the infinity point of the straight line where the one-dimensional target 1 is located when the ith position is the i-th position of the rigid rod. Since V ⁇ i is the infinity point, AuVooi /BuVooi is approximately 1, then A u , B u , C The intersection ratio of u and V ⁇ i four points can be expressed by the formula (1):
  • CR(Au, B u , Cu, V ⁇ i ) CR(a u , b h ; cu, vu) ⁇ A Xi C Xi /B Xi C Xi (2) where ", and c are respectively in the rigid rod The image coordinates of , , and C on the vision sensor 1 when the i position is placed.
  • the direction of the spatial straight line is parallel to the back projection ray of the blanking point v lz .
  • equation (3) the internal parameter matrix of the visual sensor 1 and the internal parameters of the camera are described in the literature "A flexible new technique for camera calibration [J]. IEEE Trans, on Pattern Analysis and Machine Intelligence”.
  • Solving the equations composed of equations (4) and (5) can solve 4,., Xi . According to the characteristics of the collinearity of one-dimensional target feature points, solve the three-dimensionality of all one-dimensional target 1 feature points in the visual sensor 1 coordinate system. Coordinates 4, ⁇ and .
  • Step 206 Calculate the rotation matrix 2 , cl .
  • is the direction vector of the one-dimensional target 1 and the one-dimensional target 2 at the respective visual sensor coordinates.
  • the equation of equation (6) can be obtained for every two positions of the rigid rod. According to the formula (6) and the characteristics of the rotation matrix, at least three equations of equation (6) can solve J? e2 . Cl , therefore, it is necessary to place the rigid rod with two one-dimensional targets placed more than nine times.
  • the characteristics of the rotation matrix are: The column vector of the rotation matrix is a unit vector, and the vectors are orthogonal to each other; the degree of freedom of the rotation matrix is 3.
  • Step 207 Calculate the translation vector ⁇ 2 , ⁇ 1 .
  • Equation (8) can eliminate 2, the components can be solved quadratic e2, cl.
  • Step 208 Establish an objective function with the minimum re-projection error, and use a nonlinear optimization method to solve the nonlinear optimization solution of 2 , ⁇ ⁇ ⁇ 2 and ⁇ 1 , and obtain a transformation matrix between the two visual sensors.
  • the objective function is established to complete the nonlinear optimization.
  • the purpose of the nonlinear optimization is to minimize the objective function after nonlinear optimization, that is, to solve the 2 , ⁇ 1 and the minimum of the objective function.
  • FIG. 4 is the rigid rod coordinate system.
  • the rigid rod coordinate system is established as follows: Optional position of a rigid rod, in the one-dimensional target 1, the origin of the rigid rod coordinate system, the line of the one-dimensional target 1 is the X-axis, C and 2z of the coordinate system The normal vector of the plane in which it is located is the z-axis.
  • FIG. 4 "is a two-dimensional target coordinates of the rigid bar (angle between the straight line and the projection plane 3 ⁇ 4x g1 ⁇ 2 _y-axis, as a 2-dimensional target coordinates of the rigid rod angle (3 ⁇ 4 ⁇ 1 ⁇ 2 plane, ⁇ The distance from the one-dimensional target 2 to the one-dimensional target 1.
  • the three-dimensional coordinates of the one-dimensional target 2 feature point in the rigid rod coordinate system can be expressed by the formula (9):
  • C 2i [sin () ( C2 cos + d) cos (a) ( ⁇ C2 cos + d) ⁇ ⁇ sin l] T Equation (9), 2 and 2 are one-dimensional target 2 beta] 2 and C The distance between 2 , where ", and ⁇ can be solved according to , C, A 2i , and H.
  • ⁇ and ⁇ are the distances between ⁇ ⁇ and ⁇ G in the one-dimensional target 1 respectively; in the i-th placement position of the rigid rod, the transformation matrix of the rigid rod coordinate system to the visual sensor 1 coordinate 7 ⁇ Can be solved by equation (11):
  • Equation (12) A, ? 2, and ? 3 are proportional coefficients, which are the internal parameter matrix of the visual sensor 1.
  • Equation (13) 2 is the internal parameter matrix of vision sensor 2, c2, cl c2, cl
  • two Patriot digital cameras equipped with 23 mm industrial lenses are used as the visual sensor 1 and the visual sensor 2, respectively.
  • the resolution of the two vision sensors is 1280 pixels xl024 pixels, the working distance is about 750mm, and the field of view is 150mmxl20mm.
  • FIG. 5 shows an image of the one-dimensional target 1 and the one-dimensional target 2 corresponding to the visual sensor 1 and the visual sensor 2; wherein, FIG. 5) is a one-dimensional target photographed by the visual sensor 1. 1 image, FIG. 5 (b) is a one-dimensional target 2 image taken by the vision sensor 2.
  • the calculated transformation matrix ⁇ ⁇ 2 , ⁇ 1 between the two vision sensor coordinate systems is:
  • the distance between two one-dimensional target feature points in the rigid rod global calibration device is measured by a binocular vision sensor, and the measured value of the binocular vision sensor is measured. As the true value of the point-to-point distance.
