WO2012022136A1 - 控制信息传输、传输块获得、偏移因子配置方法及终端 - Google Patents

控制信息传输、传输块获得、偏移因子配置方法及终端 Download PDF

Info

Publication number
WO2012022136A1
WO2012022136A1 PCT/CN2011/070753 CN2011070753W WO2012022136A1 WO 2012022136 A1 WO2012022136 A1 WO 2012022136A1 CN 2011070753 W CN2011070753 W CN 2011070753W WO 2012022136 A1 WO2012022136 A1 WO 2012022136A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
offset factor
information
pusch
corresponds
Prior art date
Application number
PCT/CN2011/070753
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
夏树强
梁春丽
喻斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012022136A1 publication Critical patent/WO2012022136A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network

Definitions

  • Control information transmission transmission block acquisition, offset factor configuration method, and terminal
  • the present invention relates to the field of wireless communications, and in particular, to a method and a terminal for transmitting uplink control information on a physical uplink shared channel, and a method for obtaining a target transport block when transmitting channel quality indication/precoding matrix indication information on a physical uplink shared channel And a terminal, and an offset factor configuration method and terminal.
  • the control signaling that needs to be transmitted on the uplink has correct/error acknowledgement information (ACK/NACK: Acknowledgement/Negative Acknowledgement) and information reflecting the state of the downlink physical channel (CSI: Channel State).
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • CSI Channel State
  • CQI Channels Quality Indication information
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • the ACK/NACK response information is transmitted on the physical uplink control channel (PUCCH: Physical Uplink Control) in the format 1/1 a/lb (PUCCH format 1/1 al/b), if the terminal (UE: User Equipment) When uplink data needs to be transmitted, it is transmitted on the physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control
  • UE User Equipment
  • the feedback of the CQI/PMI information or the RI information may be periodic feedback or non-periodic feedback.
  • the CQI/PMI information or RI of the periodic feedback if the UE does not need to send the uplink data, the period is The fed back CQI/PMI information or RI is transmitted on the PUCCH in the format 2/2a/2b (PUCCH format2/2a/2b). If the UE needs to send uplink data, the CQI/PMI information or RI is transmitted on the PUSCH; For cyclically fed CQI/PMI information or RI, it is transmitted only on the PUSCH.
  • FIG. 1 is a schematic diagram of uplink control information and uplink data multiplexing manner in an LTE system
  • FIG. 2 is a channel coding process when uplink control information and uplink data are multiplexed in an LTE system.
  • the upstream data is transmitted in the form of a transport block (TB: Transport Block), and the TB is looped. Redundant CRC attachment, Code block segmentation and Code block CRC attachment, Channel coding, Rate matching, Code block synthesis ( The code block concatenation is followed by the multiplexed uplink data and control signaling with the encoded CQI/PMI information, and finally the encoded ACK/NACK response information and the RI information and data are multiplexed by channel interleaving.
  • TB Transport Block
  • FIG. 3 is a schematic diagram of a PUSCH transmission mode in an LTE system.
  • the PUSCH is transmitted in the form of a single antenna, so the PUSCH only corresponds to one transport block, and the transport block forms a codeword stream after channel coding, that is, in the LTE system, there is only one PUSCH.
  • the coding process of the uplink control information is mainly packaged.
  • the target length after encoding is:
  • the M/ ⁇ ff is the PUSCH bandwidth of the current subframe scheduling, and is represented by the number of subcarriers; N H is the number of symbols when the PUSCH is transmitted on each subframe (related to the types of SRS and CP);
  • >3 ⁇ 4r ⁇ ⁇ 7 ⁇ 3 ⁇ 4 or >3 ⁇ 4 3 ⁇ 4 );
  • the number of uplink control information is O (O is the number of ACK/NACK response information or RI information or CQI/PMI information) ;
  • is the modulation mode of the transport block
  • the initial PUSCH When the initial PUSCH is used for semi-persistent scheduling, it may be obtained from the PDCCH of the most recent semi-persistent scheduling configuration;
  • the physical downlink control channel PDCCH is used to carry uplink and downlink scheduling information, and uplink power control information.
  • the base station (eNB) may configure the UE by using downlink control information (DCI: Downlink Control Information), or the UE may adopt a higher layer configuration, which is also referred to as configuring the UE by higher layer signaling.
  • DCI Downlink Control Information
  • the downlink control information (DCI: Downlink Control Information) format is divided into DCI formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, etc.
  • the DCI format0 is used to indicate the scheduling of the physical uplink shared channel (PUSCH), that is, the DCI format0 carries the related information required for the PUSCH transmission.
  • the information in the DCI format0 is as shown in Table 1:
  • the modulation coding mode and redundancy version are shown in Table 2.
  • the LTE system also specifies that the code rate is obtained according to the transport block size and the resource block (RB) size according to the relationship between the transport block size index and the transport block size.
  • RB resource block
  • the LTE-A Long Term Evolution Advanced
  • LTE-A Long Term Evolution Advanced
  • LTE-A Long Term Evolution Advanced
  • the related art gives the mapping of the codeword stream to the layer and the mapping of the codeword stream to the layer in the downlink transmission of the LTE system, and the specific mapping process ⁇ Table 3 Show:
  • Table 3 Mapping table of PUSCH ⁇ spatial division multiplexing codeword to layer in LTE-A system
  • ⁇ (0) ( , . . . x( 3 ) (0 represents the data transmitted on each layer, respectively.
  • the LTE-A system In order to support larger system bandwidth (up to 100MHz) and need to be backward compatible with existing LTE standards, the LTE-A system combines the bandwidth of the LTE system based on the existing LTE system. Larger bandwidth, this technology is called Carrier Aggregation (CA) technology. This technology can improve the spectrum utilization of advanced international mobile communication (IMT-Advance) systems, alleviate the shortage of spectrum resources, and optimize the utilization of spectrum resources.
  • CA Carrier Aggregation
  • the uplink control information is transmitted on the spatially multiplexed PUSCH.
  • the RI information is repeatedly transmitted on all transport layers of the two codeword streams, and is divided on all transport layers and data. And the number of symbols of control signaling on each transport layer is the same;
  • CQI/PMI information For CQI/PMI information, it is transmitted on a codeword stream.
  • the prior art does not give a choice of which codeword stream to transmit CQI/PMI information, or does not give which transport block to select as the target transport block to transmit CQI/PMI information, and does not give uplink control information when transmitting on the physical uplink shared channel.
  • the method of offset value configuration does not give a choice of which codeword stream to transmit CQI/PMI information, or does not give which transport block to select as the target transport block to transmit CQI/PMI information, and does not give uplink control information when transmitting on the physical uplink shared channel.
  • the technical problem to be solved by the present invention is to provide a transmission scheme of uplink control information, so that uplink control information is transmitted on a physical uplink shared channel.
  • the present invention provides a method for transmitting uplink control information, where the uplink control information is transmitted on a physical uplink shared channel, and the method includes:
  • the uplink control information and the transport block to be transmitted on the physical uplink shared channel are encoded, and the encoded control information and the transport block are interleaved and then transmitted on the physical uplink shared channel.
  • the target transport block is all transport blocks; for channel quality indication (CQI) / precoding matrix indication (PMI) information,
  • the target transport block is one of all transport blocks.
  • the offset factor is configured by higher layer signaling.
  • the present invention further provides a transmission terminal for uplink control information,
  • the uplink control information is transmitted on a physical uplink shared channel, where the terminal includes an encoding module and a sending module, where:
  • the encoding module is configured to encode uplink control information and a transport block that need to be transmitted on a physical uplink shared channel according to related information and an offset factor of the target transport block;
  • the transmitting module is configured to interleave the encoded control information and the transport block and then send the data on the physical uplink shared channel.
  • the encoding module determines the target transport block as all transport blocks; for channel quality indication (CQI) / precoding matrix indication (PMI) information, the encoding module determines the target transport block as one of all transport blocks.
  • CQI channel quality indication
  • PMI precoding matrix indication
  • Another technical problem to be solved by the present invention is to provide a method for obtaining a target transport block when transmitting channel quality indication/precoding matrix indication information on a physical uplink shared channel, and solving the transmission of CQI/PMI information in the prior art. The problem of transmission on the block.
  • the present invention provides a method for obtaining a target transport block, the method comprising: obtaining a target transport block when transmitting channel quality indication/precoding matrix indication information on a physical uplink shared channel, where: a transport block; wherein, if any transport block is a retransmitted transport block, a modulation coding index and a transport block size of the retransmitted transport block are a modulation coding index and a transport block size of a transport block that was transmitted for the first time; Or transmitting a transport block having a larger block size; in scenario 2, the target transport block is a transport block having a smaller modulation coding index or a smaller transport block size in two transport blocks; wherein, if any transport block is heavy a transport block, the modulation coding index and the transport block size of the retransmitted transport block are the modulation coding index and the transport block size of the transport block that was transmitted for the first time;
  • the target transport block is indicated by one of the following information in a downlink control information (DCI) format (format) X:
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • the scenario 1 satisfies one or more of the following conditions:
  • the difference between the modulation coding indexes of the two transport blocks is greater than or equal to the first threshold M;
  • the difference between the modulation coding indexes of the two transport blocks is smaller than the first threshold M and the number of bits of the channel quality indication (CQI) / precoding matrix indication (PMI) information is larger than the two of the two transport blocks
  • the ratio of the size of the transport block is less than the second threshold N;
  • the ratio of the number of bits of the CQI/PMI information to the size of the larger transport block of the two transport blocks is less than the second threshold N;
  • the number of bits of the CQI/PMI information is less than or equal to a third threshold P;
  • the number of bits of the CQI/PMI information is greater than a third threshold P and the number of resource blocks (RBs) occupied by the physical uplink shared channel (PUSCH) transmission is greater than a fourth threshold Q;
  • the number of RBs occupied by the PUSCH transmission is greater than a fourth threshold Q;
  • the two transport blocks are retransmitted transport blocks
  • the first threshold M and the second threshold N are configured by signaling, or are agreed by the base station and the terminal;
  • the third threshold P and the fourth threshold Q are configured by signaling, or are agreed by the base station and the terminal.
  • the scenario 2 satisfies one or more of the following conditions:
  • the difference between the modulation coding indexes of the two transport blocks is smaller than the first threshold M and the ratio of the number of bits of the CQI/PMI information to the size of the larger transport block in the two transport blocks is greater than or equal to the second wide Value N;
  • the number of bits of the CQI/PMI information is greater than a third threshold P and the physical uplink shared channel
  • PUSCH resource blocks
  • DCI downlink control information
  • format format 1
  • the two transport blocks are not retransmitted transport blocks
  • the first threshold M and the second threshold N are configured by signaling, or are agreed by the base station and the terminal;
  • the third threshold P and the fourth threshold Q are configured by signaling, or are agreed by the base station and the terminal.
  • there is no data transmission for both transport blocks and the target transport block is the first transport block.
  • the target transport block is a transport block without data transmission.
  • the two logical values indicating the indication information of the target transport block respectively indicate that the target transport block is a first transport block, and the target transport block is a second transport block.
