WO2011082574A1 - 物理上行共享信道的信令配置方法及系统 - Google Patents

物理上行共享信道的信令配置方法及系统 Download PDF

Info

Publication number
WO2011082574A1
WO2011082574A1 PCT/CN2010/074768 CN2010074768W WO2011082574A1 WO 2011082574 A1 WO2011082574 A1 WO 2011082574A1 CN 2010074768 W CN2010074768 W CN 2010074768W WO 2011082574 A1 WO2011082574 A1 WO 2011082574A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
demodulation reference
information
cyclic shift
downlink control
Prior art date
Application number
PCT/CN2010/074768
Other languages
English (en)
French (fr)
Inventor
王瑜新
郝鹏
戴博
梁春丽
喻斌
朱鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to BR112012016755A priority Critical patent/BR112012016755A2/pt
Priority to RU2012128335/08A priority patent/RU2509420C1/ru
Priority to MX2012007957A priority patent/MX2012007957A/es
Priority to US13/258,968 priority patent/US8861455B2/en
Priority to EP10841917.7A priority patent/EP2509244B1/en
Priority to JP2012547435A priority patent/JP2013516863A/ja
Publication of WO2011082574A1 publication Critical patent/WO2011082574A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • H04J11/0033Interference mitigation or co-ordination of multi-user interference at the transmitter by pre-cancellation of known interference, e.g. using a matched filter, dirty paper coder or Thomlinson-Harashima precoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a signaling configuration method and system for a physical uplink shared channel. Background technique
  • the base station is configured to control the physical uplink shared channel of the user equipment (User Equipment, UE). Transfer of Uplink Shared Channel, PUSCH).
  • User Equipment User Equipment
  • PUSCH Uplink Shared Channel
  • the uplink scheduling information of the physical uplink shared channel PUSCH is sent by the base station to the target UE through a Physical Downlink Control Channel (PDCCH).
  • the uplink scheduling information includes control information such as resource allocation, modulation and coding scheme, and demodulation reference signal (DMRS) cyclic shift (Cyclic shift).
  • DMRS demodulation reference signal
  • the PDCCH is used to carry uplink and downlink scheduling information, and uplink power control information.
  • the Downlink Control Information (DCI) format (format) is divided into the following types:
  • DCI format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, etc. among them,
  • the DCI format 0 is used to indicate a scheduling of a physical uplink shared channel (PUSCH);
  • DCI format 1 , 1A, IB, 1C, ID is used for different transmission modes of the Physical Downlink Shared Channel (PDSCH) of a single transport block;
  • PDSCH Physical Downlink Shared Channel
  • DCI format 2, 2A is used for different transmission modes of space division multiplexing
  • DCI format 3A is used for transmission of power control commands of physical uplink control channel (PUCCH) and PUSCH.
  • PUCCH physical uplink control channel
  • the LTE-Advanced system (referred to as LTE-A system for short) is a next-generation evolution system of the LTE system.
  • the uplink scheduling DCI format 0 does not support uplink multi-antenna transmission.
  • the uplink scheduling DCI needs to be newly added, temporarily recorded as DCI format X, or in the existing letter.
  • the signaling indication function is added by extending the length of the signaling.
  • DCI format 0 the specific information contained in DCI format 0 is as follows:
  • MCS Modulation and Coding Scheme
  • RV Redundancy Version
  • TDD Time Division Duplex
  • DAI Downlink Assignment Index
  • CQI request Channel status indication request
  • DCI format 0 indicates cyclic shift of the demodulation reference signal for the scheduled PUSCH as shown in the table
  • the physical uplink shared channel PUSCH can be transmitted by using a single antenna port or by using multiple antenna ports.
  • FIG. 1 is a schematic diagram of processing of a baseband signal of a physical uplink shared channel transmitted by an existing LTE-A multi-antenna port.
  • LTE-A when multi-antenna port transmission, LTE-A supports spatial multiplexing based on one or two codewords (CW), each codeword corresponds to one transport block (TB), or can be transmitted according to Block-to-codeword cross-mapped flag bit
  • LTE-A supports the transmission mode of a single transport block or a dual transport block.
  • the codewords are further mapped to layers, and each codeword is mapped to one or two layers of data.
  • 2 is a schematic diagram of a codeword to layer mapping method. The following is an example of two codewords and four transmit antennas to illustrate the function of the codeword to layer mapping module.
  • codeword 1 is mapped to layer 2 and layer 3 after serial/parallel conversion; when 2 codewords are mapped to layer 4, codeword 0 is mapped to layer 1 and layer 2 by serial-to-parallel conversion. Codeword 1 is mapped to Layer 3 and Layer 4 by serial-to-parallel conversion.
  • each layer of data can be processed independently or in parallel, or Layer Shifting (LS) can be used to spatially multiplex the multi-layer data in one modulation symbol or one DFT-S-OFDM symbol or one. Interleaving is performed on time slots.
  • Figure 3 is a schematic diagram of the effect before and after layer interleaving, as shown in Figure 3.
  • the layer interleaving module is optional on the transmitting end, that is, in some cases, the function module can be turned off, that is, layer interleaving is not enabled.
  • hybrid Automatic Repeat-reQuest process When two codewords are spatially multiplexed and no layer interleaving is performed, the two codewords are independently rate controlled, channel coded, and modulated, and a separate hybrid automatic repeat request process (Hybrid Automatic Repeat-reQuest process, HARQ) is assigned.
  • Hybrid Automatic Repeat-reQuest process Hybrid Automatic Repeat-reQuest process, HARQ
  • HARQ Hybrid Automatic Repeat-reQuest process
  • LTE-A uses a linear precoding technique (recoding) based on a codebook (codebook), which uses a channel status information (CSI) to pre-sign the signal at the transmitting end.
  • One way for the transmitter to acquire CSI is through feedback from the receiver.
  • the general method is to save the same codebook (codebook) at the receiving end and the transmitting end, that is, the precoding matrix set.
  • the receiving end selects a suitable precoding matrix in the codebook according to the current channel condition and feeds back its index value (PMI) in the set back to the transmitting end, and the transmitting end finds the precoding according to the feedback precoding matrix index.
  • the Demodulation Reference Signal (DM RS) of each layer of data is precoded in the same manner as the data of each layer.
  • Demodulation reference signals for different layer data including demodulation reference signals for multi-layer data of the same user terminal for single-user multiple input multiple output system (SU-MIMO), and multi-user multiple input multiple output system (MU-MIMO)
  • Demodulation reference signals of multi-layer data of a plurality of user terminals are orthogonalized by using different demodulation reference signal cyclic shift (Cyclic Shift, CS) and/or Orthogonal Cover Code (OCC),
  • DMRS cyclic shift and orthogonal mask
  • OCC orthogonal mask
  • the orthogonal mask OCC is [+1, +1] and [+1, -1], and acts on the demodulation reference signal on two slots (Slot) in one subframe (Subframe).
  • Slot slot
  • Subframe subframe
  • Each PUSCH subframe consists of two time slots, each of which consists of six data symbols and one demodulation reference signal, as shown in Figure 4.
  • the uplink scheduling information of the LTE system PUSCH includes control information such as resource allocation, modulation and coding scheme, and demodulation reference signal (DMRS) cyclic shift (Cyclic shift), but there is no OCC at present.
  • Signaling indication information In the LTE-A system, how to properly design signaling to indicate OCC, or use a signaling to jointly indicate CS and OCC is a problem to be solved.
  • the technical problem to be solved by the present invention is to provide a signaling configuration method and system for a physical uplink shared channel, which solves the problem of indicating orthogonal mask OCC information in uplink scheduling information of a physical uplink shared channel in the current LTE system.
  • the present invention provides a signaling configuration method for a physical uplink shared channel, including:
  • the base station sends downlink control information to the target user terminal by using a physical downlink control channel, where the downlink control information includes orthogonal mask information of the demodulation reference signal and/or cyclic shift information of the demodulation reference signal, where the downlink control information is used.
  • a physical downlink control channel for scheduling transmissions of multiple antenna ports and/or single antenna ports.
  • the downlink control information includes: cyclic shift and orthogonal mask joint indication information of the demodulation reference signal.
  • the cyclic shift and orthogonal mask joint indication information of the demodulation reference signal is 3 bits or 4 bits, and is used to indicate that the base station sends to the orthogonal resource (" ⁇ (0), " .cc )
  • a cyclic shift and an orthogonal mask of a demodulation reference signal of the target user terminal where:
  • 3 ⁇ 4RS(G) represents a cyclic shift of the demodulation reference signal of the 0th layer data of the spatial multiplexing of the target user terminal by the base station by the downlink control information, or a cyclic shift of the demodulation reference signal of the spatially multiplexed layer data Reference value or initial value or base value, or cyclic shift of the demodulation reference signal of the user of the single antenna port transmission mode;
  • .cc represents the orthogonal mask index of the demodulation reference signal of the layer 0 data spatially multiplexed by the target user terminal, or the orthogonal mask index of the demodulation reference signal of the user of the single antenna port transmission mode.
  • the 3-bit demodulation reference signal cyclic shift and orthogonal mask joint indication information is used to indicate 8 orthogonal resources (4 2 (() ) , n occ ), the 8 orthogonal resources ( , n occ ) includes: ( 0, 0) , (3, 0) , (6, 0) , (9, 0) , (0, 1) , (3, 1) , (6,
  • the 4-bit demodulation reference signal cyclic shift and orthogonal mask joint indication information used to refer to Showing 16 orthogonal resources ( , "occ ) , the 16 orthogonal resources ( , "occ ) include:
  • the downlink control information includes: orthogonal mask information of the demodulation reference signal information and/or the demodulation reference signal.