  • the transformation matrix ⁇ ⁇ 2 ⁇ 1 obtained by the global calibration method of the present invention calculates the feature points in the one-dimensional target 2 according to the formula (5) in the visual sensing ⁇ L

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

一种多传感器视觉测量系统的刚性杆全局校准方法及装置 技术领域
本发明涉及多传感器视觉测量系统中的全局校准技术, 具体涉及一种 多传感器视觉测量系统的刚性杆全局校准方法及装置。 背景技术
视觉传感器由于具有大量程、 非接触、 速度快、 系统柔性好及测量精 度高等优点而得到广泛应用, 但是, 单个视觉传感器测量范围有限, 所以, 当测量范围较大时, 可以将多个视觉传感器结合起来构成多视觉传感器, 以得到较大的测量范围, 并保证足够高的测量精度, 通常将这种测量系统 称为多传感器视觉测量系统。
在多传感器视觉测量系统中, 各个视觉传感器之间距离一般相距较远, 且没有共同视场。 因此, 釆用多个视觉传感器进行测量时, 需要进行全局 校准, 即: 确定各个视觉传感器之间的位置关系, 并将它们统一到同一个 坐标系下。
目前, 常用的多传感器视觉测量系统的全局校准方法主要有: 同名坐 标统一法、 中介坐标统一法和世界坐标唯一法; 其中, 同名坐标统一法, 利用一组同名坐标计算出各个视觉传感器坐标系到全局坐标系的旋转矩阵 和平移向量; 中介坐标统一法, 通过多次中间坐标系转换来完成视觉传感 器坐标系到全局坐标系的统一; 世界坐标唯一法, 直接利用全局坐标系下 的特征点对处于测量状态的系统中的各个视觉传感器进行局部标定, 从而 将局部标定和全局标定统一到一起。 但是, 上述三种校准方法需要高精度 测量设备, 如经纬仪、 激光跟踪仪等等, 存在校准 "盲区" 和空间受限, 且需要进行多次坐标转换, 损失了校准精度。 张广军等人在 2005年提出了靶标全局校准方法, 该全局校准方法是根 据靶标特征点之间的位置约束关系, 求解无共同视场的多视觉传感器坐标 系之间的转换矩阵, 从而实现较大工作空间的全局校准。 该全局校准方法 虽然不需要进行很多次坐标变换, 校准精度较高, 但是, 该全局校准方法 需要大尺寸靶标, 由于超大尺寸靶标加工和使用困难, 因此, 该全局校准 方法不适合用于超大工作空间的多传感器视觉测量系统全局校准。 发明内容
有鉴于此, 本发明的主要目的在于提供一种多传感器视觉测量系统的 刚性杆全局校准方法及装置, 不仅能提高全局校准精度, 而且适用于超大 工作空间多传感器视觉测量系统的全局校准, 适用范围广。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种多传感器视觉测量系统的刚性杆全局校准方法, 该 方法包括:
将固定有两个靶标的刚性杆在两个视觉传感器前摆放九次以上, 每次 每个视觉传感器分别拍摄对应的靶标图像, 提取靶标特征点图像坐标, 分 别计算每个靶标特征点在对应视觉传感器坐标系下的三维坐标;
以靶标之间位置关系不变为约束条件, 计算两个视觉传感器之间的转 换矩阵。
上述方案中, 所述将刚性杆在两个视觉传感器前摆放之前, 该方法还 包括: 将靶标固定于刚性杆上, 调整刚性杆长度和靶标位置, 使待校准的 两个视觉传感器能清晰的拍摄到对应的靶标图像。
上述方案中, 所述视觉传感器多于两个; 该方法还包括: 每次任意选 取两个视觉传感器作为待校准的视觉传感器; 每个视觉传感器与一个靶标 相对应, 拍摄对应靶标清晰的靶标图像。
上述方案中, 所述每个视觉传感器分别拍摄对应的靶标图像之后, 该 方法还包括: 每个视觉传感器根据视觉传感器内部参数标定结果, 进行图 像的畸变校正。
上述方案中, 所述计算两个视觉传感器之间转换矩阵为: 计算旋转矩 阵、 平移矢量; 建立以重投影误差为最小的目标函数, 釆用非线性优化方 法求解旋转矩阵和平移矢量的非线性优化解, 得到两个视觉传感器之间转 换矩阵。
上述方案中, 所述靶标通过靶标夹持机构、 万向连接器、 刚性杆转接 固定装置固定于刚性杆上。
本发明还提供了一种多传感器视觉测量系统的刚性杆全局校准装置, 包括: 靶标、 靶标夹持机构、 万向连接器、 刚性杆转接固定装置、 可伸缩 长度的刚性杆; 其中,
刚性杆还包括两个实心杆和一个空心杆, 两个实心杆套入在空心杆内, 实心杆与空心杆之间通过螺栓固定;
所述靶标夹持在靶标夹持机构上, 装有靶标的靶标夹持机构安装在万 向连接器上, 靶标能在万向连接器上任意旋转;
所述万向连接器通过刚性杆转接固定装置固定于刚性杆的实心杆上。 其中, 所述靶标、 靶标夹持机构、 万向连接器、 刚性杆转接固定装置 均为两个。
本发明所提供的多传感器视觉测量系统的刚性杆全局校准方法及装 置, 将靶标固定于刚性杆上, 调整刚性杆长度和靶标位置, 利用刚性杆上 两个靶标位置关系不变为约束条件, 求解两个视觉传感器之间的转换矩阵 , 通过两两校准方式实现多传感器视觉测量系统的全局校准。 本发明实际应 用时灵活、 方便, 刚性杆可以根据视觉传感器位置的不同灵活调整, 使不 同位置的视觉传感器都可以拍摄到清晰的靶标图像, 从而可适用于大工作 空间多传感器视觉测量系统的全局校准, 适用范围广; 并且, 全局校准精 度高。 附图说明
图 1 为本发明多传感器视觉测量系统的刚性杆全局校准装置结构示意 图;
图 2为本发明多传感器视觉测量系统的刚性杆全局校准方法实现流程 示意图;
图 3 为本发明多传感器视觉测量系统的刚性杆全局校准方法实现原理 示意图;