  • the present invention further provides an obtaining terminal of a target transport block, where the terminal is applied to obtain a target transport block when transmitting channel quality indication/precoding matrix indication information on a physical uplink shared channel, the terminal Including the acquisition module:
  • the obtaining module is configured to: determine, in the two transport blocks, a transport block with a larger modulation and coding index or a larger transport block size as the target transport block; and, if any transport block is a retransmitted transport block, Determining a modulation coding index and a transport block size of the transport block of the most recent first transmission as a modulation coding index and a transport block size of the retransmitted transport block;
  • the obtaining module is configured to: determine, in the scenario, a transport block having a larger modulation and coding index or a larger transport block size in the two transport blocks as the target transport block; and modulating and encoding the two transport blocks in the second scenario.
  • a transport block having a smaller index or a smaller transport block size is determined to be the target transmission And; if any of the transport blocks is a retransmitted transport block, determining a modulation coding index and a transport block size of the transport block of the most recent first transmission as a modulation coding index and a transport block size of the retransmitted transport block; ;
  • the obtaining module is configured to: indicate the target transport block by one of the following information in a downlink control information (DCI) format:
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • Another technical problem to be solved by the present invention is to provide an offset factor configuration technique that solves the problem of how to configure an offset factor of uplink control information.
  • the present invention provides a method for configuring an offset factor, the method comprising:
  • the offset factor is configured based on a component carrier.
  • the uplink control information is a channel quality indicator (CQI) / precoding matrix indication
  • (PMI) information configured with 2 or 1 offset factor for uplink control information transmitted on one component carrier;
  • the target transport block in the CQI/PMI information is different in the corresponding layer, and the configured offset factor is different;
  • the aperiodic feedback corresponds to an offset factor
  • the periodic feedback corresponds to an offset factor
  • RI>1 corresponds to an offset factor
  • uplink control information is correct/error response information (ACK/NACK) and rank indication information (RI), 4, 3, 2 or 1 offset factor is configured for uplink control information transmitted on one component carrier. ; among them:
  • PUSCH transmits TB and RI>1 corresponds to one offset factor
  • PUSCH two TB transmission corresponds to one offset factor
  • the present invention also provides an allocation terminal for an offset factor,
  • the terminal includes:
  • the configuration module is configured to configure up to 4, 3, 2 or 1 offset factor for the uplink control information transmitted on one component carrier;
  • the offset factor is configured based on a component carrier.
  • the technical solution of the present invention proposes a method for uplink uplink control channel transmission on a physical uplink shared channel.
  • One embodiment of the technical solution of the present invention effectively solves the problem of which transport block transmission CQI/PMI information is specific.
  • Another embodiment of the technical solution of the present invention effectively solves the problem of how to configure the offset factor of the uplink control information.
  • FIG. 1 is a schematic diagram of uplink control information and uplink data multiplexing in an LTE system
  • FIG. 2 is a channel coding process of uplink control information and uplink data multiplexing in an LTE system
  • FIG. 3 is a schematic diagram of a PUSCH transmission mode in an LTE system
  • FIG. 4 is a schematic flow chart of a transmission method provided by the present invention.
  • FIG. 5 is a schematic diagram of the composition of a transmission terminal provided by the present invention.
  • the method for transmitting uplink control information on a physical uplink shared channel mainly includes the following steps: Step S410: Encode the uplink control information and the transport block that need to be transmitted on the physical uplink shared channel according to the related information and the offset factor of the target transport block. Step S420: interleave the encoded control information and the data and share the physical uplink. Sent on the channel.
  • the target transport block is all transport blocks; for the CQI/PMI information, the target transport block is one of all transport blocks.
  • the offset factor is configured by higher layer signaling.
  • the target transport block is a transport block having a larger modulation and coding index or a larger transport block size in the two transport blocks;
  • the modulation coding index and the transport block size of the retransmitted transport block are the modulation coding index and the transport block size of the transport block that was transmitted for the first time for the first time; a larger transport block; in scenario 2, the target transport block is a transport block having a smaller modulation coding index or a smaller transport block size in two transport blocks; wherein, if any transport block is a retransmitted transport block, The modulation coding index and the transport block size of the retransmitted transport block are the modulation coding index and the transport block size of the transport block that was transmitted for the first time.
  • the above scenario 1 satisfies one or more of the following conditions:
  • the difference between the modulation coding indexes of the two transport blocks is greater than or equal to the first threshold M;
  • the difference between the modulation coding indices of the two transport blocks is less than the first threshold M and the ratio of the channel quality indication (CQI) / precoding matrix indication (PMI) information bits to the size of the larger transport block in the two transport blocks is less than Second threshold N;
  • CQI channel quality indication
  • PMI precoding matrix indication
  • the ratio of the number of CQI/PMI information bits to the size of the larger transport block in the two transport blocks is less than the second threshold N;
  • the number of CQI/PMI information bits is less than or equal to a third threshold P;
  • the number of CQI/PMI information bits is greater than the third threshold P and the number of resource blocks (RBs) occupied by the physical uplink shared channel (PUSCH) transmission is greater than the fourth threshold Q;
  • the number of RBs occupied by the PUSCH transmission is greater than the fourth threshold Q;
  • Both transport blocks are retransmitted transport blocks.
  • the above scenario 2 satisfies one or more of the following conditions:
  • the difference between the modulation coding indices of the two transport blocks is less than the first threshold M and the ratio of the channel quality indication information (CQI) / precoding matrix indication information (PMI) bits to the size of the larger transport block in the two transport blocks Greater than or equal to the second threshold N;
  • CQI channel quality indication information
  • PMI precoding matrix indication information
  • the number of CQI/PMI information bits is greater than the third threshold P and the number of resource blocks (RBs) occupied by the physical uplink shared channel (PUSCH) transmission is less than or equal to the fourth threshold Q;
  • the logical value of one of the following information in the downlink control information (DCI) format (format) X is 1 :
  • PUSCH physical uplink shared channel
  • Neither transport block is a retransmitted transport block.
  • the target transport block is indicated by one of the following information in a downlink control information (DCI) format (format) X:
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • PUSCH frequency hopping enable flag is used to indicate a target transport block, indicating that two transport blocks are configured, two of which have data transmission and need to transmit CQI/PMI information at the same time. PUSCH does not support frequency hopping.
  • the bandwidth of the scheduled PUSCH becomes small.
  • the available uplink The number of cyclic shifts of the demodulation reference signal is reduced to 4, or 4 cyclic shifts are fixed.
  • a 1-bit trigger aperiodic uplink measurement signal is used to indicate a target transport block, indicating that two transport blocks are configured, two of which have data transmission, and at the same time, CQI/PMI information needs to be transmitted, non-periodic uplink is not supported. Measurement signal transmission.
  • the precoding index indication is indicated in DCI format. 6 bits in OX.
  • the target transport block is fixed as the first transport block; if two transport blocks are currently configured and only one transport block has data transmission, then the target A transport block is the transport block that has no data transmission.
  • Embodiment 1 The method for obtaining a target transport block when transmitting CQI/PMI information on a physical uplink shared channel is a transport block having a large transport block size; wherein, if any transport block is a retransmitted transport block, The modulation coding index and transport block size of the retransmitted transport block are the modulation coding index and transport block size of the transport block that was transmitted for the first time.
  • two transport blocks are configured, and two transport blocks are enabled, respectively being a first transport block TB0 and a second transport block TBI, and both enabled transport blocks have data transmission.
  • the modulation coding index MCS0 of the first transport block TBO is larger than the modulation coding index MCS1 (MCSOMCS1) of the second transport block TBI, and the CQI/PMI information needs to be transmitted. Because of MCSOMCS1, the target transport block is the first transport block, CQI/PMI information.
  • the CQI/PMI information needs to be transmitted simultaneously with the two retransmitted transport blocks, because the modulation coding index MCS0 of the first transport block TB0 is greater than the second transport block when the two transport blocks are transmitted for the first time for the first time.
  • the modulation coding index of the TBI is MCS1 (MCSOMCS1), so the target transport block is the first retransmission transport block, and the CQI/PMI information is encoded and transmitted on the first retransmission transport block.
  • Embodiment 2 A method for obtaining a target transport block when transmitting CQI/PMI information on a physical uplink shared channel is a small transport block; in scenario 2, the target transport block has a smaller modulation coding index in two transport blocks or a transport block having a smaller transport block size; if any transport block is a retransmitted transport block, the modulation coding index and transport block size of the retransmitted transport block are the modulation coding index of the transport block of the most recent first transmission and Transport block size.
  • the above scenario 1 satisfies one or more of the following conditions:
  • the difference between the modulation coding indexes of the two transport blocks is greater than or equal to the first threshold M;
  • the difference between the modulation coding indices of the two transport blocks is less than the first threshold M and the ratio of the channel quality indication information (CQI) / precoding matrix indication information (PMI) bits to the size of the larger transport block in the two transport blocks Less than the second threshold N;
  • CQI channel quality indication information
  • PMI precoding matrix indication information
  • the ratio of the number of CQI/PMI information bits to the size of the larger transport block in the two transport blocks is less than the second threshold N;
  • the number of CQI/PMI information bits is less than or equal to a third threshold P;
  • the number of CQI/PMI information bits is greater than the third threshold P and the number of resource blocks (RBs) occupied by the physical uplink shared channel (PUSCH) transmission is greater than the fourth threshold Q;
  • the number of RBs occupied by the PUSCH transmission is greater than the fourth threshold Q;
  • Both transport blocks are retransmitted transport blocks.
  • the above scenario 2 satisfies one or more of the following conditions:
  • the difference between the modulation coding indices of the two transport blocks is less than the first threshold M and the ratio of the channel quality indication information (CQI) / precoding matrix indication information (PMI) bits to the size of the larger transport block in the two transport blocks Greater than or equal to the second threshold N;
  • CQI channel quality indication information
  • PMI precoding matrix indication information
  • the number of CQI/PMI information bits is greater than the third threshold P and the number of resource blocks (RBs) occupied by the physical uplink shared channel (PUSCH) transmission is less than or equal to the fourth threshold Q;
  • the logical value of one of the following information in the downlink control information (DCI) format (format) X is 1:
  • PUSCH physical uplink shared channel
  • the first threshold M and the second threshold N in scenario 1 and scenario 2 may be configured through signaling, or may be agreed by the base station and the terminal; the third threshold P and the fourth in scenario 1 and scenario 2; The threshold value Q can be configured by signaling or by the base station and the terminal.
  • two transport blocks are configured, and two transport blocks are enabled, respectively being a first transport block TB0 and a second transport block TBI, and both enabled transport blocks have data transmission. .