  • the cyclic shift of the demodulation reference signal is a cyclic shift of a demodulation reference signal of a physical uplink shared channel transmitted by a single antenna port; for a multi-antenna port transmission mode, The cyclic shift of the demodulation reference signal is a cyclic shift of the demodulated reference signal of the spatially multiplexed layer 0 data, or a reference value or an initial value of the cyclic shift of the demodulated reference signal of the spatially multiplexed layer data Or base value.
  • the cyclic shift of the demodulation reference signal is 1 bit, or 2 bits, or 3 bits.
  • the cyclic shift of the demodulation reference signal includes: 0, 6; or 0, 3, 6, 9; or 0, 2, 3, 4, 6, 8, 9, 10.
  • the orthogonal mask information of the demodulation reference signal is a 1-bit orthogonal mask enable or configuration information.
  • the method further includes: when the frequency hopping is not enabled or the channel state indication request is not enabled or the layer interleaving is enabled, the 1-bit orthogonal mask is enabled or configured, and the frequency hopping in the downlink control information is used.
  • the flag bit or channel status indicates the request bit or the transport block to codeword cross-map flag bit instead.
  • the 1-bit orthogonal mask enable or configuration information is replaced by a transport block-to-codeword cross-mapped flag bit or a layer interleaving enable flag bit in the downlink control information;
  • the 1-bit orthogonal mask enable or configuration information is not enabled or configured by default.
  • the downlink control information includes: a cyclic shift of the demodulation reference signal; the signaling configuration method further includes: the network side indicating the orthogonal mask information to the terminal by using the high layer signaling.
  • the cyclic shift of the demodulation reference signal is a single antenna port a cyclic shift of the demodulation reference signal of the transmitted physical uplink shared channel; for the multi-antenna port transmission mode, the cyclic shift of the demodulation reference signal is a cyclic shift of the demodulation reference signal of the spatially multiplexed layer 0 data
  • the orthogonal mask information is orthogonal mask enable or configuration information, and the enabling or configuring of the orthogonal mask is indicated to the terminal by the signaling of the radio resource control RRC.
  • the downlink control information includes: cyclic shift and precoding information of the demodulation reference signal; if only the orthogonal reference mask is used for the demodulation reference signal of the single antenna port transmission mode, two precoding information is used.
  • the specific precoding information value is indicated as a single antenna port transmission mode and an orthogonal mask of the demodulation reference signal; the use of the two specific precoding information values and remaining precoding information values other than the reserved value indicates transmission for multiple antenna ports Mode, the demodulation reference signal does not use an orthogonal mask.
  • the present invention also provides a signaling configuration system for a physical uplink shared channel, including a base station and a target user terminal, where:
  • the base station is configured to: send the downlink control information to the target user terminal by using the physical downlink control channel;
  • the target user terminal is configured to: receive the downlink control information on the physical downlink control channel, and obtain orthogonal mask information and/or cyclic shift information;
  • the downlink control information carries orthogonal mask information and/or cyclic shift information for scheduling a physical uplink shared channel for multi-antenna port transmission and/or single antenna port transmission.
  • the downlink control information includes: a cyclic shift of the reference signal and an orthogonal mask joint indication information.
  • the downlink control information includes: a cyclic shift of the demodulation reference signal and orthogonal mask information of the demodulation reference signal.
  • the downlink control information includes: a cyclic shift of the demodulation reference signal
  • the base station is further configured to: indicate orthogonal mask information to the terminal by using high layer signaling.
  • the downlink control information includes: reference signal information, precoding information, where the reference signal information includes a cyclic shift of a demodulation reference signal;
  • the base station is further configured to: if only the orthogonal mask is used for the demodulation reference signal of the single antenna port transmission mode, in the precoding information, two specific precoding information values are used to indicate the single antenna port transmission mode and Demodulating the orthogonal mask of the reference signal; using the two specific precoding information values and the remaining precoding information values other than the reserved value to indicate a multi-antenna port transmission mode, the demodulation reference signal does not use an orthogonal mask.
  • the signaling configuration method and system for the physical uplink shared channel of the present invention solves the problem of indicating the orthogonal mask OCC information in the uplink scheduling information of the physical uplink shared channel in the current LTE system, and carries orthogonality in the downlink control information.
  • the invention provides a plurality of combined indication manners, and has good applicability.
  • the terminal obtains the orthogonal mask OCC information to accurately implement the service according to the control information, thereby improving the service reliability.
  • FIG. 1 is a schematic diagram of signal processing of a transmitting end of a conventional uplink SU-MIMO
  • FIG. 2 is a schematic diagram of an embodiment of a codeword to layer mapping
  • FIG. 3 is a schematic diagram of an embodiment of an effect before and after layer interleaving
  • 4 is a structural diagram of pilot symbols in one uplink subframe
  • FIG. 5 is a system diagram of signaling configuration of a physical uplink shared channel.
  • the present invention is directed to the problem that the signaling information of the orthogonal uplink OCC is not included in the control information of the physical uplink shared channel in the prior art, and a signaling configuration method and system for the physical uplink shared channel are proposed. Cyclic shift CS and quadrature mask for physical uplink shared channel PUSCH Signaling indication of the OCC.
  • a downlink control information DCI
  • one or more pieces of information indicating orthogonal mask information and/or cyclic shift information are carried by the downlink control information.
  • the downlink control information is used to schedule a physical uplink shared channel for single antenna port transmission and multi-antenna port transmission, or only for a physical uplink shared channel for scheduling multi-antenna port transmission.
  • the downlink control information is sent by the base station to the target user terminal through the physical downlink control channel.
  • a signaling configuration method for a physical uplink shared channel includes:
  • the base station sends downlink control information to the target user terminal by using a physical downlink control channel, where the downlink control information carries orthogonal mask information and/or cyclic shift information, and is used for scheduling multi-antenna port transmission and/or single antenna port transmission.
  • Physical uplink shared channel Physical uplink shared channel.
  • the uplink scheduling information of the bearer includes, but is not limited to, a cyclic shift of the demodulation reference signal and an orthogonal mask joint indication information.
  • the cyclic shift and orthogonal mask joint indication information of the demodulation reference signal is 3 bits or 4 bits.
  • the orthogonal resources (“ ⁇ (0), " .cc ) can be used to jointly represent the cyclic shift and quadrature mask that the base station sends to the target user terminal. among them,
  • 3 ⁇ 4RS(G) represents a cyclic shift of the demodulation reference signal of the 0th layer data of the spatial multiplexing of the target user terminal by the base station by the downlink control information, or a cyclic shift of the demodulation reference signal of the spatially multiplexed layer data Reference value (or initial value, base value), or cyclic shift of the demodulation reference signal of the user of the single antenna port transmission mode;
  • the value of 43 ⁇ 4RS(O) can be any one of 0, 2, 3, 4, 6, 8, 9, or 10;
  • .cc represents the orthogonal mask index of the demodulation reference signal of the layer 0 data spatially multiplexed by the target user terminal, or the orthogonal mask index of the demodulation reference signal of the user of the single antenna port transmission mode;
  • the uplink scheduling information that is carried includes, but is not limited to, the cyclic shift information of the demodulation reference signal and the orthogonal mask information of the demodulation reference signal.
  • the size of the cyclic shift of the demodulation reference signal (Cyclic shift for DM RS ) is 3 bits; (1) for a single antenna port transmission mode, the cyclic shift of the demodulation reference signal is a cyclic shift of a demodulation reference signal of a physical uplink shared channel transmitted by a single antenna port;
  • the cyclic shift " ⁇ s(G) of the demodulation reference signal is a cyclic shift of the spatially multiplexed demodulation reference signal of the layer 0 data, or spatial multiplexing
  • the orthogonal mask information of the demodulation reference signal is a 1-bit orthogonal mask enable or configuration information.
  • the 1-bit orthogonal mask is enabled or configured, and the frequency hopping flag bit or channel state in the downlink control information is used. Instead of indicating the request bit or the transport block to the codeword's cross-mapped flag.
  • the 1-bit orthogonal mask enable or configuration information For a transmission mode of a single antenna port or a single transport block, the 1-bit orthogonal mask enable or configuration information, using a transport block-to-codeword cross-mapped flag bit or a layer interleaving enable flag in the downlink control information Bit instead
  • the 1-bit orthogonal mask enable or configuration information is not enabled or configured by default.
  • the user's cyclic shift and quadrature mask states have 16 states.
  • the uplink scheduling information of the bearer includes, but is not limited to: a cyclic shift of the demodulation reference signal;
  • the orthogonal mask information is indicated to the terminal by the network side through high layer signaling.
  • the size of the cyclic shift of the demodulation reference signal (Cyclic shift for DM RS ) is 3 bits;
  • the cyclic shift of the demodulation reference signal is a cyclic shift of a demodulation reference signal of a physical uplink shared channel transmitted by a single antenna port;
  • the cyclic shift " ⁇ s(G) of the demodulation reference signal is a cyclic shift of the spatially multiplexed demodulation reference signal of the layer 0 data, or spatial multiplexing
  • the orthogonal mask information is not carried by the downlink control information.