图 4为本发明中刚性杆坐标系示意图;
图 5为本发明一实施例中视觉传感器拍摄的一维靶标图像效果示意图。 具体实施方式
本发明的基本思想是: 将固定有两个靶标的刚性杆在两个视觉传感器 前摆放九次以上, 每次每个视觉传感器分别拍摄对应的靶标图像, 提取靶 标特征点图像坐标, 分别计算每个靶标特征点在对应视觉传感器坐标系下 的三维坐标; 之后, 以靶标之间位置关系不变为约束条件, 计算两个视觉 传感器之间的转换矩阵。
这里, 由于靶标固定于刚性杆上, 所以, 将刚性杆摆放在不同位置或 移动刚性杆的位置实际就是将靶标摆放于不同位置或移动靶标。
其中, 固定于刚性杆上的两个靶标的位置在进行全局校准前完成调整, 具体是: 先将靶标固定于刚性杆上, 再调整刚性杆长度和靶标位置, 使待 校准的两个视觉传感器能拍摄到清晰的对应靶标图像; 之后, 在全局校准 过程中靶标的位置关系不变, 即: 靶标在刚性杆上的位置不再移动或转向, 仅靠移动刚性杆移动靶标处于相对于视觉传感器的不同位置。
当视觉传感器多于两个时, 釆用两-两视觉传感器校准的方式, 即: 每 次从多个视觉传感器中任意选取两个视觉传感器作为待校准的视觉传感 器, 实现多传感器视觉测量系统的全局校准。
本发明多传感器视觉测量系统的刚性杆全局校准装置如图 1 所示, 包 括: 两个靶标 11、 两个靶标夹持机构 12、 两个万向连接器 13、 两个刚性杆 转接固定装置 14、 一个可伸缩长度的刚性杆, 其中, 刚性杆包括两个实心 杆 15和一个空心杆 16;该全局校准装置主要用于辅助视觉传感器完成全局 校准, 该全局校准装置的主要特点包括:
al )两个靶标 11为已知尺寸的靶标, 分别夹持在两个靶标夹持机构 12 上, 图 1中靶标 11上两行黑白相间棋盘格的中心点为靶标特征点;
a2 )两个装有靶标 11的靶标夹持机构 12安装在两个万向连接器 13上, 靶标 11可以在万向连接器 13上任意旋转;
a3 ) 刚性杆由空心杆 16和两个套入在空心杆内的实心杆 15组成, 两 个实心杆 15可以在空心杆 16内自由移动, 达到伸缩刚性杆、 调节刚性杆 长度的作用, 其中两个实心杆 15与空心杆 16之间分别通过螺栓固定; a4 ) 两个万向连接器 13通过刚性杆转接固定装置 14分别固定在刚性 杆的实心杆 15的两端;
a5 )在进行现场全局校准中, 将刚性杆全局校准装置摆放在待校准的 两个视觉传感器前, 移动刚性杆中套在空心杆 16内的两个实心杆 15 ,使视 觉传感器可以拍摄到靶标 11 图像, 移动好后通过螺栓将空心杆 16和两个 实心杆 15 固定, 再调节万向连接器 13 中的转向头, 让视觉传感器可以拍 摄到清晰的靶标 11图像; 其中, 所述靶标可釆用一维靶标, 下文以一维靶 标为例。
基于图 1 所示的刚性杆全局校准装置, 本发明还提供了一种刚性杆全 局校准方法, 该方法的主要特点是:
bl ) 两个视觉传感器分别拍摄对应的一维靶标图像, 提取一维靶标特 征点图像坐标, 根据事先已经标定获得的视觉传感器内部参数完成特征点 图像畸变校正; 这里, 图像的畸变校正过程是指: 根据摄像机内部参数, 通过 ZHANG Z Y. 的文章 "A flexible new technique for camera calibration[J]. IEEE Trans, on Pattern Analysis and Machine Intelligence" 中提到的方法, 校 正由于镜头畸变造成的图像变形;
b2 )根据一维靶标特征点图像坐标, 通过交比不变性, 计算一维靶标 所在直线上无穷远点的图像坐标, 这里称该图像点为消隐点图像坐标。
b3 )根据消隐点图像坐标, 结合视觉传感器内部参数, 计算一维靶标 特征点在视觉传感器坐标系下的三维坐标;
b4 )将刚性杆全局校准装置在视觉传感器前移动九次以上, 以刚性杆 中两个一维靶标的位置关系不变为约束条件, 求解两个视觉传感器之间的 转换矩阵;
b5 )通过非线性优化方法, 计算两个视觉传感器之间转换矩阵; b6 )通过两-两视觉传感器校准的方式, 实现多传感器视觉测量系统的 全局校准。
下面具体描述基于多传感器视觉测量系统的刚性杆全局校准装置进行 全局校准的实现方法, 如图 2所述, 包括以下步骤:
步骤 201 : 分别标定所有视觉传感器的内部参数。
这里 , 可釆用 ZHANG Z Y. 在文章 "A flexible new technique for camera calibration[J]. IEEE Trans, on Pattern Analysis and Machine Intelligence" 中提 到的摄像机标定方法, 对视觉传感器的内部参数进行标定。
步骤 202:在多个视觉传感器中任意选取两个视觉传感器作为待校准的 视觉传感器。
这里, 所选取的视觉传感器称为视觉传感器 1和视觉传感器 2, 分别对 应预先固定于刚性杆上的两个靶标 --一维靶标 1和一维靶标 2; 将靶标固定 于刚性杆上具体是: 将两个一维靶标通过夹持机构固定在万向连接器上, 万向连接器通过刚性杆转接固定装置固定在刚性杆上。
步骤 203: 调节刚性杆长度和靶标位置, 使每个视觉传感器能清晰的拍 摄到对应的靶标图像。
具体的, 调节刚性杆长度, 使两个一维靶标分别落入对应的视觉传感 器的视场范围; 调节靶标位置, 使每个视觉传感器能清晰的拍摄到对应的 一维靶标图像。 其中, 调节好刚性杆长度, 还需拧紧刚性杆上固定实心杆 和空心杆的螺栓, 将刚性杆长度固定; 所述使一维靶标落入对应的视觉传 感器的视场范围是指: 使两个视觉传感器分别能够看到对应的一维靶标; 所述调节靶标位置是指: 分别调节两个万向连接器上一维靶标的方向。