  • the /PMI information is [ 21 ,0 ,.. 3 ⁇ 4 21 ].
  • the difference is greater than or equal to the first threshold M, so the target transport block is the second transport block TB 1, and the CQI/PMI information [O 1 , va , ... f 1 ] is encoded and transmitted on the second transport block TBI.
  • the second practical application of this embodiment configures two transport blocks, and both transport blocks are enabled.
  • the first transport block TB0 and the second transport block TBI, respectively, have data transmissions for both transport blocks.
  • the /PMI information is [O 1 , Of 21 ,...O 1 ].
  • the ratio of the larger transport block in the block is less than the second threshold N, and the target transport block is the second transport block TBI, CQI/PMI information [O. C21 , 0, ... ⁇ , ⁇ 1 ] are encoded and transmitted on the second transport block ⁇ 1.
  • two enabled transport blocks are configured, and two transport blocks are enabled, respectively being the first transport block TB0 and the second transport block TBI, and the two enabled transport blocks have data. transmission.
  • the /PMI information is [O 1 , Of 21 ,.. .
  • the ratio of the larger transport block in the block is greater than or equal to the second threshold N, and the target transport block is the first transport block TB0, CQI/PMI information [O. C21 , 0, ... () are encoded and transmitted on the first transport block TB0.
  • two transport blocks are configured, and both transport blocks are enabled.
  • the first transport block TB0 and the second transport block TBI, respectively, have data transmission for both enabled transport blocks.
  • the /PMI information is [ 21 ,0 ,.. 3 ⁇ 4 21 ].
  • two transport blocks are configured, and two transport blocks are enabled, respectively being the first transport block TB0 and the second transport block TBI, and the two transport blocks have no data transmission and need to be transmitted.
  • the CQI/PMI information is [O 1 , Of 21 ,.. 3 ⁇ 4 21 ].
  • the target transport block is the first transport block TB0, and the CQI/PMI information is encoded and transmitted on the first transport block TB0.
  • two transport blocks are configured, and two transport blocks are enabled, respectively being a first transport block TB0 and a second transport block TBI, and both transport blocks have data transmission
  • the modulation coding index MCS0 of the first transport block TB0 is greater than the modulation coding index MCS1 (MCSOMCS1) of the second transport block TBI, or the transport block size TBsizeO of the first transport block TB0 is greater than the transport block size TBsize TBsizeOTBsizel of the second transport block TBI
  • the CQI/PMI information that needs to be transmitted is [ 21 , 21 , .. 3 ⁇ 4 21 ].
  • the UE parsing obtains that the bit information implicitly indicating the target transport block in the DCI format X resource allocation field is 0, then the CQI/PMI information [O. C21 , O 1 C21 , ... O 1 ] are encoded and transmitted on the first transport block TB0.
  • two transport blocks are configured, and two transport blocks are enabled, respectively being a first transport block TB0 and a second transport block TBI, and both transport blocks have data transmission
  • the modulation coding index MCS0 of the first transport block TB0 is greater than the modulation coding index MCS1 (MCSOMCS1) of the second transport block TBI, or the transport block size TBsizeO of the first transport block TB0 is greater than the transport block size TBsizeK TBsizeOTBsizel of the second transport block TBI
  • the CQI/PMI information that needs to be transmitted is [ 21 , 0 , .. 3 ⁇ 4 21 ].
  • the UE parsing obtains that the bit information of the implicit indication target transport block in the DCI format X resource allocation field is 1, and then the CQI/PMI information is encoded and transmitted on the second transport block TBI.
  • Embodiment 3 A method for obtaining a target transport block when transmitting CQI/PMI information on a physical uplink shared channel
  • This embodiment implicitly indicates a target transport block for transmitting CQI/PMI information through the information field in DCIformatX.
  • the target transport block for transmitting the CQI/PMI information is indicated by one of the following information in the DCI format X:
  • the 1-bit information When the 1-bit information is 0, it indicates that the CQI/PMI information is transmitted in the first transport block (the first transport block is the target transport block); when the 1-bit information is 1, the CQI/ is transmitted in the second transport block. PMI information (the second transport block is the target transport block); or, when the 1-bit information is 1, indicates that the CQI/PMI information is transmitted in the first transport block (the first transport block is the target transport block); When the bit information is 0, it indicates that the CQI/PMI information is transmitted in the second transport block (the second transport block is the target transport block).
  • the two logical values of the above 1-bit information indicate that the first transport block is the target transport block and the second transport block is the target transport block.
  • the logical value of the 1-bit information when the logical value of the 1-bit information is 0, it indicates that the CQI/PMI information is transmitted on the first transport block TB0; when the logical value of the 1-bit information is 1, the second transmission is indicated.
  • the CQI/PMI information is transmitted on the block TBI.
  • the two transport blocks configured are both enabled and have data transmission.
  • the information of the target transport block is implicitly indicated by the resource allocation in DCI format X.
  • the CQI/PMI information to be transmitted is [O 1 , Of 21 ,.. .
  • the UE parsing obtains that the bit information of the implicit indication target transport block in the DCI format X resource allocation field is 0, and then is encoded in the first transport block TB0 (the first transport block) TBO is transmitted on the target transport block).
  • the logical value of the 1-bit information when the logical value of the 1-bit information is 0, it indicates that the CQI/PMI information is transmitted on the second transport block TBI; when the logical value of the 1-bit information is 1, it indicates that the first transmission is Block TB0 transmits CQI/PMI information.
  • the two transport blocks configured are both enabled and have data transmission.
  • the information of the target transport block is implicitly indicated by the resource allocation in DCI format X.
  • the CQI/PMI information to be transmitted is [O 1 , Of 21 , .. .
  • Embodiment 4 A method for configuring an offset factor
  • the offset factor of the uplink control information transmitted on one component carrier is the most
  • the offset factor is configured on the component carrier.
  • one component carrier may be configured with two offset factors, or one offset factor;
  • the PUSCH single antenna transmits an offset factor
  • the PUSCH multi-antenna transmission corresponds to an offset factor
  • an offset factor is used.
  • the aperiodic feedback corresponds to an offset factor
  • the periodic feedback corresponds to an offset factor
  • RI>1 corresponds to an offset factor
  • one component carrier may be configured with 4, 3, 2 or 1 offset factor; among them,
  • the PUSCH single antenna transmission corresponds to an offset factor
  • the PUSCH multi-antenna transmission and the RI not equal to 3 corresponds to an offset factor
  • the PUSCH corresponds to an offset factor when transmitting a single TB, and the PUSCH corresponds to an offset factor when the TB is transmitted, and the PUSCH corresponds to an offset factor when the single antenna is transmitted;
  • PUSCH transmits TB and RI>1 corresponds to one offset factor
  • PUSCH two TB transmission corresponds to one offset factor
  • the PUSCH corresponds to one offset factor when transmitting a single TB, and the PUSCH corresponds to an offset factor when transmitting two TBs;
  • RI>1 corresponds to an offset factor
  • PUSCH single-antenna transmission requires simultaneous transmission of ACK/NACK response information, RI information, and CQI/PMI information. Since PUSCH single-antenna transmission corresponds to one offset factor, PUSCH multi-antenna transmission corresponds to one offset factor, so for ACK/NACK Response information, base station configuration;
  • RI information base station configuration ⁇ ⁇ ; for CQI/PMI information, base station configuration.
  • CQI/PMI information base station configuration.
  • PUSCH multi-antenna transmission and needs to transmit ACK/NACK response information, RI information and CQI/PMI information, because PUSCH single antenna transmission corresponds to one offset factor, PUSCH multi-antenna transmission corresponds to one offset factor, so for ACK/NACK Response information, base station configuration; RI information, base station configuration ⁇ ; for CQI/PMI information, the base station configures p r , ⁇ , .
  • the PUSCH multi-antenna transmission on the component carrier needs to transmit ACK/NACK response information, RI information, and CQI/PMI information, because different RI information
  • the PUSCH corresponds to different offset factors, so for ACK/NACK response information, ⁇ ⁇ , ⁇ ⁇ , ⁇ , ⁇ ⁇ ', for RI information, the base station configures ⁇ ⁇ ⁇ ⁇ for CQI/PMI information, base station configuration ⁇ ⁇ Hey.
  • the base station configures ⁇ : : For RI information? , base station configuration; for CQI/PMI information, the base station configuration is ⁇ ?
  • the PUSCH on each component carrier is multi-antenna transmission, and needs to transmit ACK/NACK response information, RI information, and CQI/PMI information, because different
  • the PUSCH of the RI corresponds to different offset factors, so for the ACK/NACK response information and the RI information, the number of offset factors on each component carrier is 4, and for the CQI/PMI information, the offset factor on each component carrier The number is 2, so for ACK/NACK response information, the base station configures ⁇ : , ⁇ ; For Ri information, the base station is configured with ⁇ , ⁇ , 2?, ⁇ , 2 ⁇ , 2 ⁇ , 2?, 2 ⁇ ;
  • the technical solution of the present invention provides a transmission terminal for uplink control information on a physical uplink shared channel, as shown in FIG. It mainly includes an encoding module 510 and a sending module 520, where:
  • the encoding module 510 is configured to encode the uplink control information and the transport block that need to be transmitted on the physical uplink shared channel according to the related information and the offset factor of the target transport block;
  • the sending module 520 is connected to the encoding module 510.
  • the sending module 520 is configured to interleave the encoded control information and data and send the data on the physical uplink shared channel.
  • the encoding module is also arranged to determine the target transport block as follows: For correct/false response messages Information (ACK/NACK) and rank indication information (RI), the target transport block is determined as all transport blocks; for channel quality indication information (CQI) / precoding matrix indication information ( ⁇ ), the target transport block is determined to be from all One of the transport blocks selected in the transport block.
  • ACK/NACK correct/false response messages Information
  • RI rank indication information
  • CQI channel quality indication information
  • precoding matrix indication information
  • the encoding module 510 is further configured to receive high layer signaling for configuring the offset factor.
  • the present invention also provides an obtaining terminal of a target transport block, configured to obtain a target transport block when transmitting channel quality indication/precoding matrix indication information on a physical uplink shared channel, the terminal comprising: an obtaining module, configured to: a transport block having a larger modulation coding index or a larger transport block size in the two transport blocks is determined as the target transport block; and, if any transport block is a retransmitted transport block, the transport block that was transmitted for the first time is transmitted.
  • the modulation coding index and the transport block size are determined as a modulation coding index and a transport block size of the retransmitted transport block;
  • the obtaining module is configured to: determine, in the scenario, a transport block having a larger modulation and coding index or a larger transport block size in the two transport blocks as the target transport block; and modulating and encoding the two transport blocks in the second scenario.
  • a transport block having a smaller index or a smaller transport block size is determined as the target transport block; and, if any transport block is a retransmitted transport block, a modulation coding index and a transport block of the transport block that was transmitted for the first time for the first time
  • the size is determined as a modulation coding index and a transport block size of the retransmitted transport block;
  • the obtaining module is configured to indicate the target transport block by one of the following information in a downlink control information (DCI) format:
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • the invention also provides a configuration terminal for an offset factor, the terminal comprising:
  • the configuration module is configured to configure up to 4, 3, 2 or 1 offset factor for the uplink control information transmitted on one component carrier;
  • the offset factor is configured based on a component carrier.
  • the method and the terminal of the present invention effectively solve the problem of which transport block transmission CQI/PMI information is specifically, and effectively solve the problem of how to configure the offset factor of the uplink control information.