  • the orthogonal mask information is orthogonal mask enable or configuration information, and the enable or configuration of the orthogonal mask is indicated by high layer signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • FIG. 5 a signaling configuration system for a physical uplink shared channel is shown, including: a base station and a target user terminal, where:
  • a base station configured to send downlink control information to a target user terminal by using a physical downlink control channel, where the target user terminal is configured to receive the downlink control information on the physical downlink control channel, and obtain orthogonal mask information and/or cyclic shift information;
  • the downlink control information carries orthogonal mask information and/or cyclic shift information for scheduling a physical uplink shared channel for multi-antenna port transmission and/or single antenna port transmission.
  • the downlink control information includes, but is not limited to, a cyclic shift of the reference signal and an orthogonal mask joint indication information.
  • the downlink control information includes, but is not limited to, a cyclic shift of the demodulation reference signal and orthogonal mask information of the demodulation reference signal.
  • the downlink control information includes, but is not limited to: a cyclic shift of the demodulation reference signal; the base station is further configured to indicate orthogonal mask information to the terminal by using high layer signaling.
  • the downlink control information includes, but is not limited to: reference signal information, precoding information, where the reference signal information includes a cyclic shift of the demodulation reference signal;
  • the base station uses two specific precoding information values to indicate the single antenna port transmission mode and the demodulation reference signal in the precoding information. Orthogonal mask
  • the use of the two specific precoding information values and the remaining precoding information values other than the reserved values is indicated as a multi-antenna port transmission mode, and the demodulation reference signal does not use an orthogonal mask.
  • the base station schedules a single uplink port transmission or a physical uplink shared channel transmitted by multiple antenna ports through the downlink control information.
  • the downlink control information is sent by the base station to the target user terminal through the physical downlink control channel.
  • the uplink scheduling information carried by the downlink control information includes but is not limited to:
  • the cyclic shift and orthogonal mask joint indication information of the demodulation reference signal wherein the cyclic shift and orthogonal mask joint indication information of the demodulation reference signal is 3 bits or 4 bits.
  • An orthogonal resource (“DMRS”) may be used to jointly represent a cyclic shift and an orthogonal mask that the base station transmits to the target user terminal.
  • ⁇ (°) represents a cyclic shift of the demodulation reference signal of the layer 0 data of the spatial multiplexing of the target user terminal by the base station by DCI signaling, or a cyclic shift of the demodulation reference signal of the spatially multiplexed layer data.
  • Reference value or initial value, base value
  • the value of 43 ⁇ 4RS(O) can be any one of 0, 2, 3, 4, 6, 8, 9, or 10;
  • .cc represents the orthogonal mask index of the demodulation reference signal of the layer 0 data spatially multiplexed by the target user terminal, or the orthogonal mask index of the demodulation reference signal of the user of the single antenna port transmission mode;
  • the first type of the 3-bit DCI information is represented. 8 preferred combinations ( , " occ ) are: (0, 0) , (3, 0) , (6, 0) , (9, 0) , (0, 1) , (3, 1) , ( 6, 1 ) , (9 , 1), as shown in Table 2:
  • occ is: (0, 0), (3, 0), (6, 0), (9, 0), (2, 1), (4, 1), (8, 1), (10, 1) , as shown in Table 3;
  • DMRS(O), '.cc the third preferred combination of the three-bit DCI information representation
  • DMRS(O), '.cc is: (2, 0), (4, 0), (8, 0), ( 10, 0), (0, 1), (3, 1), (6, 1), (9, 1), as shown in Table 4;
  • the fourth eight preferred combinations ("DMRS(O), '.cc) represented by the 3-bit DCI information are: (2, 0), (4, 0), (8, 0), ( 10, 0), (2, 1), (4, 1), (8, 1), (10, 1), as shown in Table 5;
  • the fifth 16 preferred combinations ("DMRS(O), "occ)" represented by the 4-bit DCI information are: (0, 0), (2, 0), (3, 0), (4 , 0) , (6, 0) , (8, 0) , (9, 0), (10, 0), (0, 1), (2, 1), (3, 1), (4, 1 ), (6, 1), (8, 1), (9, 1), (10, 1)
  • the base station schedules a single uplink port transmission or a physical uplink shared channel transmitted by multiple antenna ports through the downlink control information.
  • the downlink control information is sent by the base station to the target user terminal through the physical downlink control channel.
  • the uplink scheduling information carried by the downlink control information includes, but is not limited to: a cyclic shift of a demodulation reference signal, and orthogonal mask information of a demodulation reference signal;
  • the cyclic shift of the demodulation reference signal (Cyclic shift for DM RS) has a size of 3 bits;
  • the cyclic shift of the demodulation reference signal is a cyclic shift of a demodulation reference signal of a physical uplink shared channel transmitted by a single antenna port;
  • the cyclic shift of the demodulation reference signal "DMRS(G) is a cyclic shift of the spatially multiplexed demodulation reference signal of the layer 0 data, or spatial multiplexing
  • the orthogonal mask information of the demodulation reference signal is a 1-bit orthogonal mask enable or configuration information.
  • the 1-bit orthogonal mask is enabled or configured, and the frequency hopping flag bit or channel state in the downlink control information is used. Instead of indicating the request bit or the transport block to the codeword's cross-mapped flag.
  • the 1-bit orthogonal mask enable or configuration information For a transmission mode of a single antenna port or a single transport block, the 1-bit orthogonal mask enable or configuration information, using a transport block-to-codeword cross-mapped flag bit or a layer interleaving enable flag in the downlink control information Bit instead
  • the 1-bit orthogonal mask enable or configuration information is not enabled or configured by default.
  • the user's cyclic shift and quadrature mask states have 16 states as shown in Table 6.
  • the base station transmits a single antenna port transmission or more through the downlink control information.
  • the physical uplink shared channel transmitted by the antenna port.
  • the downlink control information format is sent by the base station to the target user terminal through the physical downlink control channel.
  • the types of uplink scheduling information carried by the downlink control information are as follows: but not limited to: Cyclic shift for DM RS, which is 3 bits in size.
  • the cyclic shift of the demodulation reference signal is a cyclic shift of a demodulation reference signal of a physical uplink shared channel transmitted by a single antenna port;
  • the cyclic shift " ⁇ s(G) of the demodulation reference signal is a cyclic shift of the spatially multiplexed demodulation reference signal of the layer 0 data, or spatial multiplexing
  • the enabling or configuration of the orthogonal mask is indicated by higher layer signaling, such as signaling by Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the base station schedules a single uplink port transmission or a physical uplink shared channel transmitted by multiple antenna ports through the downlink control information.
  • the downlink control information is sent by the base station to the target user terminal through the physical downlink control channel.
  • the types of uplink scheduling information carried by the downlink control information mentioned above include, but are not limited to, demodulation reference signal information and precoding information.
  • the demodulation reference signal information includes: a cyclic shift (DMclic shift for DM RS) of the demodulation reference signal, which is 3 bits in size.
  • the cyclic shift of the demodulation reference signal is a cyclic shift of a demodulation reference signal of a physical uplink shared channel transmitted by a single antenna port;
  • the cyclic shift " ⁇ s(G) of the demodulation reference signal is a cyclic shift of the spatially multiplexed demodulation reference signal of the layer 0 data, or spatial multiplexing
  • the precoding information includes: PMI information, which is 3 bits or 6 bits.
  • the quadrature mask is used only for the demodulation reference signal of the single antenna port transmission mode, then in the precoding information: Using a specific precoding information value indicating a single antenna port transmission mode, the orthogonal mask of the demodulation reference signal is [+1, +1];
  • the orthogonal mask of the demodulation reference signal is [+1, -1];
  • the remaining precoding information values other than the above two specific values and reserved values are indicated as multi-antenna port transmission mode, and the demodulation reference signal does not use an orthogonal mask.
  • the signaling configuration method and system for the physical uplink shared channel of the present invention solves the problem of indicating the orthogonal mask OCC information in the uplink scheduling information of the physical uplink shared channel in the current LTE system, and is in the downlink control information.
  • the invention provides a plurality of combined indication manners, and has good applicability.