图 3 为本发明多传感器视觉测量系统刚性杆全局校准方法的实现原理 示意图, 从图 3可以看出, 视觉传感器 1、 视觉传感器 2分别对应一维靶标 1、 一维靶标 2, 视觉传感器 1 可以"看"到一维靶标 1的全部, 但"看"不到 一维靶标 2; 视觉传感器 2可以"看"到一维靶标 2的全部, 但"看"不到一维 草巴标 1。
设<¾ 为视觉传感器 1坐标系, 2x。2^2 为视觉传感器 2坐标系, ί χ^为视觉传感器 1的图像坐标系, 为视觉传感器 2的图像坐标系, 2,cl、 w分别为视觉传感器 2坐标系到视觉传感器 1的旋转矩阵和平移矢 量。 Au、 Bu、 Cu分别为在刚性杆第 i个摆放位置时, 一维靶标 1特征点在 视觉传感器 1坐标系下三维坐标; A2i、 B2i、 C2i分别为在刚性杆第 i个摆放 位置时, 一维靶标 2特征点在视觉传感器 2坐标系下三维坐标。
上述步骤 201 ~ 203所述的标定视觉传感器内部参数、选取视觉传感器、 以及调节刚性杆长度和靶标位置的操作, 均为在进行全局校准之前的预处 理操作。
步骤 204: 两个视觉传感器分别拍摄对应的一维靶标图像,每个视觉传 感器根据视觉传感器内部参数标定结果, 进行图像的畸变校正。 步骤 205 :分别求解每个一维靶标特征点在对应视觉传感器坐标系下的 三维坐标。
以视觉传感器 1的求解过程为例, 在视觉传感器 1拍摄的靶标图像中, 利用一维靶标 1上三个或三个以上特征点的图像坐标, 求解一维靶标 1所 在空间直线在视觉传感器 1图像中的消隐点 。
设 V∞i为刚性杆第 i个摆放位置时, 一维靶标 1所在直线的无穷远点, 由于 V∞i为无穷远点, AuVooi /BuVooi近似为 1 , 则 Au、 Bu、 Cu和 V∞i四点 的交比可由公式(1 )表示:
Figure imgf000010_0001
A \iC\i/B\iC\i A \iVi/B\iVi~A \iC\i/B\iC\i
根据交比不变性, 可以由公式(2 )求解得出:
CR(Au,Bu,Cu, V∞i) =CR(au,bh;cu,vu) ^ AXiCXi/BXiCXi (2) 式中《 、 和 c 分别为在刚性杆第 i个摆放位置时, 、 和 C 在视觉 传感器 1上的图像坐标。
根据消隐点性质, 空间直线方向 与其消隐点 vlz.的反向投影射线 ·平行, 即:
Figure imgf000010_0002
公式(3 )中 为视觉传感器 1的内部参数矩阵, 摄像机内部参数的求 解过程见文献" A flexible new technique for camera calibration[J]. IEEE Trans, on Pattern Analysis and Machine Intelligence"。
已知 4与 ^的距离为 有公式(4 ):
Figure imgf000010_0003
根据摄像机投影原理有公式(5 ): Piaii
Figure imgf000011_0001
(5 上式中, ^和 ?2为比例系数, 为视觉传感器 2的内部参数矩阵。
求解公式(4)、 (5)组成的方程组即可解得 4,., Xi. 根据一维靶标特 征点共线的特点求解全部一维靶标 1特征点在视觉传感器 1 坐标系下的三 维坐标 4, ^和 。
同理, 求解出一维靶标 2所有特征点在视觉传感器 2坐标下三维坐标
Ciio
步骤 206: 计算旋转矩阵 2,cl
在刚性杆的第 ( =1...«)个摆放位置, 、 ^分别为一维靶标 1和一 维靶标 2在各自视觉传感器坐标下的方向矢量。 根据两个一维靶标之间位 置关系不变这一特点, 得到以下公式(6):
Figure imgf000011_0002
刚性杆每两个摆放位置即可得到一个如公式( 6 )的方程,根据公式( 6 ) 及旋转矩阵的特性可知, 最少三个如公式(6) 的方程才可以求解出 J?e2,cl , 因此, 需要将放置有两个一维靶标的刚性杆摆放九次以上。 其中, 旋转矩 阵的特性是指: 旋转矩阵的列向量为单位向量, 各向量之间正交; 旋转矩 阵的自由度为 3。
步骤 207: 计算平移矢量 ε2ε1
在刚性杆的第 个摆放位置, 设 2;J ^和 为一维靶标 2特征点在 视觉传感器 1坐标下的三维坐标, 两者的变换关系如公式(7) 所示:
Figure imgf000011_0003
由于在刚性杆摆放过程中, 两个一维靶标位置不发生变化, 两个一维 靶标特征点之间的距离也不发生变化。 因此, 可以得到以下变换关系:
d1(Ali,A2i) = d1(Alj,A2j)
< d2(Bli,B2i) = d2(Blj,B2j) (8) d1(Cli,C2i) = d1(Clj,C2j) 将公式(8)分解可以消除 2 中各分量的二次项可以求解出 e2,cl
步骤 208: 建立以重投影误差为最小的目标函数, 釆用非线性优化方法 求解 2,ε ^ε2,ε1的非线性优化解, 得到两个视觉传感器之间的转换矩阵。
这里, 建立目标函数是为了完成非线性优化, 换句话说, 非线性优化 的目的就是使目标函数在非线性优化后的结果最小, 即: 求解可使目标函 数最小的 2,ε1
图 4中的 为刚性杆坐标系。 刚性杆坐标系的建立过程为: 任 选一个刚性杆摆放位置, 以一维靶标 1中 ,.为刚性杆坐标系原点, 一维靶 标 1所在直线为坐标系的 X轴, 、 C 和 2z.所在平面的法向矢量为 z轴。 图 4中"为一维靶标 2在刚性杆坐标系 (¾x平面上的投影直线与 _y轴的夹 角, 为一维靶标 2与刚性杆坐标系(¾ ^½平面的夹角, ί为一维靶标 2中 到一维靶标 1中 的距离。
一维靶标 2特征点在刚性杆坐标系下的三维坐标可以通过公式( 9 )表 示:
A2i = [d sm( ) d cos(a) 0 l]T
< B2i = 1]T (9)
Figure imgf000012_0001