Description

控制信息传输、 传输块获得、 偏移因子配置方法及终端
技术领域
本发明涉及无线通信领域, 特别是涉及一种上行控制信息在物理上行共 享信道上的传输方法及终端, 在物理上行共享信道上传输信道质量指示 /预编 码矩阵指示信息时目标传输块的获得方法及终端, 以及偏移因子的配置方法 及终端。
背景技术
在长期演进系统(LTE: Long Term Evolution ) 中, 上行需要传输的控制 信令有正确 /错误应答信息 ( ACK/NACK: Acknowledgement/Negative Acknowledgement ) , 以及反映下行物理信道状态的信息( CSI: Channel State Information ) 的三种形式: 信道质量指示 ( CQI: Channels Quality Indication ) 信息、 预编码矩阵指示 (PMI: Pre-coding Matrix Indicator )和秩指示 (RI: Rank Indicator )信息。
LTE 系统中, ACK/NACK应答信息在物理上行控制信道( PUCCH: Physical Uplink Control )上以格式 1/1 a/lb ( PUCCH format 1/1 al/b )传输, 如 果终端 (UE: User Equipment ) 需要发送上行数据时, 则在物理上行共享信 道( PUSCH: Physical Uplink Shared Channel )上传输。
CQI/PMI信息或 RI信息的反馈可以是周期性的反馈,也可以是非周期性 的反馈, 其中, 对于周期性反馈的 CQI/PMI信息或 RI而言, 如果 UE不需要 发送上行数据,则周期反馈的 CQI/PMI信息或 RI在 PUCCH上以格式 2/2a/2b ( PUCCH format2/2a/2b )传输, 如果 UE需要发送上行数据时, 则 CQI/PMI 信息或 RI在 PUSCH上传输;对于非周期性反馈的 CQI/PMI信息或 RI而言, 只在 PUSCH上传输。
图 1为 LTE系统中上行控制信息和上行数据复用方式的示意图, 图 2为 LTE系统中上行控制信息和上行数据复用时的信道编码过程。 如图 1和图 2 所示, 上行数据以传输块(TB: Transport Block ) 的形式传输, TB经过循环 冗余校马全添加( CRC attachment ) , 码块分割 ( Code block segmentation )和子 块 CRC添力口 ( Code block CRC attachment ) , 信道编码 ( Channel coding ) , 速率匹配 ( Rate matching ) , 码块合成 ( Code block concatenation )后和编码 后的 CQI/PMI信息进行上行数据和控制信令的复用, 最后通过信道交织把编 码后的 ACK/NACK应答信息和 RI信息和数据复用在一起。
图 3为 LTE系统中 PUSCH传输方式示意图。从图 3中可以看出, PUSCH 是以单天线的形式传输的,所以 PUSCH只对应一个传输块,该传输块经过信 道编码就形成了一个码字流, 也就是说 LTE系统中, PUSCH只有一个码字 在图 3所示的中 PUSCH传输方式中, 上行控制信息的编码过程主要包
首先,
根据传输块大小等相关信息按照给定的表达式计算目标编码符号个数, 对于 个数的表达式为:
Figure imgf000004_0001
对于 C
Q' = min
Figure imgf000004_0002
当只有控制信息在 PUSCH上传输时:
对于 ACK/NACK应答信息和 RI信息, 计算目标编码符号个数的表达式 为:
PUSCH
Figure imgf000004_0003
对于 CQI, 计算目标编码符号个数的表达式为: O ^CQI = 1 N sPyUmSbCH · M 1V1 s PcUSCH -O S m -O S RI . 则编码后的目标长度为:
Figure imgf000005_0001
其中, M/^ff是当前子帧调度的 PUSCH带宽, 以子载波的个数表示; N H是每个子帧上 PUSCH传输时的符号个数 (与 SRS和 CP的类型有 关) ;
的值是由基站通过高层信令配置 ( β ΗΝΜΧ
Figure imgf000005_0002
对于只有控制信息传输的场景下 >¾r =^ ^7^¾或>¾ ¾ ) ; 上行控制信息的个数为 O ( O是 ACK/NACK应答信息或 RI信息或 CQI/PMI信息的个数) ;
^为传输块的调制方式;
J为 CQI/PMI信息进行 CRC校验比特的数量, 当 O ^大于 11时, J = 8, 当 O ^小于等于 11时, J = 0;
(:表示该传输块经 CRC校验和码块分割后对应的码块个数;
表示该传输块的每个码块对应的比特数, 对于相同的传输块: (:、 Kr 和 ^1^1从初始的 PDCCH 中获得; 当没有初始的下行控制信息 (DCI: Downlink Control Information )格式( format ) 0的 PDCCH的时 4昊, M, PUSCH-initial
SC
(:和 ^可以通过下面两种方式获取:
( 1 ) 当初始 PUSCH釆用半静态调度的时候, 可以从最近的半静态调度 配置的 PDCCH获取;
( 2 ) 当 PUSCH由随机接入响应授权触发, 则从相同传输块对应的随机 接入响应授权获取。
在 LTE中, 物理下行控制信道 PDCCH用于承载上、 下行调度信息, 以 及上行功率控制信息。 基站(eNB)可以通过下行控制信息(DCI: Downlink Control Information )配置 UE, 或者 UE接受高层( higher layers )的配置, 也 称为通过高层信令来配置 UE。 下行控制信息 (DCI: Downlink Control Information)格式(format)分为 DCI format 0、 1、 1A、 1B、 1C、 1D、 2、 2A、 3 , 3A等。 其中, DCI formatO用于指示物理上行共享信道(PUSCH: Physical uplink shared channel ) 的调度, 也就是 DCI formatO承载了 PUSCH传输所需 的相关信息, DCI formatO中的信息如表 1所示:
表 1、 DCI formatO中信息
Figure imgf000006_0001
其中调制编码方式和冗余版本如表 2所示。
表 2、 PUSCH的调制, 传输块大小和冗余版本
Figure imgf000006_0002
8 2 8 0
9 2 9 0
10 2 10 0
11 4 10 0
12 4 11 0
13 4 12 0
14 4 13 0
15 4 14 0
16 4 15 0
17 4 16 0
18 4 17 0
19 4 18 0
20 4 19 0
21 6 19 0
22 6 20 0
23 6 21 0
24 6 22 0
25 6 23 0
26 6 24 0
27 6 25 0
28 6 26 0
29 1
30 保留 ( reserved ) 2
31 3 LTE系统中还规定了根据传输块大小索引和传输块大小之间的关系, 根 据传输块大小和资源块(RB ) 大小得到码率。
作为 LTE的演进标准的高级长期演进系统( LTE-A: Long Term Evolution Advanced ) 支持上行更大的传输速率, 所以 PUSCH 的传输支持空间复用的 形式。对于釆用空间复用形式传输的 PUSCH来说,相关技术给出了码字流到 层的映射的关系和 LTE系统下行传输时码字流到层的映射相同, 具体的映射 过程 ^表 3所示:
表 3、 LTE-A系统中 PUSCH釆用空分复用码字到层的映射表
Figure imgf000008_0001
其中:
表示每层传输的数据量;
^b , 分别表示每个码字流的上的符号数; , " (0分别表示每个码字流上的数据;
χ(0) ( , . . . x(3) (0分别表示各个层上传输的数据。
LTE-A系统中同样需要引入一个新的 DCI format来指示单用户多输入多 输出( SU-MIMO )场景下 PUSCH传输的相关信息,这里假设为 DCI format X, DCI format X中具体包含的信息目前还没有结论。
LTE-A系统为了需要支持更大的系统带宽 (最高可达 100MHz ) , 并需 要后向兼容 LTE现有的标准, 所以在现有的 LTE系统的基础上, 将 LTE系 统的带宽进行合并来获得更大的带宽, 这种技术称为载波聚合(CA: Carrier Aggregation )技术。 该技术能够提高高级国际移动通信( IMT-Advance )系统 的频谱利用率、 緩解频谱资源紧缺, 进而优化频谱资源的利用。
目前关于上行控制信息在空间复用的 PUSCH上传输的结论是: 对于 ACK/NACK应答信息, RI信息, 在两个码字流的所有传输层上重 复传输, 在所有传输层上和数据时分复用并且各传输层上控制信令的符号个 数相同;
对于 CQI/PMI信息, 在一个码字流上传输。
现有技术没有给出选择哪个码字流传输 CQI/PMI信息, 或者说没有给出 选择哪个传输块作为目标传输块传输 CQI/PMI信息, 而且没有给出上行控制 信息在物理上行共享信道传输时偏移值配置的方法。
发明内容
本发明所要解决的技术问题是需要提供一种上行控制信息的传输方案, 使得上行控制信息在物理上行共享信道上进行传输。
为了解决上述技术问题, 本发明提供了一种上行控制信息的传输方法, 所述上行控制信息在物理上行共享信道上传输, 该方法包括:
根据目标传输块的相关信息和偏移因子, 将需要在物理上行共享信道上 传输的上行控制信息和传输块编码, 将编码后的控制信息和传输块交织后在 物理上行共享信道上发送。
优选地, 对于正确 /错误应答信息 (ACK/NACK )和秩指示信息 (RI ) , 所述目标传输块为所有传输块; 对于信道质量指示 (CQI ) /预编码矩阵指示 ( PMI )信息, 所述目标传输块为所有传输块中的一个传输块。
优选地, 所述偏移因子由高层信令配置。
为了解决上述技术问题,本发明还提供了一种上行控制信息的传输终端, 所述上行控制信息在物理上行共享信道上传输, 该终端包括编码模块及发送 模块, 其中:
所述编码模块设置成根据目标传输块的相关信息和偏移因子, 将需要在 物理上行共享信道上传输的上行控制信息和传输块编码;
所述发送模块设置成将编码后的控制信息和传输块交织后在物理上行共 享信道上发送。
优选地, 对于正确 /错误应答信息 (ACK/NACK )和秩指示信息 (RI ) , 所述编码模块将所述目标传输块确定为所有传输块; 对于信道质量指示 ( CQI ) /预编码矩阵指示 (PMI )信息, 所述编码模块将所述目标传输块确 定为所有传输块中的一个传输块。
本发明所要解决的另一技术问题是需要提供一种在物理上行共享信道上 传输信道质量指示 /预编码矩阵指示信息时目标传输块的获得方法, 解决现有 技术中 CQI/PMI信息在哪个传输块上传输的问题。