  • the terminal obtains the orthogonal mask OCC information to accurately implement the service according to the control information, thereby improving the service reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

物理上行共享信道的信令配置方法及系统
技术领域
本发明涉及移动通信领域, 特别是涉及一种用于物理上行共享信道的信 令配置方法及系统。 背景技术
在第三代合作伙伴计划长期演进(The 3rd Generation Partnership Project Long Term Evolution, 3 GPP LTE ) 系统中, 釆用基站集中调度的方式来控制 用户终端( User Equipment, UE )的物理上行共享信道 ( Physical Uplink Shared Channel, PUSCH ) 的传输。
对物理上行共享信道 PUSCH 的上行调度信息 ( uplink scheduling information ) 由基站通过物理下行控制信道 ( Physical Downlink Control Channel, PDCCH )发送给目标 UE。 上行调度信息包括该信道相关的资源分 配, 调制与编码方案, 解调参考信号(Demodulation Reference Signal, 简称为 DMRS ) 的循环移位(Cyclic shift )等控制信息。
物理下行控制信道 PDCCH用于承载上、 下行调度信息, 以及上行功率 控制信息。 下行控制信息 ( Downlink Control Information, 简称为 DCI )格式 ( format )分为以下几种:
DCI format 0、 1、 1A、 1B、 1C、 1D、 2、 2A、 3 , 3A等。 其中,
DCI format 0用于指示物理上行共享信道 ( Physical uplink shared channel, 简称为 PUSCH ) 的调度;
DCI format 1 , 1A, IB, 1C, ID用于单传输块的物理下行共享信道 ( Physical Downlink Shared Channel, 简称为 PDSCH ) 的不同传输模式;
DCI format 2, 2A用于空分复用的不同传输模式;
DCI format 3 , 3A用于物理上行控制信道 ( Physical uplink control channel, 简称为 PUCCH )和 PUSCH的功率控制指令的传输。
LTE-Advanced系统(简称 LTE-A系统)是 LTE系统的下一代演进系统。 在 LTE相关技术中, 上行调度 DCI format 0并不支持上行多天线传输, 在 LTE-A上行多天线传输场景下, 上行调度 DCI需要新增格式, 暂记作 DCI format X,或者在已有信令类型 DCI format 0的基础上,通过扩展信令的长度, 来增加信令指示的功能。
LTE系统中, DCI format 0中包含的具体信息如下:
- 用于区分 DCI format 0和 DCI format 1 A的标志位;
- ϋ频标志位;
- 资源块分配和跳频资源分配;
- 调制编码方式(Modulation and Coding Scheme , MCS )和冗余版本 ( Redundancy Version, RV ) ;
- 新数据指示 (New data indicator, NDI ) ;
- 用于所调度的 PUSCH 的发射功率控制命令 (TPC command for scheduled PUSCH ) ;
- 解调参考信号的循环移位(Cyclic shift for DM RS ) ;
- 上行指示 (UL index ) , 仅存在于时分双工 ( Time Division Duplex,
TDD ) 系统, 用于上下行配置 (Uplink-downlink configuration )为 0 时;
- 下行分配指示(Downlink Assignment Index, DAI ) , 仅存在于时分双 工系统, 用于上下行配置为 1~6时;
- 信道状态指示请求(CQI request ) ;
DCI format 0指示用于所调度的 PUSCH的解调参考信号的循环移位如表
表 1
Figure imgf000004_0001
111
在 LTE-A系统中, 物理上行共享信道 PUSCH可釆用单天线端口传输, 也可釆用多天线端口传输。 图 1为现有的 LTE-A釆用多天线端口传输的物理 上行共享信道的发射端基带信号处理示意图。
图 1中,多天线端口传输时, LTE-A支持基于一个或两个码字(Codeword, CW )的空间复用, 每个码字对应一个传输块(Transport Block, TB ) , 或者 可以根据传输块到码字的交叉映射标志位( transport block
to codeword swap flag )来改变传输块跟码字的对应关系。 因此 LTE-A支持单 传输块或双传输块的传输模式。
码字要进一步映射到层 (layer ) , 每个码字映射为一层或两层数据。 图 2为码字到层的映射方法的示意图。 下面以 2个码字、 4才艮发射天线为例, 来 简单说明码字到层的映射模块的功能。 当 2个码字映射到 2层时, 码字 0直 接映射到第 1层, 码字 1直接映射到第 2层; 当 2个码字映射到 3层时, 码 字 0直接映射到第 1层, 码字 1通过串 /并转换后, 映射到第 2层和第 3层; 当 2个码字映射到 4层时, 码字 0通过串并转换映射到第 1层和第 2层, 码 字 1通过串并转换映射到第 3层和第 4层。
在预编码之前,各层数据可独立、并行处理,也可釆用层交织技术(Layer Shifting, LS ) , 将空间复用的多层数据在一个调制符号或一个 DFT-S-OFDM 符号或一个时隙上进行交织。 图 3为层交织前后的效果示意图, 如图 3所示。 层交织模块在发射端是可选配置, 即在某些情况下可以关闭此功能模块, 即 层交织未使能。
当釆用两码字空间复用、 并且不做层交织时, 两个码字进行独立的速率 控制、信道编码和调制,分配独立的混合自动重传请求进程 ( Hybrid Automatic Repeat-reQuest process , HARQ process ); 当釆用两码字空间复用、 使用层交 织时, 两个码字在空间上绑定(Spatial Bundling ) , 有相同的调制编码方式, 分配一个混合自动重传请求进程。
LTE-A 釆用基于码书 (codebook , 又称为码本) 的线性预编码技术 ( recoding ) , 预编码技术是一种利用信道状态信息 ( Channel Status Information, CSI )在发射端对信号进行预处理,提高多天线系统性能的技术。 发射端获取 CSI的一种途径是通过接收端的反馈。 为了降低反馈开销, 一般 釆用的方式是在接收端和发射端保存相同的码本(codebook ) , 即预编码矩 阵集。 接收端根据当前信道状况, 在码本中选择适合的预编码矩阵并将其在 集合中的索引值(Precoding Matrix Index, PMI )反馈回发射端, 发射端根据 反馈的预编码矩阵索引找到预编码矩阵, 并对发送信号进行预编码。 数据预 编码的数学模型为 = HP^+« , 其中 y为接收信号矢量, H为信道系数矩阵, W为预编码矩阵, s为信号矢量, n为噪声矢量。
LTE-A系统中, 当物理上行共享信道釆用多天线端口传输时, 各层数据 的解调参考信号 ( Demodulation Reference Signal, DM RS ) 同各层数据一样 进行预编码。 而不同层数据的解调参考信号, 包括对单用户多输入多输出系 统( SU-MIMO )同一用户终端的多层数据的解调参考信号, 和多用户多输入 多输出系统( MU-MIMO ) 多个用户终端的多层数据的解调参考信号, 通过 使用不同的解调参考信号循环移位 (Cyclic Shift , CS ) 和 /或正交掩码 ( Orthogonal Cover Code , OCC )进行正交化, 以区分用户空间复用的不同层
(2) 数据或者区分不同的用户, 因此, 可以用循环移位和正交掩码 ( "DMRS , "OCC ) 来表示正交资源。 其中, 正交掩码 OCC为 [+1 , +1]和 [+1 , - 1] , 作用于一个 子帧(Subframe ) 内两个时隙 (Slot )上的解调参考信号。 物理上行共享信道 PUSCH每个子帧包含 2个时隙,每个时隙由 6个数据符号和 1个解调参考信 号所组成, 如图 4所示。
LTE系统 PUSCH的上行调度信息包括该信道相关的资源分配, 调制与 编码方案, 解调参考信号 (Demodulation Reference Signal, 简称为 DMRS ) 的循环移位( Cyclic shift )等控制信息, 但目前并没有 OCC的信令指示信息。 在 LTE-A系统中,如何合理设计信令用来指示 OCC,或者用一个信令来联合 指示 CS和 OCC, 是一个待解决的问题。
发明内容
本发明所要解决的技术问题在于, 提供一种物理上行共享信道的信令配 置方法及系统, 解决目前 LTE系统中对于物理上行共享信道的上行调度信息 中正交掩码 OCC信息的指示问题。 为了解决上述问题, 本发明提出了一种物理上行共享信道的信令配置方 法, 包括:
基站通过物理下行控制信道向目标用户终端发送下行控制信息, 所述下 行控制信息包括解调参考信号的正交掩码信息和 /或解调参考信号的循环移 位信息, 所述下行控制信息用于调度多天线端口传输的和 /或单天线端口传输 的物理上行共享信道。
所述下行控制信息中包括: 解调参考信号的循环移位和正交掩码联合指 示信息。