C2i = [sin( )( C2 cos + d) cos(a)(^C2 cos + d) ΣΛΆ sin l]T 公式(9)中, 22 分别为一维靶标 2中 β2和 C2之间的距离, 其中"、 和 ί可以根据 、 , C , A2i, H口 求解得出。
一维靶标 1特征点在刚性杆坐标系下的三维坐标为: =[ο o o l]
B、 L 0 0 1 (10)
Figure imgf000013_0001
公式(10)中, ^和 ^分别为一维靶标 1中^ ^和^ G之间的距离; 在刚性杆第 i个摆放位置, 刚性杆坐标系到视觉传感器 1 坐标的转换矩阵 7^可由公式(11)求解:
Figure imgf000013_0002
设 , 和 ^分别为在刚性杆第 i个摆放位置时,一维靶标 1特征点在 视觉传感器 1上图像坐标。 具体转换关系为:
Figure imgf000013_0003
Figure imgf000013_0004
,l]Tg clBlt (12) 公式(12) 中, A、 ?2和 ? 3为比例系数, 为视觉传感器 1的内部参 数矩阵
ά, 和 分别为一维靶标 2特征点在视觉传感器 2上图像坐标。 具 体转换关系为:
S^2i - Κ2 [/3χ1 ^3x1 ] ^cl^gifil^li
= K2 [^x! 03xl]T2)clTg. 2i (13)
Figure imgf000013_0005
R
公式( 13 )中 , 2为视觉传感器 2的内部参数矩阵, c2,cl c2,cl
Tc2cl = T
0 1 和 为比例系数。
建立以重投影图像误差为最小的目标函数, 如公式(14): f(a) = ^(d2(ali,ali)+d2(bli,bli) + d2(cli,cli)) +
i=l n (、14) 7
∑ (d 2 (a2i ,a2i)+d2 (b2i ,b2i) +
Figure imgf000014_0001
式中, a二 {Tcl,ci,Tgi,„ 。 釆用非线性优化方法 (例如 LM法 ) 求解 2,ε1和^ ε1的最优解。 实施例:
本实施例中, 试验釆用两台配用 23mm工业镜头的爱国者数码摄像机, 分别称为视觉传感器 1和视觉传感器 2。两个视觉传感器的分辨率同为 1280 像素 xl024像素, 工作距离为 750mm左右, 视场范围为 150mmxl20mm。
釆用 ZHANG Z Y. 在文章 "A flexible new technique for camera calibration[J]. IEEE Trans, on Pattern Analysis and Machine Intelligence" 中介 绍的方法, 完成视觉传感器 1、 视觉传感器 2的内部参数标定, 视觉传感器 1、 视觉传感器 2的内部参数标定结果如表 1所示。
表 1 内部参数 视觉传感器 1 视觉传感器 2
Figure imgf000014_0002
7 0.309 -0.616
«0 622.862 648.506 o 393.535 438.138
ki -0.209 -0.211 k2 0.763 0.730 图 5示出了视觉传感器 1、 视觉传感器 2对应拍摄的一维靶标 1、 一维 靶标 2的图像; 其中, 图 5 )为视觉传感器 1拍摄的一维靶标 1图像, 图 5 (b)为视觉传感器 2拍摄的一维靶标 2图像。 釆用本发明图 2 所述方法, 计算得出的两个视觉传感器坐标系之间的 转换矩阵 Γε2,ε1为:
-0.9289 -0.2954 -0.2235 389.912
-0.3150 0.3122 0.8963 340.585
c2,cl
-0.1950 0.9029 -0.3830 -354.547
0 0 0 1 为了评价本发明全局校准方法的全局校准精度, 通过双目视觉传感器 测量出刚性杆全局校准装置中两个一维靶标特征点之间的距离, 将该双目 视觉传感器的测量值作为点对距离的真实值。 由本发明全局校准方法得出 的转换矩阵 Γε2 ε1 , 根据公式(5 )计算出一维靶标 2中特征点在视觉传感 <L
1坐标系下三维坐标, 计算任意两个一维靶标特征点之间距离, 将该计算值 作为点对距离测量值。 任选七个点对距离, 用七个点对距离的测量值与真 实值的均方根误差(RMS, Root Mean Square )来评价全局校准精度, 全局 校准结果精度评价数据具体如表 2所示。
表 2
点对距离测量值 ~~点对距离真实值 ~~点对距离偏差
1 1340.089 1340.052 0.037
2 1332.656 1332.801 -0.145
3 1325.307 1325.189 0.117
4 1318.043 1318.479 -0.436
5 1310.866 1310.839 0.027
6 1303.778 1303.800 -0.022
7 1296.780 1296.992 -0.213
RMS误差 0.197 根据表 2得出的七个点对距离的 RMS误差可以看出,本发明全局校准 方法可以达到优于 0.1 %。的全局校准精度。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种多传感器视觉测量系统的刚性杆全局校准方法, 其特征在于, 该方法包括:
将固定有两个靶标的刚性杆在两个视觉传感器前摆放九次以上, 每次 每个视觉传感器分别拍摄对应的靶标图像, 提取靶标特征点图像坐标, 分 别计算每个靶标特征点在对应视觉传感器坐标系下的三维坐标;
以靶标之间位置关系不变为约束条件, 计算两个视觉传感器之间的转 换矩阵。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将刚性杆在两个视 觉传感器前摆放之前, 该方法还包括: 将靶标固定于刚性杆上, 调整刚性 杆长度和靶标位置, 使待校准的两个视觉传感器能清晰的拍摄到对应的靶 标图像。