为了解决上述另一技术问题,本发明提供了一种目标传输块的获得方法, 该方法包括: 在物理上行共享信道上传输信道质量指示 /预编码矩阵指示信息 时获得目标传输块, 其中: 的传输块; 其中, 如果任一传输块是重传的传输块, 则所述重传的传输块的 调制编码索引和传输块大小是最近一次首次传输的传输块的调制编码索引和 传输块大小; 或者传输块大小较大的传输块; 在场景二中, 所述目标传输块为两个传输块 中调制编码索引较小或者传输块大小较小的传输块; 其中, 如果任一传输块 是重传的传输块, 则所述重传的传输块的调制编码索引和传输块大小是最近 一次首次传输的传输块的调制编码索引和传输块大小;
或者, 所述目标传输块通过下行控制信息(DCI )格式(format ) X中的 以下信息之一进行指示:
1比特的所述物理上行共享信道(PUSCH ) 的跳频使能标志; 资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识。
优选地, 所述场景一满足以下条件中的一个或多个:
所述两个传输块各自的调制编码索引之差大于等于第一阔值 M;
所述两个传输块各自的调制编码索引之差小于第一阔值 M且所述信道质 量指示 (CQI ) /预编码矩阵指示 (PMI )信息的比特数与所述两个传输块中 较大传输块的大小的比值小于第二阔值 N;
所述 CQI/PMI信息的比特数与所述两个传输块中较大传输块的大小的比 值小于第二阔值 N;
所述 CQI/PMI信息的比特数小于等于第三阔值 P;
所述 CQI/PMI信息的比特数大于第三阔值 P且所述物理上行共享信道 ( PUSCH )传输所占的资源块(RB ) 的数量大于第四阔值 Q;
所述 PUSCH传输所占的 RB的数量大于第四阔值 Q; 以及
所述两个传输块都是重传的传输块;
其中, 所述第一阔值 M和第二阔值 N通过信令配置,或者通过基站与终 端约定;
所述第三阔值 P和第四阔值 Q通过信令配置,或者通过基站与终端约定。 优选地, 所述场景二满足以下条件中的一个或多个:
所述两个传输块各自的调制编码索引之差小于第一阔值 M 且所述 CQI/PMI信息的比特数与所述两个传输块中较大传输块的大小的比值大于等 于第二阔值 N;
所述 CQI/PMI信息的比特数大于第三阔值 P且所述物理上行共享信道
( PUSCH )传输所占的资源块(RB ) 的数量小于等于第四阔值 Q; 下行控制信息(DCI )格式(format ) X中的以下信息之一的逻辑值为 1 : 1比特的所述物理上行共享信道(PUSCH ) 的跳频使能标志; 资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识, 以及
所述两个传输块都不是重传的传输块;
其中, 所述第一阔值 M和第二阔值 N通过信令配置,或者通过基站与终 端约定;
所述第三阔值 P和第四阔值 Q通过信令配置,或者通过基站与终端约定。 优选地, 两个传输块都没有数据传输, 所述目标传输块为第一个传输块。 优选地, 两个传输块中只有一个传输块有数据传输, 所述目标传输块为 没有数据传输的传输块。
优选地, 指示目标传输块的所述指示信息的 2个逻辑值, 分别表示所述 目标传输块为第一传输块, 以及所述目标传输块为第二传输块。
为了解决上述另一技术问题, 本发明还提供了一种目标传输块的获得终 端, 该终端应用于在物理上行共享信道上传输信道质量指示 /预编码矩阵指示 信息时获得目标传输块, 该终端包括获得模块:
所述获得模块设置成: 将两个传输块中调制编码索引较大或者传输块大 小较大的传输块确定为所述目标传输块; 以及, 如果任一传输块是重传的传 输块, 则将最近一次首次传输的传输块的调制编码索引和传输块大小确定为 所述重传的传输块的调制编码索引和传输块大小;
或者,
所述获得模块设置成: 在场景一下将两个传输块中调制编码索引较大或 者传输块大小较大的传输块确定为所述目标传输块; 在场景二下将两个传输 块中调制编码索引较小或者传输块大小较小的传输块确定为所述目标传输 块; 以及, 如果任一传输块是重传的传输块, 则将最近一次首次传输的传输 块的调制编码索引和传输块大小确定为所述重传的传输块的调制编码索引和 传输块大小;
或者,
所述获得模块设置成: 通过下行控制信息(DCI )格式(format ) X中的 以下信息之一指示所述目标传输块:
1比特的所述物理上行共享信道(PUSCH ) 的跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识。
本发明所要解决的又一技术问题是需要提供一种偏移因子的配置技术, 解决如何配置上行控制信息的偏移因子的问题。
为了解决上述又一技术问题, 本发明提供了一种偏移因子的配置方法, 该方法包括:
为一个分量载波上传输的上行控制信息最多配置 4、 3、 2或 1个偏移因 子;
其中, 所述偏移因子是基于分量载波进行配置的。
优选地, 所述上行控制信息为信道质量指示 (CQI ) /预编码矩阵指示
( PMI )信息时, 为一个分量载波上传输的上行控制信息配置 2或 1个偏移 因子;
其中:
所述 CQI/PMI信息所在目标传输块对应层数不同, 所配置的偏移因子不 同;
或者, RI=3对应一个偏移因子, RI不等于 3对应一个偏移因子; 或者, PUSCH单天线传输对应一个偏移因子, PUSCH多天线传输对应 一个偏移因子; 或者, 所述 CQI/PMI信息的比特数大于第五阔值 R对应一个偏移因子, 所述 CQI/PMI信息的比特数小于等于第五阔值 R对应一个偏移因子;
或者, 非周期反馈对应一个偏移因子, 周期反馈对应一个偏移因子; 或者, RI=1对应一个偏移因子, RI>1对应一个偏移因子;
或者, 以上情形都对应一个偏移因子。
优选地, 所述上行控制信息为正确 /错误应答信息(ACK/NACK )和秩指 示信息 (RI ) 时, 为一个分量载波上传输的上行控制信息配置 4、 3、 2或 1 个偏移因子; 其中:
不同 RI的所述物理上行共享信道(PUSCH )对应不同的偏移因子; 或者 , PUSCH单天线传输对应一个偏移因子 , PUSCH多天线传输且 RI=3 对应一个偏移因子, PUSCH多天线传输且 RI不等于 3 对应一个偏移因子; 或者, PUSCH单 TB传输对应一个偏移因子, PUSCH两 TB传输且 RI=3 对应一个偏移因子, PUSCH两 TB传输且 RI不等于 3对应一个偏移因子; 或者, PUSCH单 TB传输对应一个偏移因子, PUSCH两 TB传输对应一 个偏移因子, PUSCH单天线传输对应一个偏移因子;
或者, RI=1对应一个偏移因子, PUSCH单 TB传输且 RI>1对应一个偏 移因子, PUSCH两 TB传输对应一个偏移因子;
或者, RI=3对应一个偏移因子, RI不等于 3对应一个偏移因子; 或者, PUSCH单天线传输对应一个偏移因子, PUSCH多天线传输对应 一个偏移因子; 或者, PUSCH单 TB传输对应一个偏移因子, PUSCH两 TB传输对应一 个偏移因子; 或者, RI=1对应一个偏移因子, RI>1对应一个偏移因子;
或者, 以上情形都对应一个偏移因子。
为了解决上述又一技术问题,本发明还提供了一种偏移因子的配置终端, 该终端包括:
配置模块, 其设置成为一个分量载波上传输的上行控制信息最多配置 4、 3、 2或 1个偏移因子;
其中, 所述偏移因子是基于分量载波进行配置的。
与现有技术相比, 本发明技术方案提出了一种上行控制信道在物理上行 共享信道传输的方法。 本发明技术方案的一个实施例有效解决了 CQI/PMI信 息具体在哪个传输块传输的问题。 本发明技术方案的另一个实施例有效解决 了如何配置上行控制信息的偏移因子的问题。
本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为 LTE系统中上行控制信息和上行数据复用的示意图;
图 2为 LTE系统中上行控制信息和上行数据复用的信道编码过程; 图 3为 LTE系统中 PUSCH传输方式示意图;
图 4为本发明提供的传输方法的流程示意图;
图 5为本发明提供的传输终端的组成示意图。
本发明的较佳实施方式
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明 如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解 并据以实施。 本发明提供的一种上行控制信息在物理上行共享信道上的传输方法, 如 图 4所示, 主要包括如下步骤: 步骤 S410, 根据目标传输块的相关信息和偏移因子, 将需要在物理上行 共享信道上传输的上行控制信息和传输块编码; 步骤 S420, 将编码后的控制信息和数据交织后在物理上行共享信道上发 送。
本发明提供的上述传输方法中, 对于 ACK/NACK信息和 RI信息, 目标 传输块为所有传输块; 对于 CQI/PMI信息, 目标传输块为所有传输块中的一 个传输块。
本发明提供的上述传输方法中, 偏移因子由高层信令配置。
本发明提供的上述传输方法中, 对于 CQI/PMI信息, 目标传输块为两个 传输块中调制编码索引较大或者传输块大小较大的传输块;
其中, 如果任一传输块是重传的传输块, 则所述重传的传输块的调制编 码索引和传输块大小是最近一次首次传输的传输块的调制编码索引和传输块 大小; 传输块大小较大的传输块; 在场景二中, 目标传输块为两个传输块中调制编 码索引较小或者传输块大小较小的传输块; 其中, 如果任一传输块是重传的 传输块, 则所述重传的传输块的调制编码索引和传输块大小是最近一次首次 传输的传输块的调制编码索引和传输块大小。
上述场景一满足以下条件中的一个或多个:
两个传输块各自的调制编码索引之差大于等于第一阔值 M;
两个传输块各自的调制编码索引之差小于第一阔值 M且信道质量指示 ( CQI ) /预编码矩阵指示 (PMI )信息比特数与两个传输块中较大传输块的 大小的比值小于第二阔值 N;
CQI/PMI信息比特数与两个传输块中较大传输块的大小的比值小于第二 阔值 N;
CQI/PMI信息比特数小于等于第三阔值 P;
CQI/PMI信息比特数大于第三阔值 P且物理上行共享信道(PUSCH )传 输所占的资源块(RB ) 的数量大于第四阔值 Q; PUSCH传输所占的 RB的数量大于第四阔值 Q; 以及
两个传输块都是重传的传输块。
上述场景二满足以下条件中的一个或多个:
两个传输块各自的调制编码索引之差小于第一阔值 M且信道质量指示信 息 ( CQI ) /预编码矩阵指示信息 (PMI ) 比特数与两个传输块中较大传输块 的大小的比值大于等于第二阔值 N;
CQI/PMI信息比特数大于第三阔值 P且物理上行共享信道(PUSCH )传 输所占的资源块(RB ) 的数量小于等于第四阔值 Q;
下行控制信息(DCI )格式(format ) X中的以下信息之一的逻辑值为 1 :
1比特的物理上行共享信道(PUSCH )跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识, 以及
两个传输块都不是重传的传输块。