所述解调参考信号的循环移位和正交掩码联合指示信息, 为 3 比特或 4 比特, 用于使用正交资源 ( "^^(0) , "。cc )联合来表示基站发送给目标用户 终端的解调参考信号的循环移位和正交掩码, 其中:
¾RS(G)代表基站通过下行控制信息指示目标用户终端的空间复用的第 0 层数据的解调参考信号的循环移位, 或空间复用的各层数据的解调参考信号 的循环移位的参考值或初始值或基值, 或单天线端口传输模式用户的解调参 考信号的循环移位;
"。cc代表目标用户终端空间复用的第 0层数据的解调参考信号的正交掩 码索引, 或单天线端口传输模式用户的解调参考信号的正交掩码索引。
所述的 3比特解调参考信号循环移位和正交掩码联合指示信息, 用于指 示 8个正交资源( 42 (()) , nocc ) , 所述 8个正交资源( , nocc )包括: ( 0, 0) 、 (3, 0) 、 (6, 0) 、 (9, 0) 、 (0, 1) 、 (3, 1) 、 (6,
1 )和(9, 1 ) ;
或 (0, 0 ) 、 (3 , 0 ) 、 (6, 0 ) 、 (9, 0 ) 、 (2, 1 ) 、 (4, 1 ) 、 ( 8, 1 )和( 10, 1 )
或 (2, 0 ) 、 (4 , 0 ) 、 (8, 0 ) 、 (10, 0 ) 、 (0, 1 ) 、 (3, 1 ) 、 ( 6, 1 )和(9, 1 ) ;
或 (2, 0 ) 、 (4 , 0 ) 、 (8, 0 ) 、 (10, 0 ) 、 ( 2, 1 ) 、 (4, 1 ) 、 ( 8, 1 )和( 10, 1 )
所述的 4比特解调参考信号循环移位和正交掩码联合指示信息, 用于指 示 16个正交资源( , "occ ) , 所述 16个正交资源 ( , "occ ) 包 括:
(0, 0) 、 (2, 0) 、 (3, 0) 、 (4, 0) 、 (6, 0) 、 (8, 0) 、 (9, 0) 、 (10, 0) 、 (0, 1 ) 、 (2, 1 ) 、 (3, 1 ) 、 (4, 1 ) 、 (6, 1 ) 、 (8, 1 ) 、 (9, 1 )和( 10, 1 ) 。
所述下行控制信息中包括: 解调参考信号信息和 /或解调参考信号的正交 掩码信息。
对单天线端口传输模式而言, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位; 对多天线端口传输 模式而言, 所述解调参考信号的循环移位为空间复用的第 0层数据的解调参 考信号的循环移位, 或空间复用的各层数据的解调参考信号的循环移位的参 考值或初始值或基值。
所述解调参考信号的循环移位为 1比特 、 或 2比特、 或 3比特。
所述的解调参考信号的循环移位包括: 0, 6; 或 0, 3, 6, 9; 或 0, 2, 3, 4, 6, 8, 9, 10。
所述解调参考信号的正交掩码信息为 1 比特的正交掩码使能或配置信 息。
该方法还包括: 当跳频未使能或信道状态指示请求未使能或层交织使能 时, 所述 1 比特的正交掩码使能或配置信息, 釆用下行控制信息中的跳频标 志位或信道状态指示请求位或传输块到码字的交叉映射标志位来代替。
对于单天线端口传输模式, 所述 1 比特的正交掩码使能或配置信息, 釆 用下行控制信息中的传输块到码字的交叉映射标志位或层交织使能标志位来 代替; 对于多天线端口传输模式, 所述 1 比特的正交掩码使能或配置信息默 认为不使能或不配置。
所述下行控制信息中包括: 解调参考信号的循环移位; 所述信令配置方 法还包括: 网络侧通过高层信令将正交掩码信息指示给终端。
对于单天线端口传输模式, 所述解调参考信号的循环移位为单天线端口 传输的物理上行共享信道的解调参考信号的循环移位; 对于多天线端口传输 模式, 所述解调参考信号的循环移位为空间复用的第 0层数据的解调参考信 号的循环移位, 或空间复用的各层数据的解调参考信号的循环移位的参考值 或初始值或基值。
所述指示步骤中, 所述正交掩码信息为正交掩码使能或配置信息, 正交 掩码的使能或配置是通过无线资源控制 RRC的信令指示给终端。
所述下行控制信息中包括: 解调参考信号的循环移位和预编码信息; 若 仅对单天线端口传输模式的解调参考信号使用正交掩码,则在预编码信息中, 使用两个特定的预编码信息值指示为单天线端口传输模式以及解调参考信号 的正交掩码; 使用该两个特定的预编码信息值和保留值外的其余预编码信息 值指示为多天线端口传输模式, 解调参考信号不使用正交掩码。
本发明还提供一种物理上行共享信道的信令配置系统, 包括基站和目标 用户终端, 其中:
基站设置为:通过物理下行控制信道向目标用户终端发送下行控制信息; 目标用户终端设置为: 在物理下行控制信道接收所述下行控制信息, 获 取正交掩码信息和 /或循环移位信息;
其中, 所述下行控制信息携带有正交掩码信息和 /或循环移位信息用于调 度多天线端口传输的和 /或单天线端口传输的物理上行共享信道。
所述下行控制信息中包括: 参考信号的循环移位和正交掩码联合指示信 息。
所述下行控制信息中包括: 解调参考信号的循环移位和解调参考信号的 正交掩码信息。
所述下行控制信息中包括: 解调参考信号的循环移位;
所述基站还设置为: 通过高层信令将正交掩码信息指示给终端。
所述下行控制信息中包括: 参考信号信息、 预编码信息, 其中, 所述参 考信号信息包括解调参考信号的循环移位; 所述基站还设置为: 若仅对单天线端口传输模式的解调参考信号使用正 交掩码, 则在预编码信息中, 使用两个特定的预编码信息值指示为单天线端 口传输模式以及解调参考信号的正交掩码; 使用该两个特定的预编码信息值 和保留值外的其余预编码信息值指示为多天线端口传输模式, 解调参考信号 不使用正交掩码。
本发明的物理上行共享信道的信令配置方法及系统, 解决了目前 LTE系 统中对于物理上行共享信道的上行调度信息中正交掩码 OCC信息的指示问 题, 通过在下行控制信息中携带正交掩码信息和 /或循环移位信息, 并向终端 发送下行控制信息实现对终端的正交掩码 OCC信息的指示。本发明给出了多 种组合的指示方式, 具有很好的适用性, 终端获取正交掩码 OCC信息可跟准 确根据控制信息实现业务, 提高了业务可靠性。 附图概述
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是现有上行釆用 SU-MIMO的发射端的信号处理示意图;
图 2是码字到层的映射的实施例的示意图;
图 3是层交织前后的效果的实施例的示意图;
图 4是 1个上行子帧内的导频符号结构图;
图 5是物理上行共享信道的信令配置的系统示意图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。
本发明针对现有技术中, 物理上行共享信道的控制信息中尚无正交掩码 OCC的信令指示信息的问题, 提出了一种物理上行共享信道的信令配置方法 及系统, 用于实现对物理上行共享信道 PUSCH的循环移位 CS和正交掩码 OCC的信令指示。 本发明的技术方案中, 定义了一种下行控制信息(DCI ) , 利用所述下行控制信息承载指示正交掩码信息和 /或循环移位信息的一种或 多种信息。 所述下行控制信息用于调度单天线端口传输和多天线端口传输的 物理上行共享信道, 或者只用于调度多天线端口传输的物理上行共享信道。 所述下行控制信息通过物理下行控制信道, 由基站发送给目标用户终端。
本发明的一种物理上行共享信道的信令配置方法, 包括:
基站通过物理下行控制信道向目标用户终端发送下行控制信息, 所述下 行控制信息携带有正交掩码信息和 /或循环移位信息, 用于调度多天线端口传 输的和 /或单天线端口传输的物理上行共享信道。
所述下行控制信息中可以釆用如下三种承载方式:
方式一, 所述下行控制信息中, 承载的上行调度信息包括但不限于: 解 调参考信号的循环移位和正交掩码联合指示信息。
其中, 解调参考信号的循环移位和正交掩码联合指示信息为 3 比特或 4 比特。
可使用正交资源 ( "^^(0), "。cc ) 来联合表示基站发送给目标用户终端 的循环移位和正交掩码。 其中,
¾RS(G)代表基站通过下行控制信息指示目标用户终端的空间复用的第 0 层数据的解调参考信号的循环移位, 或空间复用的各层数据的解调参考信号 的循环移位的参考值(或称初始值, 基值) , 或单天线端口传输模式用户的 解调参考信号的循环移位;
4¾RS(O)的取值可为 0、 2、 3、 4、 6、 8、 9、 10中的任意一个;
"。cc代表目标用户终端空间复用的第 0层数据的解调参考信号的正交掩 码索引, 或单天线端口传输模式用户的解调参考信号的正交掩码索引;
"occ =0代表使用正交掩码 [+1 , +1] , "。cc =1代表使用正交掩码 [+1 , - 1]。 方式二, 所述下行控制信息中, 承载的上行调度信息包括但不限于: 解 调参考信号的循环移位信息和解调参考信号的正交掩码信息。
所述解调参考信号的循环移位(Cyclic shift for DM RS )的大小为 3比特; ( 1 )对单天线端口传输模式, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位;
( 2 )对多天线端口传输模式, 所述解调参考信号的循环移位"^ ^s(G)为 空间复用的第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据 的解调参考信号的循环移位的参考值(或称初始值, 基值) 。
所述解调参考信号的正交掩码信息为 1 比特的正交掩码使能或配置信 息。 当跳频未使能或信道状态指示请求未使能或层交织使能时, 所述 1 比特 的正交掩码使能或配置信息, 釆用下行控制信息中的跳频标志位或信道状态 指示请求位或传输块到码字的交叉映射标志位来代替。
对于单天线端口或单传输块的传输模式, 所述 1 比特的正交掩码使能或 配置信息, 釆用下行控制信息中的传输块到码字的交叉映射标志位或层交织 使能标志位来代替;