3、 根据权利要求 1所述的方法, 其特征在于, 所述视觉传感器多于两 个;
该方法还包括: 每次任意选取两个视觉传感器作为待校准的视觉传感 器; 每个视觉传感器与一个靶标相对应, 拍摄对应靶标清晰的靶标图像。
4、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 所述每个视觉传感器分别拍摄对应的靶标图像之后, 每个视觉传感器 根据视觉传感器内部参数标定结果, 进行图像的畸变校正。
5、 根据权利要求 1所述的方法, 其特征在于, 所述计算两个视觉传感 器之间转换矩阵包括:
计算旋转矩阵、 平移矢量; 建立以重投影误差为最小的目标函数, 釆 用非线性优化方法求解旋转矩阵和平移矢量的非线性优化解, 得到两个视 觉传感器之间转换矩阵。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述靶标通 过靶标夹持机构、 万向连接器、 刚性杆转接固定装置固定于刚性杆上。
7、 一种多传感器视觉测量系统的刚性杆全局校准装置, 其特征在于, 该装置包括: 靶标、 靶标夹持机构、 万向连接器、 刚性杆转接固定装置、 可伸缩长度的刚性杆; 其中,
刚性杆还包括两个实心杆和一个空心杆, 两个实心杆套入在空心杆内, 实心杆与空心杆之间通过螺栓固定;
所述靶标夹持在靶标夹持机构上, 装有靶标的靶标夹持机构安装在万 向连接器上, 靶标能在万向连接器上任意旋转;
所述万向连接器通过刚性杆转接固定装置固定于刚性杆的实心杆上。
8、 根据权利要求 7所述的装置, 其特征在于, 所述靶标、 靶标夹持机 构、 万向连接器、 刚性杆转接固定装置均为两个。
PCT/CN2011/078166 2010-08-20 2011-08-09 一种多传感器视觉测量系统的刚性杆全局校准方法及装置 WO2012022231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/393,555 US8964027B2 (en) 2010-08-20 2011-08-09 Global calibration method with apparatus based on rigid bar for multi-sensor vision

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010259481.X 2010-08-20
CN201010259481 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012022231A1 true WO2012022231A1 (zh) 2012-02-23

Family

ID=43575489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078166 WO2012022231A1 (zh) 2010-08-20 2011-08-09 一种多传感器视觉测量系统的刚性杆全局校准方法及装置

Country Status (3)

Country Link
US (1) US8964027B2 (zh)
CN (1) CN101975588B (zh)
WO (1) WO2012022231A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758426A (zh) * 2016-02-19 2016-07-13 深圳杉川科技有限公司 移动机器人的多传感器的联合标定方法
CN110310340A (zh) * 2019-07-05 2019-10-08 河南科技大学 一种基于共线特性的单线阵畸变标定方法
CN112334733A (zh) * 2018-06-29 2021-02-05 株式会社小松制作所 拍摄装置的校正装置、监视装置、作业机械及校正方法
CN112381881A (zh) * 2020-10-26 2021-02-19 西安航天精密机电研究所 一种基于单目视觉的大型刚体构件自动对接方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975588B (zh) 2010-08-20 2012-07-11 北京航空航天大学 一种多传感器视觉测量系统的刚性杆全局校准方法及装置
CN103443580B (zh) * 2011-03-29 2016-08-17 罗伯特·博世有限公司 用于校准一车辆测量用的参考系统的系统和方法
CN102645231B (zh) * 2012-05-03 2014-11-19 中国科学院长春光学精密机械与物理研究所 基于编码器特征点的光学圆靶标动态误差标定方法
CN103674057B (zh) * 2012-09-11 2016-08-03 北京航天计量测试技术研究所 带有反射球的标准球杆及其对相机外部参数的标定方法
CN103335634B (zh) * 2013-06-24 2015-10-28 南京航空航天大学 一种用于部件安装姿态校准的视觉靶板装置及标定方法
US10062180B2 (en) * 2014-04-22 2018-08-28 Microsoft Technology Licensing, Llc Depth sensor calibration and per-pixel correction
CN104197960B (zh) * 2014-09-15 2017-08-08 北京航空航天大学 一种激光跟踪仪视觉导引摄像机的全局标定方法
TWI577493B (zh) 2014-12-26 2017-04-11 財團法人工業技術研究院 校正方法與應用此方法的自動化設備