或者, 所述目标传输块通过下行控制信息(DCI )格式(format ) X中的 以下信息之一进行指示:
1比特的物理上行共享信道(PUSCH )跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识。
如果使用 1比特的 PUSCH跳频使能标志指示目标传输块,表示配置了两 个传输块,其中两个传输块都有数据传输,且同时需要传输 CQI/PMI信息时, PUSCH不支持跳频。
如果使用资源分配中的 1比特指示目标传输块,表示配置了两个传输块, 其中两个传输块都有数据传输, 且同时需要传输 CQI/PMI信息时, 调度的 PUSCH的带宽变小。
如果使用解调参考信号的循环移位中的 1 比特指示目标传输块, 表示配 置了两个传输块, 其中两个传输块都有数据传输, 且同时需要传输 CQI/PMI 信息时, 可用的上行解调参考信号的循环移位数量减少为 4, 或者固定釆用 4 个循环移位。
如果使用 1 比特的触发非周期上行测量信号指示目标传输块, 表示配置 了两个传输块, 其中两个传输块都有数据传输, 且同时需要传输 CQI/PMI信 息时, 不支持非周期的上行测量信号的发送。
如果使用预编码索引指示中的 1 比特指示目标传输块, 表示配置了两个 传输块, 其中两个传输块都有数据传输, 且同时需要传输 CQI/PMI信息时, 预编码索引指示在 DCI format OX中占 6比特。
如果使用 1 比特的传输块到码字流交叉映射标识指示目标传输块, 表示 配置了两个传输块,其中两个传输块都有数据传输,且同时需要传输 CQI/PMI 信息时, 不知道传输块到码字流的交叉映射。
如果当前配置了两个传输块, 且两个传输块都没有数据传输, 那么目标 传输块固定是第一个传输块; 如果当前配置了两个传输块, 只有一个传输块 有数据传输, 那么目标传输块是没有数据传输的那个传输块。
实施例一、 一种在物理上行共享信道上传输 CQI/PMI信息时目标传输块 的获得方法 传输块大小较大的传输块; 其中, 如果任一传输块是重传的传输块, 则所述 重传的传输块的调制编码索引和传输块大小是最近一次首次传输的传输块的 调制编码索引和传输块大小。
本实施例的第一实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI , 两个使能传输块都有数据传输, 第一传输块 TBO的调制编码索引 MCS0大于第二传输块 TBI的调制编码索引 MCS1 ( MCSOMCS1 ) , 同时需要传输 CQI/PMI信息 , 因为 MCSOMCS1 , 因此目标传输块为第一传输块, CQI/PMI信息
经过编码后在第一传输块上传输。
本实施例的第二实际应用, CQI/PMI信息 需要和两个重 传的传输块同时传输, 因为最近一次首次传输两个传输块时第一传输块 TB0 的调制编码索引 MCS0 大于第二传输块 TBI 的调制编码索引 MCS1 ( MCSOMCS1 ) , 因此目标传输块为第一重传传输块, CQI/PMI 信息 经过编码后在第一重传传输块上传输。
实施例二、 一种在物理上行共享信道上传输 CQI/PMI信息时目标传输块 的获得方法 小较大的传输块; 场景二中, 目标传输块为两个传输块中调制编码索引较小 或者传输块大小较小的传输块; 如果任一传输块是重传的传输块, 则所述重 传的传输块的调制编码索引和传输块大小是最近一次首次传输的传输块的调 制编码索引和传输块大小。
上述场景一满足以下条件中的一个或多个:
两个传输块各自的调制编码索引之差大于等于第一阔值 M;
两个传输块各自的调制编码索引之差小于第一阔值 M且信道质量指示信 息 ( CQI ) /预编码矩阵指示信息 (PMI ) 比特数与两个传输块中较大传输块 的大小的比值小于第二阔值 N;
CQI/PMI信息比特数与两个传输块中较大传输块的大小的比值小于第二 阔值 N;
CQI/PMI信息比特数小于等于第三阔值 P;
CQI/PMI信息比特数大于第三阔值 P且物理上行共享信道( PUSCH )传 输所占的资源块(RB ) 的数量大于第四阔值 Q;
PUSCH传输所占的 RB的数量大于第四阔值 Q; 以及
两个传输块都是重传的传输块。 上述场景二满足以下条件中的一个或多个:
两个传输块各自的调制编码索引之差小于第一阔值 M且信道质量指示信 息 (CQI) /预编码矩阵指示信息 (PMI) 比特数与两个传输块中较大传输块 的大小的比值大于等于第二阔值 N;
CQI/PMI信息比特数大于第三阔值 P且物理上行共享信道( PUSCH )传 输所占的资源块(RB) 的数量小于等于第四阔值 Q;
下行控制信息(DCI)格式(format) X中的以下信息之一的逻辑值为 1:
1比特的物理上行共享信道(PUSCH)跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识, 以及
两个传输块都不是重传的传输块。 上述场景一和场景二中的第一阔值 M和第二阔值 N,可以通过信令配置, 也可以由基站与终端约定; 上述场景一和场景二中的第三阔值 P和第四阔值 Q, 可以通过信令配置, 也可以由基站与终端约定。
本实施例的第一个实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI, 两个使能传输块都有数据传输。
根据 DCI formatOX得到两个传输块的调制编码索引分别是 = 0 (对应 第一传输块 TB0) , MCS=U (对应第二传输块 TBI) , PUSCH传输的带宽 NPRB=2, 需要传输的 CQI/PMI信息是[ 21,0 ,.. ¾21]。
基站和 UE 约定好第一阔值 M=10, 第二阔值 N=10%, 因为 abs(llcs-IM°CS) = U>M = lO, 也即两个传输块的调制编码索引之差大于等于第 一阔值 M ,因此目标传输块为第二传输块 TB 1, CQI/PMI信息 [O 1 , cei , ... f1 ] 经过编码后在第二传输块 TBI上传输。
本实施例的第二个实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI, 两个传输块都有数据传输。
根据 DCI formatOX得到两个传输块的调制编码索引分别是 = 0 (对应 第一传输块 TB0) , MCS=6 (对应第二传输块 TBI) , PUSCH传输的带宽 NPRB=2, 需要传输的 CQI/PMI信息是 [O 1, Of21,...O 1]。
基站和 UE 约定好第一阔值 M=10, 第二阔值 N=10%, 因为 abs(llcs-IM°CS) = l<M = lO, 也即两个传输块的调制编码索引之差小于第一阔值
M, 则进一步判断 CQI/PMI信息的比特数与两个传输块中较大传输块的比值 与第二阔值 N的大小关系。 根据 /^ =0 , C=6,NPRB=2查表可以得到第一 传输块 TB0的大小为 7¾ =144, 第二传输块 TBI 的大小为 ¾ =176, 由于 CQI/PMI 信 息 [O0 cQ O^Q ...O^QI} 的 比 特 数 为 16 , 因 此 16/max(7¾,e,7¾,e) = 16/176 < 10% ,所以 CQI/PMI信息的比特数与两个传输块中 较大传输块的比值小于第二阔值 N, 此时目标传输块为第二传输块 TBI, CQI/PMI信息 [O。C21 , 0 , ...Ο,ψ1 ]经过编码后在第二传输块 ΤΒ 1上传输。 本实施例的第三实际应用, 配置了两个使能传输块, 且两个传输块都使 能, 分别为第一传输块 TB0和第二传输块 TBI, 两个使能传输块都有数据传 输。
根据 DCI formatOX得到两个传输块的调制编码索引分别是 = 0 (对应 第一传输块 TB0) , MCS=6 (对应第二传输块 TBI) , PUSCH传输的带宽 NPRB=2, 需要传输的 CQI/PMI信息是 [O 1, Of21,.. 。 基站和 UE 约定好第一阔值 M=10, 第二阔值 N=10%, 因为 abs(Ilcs-IM°CS) = l<M = l0, 也即两个传输块的调制编码索引之差小于第一阔值
M, 那么继续判断 CQI/PMI信息的比特数与两个传输块中较大传输块的比值 与第二阔值 N的大小关系。 根据 /^ =0 , C=6,NPRB=2查表可以得到第一 传输块 TB0的大小为 7¾ =144, 第二传输块 TBI 的大小为 ¾ =176, 由于 CQI/PMI 信 息 [O0 cQ O^Q ...O^QI} 的 比 特 数 为 20 , 因 此 20/max(7¾,e,7¾,e) = 20/176 > 10% ,所以 CQI/PMI信息的比特数与两个传输块中 较大传输块的比值大于等于第二阔值 N,此时目标传输块为第一传输块 TB0, CQI/PMI信息 [O。C21 , 0 , ...( ]经过编码后在第一传输块 TB0上传输。 本实施例的第四实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI, 两个使能传输块都有数据传输。 根据 DCI formatOX得到两个传输块的调制编码索引分别是 = 0 (对应 第一传输块 TB0) , MCS=6 (对应第二传输块 TBI) , PUSCH传输的带宽 NPRB=2, 需要传输的 CQI/PMI信息是[ 21,0 ,.. ¾21]。
基站和 UE约定好第三阔值 P=ll, 第四阔值 Q=4, 需要传输的 CQI/PMI 信息比特数大于第三阔值 P, 则进一步判断 PUSCH传输所占的 RB 个数 ( NPRB=2 )是否小于等于第四阔值 Q, 因为 «3=2<第四阔值 Q, 因此目标 传输块为第一传输块 TBO, CQI/PMI信息 经过编码后在第一 传输块 TB0上传输。
本实施例的第五实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI, 两个传输块都没有数据传输, 需 要传输的 CQI/PMI信息是 [O 1, Of21,.. ¾21]。 此时, 由于两个传输块都没有数 据传输,因此目标传输块为第一传输块 TB0, CQI/PMI信息 经 过编码后在第一传输块 TB0上传输。
本实施例的第六个实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI, 两个传输块都有数据传输, 且第 一传输块 TB0的调制编码索引 MCS0大于第二传输块 TBI的调制编码索引 MCS1 (MCSOMCS1 ) , 或者第一传输块 TB0的传输块大小 TBsizeO大于第 二传输块 TBI的传输块大小 TBsize TBsizeOTBsizel ),需要传输的 CQI/PMI 信息是[ 21, 21,.. ¾21]。
UE解析获得 DCI format X资源分配域中隐含指示目标传输块的比特信 息是 0, 那么 CQI/PMI信息[O。C21,O1 C21,...O1 ]经过编码后在第一传输块TB0上 传输。