对于多天线端口或双传输块的传输模式, 所述 1 比特的正交掩码使能或 配置信息默认为不使能或不配置。
在正交掩码使能或配置的场景下, 用户的循环移位和正交掩码状态有 16 种状态。
方式三, 所述下行控制信息中, 承载的上行调度信息包括但不限于: 解 调参考信号的循环移位;
所述正交掩码信息由网络侧通过高层信令来指示给终端。
所述解调参考信号的循环移位(Cyclic shift for DM RS )的大小为 3比特;
( 1 )对单天线端口传输模式, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位;
( 2 )对多天线端口传输模式, 所述解调参考信号的循环移位"^ ^s(G)为 空间复用的第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据 的解调参考信号的循环移位的参考值(或称初始值, 基值) 。
该方式下, 正交掩码信息不通过下行控制信息来承载。 所述正交掩码信 息为正交掩码使能或配置信息, 正交掩码的使能或配置是通过高层信令来指 示, 如无线资源控制 (Radio Resource Control, RRC ) 的信令。 如图 5所示, 显示了一种物理上行共享信道的信令配置系统, 包括: 基 站和目标用户终端, 其中:
基站, 用于通过物理下行控制信道向目标用户终端发送下行控制信息; 目标用户终端, 用于在物理下行控制信道接收所述下行控制信息, 获取 正交掩码信息和 /或循环移位信息;
其中, 所述下行控制信息携带有正交掩码信息和 /或循环移位信息用于调 度多天线端口传输的和 /或单天线端口传输的物理上行共享信道。
所述下行控制信息中, 包括但不限于: 参考信号的循环移位和正交掩码 联合指示信息。
所述下行控制信息中, 包括但不限于: 解调参考信号的循环移位和解调 参考信号的正交掩码信息。
所述下行控制信息中, 包括但不限于: 解调参考信号的循环移位; 所述基站进一步用于通过高层信令将正交掩码信息指示给终端。
所述下行控制信息中, 包括但不限于: 参考信号信息、 预编码信息, 其 中, 所述参考信号信息包括解调参考信号的循环移位;
若仅对单天线端口传输模式的解调参考信号使用正交掩码, 则所述基站 在预编码信息中, 使用两个特定的预编码信息值指示为单天线端口传输模式 以及解调参考信号的正交掩码;
使用该两个特定的预编码信息值和保留值外的其余预编码信息值指示为 多天线端口传输模式, 解调参考信号不使用正交掩码。
♦ 实施例一
LTE-A系统中, 基站通过所述下行控制信息, 调度单天线端口传输或多 天线端口传输的物理上行共享信道。 所述下行控制信息通过物理下行控制信 道, 由基站发送给目标用户终端。
所述下行控制信息承载的上行调度信息包括但不限于:
解调参考信号的循环移位和正交掩码联合指示信息; 其中, 解调参考信 号的循环移位和正交掩码联合指示信息为 3比特或 4比特。 可使用正交资源 ("DMRS , ) 来联合表示基站发送给目标用户终端 的循环移位和正交掩码。 其中,
^(°)代表基站通过 DCI信令指示目标用户终端的空间复用的第 0层数 据的解调参考信号的循环移位, 或空间复用的各层数据的解调参考信号的循 环移位的参考值(或称初始值, 基值) , 或单天线端口传输模式用户的解调 参考信号的循环移位;
4¾RS(O)的取值可为 0、 2、 3、 4、 6、 8、 9、 10中的任意一个;
"。cc代表目标用户终端空间复用的第 0层数据的解调参考信号的正交掩 码索引, 或单天线端口传输模式用户的解调参考信号的正交掩码索引;
"occ =0代表使用正交掩码 [+1 , +1] , nocc =1代表使用正交掩码 [+1 , - 1]。 进一步地, 所述 3比特 DCI信息表示的第一种 8个优选组合 (
Figure imgf000014_0001
, "occ )为: (0, 0) 、 (3, 0) 、 (6, 0) 、 (9, 0) 、 (0, 1) 、 (3, 1) 、 ( 6, 1 ) 、 (9, 1 ) , 具体如表 2所示:
表 2: 循环移位和正交掩码的第一种优选状态组合
Figure imgf000014_0002
进一步地, 所述 3比特 DCI信息表示的第二种 8个优选组合( "DMRS(O) ,
"occ )为: (0, 0) 、 (3, 0) 、 (6, 0) 、 (9, 0) 、 (2, 1) 、 (4, 1) 、 ( 8, 1 ) 、 ( 10, 1 ) , 如表 3所示;
表 3: 循环移位和正交掩码的第二种优选状态组合 ^DM s(^) 正交掩码索引 "occ
0 1
0 [+1 +1]
2 [+1 -1]
3 [+1 +1]
4 [+1 -1]
6 [+1 +1]
8 [+1 -1]
9 [+1 +1]
10 [+1 -1]
进一步地, 所述 3比特 DCI信息表示的第三种 8个优选组合( "DMRS(O) , '。cc )为: (2, 0)、 (4, 0)、 (8, 0)、 (10, 0)、 (0, 1)、 (3, 1)、 (6, 1 ) 、 (9, 1 ) , 如表 4所示;
表 4: 循环移位和正交掩码的第三种优选状态组合
Figure imgf000015_0001
进一步地, 所述 3比特 DCI信息表示的第四种 8个优选组合( "DMRS(O) , '。cc )为: (2, 0)、 (4, 0)、 (8, 0)、 (10, 0)、 (2, 1)、 (4, 1)、 (8, 1 ) 、 ( 10, 1 ) , 如表 5所示;
表 5: 循环移位和正交掩码的第四种优选状态组合
Figure imgf000016_0001
进一步地, 所述 4比特 DCI信息表示的第五种 16个优选组合( "DMRS(O) , "occ )为: (0, 0) 、 (2, 0) 、 (3, 0) 、 (4, 0) 、 (6, 0) 、 (8, 0) 、 (9, 0)、 (10, 0)、 (0, 1)、 (2, 1)、 (3, 1)、 (4, 1)、 (6, 1)、 (8, 1 ) 、 (9, 1 ) 、 (10, 1 )
♦ 实施例二
LTE-A系统中, 基站通过所述下行控制信息, 调度单天线端口传输或多 天线端口传输的物理上行共享信道。 所述下行控制信息通过物理下行控制信 道, 由基站发送给目标用户终端。
所述下行控制信息承载的上行调度信息包括但不限于: 解调参考信号的 循环移位、 解调参考信号的正交掩码信息;
其中, 所述的解调参考信号的循环移位(Cyclic shift for DM RS) , 其大 小为 3比特;
( 1 )对单天线端口传输模式, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位; ( 2 )对多天线端口传输模式, 所述解调参考信号的循环移位" DMRS(G)为 空间复用的第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据 的解调参考信号的循环移位的参考值(或称初始值, 基值) 。
所述解调参考信号的正交掩码信息为 1 比特的正交掩码使能或配置信 息。 当跳频未使能或信道状态指示请求未使能或层交织使能时, 所述 1 比特 的正交掩码使能或配置信息, 釆用下行控制信息中的跳频标志位或信道状态 指示请求位或传输块到码字的交叉映射标志位来代替。
对于单天线端口或单传输块的传输模式, 所述 1 比特的正交掩码使能或 配置信息, 釆用下行控制信息中的传输块到码字的交叉映射标志位或层交织 使能标志位来代替;
对于多天线端口或双传输块的传输模式, 所述 1 比特的正交掩码使能或 配置信息默认为不使能或不配置。
正交掩码使能或配置的场景下, 用户的循环移位和正交掩码状态有表 6 所示的 16种状态。
表 6: 循环移位和正交掩码的第五种优选状态组合
Figure imgf000017_0001
实施例三
LTE-A系统中, 基站通过所述下行控制信息, 调度单天线端口传输或多 天线端口传输的物理上行共享信道。 所述下行控制信息格式通过物理下行控 制信道, 由基站发送给目标用户终端。
上面所述下行控制信息承载的上行调度信息种类包括但不限于: 解调参 考信号的循环移位(Cyclic shift for DM RS ) , 其大小为 3比特。
( 1 )对单天线端口传输模式, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位;
( 2 )对多天线端口传输模式, 所述解调参考信号的循环移位"^ ^s(G)为 空间复用的第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据 的解调参考信号的循环移位的参考值(或称初始值, 基值) 。
对于正交掩码信息, 正交掩码的使能或配置是通过高层信令来指示, 如 通过无线资源控制 (Radio Resource Control, RRC ) 的信令。
♦ 实施例四
LTE-A系统中, 基站通过所述下行控制信息, 调度单天线端口传输或多 天线端口传输的物理上行共享信道。 所述下行控制信息通过物理下行控制信 道, 由基站发送给目标用户终端。
上面所述下行控制信息承载的上行调度信息种类包括但不限于: 解调参 考信号信息、 预编码信息。
所述解调参考信号信息包括: 解调参考信号的循环移位( Cyclic shift for DM RS ) , 其大小为 3比特。
( 1 )对单天线端口传输模式, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位;
( 2 )对多天线端口传输模式, 所述解调参考信号的循环移位"^ ^s(G)为 空间复用的第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据 的解调参考信号的循环移位的参考值(或称初始值, 基值) 。
所述预编码信息包括: PMI信息, 其为 3比特或 6比特。