JP6507730B2 (ja) * 2015-03-10 2019-05-08 富士通株式会社 座標変換パラメータ決定装置、座標変換パラメータ決定方法及び座標変換パラメータ決定用コンピュータプログラム
CN106323335B (zh) * 2015-07-02 2023-05-02 中国科学院沈阳自动化研究所 一种可重构室内移动机器人导航性能测评仪及其测评方法
CN106289086B (zh) * 2016-09-20 2018-10-23 东南大学 一种用于光学标识点间距离精确标定的双相机测量方法
CN106643614B (zh) * 2016-09-26 2020-06-05 广州汽车集团股份有限公司 一种量程扩展器及其测量方法、测量系统
CN107808402A (zh) * 2017-10-31 2018-03-16 深圳市瑞立视多媒体科技有限公司 多相机系统的标定方法、多相机系统及终端设备
CN108151667B (zh) * 2017-11-29 2020-04-21 中国船舶重工集团公司第七一九研究所 一种多线激光轮廓扫描传感器全局校准方法
CN108520541B (zh) * 2018-03-07 2022-05-17 鞍钢集团矿业有限公司 一种广角摄像机的标定方法
US11022511B2 (en) 2018-04-18 2021-06-01 Aron Kain Sensor commonality platform using multi-discipline adaptable sensors for customizable applications
CN109308722B (zh) * 2018-11-26 2024-05-14 陕西远航光电有限责任公司 一种基于主动视觉的空间位姿测量系统及方法
CN109725340B (zh) * 2018-12-31 2021-08-20 成都纵横大鹏无人机科技有限公司 直接地理定位方法及装置
CN111757086A (zh) * 2019-03-28 2020-10-09 杭州海康威视数字技术股份有限公司 有源双目相机、rgb-d图像确定方法及装置
CN111136669B (zh) * 2020-01-17 2022-09-20 沈阳航空航天大学 一种基于全局视觉的下棋机器人及其控制方法
CN111275770A (zh) * 2020-01-20 2020-06-12 南昌航空大学 基于一维靶标旋转运动的四目立体视觉系统全局标定方法
CN111156899B (zh) * 2020-02-18 2022-04-12 广东博智林机器人有限公司 一种视觉测量装置、方法及机器人
CN112729156A (zh) * 2020-12-24 2021-04-30 上海智能制造功能平台有限公司 一种人体数字化测量装置的数据拼接及系统标定方法
CN112719879B (zh) * 2020-12-31 2022-05-06 中国十九冶集团有限公司 大跨距联轴器找正方法
CN114413754B (zh) * 2022-01-05 2023-11-07 天津大学 工作空间测量定位系统动态误差建模与自主补偿方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096362A (zh) * 1993-06-08 1994-12-14 吴活玲 定日镜
CN1464970A (zh) * 2000-03-23 2003-12-31 捷装技术公司 自校准、多相机机器视觉测量系统
WO2006009192A1 (ja) * 2004-07-21 2006-01-26 Japan Science And Technology Agency カメラ校正システム及び三次元計測システム
CN101033963A (zh) * 2007-04-10 2007-09-12 南京航空航天大学 基于指端标记的视频手指定位系统及其定位方法
CN101261738A (zh) * 2008-03-28 2008-09-10 北京航空航天大学 一种基于双一维靶标的摄像机标定方法
CN101285676A (zh) * 2008-06-10 2008-10-15 北京航空航天大学 一种基于一维靶标的多视觉传感器全局校准方法
CN101975588A (zh) * 2010-08-20 2011-02-16 北京航空航天大学 一种多传感器视觉测量系统的刚性杆全局校准方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770317B1 (fr) * 1997-10-24 2000-12-08 Commissariat Energie Atomique Procede d'etalonnage de la position et de l'orientation d'origine d'une ou plusieurs cameras mobiles et son application a la mesure de position tridimentionnelle d'objets fixes
US6968282B1 (en) 2000-05-22 2005-11-22 Snap-On Incorporated Self-calibrating, multi-camera machine vision measuring system
BE1014137A6 (nl) * 2001-04-24 2003-05-06 Krypton Electronic Eng Nv Werkwijze en inrichting voor de verificatie en identificatie van een meetinrichting.