本实施例的第七个实际应用, 配置了两个传输块, 且两个传输块都使能, 分别为第一传输块 TB0和第二传输块 TBI, 两个传输块都有数据传输, 且第 一传输块 TB0的调制编码索引 MCS0大于第二传输块 TBI的调制编码索引 MCS1 (MCSOMCS1 ) , 或者第一传输块 TB0的传输块大小 TBsizeO大于第 二传输块 TBI的传输块大小 TBsizeK TBsizeOTBsizel ),需要传输的 CQI/PMI 信息是[ 21,0 ,.. ¾21]。 UE解析获得 DCI format X资源分配域中隐含指示目标传输块的比特信 息是 1, 那么 CQI/PMI信息 经过编码后在第二传输块 TBI上 传输。
实施例三、 一种在物理上行共享信道上传输 CQI/PMI信息时目标传输块 的获得方法
本实施例通过 DCIformatX中的信息域隐含指示传输 CQI/PMI信息的目 标传输块。 在本实施例中, 通过 DCI format X中的以下信息之一, 指示传输 CQI/PMI信息的目标传输块:
( 1 ) 1比特的 PUSCH跳频使能标志;
(2) 资源分配中的 1比特;
(3 )解调参考信号的循环移位中的 1比特;
(4) 1比特的触发非周期上行测量信号;
(5 )预编码索引指示中的 1比特;
(6) 1比特的传输块到码字流交叉映射标识。
上述的 1比特信息是 0时, 表示在第一传输块传输 CQI/PMI信息 (第一 传输块是目标传输块) ; 当上述的 1比特信息是 1时, 表示在第二传输块传 输 CQI/PMI信息(第二传输块是目标传输块) ; 或者, 上述的 1比特信息是 1时, 表示在第一传输块传输 CQI/PMI信息 (第一传输块是目标传输块) ; 当上述的 1比特信息是 0时, 表示在第二传输块传输 CQI/PMI信息(第二传 输块是目标传输块) 。 总之, 上述的 1 比特信息的两个逻辑值, 分别表示第 一传输块是目标传输块和第二传输块是目标传输块。
本实施例的第一个实际应用中, 1 比特信息的逻辑值是 0时, 表示在第 一传输块 TB0上传输 CQI/PMI信息; 1比特信息的逻辑值是 1时, 表示在第 二传输块 TBI上传输 CQI/PMI信息。配置的两个传输块都使能而且都有数据 传输, 目标传输块的信息是由 DCI format X中资源分配隐含指示的, 需要传 输的 CQI/PMI信息是 [O 1, Of21,.. 。
UE解析获得 DCI format X资源分配域中隐含指示目标传输块的比特信 息是 0, 那么 经过编码后是在第一传输块 TB0 (第一传输块 TBO为目标传输块)上传输。
本实施例的第二个实际应用中, 1 比特信息的逻辑值是 0时, 表示在第 二传输块 TBI上传输 CQI/PMI信息; 1比特信息的逻辑值是 1时, 表示在第 一传输块 TB0传输 CQI/PMI信息。配置的两个传输块都使能而且都有数据传 输, 目标传输块的信息是由 DCI format X中资源分配隐含指示的, 需要传输 的 CQI/PMI信息是 [O 1 , Of21 , .. 。
UE解析获得 DCI format X资源分配域中隐含指示目标传输块的比特信 息是 0 ,那么 经过编码后在第二传输块 TBI (第二传输块 TBI 为目标传输块)上传输。 实施例四、 一种偏移因子的配置方法
PUSCH
本实施例中,为一个分量载波上传输的上行控制信息的偏移因子 最
PUSCH
多配置 4、 3、 2或 1个偏移因子。 该偏移因子 ^^于分量载波进行配置 的。
所述上行控制信息为 CQI/PMI信息时, 一个分量载波可以配置 2个偏移 因子, 或者 1个偏移因子;
或者, RI=3对应一个偏移因子, 其他情形对应一个偏移因子;
或者, PUSCH单天线传输时对应一个偏移因子, PUSCH多天线传输时 对应一个偏移因子;
或者, CQI/PMI信息比特数大于第五阔值 R 时对应一个偏移因子,
CQI/PMI信息比特数小于等于第五阔值 R时对应一个偏移因子;
或者, 非周期反馈的时候对应一个偏移因子, 周期反馈的时候对应一个 偏移因子; 或者, RI=1对应一个偏移因子, RI>1对应一个偏移因子;
或者, 以上情形都对应一个偏移因子。
上述上行控制信息为正确 /错误应答信息 (ACK/NACK )和秩指示信息 ( RI ) 时, 一个分量载波可以配置 4、 3、 2或 1个偏移因子; 其中,
不同 RI的 PUSCH对应不同的偏移因子;
或者, PUSCH单天线传输时对应一个偏移因子, PUSCH多天线传输且 RI=3时对应一个偏移因子, PUSCH多天线传输且 RI不等于 3 时对应一个偏 移因子;
或者, PUSCH单 TB传输时对应一个偏移因子, PUSCH两 TB传输且 RI=3时对应一个偏移因子, PUSCH两 TB传输且 RI不等于 3时对应一个偏 移因子;
或者, PUSCH单 TB传输时对应一个偏移因子, PUSCH两 TB传输时对 应一个偏移因子, PUSCH单天线传输时对应一个偏移因子;
或者, RI=1对应一个偏移因子, PUSCH单 TB传输且 RI>1对应一个偏 移因子, PUSCH两 TB传输对应一个偏移因子;
或者, RI=3对应一个偏移因子, RI不等于 3对应一个偏移因子; 或者, PUSCH单天线传输时对应一个偏移因子, PUSCH多天线传输时 对应一个偏移因子;
或者, PUSCH单 TB传输时对应一个偏移因子, PUSCH两 TB传输时对 应一个偏移因子;
或者, RI=1对应一个偏移因子, RI>1对应一个偏移因子;
或者, 以上情形都对应一个偏移因子。
本实施例的第一个实际应用, 上行有 1个分量载波, 且该分量载波上的
PUSCH单天线传输,同时需要传输 ACK/NACK应答信息、 RI信息和 CQI/PMI 信息, 因为 PUSCH单天线传输时对应一个偏移因子, PUSCH多天线传输时 对应一个偏移因子, 所以对于 ACK/NACK应答信息, 基站配置 ; 对于
RI信息, 基站配置^ ^Γ ; 对于 CQI/PMI信息, 基站配置 。 本实施例的第二个实际应用, 上行有 1个分量载波, 且该分量载波上的
PUSCH多天线传输,同时需要传输 ACK/NACK应答信息、 RI信息和 CQI/PMI 信息, 因为 PUSCH单天线传输时对应一个偏移因子, PUSCH多天线传输时 对应一个偏移因子, 所以对于 ACK/NACK应答信息, 基站配置 ; 对于 RI信息,基站配置 β ;对于 CQI/PMI信息,基站配置 p r , β , 。 本实施例的第三个实际应用, 上行有 1个分量载波, 且该分量载波上的 PUSCH多天线传输,同时需要传输 ACK/NACK应答信息、 RI信息和 CQI/PMI 信息,因为不同 RI信息的 PUSCH对应不同的偏移因子,所以对于 ACK/NACK 应答信息, ^^Ι β , β Γ , β , β Γ ', 对于 RI信息, 基站配置 β β β β 对于 CQI/PMI信息, 基站配置^ Π Γ。 本实施例的第四个实际应用, 上行有 2个分量载波, 且每个分量载波上 的 PUSCH都是多天线传输, 同时需要传输 ACK/NACK应答信息、 RI信息和 CQI/PMI信息, 因为 PUSCH单天线传输时对应一个偏移因子, PUSCH多天 线传输时对应一个偏移因子, 所以对于 ACK/NACK应答信息, 基站配置 β: : 对于 RI信息 ?, 基站配置; 对于 CQI/PMI信息, 基 站配置 ΑΪ? ΑΪ?^。 本实施例的第五个实际应用, 上行有 2个分量载波, 且每个分量载波上 的 PUSCH都是多天线传输, 同时需要传输 ACK/NACK应答信息、 RI信息和 CQI/PMI信息, 因为不同 RI 的 PUSCH对应不同的偏移因子, 所以对于 ACK/NACK应答信息和 RI信息,每个分量载波上偏移因子的个数是 4,对于 CQI/PMI信息, 每个分量载波上偏移因子的个数是 2, 所以对于 ACK/NACK 应答信息, 基站配置 β: ,
Figure imgf000026_0001
, β^Γ; 对于 Ri信息, 基站配置^ ,^, 2?,^, 2Ρ, 2Ρ, 2?, 2Ρ ; 对于
CQI/PMI信息, 基站配置 O:ff2set ,, P offset ,, Pβ offseΡt ,,β o'ffset 本发明技术方案提出一种上行控制信息在物理上行共享信道上的传输终 端, 如图 5所示, 其主要包括编码模块 510及发送模块 520, 其中:
编码模块 510设置成根据目标传输块的相关信息和偏移因子, 将需要在 物理上行共享信道上传输的上行控制信息和传输块编码;
发送模块 520与编码模块 510相连, 该发送模块 520设置成将编码后的 控制信息和数据交织后在物理上行共享信道上发送。
本发明技术方案提出的传输终端中,
编码模块还设置成通过如下方式确定目标传输块: 对于正确 /错误应答信 息 ( ACK/NACK )和秩指示信息 (RI ) , 将目标传输块确定为所有传输块; 对于信道质量指示信息 (CQI ) /预编码矩阵指示信息 (ΡΜΙ ) , 将目标 传输块确定为从所有传输块中选择的一个传输块。
本发明技术方案提出的传输终端, 编码模块 510还设置成接收对偏移因 子进行配置的高层信令。
本发明还提出了一种目标传输块的获得终端, 用于在物理上行共享信道 上传输信道质量指示 /预编码矩阵指示信息时获得目标传输块, 该终端包括: 获得模块, 其设置成: 将两个传输块中调制编码索引较大或者传输块大 小较大的传输块确定为所述目标传输块; 以及, 如果任一传输块是重传的传 输块, 则将最近一次首次传输的传输块的调制编码索引和传输块大小确定为 所述重传的传输块的调制编码索引和传输块大小;
或者,
所述获得模块设置成: 在场景一下将两个传输块中调制编码索引较大或 者传输块大小较大的传输块确定为所述目标传输块; 在场景二下将两个传输 块中调制编码索引较小或者传输块大小较小的传输块确定为所述目标传输 块; 以及, 如果任一传输块是重传的传输块, 则将最近一次首次传输的传输 块的调制编码索引和传输块大小确定为所述重传的传输块的调制编码索引和 传输块大小;
或者,
所述获得模块设置成通过下行控制信息( DCI )格式( format ) X中的以 下信息之一进行指示所述目标传输块:
1比特的所述物理上行共享信道(PUSCH )跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识。 本发明还提出了一种偏移因子的配置终端, 该终端包括:
配置模块, 其设置成为一个分量载波上传输的上行控制信息最多配置 4、 3、 2或 1个偏移因子;
其中, 所述偏移因子是基于分量载波进行配置的。
虽然本发明所揭露的实施方式如上, 但所述的内容只是为了便于理解本 发明而釆用的实施方式, 并非用以限定本发明。 任何本发明所属技术领域内 的技术人员, 在不脱离本发明所揭露的精神和范围的前提下, 可以在实施的 形式上及细节上作任何的修改与变化, 但本发明的专利保护范围, 仍须以所 附的权利要求书所界定的范围为准。
工业实用性
与现有技术相比, 本发明的方法和终端有效解决了 CQI/PMI信息具体在 哪个传输块传输的问题, 同时有效解决了如何配置上行控制信息的偏移因子 的问题。