若仅对单天线端口传输模式的解调参考信号使用正交掩码, 则在预编码 信息中: 使用一个特定的预编码信息值指示为单天线端口传输模式, 解调参考信 号的正交掩码为 [+1 , +1];
使用另一个特定的预编码信息值指示为单天线端口传输模式, 解调参考 信号的正交掩码为 [+1 , - 1];
除上述两个特定值和保留值外的其余预编码信息值指示为多天线端口传 输模式, 解调参考信号不使用正交掩码。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性 本发明的物理上行共享信道的信令配置方法及系统, 解决了目前 LTE系 统中对于物理上行共享信道的上行调度信息中正交掩码 OCC信息的指示问 题, 通过在下行控制信息中携带正交掩码信息和 /或循环移位信息, 并向终端 发送下行控制信息实现对终端的正交掩码 OCC信息的指示。本发明给出了多 种组合的指示方式, 具有很好的适用性, 终端获取正交掩码 OCC信息可跟准 确根据控制信息实现业务, 提高了业务可靠性。

Claims

权 利 要 求 书
1、 一种物理上行共享信道的信令配置方法, 该方法包括:
基站通过物理下行控制信道向目标用户终端发送下行控制信息, 所述下 行控制信息包括解调参考信号的正交掩码信息和 /或解调参考信号的循环移 位信息, 所述下行控制信息用于调度多天线端口传输的和 /或单天线端口传输 的物理上行共享信道。
2、 如权利要求 1所述的信令配置方法, 其中,
所述下行控制信息中包括: 解调参考信号的循环移位和正交掩码联合指 示信息。
3、 如权利要求 2所述的信令配置方法, 其中,
所述解调参考信号的循环移位和正交掩码联合指示信息, 为 3 比特或 4 比特, 用于使用正交资源 ( "U0), "。cc )联合来表示基站发送给目标用户 终端的解调参考信号的循环移位和正交掩码, 其中:
¾RS(G)代表基站通过下行控制信息指示目标用户终端的空间复用的第 0 层数据的解调参考信号的循环移位, 或空间复用的各层数据的解调参考信号 的循环移位的参考值或初始值或基值, 或单天线端口传输模式用户的解调参 考信号的循环移位;
"。cc代表目标用户终端空间复用的第 0层数据的解调参考信号的正交掩 码索引, 或单天线端口传输模式用户的解调参考信号的正交掩码索引。
4、 如权利要求 3所述的信令配置方法, 其中,
所述的 3比特解调参考信号循环移位和正交掩码联合指示信息, 用于指 示 8个正交资源( 42 (()) , nocc ) , 所述 8个正交资源( , nocc )包括:
( 0, 0 ) 、 (3, 0 ) 、 (6, 0 ) 、 (9, 0 ) 、 (0, 1 ) 、 (3, 1 ) 、 (6, 1 )和(9, 1 ) ;
或 (0, 0 ) 、 (3 , 0) 、 (6, 0 ) 、 (9, 0 ) 、 (2, 1 ) 、 (4, 1 ) 、
( 8, 1 )和( 10 , 1 ) ;
或 ( 2, 0 ) 、 (4, 0 ) 、 (8, 0 ) 、 (10, 0 ) 、 (0, 1 ) 、 (3, 1 ) 、 (6, 1 )和(9, 1 ) ;
或 (2, 0) 、 (4, 0) 、 (8, 0) 、 (10, 0) 、 (2, 1 ) 、 (4, 1 ) 、 (8, 1 )和( 10, 1 ) 。
5、 如权利要求 3所述的信令配置方法, 其中,
所述的 4比特解调参考信号循环移位和正交掩码联合指示信息, 用于指 示 16个正交资源( 42 (()) , nocc ) , 所述 16个正交资源 ( , nocc ) 包 括:
(0, 0) 、 (2, 0) 、 (3, 0) 、 (4, 0) 、 (6, 0) 、 (8, 0) 、 (9, 0) 、 (10, 0) 、 (0, 1 ) 、 (2, 1 ) 、 (3, 1 ) 、 (4, 1 ) 、 (6, 1 ) 、 (8, 1 ) 、 (9, 1 )和( 10, 1 ) 。
6、 如权利要求 1所述的信令配置方法, 其中,
所述下行控制信息中包括: 解调参考信号信息和 /或解调参考信号的正交 掩码信息。
7、 如权利要求 6所述的信令配置方法, 其中,
对单天线端口传输模式而言, 所述解调参考信号的循环移位为单天线端 口传输的物理上行共享信道的解调参考信号的循环移位;
对多天线端口传输模式而言, 所述解调参考信号的循环移位为空间复用 的第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据的解调参 考信号的循环移位的参考值或初始值或基值。
8、 如权利要求 6所述的信令配置方法, 其中,
所述解调参考信号的循环移位为 1比特 、 或 2比特、 或 3比特。
9、 如权利要求 8所述的信令配置方法, 其中,
所述的解调参考信号的循环移位包括:
0, 6;
或 0, 3, 6, 9;
或 0, 2, 3, 4, 6, 8, 9, 10。
10、 如权利要求 6所述的信令配置方法, 其中, 所述解调参考信号的正交掩码信息为 1 比特的正交掩码使能或配置信 息。
11、 如权利要求 10所述, 该方法还包括:
当跳频未使能或信道状态指示请求未使能或层交织使能时, 所述 1 比特 的正交掩码使能或配置信息, 釆用下行控制信息中的跳频标志位或信道状态 指示请求位或传输块到码字的交叉映射标志位来代替。
12、 如权利要求 10所述, 其中,
对于单天线端口或单传输块的传输模式, 所述 1 比特的正交掩码使能或 配置信息, 釆用下行控制信息中的传输块到码字的交叉映射标志位或层交织 使能标志位来代替;
对于多天线端口或双传输块的传输模式, 所述 1 比特的正交掩码使能或 配置信息默认为不使能或不配置。
13、 如权利要求 1所述的信令配置方法, 其中,
所述下行控制信息中包括: 解调参考信号的循环移位;
所述信令配置方法还包括: 网络侧通过高层信令将正交掩码信息指示给 终端。
14、 如权利要求 13所述的信令配置方法, 其中,
对于单天线端口传输模式, 所述解调参考信号的循环移位为单天线端口 传输的物理上行共享信道的解调参考信号的循环移位;
对于多天线端口传输模式, 所述解调参考信号的循环移位为空间复用的 第 0层数据的解调参考信号的循环移位, 或空间复用的各层数据的解调参考 信号的循环移位的参考值或初始值或基值。
15、 如权利要求 13所述的信令配置方法, 其中,
所述指示步骤中, 所述正交掩码信息为正交掩码使能或配置信息, 正交 掩码的使能或配置是通过无线资源控制 (RRC ) 的信令指示给终端。
16、 如权利要求 1所述的信令配置方法, 其中,
所述下行控制信息中包括: 解调参考信号的循环移位和预编码信息; 若仅对单天线端口传输模式的解调参考信号使用正交掩码, 则在预编码 信息中, 使用两个特定的预编码信息值指示为单天线端口传输模式以及解调 参考信号的正交掩码;
使用该两个特定的预编码信息值和保留值外的其余预编码信息值指示为 多天线端口传输模式, 解调参考信号不使用正交掩码。
17、 一种物理上行共享信道的信令配置系统, 所述系统包括基站和目标 用户终端, 其中:
基站设置为:通过物理下行控制信道向目标用户终端发送下行控制信息; 目标用户终端设置为: 在物理下行控制信道接收所述下行控制信息, 获 取正交掩码信息和 /或循环移位信息;
其中, 所述下行控制信息携带有正交掩码信息和 /或循环移位信息用于调 度多天线端口传输的和 /或单天线端口传输的物理上行共享信道。
18、 如权利要求 17所述的信令配置系统, 其中,
所述下行控制信息中包括: 参考信号的循环移位和正交掩码联合指示信 息。
19、 如权利要求 17所述的信令配置系统, 其中,
所述下行控制信息中包括: 解调参考信号的循环移位和解调参考信号的 正交掩码信息。
20、 如权利要求 17所述的信令配置系统, 其中,
所述下行控制信息中包括: 解调参考信号的循环移位;
所述基站还设置为: 通过高层信令将正交掩码信息指示给终端。
21、 如权利要求 17所述的信令配置系统, 其中,
所述下行控制信息中包括: 参考信号信息、 预编码信息, 其中, 所述参 考信号信息包括解调参考信号的循环移位;
所述基站还设置为: 若仅对单天线端口传输模式的解调参考信号使用正 交掩码, 则在预编码信息中, 使用两个特定的预编码信息值指示为单天线端 口传输模式以及解调参考信号的正交掩码; 以及 使用该两个特定的预编码信息值和保留值外的其余预编码信息值指示为 多天线端口传输模式, 解调参考信号不使用正交掩码。
PCT/CN2010/074768 2010-01-08 2010-06-30 物理上行共享信道的信令配置方法及系统 WO2011082574A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112012016755A BR112012016755A2 (pt) 2010-01-08 2010-06-30 método para sinalizar a configuração de um canal campartilhado de uplink físico e sistema para sinalizar a configuração de um canal campartilhado de uplink físico
RU2012128335/08A RU2509420C1 (ru) 2010-01-08 2010-06-30 Способ и система для конфигурации сигнализации физического канала совместного использования восходящего соединения
MX2012007957A MX2012007957A (es) 2010-01-08 2010-06-30 Metodo y sistema para configuracion de señalizacion de canal fisico compartido de enlace ascendente.