CN1236277C (zh) * 2002-12-17 2006-01-11 北京航空航天大学 一种多视觉传感器检测系统全局标定方法
CN1259543C (zh) * 2003-06-11 2006-06-14 北京航空航天大学 轮胎多几何参数的激光视觉在线自动测量方法
JP4889351B2 (ja) * 2006-04-06 2012-03-07 株式会社トプコン 画像処理装置及びその処理方法
CN1971206A (zh) * 2006-12-20 2007-05-30 北京航空航天大学 基于一维靶标的双目视觉传感器校准方法
CN100580370C (zh) * 2007-05-30 2010-01-13 北京航空航天大学 基于双面靶标的流动式三维视觉测量拼接方法
KR20100038314A (ko) * 2007-07-19 2010-04-14 신세스 게엠바하 뼈 앵커를 봉에 연결하기 위해 사용되는 클램프
US8265376B2 (en) * 2008-07-21 2012-09-11 Cognitens Ltd. Method and system for providing a digital model of an object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096362A (zh) * 1993-06-08 1994-12-14 吴活玲 定日镜
CN1464970A (zh) * 2000-03-23 2003-12-31 捷装技术公司 自校准、多相机机器视觉测量系统
WO2006009192A1 (ja) * 2004-07-21 2006-01-26 Japan Science And Technology Agency カメラ校正システム及び三次元計測システム
CN101033963A (zh) * 2007-04-10 2007-09-12 南京航空航天大学 基于指端标记的视频手指定位系统及其定位方法
CN101261738A (zh) * 2008-03-28 2008-09-10 北京航空航天大学 一种基于双一维靶标的摄像机标定方法
CN101285676A (zh) * 2008-06-10 2008-10-15 北京航空航天大学 一种基于一维靶标的多视觉传感器全局校准方法
CN101975588A (zh) * 2010-08-20 2011-02-16 北京航空航天大学 一种多传感器视觉测量系统的刚性杆全局校准方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZHEN ET AL.: "Global Calibration of Multi-sensor Vision System Based on Two Planar Targets.", CHINESE JOURNAL OF MECHANICAL ENGINEERING, vol. 45, no. IS.7, July 2009 (2009-07-01), pages 228 - 232 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758426A (zh) * 2016-02-19 2016-07-13 深圳杉川科技有限公司 移动机器人的多传感器的联合标定方法
CN112334733A (zh) * 2018-06-29 2021-02-05 株式会社小松制作所 拍摄装置的校正装置、监视装置、作业机械及校正方法
US11508091B2 (en) 2018-06-29 2022-11-22 Komatsu Ltd. Calibration device for imaging device, monitoring device, work machine and calibration method
CN110310340A (zh) * 2019-07-05 2019-10-08 河南科技大学 一种基于共线特性的单线阵畸变标定方法
CN110310340B (zh) * 2019-07-05 2022-10-11 河南科技大学 一种基于共线特性的单线阵畸变标定方法
CN112381881A (zh) * 2020-10-26 2021-02-19 西安航天精密机电研究所 一种基于单目视觉的大型刚体构件自动对接方法
CN112381881B (zh) * 2020-10-26 2023-05-23 西安航天精密机电研究所 一种基于单目视觉的大型刚体构件自动对接方法

Also Published As

Publication number Publication date
CN101975588B (zh) 2012-07-11
US8964027B2 (en) 2015-02-24
US20120162414A1 (en) 2012-06-28
CN101975588A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2012022231A1 (zh) 一种多传感器视觉测量系统的刚性杆全局校准方法及装置
CN109859275B (zh) 一种基于s-r-s结构的康复机械臂的单目视觉手眼标定方法
CN110276806B (zh) 用于四自由度并联机器人立体视觉手眼系统的在线手眼标定和抓取位姿计算方法
JP5815761B2 (ja) 視覚センサのデータ作成システム及び検出シミュレーションシステム
CN111390901B (zh) 机械臂自动标定方法以及标定装置
CN113240732B (zh) 光学跟踪系统及光学跟踪系统的标记部姿势及位置算出方法
CN101261738A (zh) 一种基于双一维靶标的摄像机标定方法
CN111801198A (zh) 一种手眼标定方法、系统及计算机存储介质
CN112802124A (zh) 多台立体相机的标定方法及装置、电子设备及存储介质
JP6641729B2 (ja) ラインセンサカメラのキャリブレーション装置及び方法
CN110136068B (zh) 基于双侧远心镜头相机之间位置标定的音膜球顶装配系统
CN110202560A (zh) 一种基于单个特征点的手眼标定方法
CN112229323B (zh) 基于手机单目视觉的棋盘格合作目标的六自由度测量方法及其应用
CN105374067A (zh) 一种基于pal相机的三维重建方法及其重建系统
CN104167001A (zh) 基于正交补偿的大视场摄像机标定方法
CN116740187A (zh) 一种无重叠视场多相机联合标定方法
JP2017161245A (ja) ラインセンサカメラのステレオキャリブレーション装置及びステレオキャリブレーション方法
CN113724337A (zh) 一种无需依赖云台角度的相机动态外参标定方法及装置
CN111986267A (zh) 一种多相机视觉系统的坐标系统标定方法
CN112857328B (zh) 一种无标定摄影测量方法
JP6410411B2 (ja) パターンマッチング装置及びパターンマッチング方法
CN106920262B (zh) 一种机器视觉3d四轮定位仪靶标绑定方法
JP3696335B2 (ja) 複数枚の画像の各計測点の対応づけ方法
CN113255662A (zh) 一种基于视觉成像的定位矫正方法、系统、设备及存储介质
Tian et al. A camera calibration method for large field vision metrology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13393555

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817758

Country of ref document: EP

Kind code of ref document: A1