Claims

权 利 要 求 书
1、 一种上行控制信息的传输方法, 其特征在于, 所述上行控制信息在物 理上行共享信道上传输, 该方法包括:
根据目标传输块的相关信息和偏移因子, 将需要在物理上行共享信道上 传输的上行控制信息和传输块编码, 将编码后的上行控制信息和传输块交织 后在物理上行共享信道上发送。
2、 根据权利要求 1所述的方法, 其中,
对于正确 /错误应答信息(ACK/NACK )和秩指示信息(RI ) , 所述目标 传输块为所有传输块;
对于信道质量指示 (CQI ) /预编码矩阵指示 (PMI )信息, 所述目标传 输块为所有传输块中的一个传输块。
3、 根据权利要求 1所述的方法, 其中,
所述偏移因子由高层信令配置。
4、 一种目标传输块的获得方法, 包括: 在物理上行共享信道上传输信道 质量指示 /预编码矩阵指示信息时获得目标传输块, 其中,
的传输块; 其中, 如果两个传输块中的任一传输块是重传的传输块, 则所述 重传的传输块的调制编码索引和传输块大小分别是最近一次首次传输的传输 块的调制编码索引和传输块大小; 或者传输块大小较大的传输块; 在场景二下, 所述目标传输块为两个传输块 中调制编码索引较小或者传输块大小较小的传输块; 其中, 如果两个传输块 中的任一传输块是重传的传输块, 则所述重传的传输块的调制编码索引和传 输块大小分别是最近一次首次传输的传输块的调制编码索引和传输块大小; 或者, 所述目标传输块通过下行控制信息( DCI )格式( format ) X中的 以下信息之一进行指示: 1比特的所述物理上行共享信道(PUSCH ) 的跳频使能标志; 资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识。
5、 根据权利要求 4所述的方法, 其中,
所述场景一满足以下条件中的一个或多个:
所述两个传输块各自的调制编码索引之差大于等于第一阔值 M;
所述两个传输块各自的调制编码索引之差小于第一阔值 M且所述信道质 量指示 (CQI ) /预编码矩阵指示 (PMI )信息的比特数与所述两个传输块中 较大传输块的大小的比值小于第二阔值 N;
所述 CQI/PMI信息的比特数与所述两个传输块中较大传输块的大小的比 值小于第二阔值 N;
所述 CQI/PMI信息的比特数小于等于第三阔值 P;
所述 CQI/PMI信息的比特数大于第三阔值 P且 PUSCH传输所占的资源 块(RB ) 的数量大于第四阔值 Q;
所述 PUSCH传输所占的 RB的数量大于第四阔值 Q; 以及
所述两个传输块都是重传的传输块;
其中,
所述第一阔值 M和第二阔值 N通过信令配置,或者通过基站与终端约定; 所述第三阔值 P和第四阔值 Q通过信令配置,或者通过基站与终端约定。
6、 根据权利要求 4所述的方法, 其中,
所述场景二满足以下条件中的一个或多个:
所述两个传输块各自的调制编码索引之差小于第一阔值 M 且所述 CQI/PMI信息的比特数与所述两个传输块中较大传输块的大小的比值大于等 于第二阔值 N;
所述 CQI/PMI信息的比特数大于第三阔值 P且 PUSCH传输所占的资源 块(RB ) 的数量小于等于第四阔值 Q;
下行控制信息( DCI )格式( format ) X中的以下信息之一的逻辑值为 1:
1比特的所述 PUSCH的跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及
1比特的传输块到码字流交叉映射标识, 以及
所述两个传输块都不是重传的传输块;
其中,
所述第一阔值 M和第二阔值 N通过信令配置,或者通过基站与终端约定; 所述第三阔值 P和第四阔值 Q通过信令配置,或者通过基站与终端约定。
7、 根据权利要求 4所述的方法, 其中,
两个传输块中都没有数据传输, 所述目标传输块为两个数据块中的第一 个传输块。
8、 根据权利要求 4所述的方法, 其中,
两个传输块中只有一个传输块有数据传输, 所述目标传输块为所述两个 数据块中没有数据传输的传输块。
9、 根据权利要求 4所述的方法, 其中,
指示所述目标传输块的所述指示信息的 2个逻辑值分别表示所述目标传 输块为第一传输块, 以及所述目标传输块为第二传输块。
10、 一种偏移因子的配置方法, 包括: 为一个分量载波上传输的上行控制信息配置最多 4、 3、 2或 1个偏移因 子;
其中, 所述偏移因子是基于分量载波进行配置的。
11、 根据权利要求 10所述的方法, 其中,
所述上行控制信息为信道质量指示 (CQI ) /预编码矩阵指示 (PMI )信 息;
为一个分量载波上传输的上行控制信息配置最多 4、 3、 2或 1个偏移因 子的步骤包括: 为一个分量载波上传输的上行控制信息配置 2个或 1个偏移 因子;
其中:
所述 CQI/PMI信息所在目标传输块对应的层数不同时, 所配置的偏移因 子不同;
或者, 秩指示信息 RI=3对应一个偏移因子, RI不等于 3对应一个偏移 因子;
或者, 物理上行共享信道(PUSCH )单天线传输对应一个偏移因子,
PUSCH多天线传输对应一个偏移因子;
或者, 所述 CQI/PMI信息的比特数大于第五阔值 R对应一个偏移因子, 所述 CQI/PMI信息的比特数小于等于第五阔值 R对应一个偏移因子;
或者, 非周期反馈对应一个偏移因子, 周期反馈对应一个偏移因子; 或者, RI=1对应一个偏移因子, RI>1对应一个偏移因子;
或者, 以上情形都对应一个偏移因子。
12、 根据权利要求 10所述的方法, 其中,
所述上行控制信息为正确 /错误应答信息 (ACK/NACK )和秩指示信息 ( RI ) ;
为一个分量载波上传输的上行控制信息最多配置 4、 3、 2或 1个偏移因 子的步骤包括: 为一个分量载波上传输的上行控制信息配置 4、 3、 2或 1个 偏移因子; 其中:
不同 RI的 PUSCH对应不同的偏移因子;
或者 , PUSCH单天线传输对应一个偏移因子 , PUSCH多天线传输且 RI=3 对应一个偏移因子, PUSCH多天线传输且 RI不等于 3对应一个偏移因子; 或者, PUSCH单传输块(TB )传输对应一个偏移因子, PUSCH两 TB 传输且 RI=3对应一个偏移因子, PUSCH两 TB传输且 RI不等于 3对应一个 偏移因子;
或者, PUSCH单 TB传输对应一个偏移因子, PUSCH两 TB传输对应一 个偏移因子, PUSCH单天线传输对应一个偏移因子;
或者, RI=1对应一个偏移因子, PUSCH单 TB传输且 RI>1对应一个偏 移因子, PUSCH两 TB传输对应一个偏移因子;
或者, RI=3对应一个偏移因子, RI不等于 3对应一个偏移因子; 或者, PUSCH单天线传输对应一个偏移因子, PUSCH多天线传输对应 一个偏移因子;
或者, PUSCH单 TB传输对应一个偏移因子, PUSCH两 TB传输对应一 个偏移因子; 或者, RI=1对应一个偏移因子, RI>1对应一个偏移因子;
或者, 以上情形都对应一个偏移因子。
13、 一种上行控制信息的传输终端, 其特征在于, 所述上行控制信息在 物理上行共享信道上传输, 该终端包括编码模块及发送模块, 其中:
所述编码模块设置成根据目标传输块的相关信息和偏移因子, 将需要在 物理上行共享信道上传输的上行控制信息和传输块编码;
所述发送模块设置成将编码后的控制信息和传输块交织后在物理上行共 享信道上发送。
14、 根据权利要求 13所述的终端, 其中, 所述编码模块还设置成通过如下方式确定所述目标传输块: 对于正确 /错误应答信息(ACK/NACK )和秩指示信息(RI ) , 将所述目 标传输块确定为所有传输块;
对于信道质量指示 (CQI ) /预编码矩阵指示 (PMI )信息, 将所述目标 传输块确定为所有传输块中的一个传输块。
15、 一种目标传输块的获得终端, 其特征在于, 所述终端应用于在物理 上行共享信道上传输信道质量指示 /预编码矩阵指示信息时获得目标传输块, 该终端包括获得模块, 其中,
所述获得模块设置成: 将两个传输块中调制编码索引较大或者传输块大 小较大的传输块确定为所述目标传输块; 以及, 如果两个传输块中任一传输 块是重传的传输块, 则将最近一次首次传输的传输块的调制编码索引和传输 块大小确定为所述重传的传输块的调制编码索引和传输块大小;
或者,
所述获得模块设置成: 在场景一下将两个传输块中调制编码索引较大或 者传输块大小较大的传输块确定为所述目标传输块; 在场景二下将两个传输 块中调制编码索引较小或者传输块大小较小的传输块确定为所述目标传输 块; 以及, 如果两个传输块中的任一传输块是重传的传输块, 则将最近一次 首次传输的传输块的调制编码索引和传输块大小确定为所述重传的传输块的 调制编码索引和传输块大小;
或者,
所述获得模块设置成: 通过下行控制信息(DCI )格式(format ) X中的 以下信息之一指示所述目标传输块:
1比特的所述物理上行共享信道(PUSCH )跳频使能标志;
资源分配中的 1比特;
解调参考信号的循环移位中的 1比特;
1比特的触发非周期上行测量信号;
预编码索引指示中的 1比特; 以及 1比特的传输块到码字流交叉映射标识。
16、 一种偏移因子的配置终端, 包括:
配置模块, 其设置成为一个分量载波上传输的上行控制信息配置最多 4、 或 1个偏移因子;
其中, 所述偏移因子是基于分量载波进行配置的。
PCT/CN2011/070753 2010-08-16 2011-01-28 控制信息传输、传输块获得、偏移因子配置方法及终端 WO2012022136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010257513.2 2010-08-16
CN201010257513.2A CN101917253B (zh) 2010-08-16 2010-08-16 控制信息传输、传输块获得、偏移因子配置方法及终端

Publications (1)

Publication Number Publication Date
WO2012022136A1 true WO2012022136A1 (zh) 2012-02-23

Family

ID=43324658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070753 WO2012022136A1 (zh) 2010-08-16 2011-01-28 控制信息传输、传输块获得、偏移因子配置方法及终端

Country Status (2)

Country Link
CN (1) CN101917253B (zh)
WO (1) WO2012022136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144029A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 一种确定传输块大小的方法、基站和终端

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917253B (zh) * 2010-08-16 2015-12-16 中兴通讯股份有限公司 控制信息传输、传输块获得、偏移因子配置方法及终端
CN102064921B (zh) * 2010-12-28 2015-12-16 中兴通讯股份有限公司 一种应答信息的发送方法及用户终端
CN102223720B (zh) * 2011-04-08 2015-07-22 电信科学技术研究院 一种在pusch传输上行控制信息的方法及装置
CN103188033B (zh) 2011-12-29 2015-11-25 华为技术有限公司 编码上行控制信息的方法及装置
CN103327538A (zh) * 2012-03-20 2013-09-25 中兴通讯股份有限公司 Mcs偏置的配置方法及装置
CN105897373B (zh) * 2015-01-26 2019-08-16 仲川 一种在下行控制信道传送传输块的方法和系统
CN106559878B (zh) * 2015-09-25 2021-11-02 中兴通讯股份有限公司 上行控制信息uci发送、获取方法及装置
CN107046712A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 一种数据传输处理方法及装置
EP3547576B1 (en) 2016-11-23 2021-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data processing method, and terminal device and network device
EP3579611A4 (en) * 2017-02-01 2020-12-23 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
EP3549380B1 (en) * 2017-06-16 2024-03-27 ZTE Corporation System and method for allocating resource blocks
TWI693853B (zh) * 2017-09-19 2020-05-11 聯發科技股份有限公司 上行鏈路傳輸方法和通信裝置
CN109905215B (zh) * 2017-12-08 2021-04-23 电信科学技术研究院 传输方法和设备
CN110149701B (zh) * 2018-02-12 2023-04-18 中国信息通信研究院 一种上行信息传输方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409894A (zh) * 2008-11-16 2009-04-15 中兴通讯股份有限公司 一种上行控制信息的传输方法及传输参数的计算方法
CN101511121A (zh) * 2008-02-04 2009-08-19 三星电子株式会社 通信系统中控制和数据的复用
CN101695017A (zh) * 2009-10-27 2010-04-14 中兴通讯股份有限公司 物理上行共享信道传输上行控制信令的方法与装置
CN101807974A (zh) * 2010-04-07 2010-08-18 中兴通讯股份有限公司 一种在物理上行共享信道传输上行控制信令的系统及方法
CN101917253A (zh) * 2010-08-16 2010-12-15 中兴通讯股份有限公司 控制信息传输、传输块获得、偏移因子配置方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511121A (zh) * 2008-02-04 2009-08-19 三星电子株式会社 通信系统中控制和数据的复用
CN101409894A (zh) * 2008-11-16 2009-04-15 中兴通讯股份有限公司 一种上行控制信息的传输方法及传输参数的计算方法
CN101695017A (zh) * 2009-10-27 2010-04-14 中兴通讯股份有限公司 物理上行共享信道传输上行控制信令的方法与装置
CN101807974A (zh) * 2010-04-07 2010-08-18 中兴通讯股份有限公司 一种在物理上行共享信道传输上行控制信令的系统及方法
CN101917253A (zh) * 2010-08-16 2010-12-15 中兴通讯股份有限公司 控制信息传输、传输块获得、偏移因子配置方法及终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144029A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 一种确定传输块大小的方法、基站和终端

Also Published As

Publication number Publication date
CN101917253A (zh) 2010-12-15
CN101917253B (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2012022136A1 (zh) 控制信息传输、传输块获得、偏移因子配置方法及终端
US10123343B2 (en) Channel state information transmission for multiple carriers
US9867136B2 (en) System and method for signaling control information in a mobile communication network
US8675528B2 (en) Configuring uplink control information (UCI) reporting
CN110431777B (zh) 用于确定传输数据块大小的方法和节点
US9930677B2 (en) Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
US9143973B2 (en) Prioritizing multiple channel state information (CSI) reporting with carrier aggregation
CN106559878B (zh) 上行控制信息uci发送、获取方法及装置
US20120127869A1 (en) Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation
US20120182944A1 (en) Methods and arrangements for signaling channel state information
JP6982622B2 (ja) Pucchのためのリソースシグナリング
WO2013010468A1 (zh) 信道状态信息传输方法和设备
WO2014110931A1 (zh) 调制处理方法及装置
WO2011082574A1 (zh) 物理上行共享信道的信令配置方法及系统
US9806870B2 (en) Methods and devices for providing feedback information
WO2012019451A1 (zh) 一种上行传输方式的指示、确定方法和系统
WO2012088877A1 (zh) 一种应答信息的发送方法及用户终端
WO2013097687A1 (zh) 编码上行控制信息的方法及装置
WO2019137467A1 (zh) 上行信息传输方法及装置
WO2014015811A1 (zh) 信道状态信息的发送方法及装置
WO2011156992A1 (zh) 下行控制信息的发送方法和基站
WO2012041083A1 (zh) 控制信息传输方法及装置
WO2013139044A1 (en) Method and apparatus for re-interpreting channel state information
CN107925506B (zh) 一种传输上行控制信息的方法及装置
CN112703761A (zh) 用于测量无线通信系统中的终端之间的链路的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817664

Country of ref document: EP

Kind code of ref document: A1