US13/258,968 US8861455B2 (en) 2010-01-08 2010-06-30 Method and system for signaling configuration of physical uplink shared channel
EP10841917.7A EP2509244B1 (en) 2010-01-08 2010-06-30 Method and system for signaling configuration of physical uplink shared channel
JP2012547435A JP2013516863A (ja) 2010-01-08 2010-06-30 物理アップリンク共有チャネルのシグナリング構成のための方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010003862.1A CN101800622B (zh) 2010-01-08 2010-01-08 物理上行共享信道的信令配置方法及系统
CN201010003862.1 2010-01-08

Publications (1)

Publication Number Publication Date
WO2011082574A1 true WO2011082574A1 (zh) 2011-07-14

Family

ID=42596132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074768 WO2011082574A1 (zh) 2010-01-08 2010-06-30 物理上行共享信道的信令配置方法及系统

Country Status (9)

Country Link
US (1) US8861455B2 (zh)
EP (1) EP2509244B1 (zh)
JP (1) JP2013516863A (zh)
KR (1) KR20120104308A (zh)
CN (1) CN101800622B (zh)
BR (1) BR112012016755A2 (zh)
MX (1) MX2012007957A (zh)
RU (1) RU2509420C1 (zh)
WO (1) WO2011082574A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497589A (en) * 2011-12-16 2013-06-19 Renesas Mobile Corp Resource Allocation in a Wireless Communication System
US8611449B2 (en) 2010-11-15 2013-12-17 FutureWei Technologes, Inc. Method and apparatus for demodulation of a reference signal
CN109478978A (zh) * 2016-07-18 2019-03-15 三星电子株式会社 具有可变传输持续时间的载波聚合

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800622B (zh) * 2010-01-08 2015-10-21 中兴通讯股份有限公司 物理上行共享信道的信令配置方法及系统
CN102130761B (zh) * 2010-01-12 2015-04-01 电信科学技术研究院 正交覆盖码指示及解调参考信号处理方法、系统和设备
CN101801101A (zh) * 2010-02-24 2010-08-11 中兴通讯股份有限公司 一种下行控制信息的传输方法和装置
KR101861661B1 (ko) * 2010-03-15 2018-05-28 엘지전자 주식회사 무선통신 시스템에서 제어정보를 송신 및 수신하기 위한 장치 및 그 방법
WO2011120233A1 (zh) * 2010-04-02 2011-10-06 富士通株式会社 正交掩码生成装置和方法及正交掩码映射装置和方法
CN101882980B (zh) * 2010-05-06 2015-07-22 中兴通讯股份有限公司 上行解调参考信号的指示方法及系统
CN103069734B (zh) * 2010-08-13 2015-09-30 松下电器(美国)知识产权公司 终端装置、基站装置、重发方法以及资源分配方法
CN101908916B (zh) * 2010-08-13 2016-03-30 中兴通讯股份有限公司 上行信息的传输方法及终端
WO2012026706A2 (ko) * 2010-08-24 2012-03-01 (주)팬택 Mimo 동작방식에 따른 참조신호 송수신 방법 및 장치
CN102447540B (zh) * 2010-09-30 2016-01-27 电信科学技术研究院 一种数据的传输方法和设备
CN102045762B (zh) 2010-12-02 2013-07-24 大唐移动通信设备有限公司 一种上报信道状态的方法及装置
RU2613178C2 (ru) * 2011-01-07 2017-03-15 Интердиджитал Пэйтент Холдингз, Инк. Способ, система и устройство для приема совместно используемого канала нисходящей линии связи в кооперативных многоточечных передачах
CN103518415B (zh) 2011-02-11 2017-05-24 交互数字专利控股公司 用于增强型控制信道的系统和方法
CN102255643B (zh) * 2011-06-30 2013-12-11 电信科学技术研究院 上行预编码矩阵指示及信号传输方法、系统和设备
JP5415572B2 (ja) * 2012-02-10 2014-02-12 シャープ株式会社 移動局装置、基地局装置、無線通信方法、集積回路および無線通信システム
CN103313404B (zh) * 2012-03-16 2017-06-13 华为技术有限公司 一种控制信道资源传输方法、用户设备及基站
CN103391621B (zh) * 2012-05-11 2019-01-01 中兴通讯股份有限公司 上行解调参考信号处理方法及装置
US9590791B2 (en) * 2012-11-12 2017-03-07 Qualcomm Incorporated Uplink transmission for carrier aggregation via multiple nodes
US9240853B2 (en) * 2012-11-16 2016-01-19 Huawei Technologies Co., Ltd. Systems and methods for sparse code multiple access
US9166663B2 (en) * 2012-12-14 2015-10-20 Futurewei Technologies, Inc. System and method for open-loop MIMO communications in a SCMA communications system
JP6220049B2 (ja) * 2013-04-01 2017-10-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置および制御信号配置方法
US10171225B2 (en) 2013-04-01 2019-01-01 Panasonic Intellectual Property Corporation Of America Communication apparatus and control signal mapping method
CN109547081B (zh) * 2013-04-19 2022-04-19 中兴通讯股份有限公司 同步信号的发送、接收方法、装置及同步信号的处理系统
CN104823487A (zh) * 2013-09-26 2015-08-05 华为技术有限公司 上行信息发送方法及装置、接收方法及装置、通信系统
US9419770B2 (en) 2014-03-31 2016-08-16 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
US10701685B2 (en) 2014-03-31 2020-06-30 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
US10531432B2 (en) 2015-03-25 2020-01-07 Huawei Technologies Co., Ltd. System and method for resource allocation for sparse code multiple access transmissions
WO2016117982A2 (ko) * 2015-01-23 2016-07-28 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 단말의 신호 생성 방법 및 장치
CN107534922A (zh) * 2015-05-11 2018-01-02 华为技术有限公司 控制信息指示方法、基站、用户设备及通信系统
US9775141B2 (en) * 2015-07-14 2017-09-26 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US9717079B2 (en) 2015-07-14 2017-07-25 Motorola Mobility Llc Method and apparatus for selecting a resource assignment
US9794921B2 (en) * 2015-07-14 2017-10-17 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
EP3346748B1 (en) * 2015-08-31 2020-09-23 NTT DoCoMo, Inc. User terminal, radio base station and radio communication method
WO2017071586A1 (en) 2015-10-30 2017-05-04 Huawei Technologies Co., Ltd. System and method for high-rate sparse code multiple access in downlink
WO2017075837A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 一种发送或者接收下行控制信息dci的方法、基站、终端及系统
WO2017090708A1 (ja) * 2015-11-27 2017-06-01 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10560233B2 (en) * 2015-12-08 2020-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Interlace pattern selection for low CM/PAPR transmission
CN107689857A (zh) * 2016-08-06 2018-02-13 北京信威通信技术股份有限公司 解调参考信号的方法及配置
US10396871B2 (en) 2017-06-15 2019-08-27 At&T Intellectual Property I, L.P. Layer mapping subset restriction for 5G wireless communication systems
US10427045B2 (en) 2017-07-12 2019-10-01 Misapplied Sciences, Inc. Multi-view (MV) display systems and methods for quest experiences, challenges, scavenger hunts, treasure hunts and alternate reality games
US10565616B2 (en) 2017-07-13 2020-02-18 Misapplied Sciences, Inc. Multi-view advertising system and method
US10404974B2 (en) 2017-07-21 2019-09-03 Misapplied Sciences, Inc. Personalized audio-visual systems
CN109995499B (zh) 2017-08-11 2020-04-03 华为技术有限公司 接收解调参考信号的方法、接收端、芯片、存储介质和通信系统
US10778962B2 (en) 2017-11-10 2020-09-15 Misapplied Sciences, Inc. Precision multi-view display
CN110266626A (zh) * 2018-03-12 2019-09-20 维沃移动通信有限公司 相位跟踪参考信号ptrs的传输方法、终端及网络设备
EP3874623B1 (en) * 2018-11-01 2024-03-13 QUALCOMM Incorporated Multi-port-group uplink control information signaling and related systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252783A (zh) * 2008-03-27 2008-08-27 中兴通讯股份有限公司 一种资源分配方法
CN101404815A (zh) * 2008-10-31 2009-04-08 中兴通讯股份有限公司 下行控制信息的处理方法
WO2009056464A1 (en) * 2007-10-30 2009-05-07 Nokia Siemens Networks Oy Methods, apparatuses, system, and related computer program product for resource allocation
CN101465720A (zh) * 2009-01-23 2009-06-24 中兴通讯股份有限公司 一种发送上行harq反馈信息的方法和装置
WO2009156441A2 (en) * 2008-06-24 2009-12-30 Nokia Siemens Networks Oy Control channel signaling for multiple ack/nack indications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2232525C2 (ru) * 2000-04-05 2004-07-20 Кубанский государственный аграрный университет Безалкогольный профилактический напиток "солнечный"
KR100987266B1 (ko) * 2007-02-14 2010-10-12 삼성전자주식회사 단일 반송파 주파수 분할 다중접속 시스템에서 제어정보 송수신 방법 및 장치
US8467367B2 (en) 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
KR101490253B1 (ko) * 2007-08-10 2015-02-05 엘지전자 주식회사 무선 통신 시스템에서의 제어정보 전송 및 수신 방법
JP5223009B2 (ja) * 2008-08-19 2013-06-26 韓國電子通信研究院 受信成功可否情報を送信する方法および装置
CN101800622B (zh) * 2010-01-08 2015-10-21 中兴通讯股份有限公司 物理上行共享信道的信令配置方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056464A1 (en) * 2007-10-30 2009-05-07 Nokia Siemens Networks Oy Methods, apparatuses, system, and related computer program product for resource allocation
CN101252783A (zh) * 2008-03-27 2008-08-27 中兴通讯股份有限公司 一种资源分配方法
WO2009156441A2 (en) * 2008-06-24 2009-12-30 Nokia Siemens Networks Oy Control channel signaling for multiple ack/nack indications
CN101404815A (zh) * 2008-10-31 2009-04-08 中兴通讯股份有限公司 下行控制信息的处理方法
CN101465720A (zh) * 2009-01-23 2009-06-24 中兴通讯股份有限公司 一种发送上行harq反馈信息的方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611449B2 (en) 2010-11-15 2013-12-17 FutureWei Technologes, Inc. Method and apparatus for demodulation of a reference signal
GB2497589A (en) * 2011-12-16 2013-06-19 Renesas Mobile Corp Resource Allocation in a Wireless Communication System
CN109478978A (zh) * 2016-07-18 2019-03-15 三星电子株式会社 具有可变传输持续时间的载波聚合
US11121824B2 (en) 2016-07-18 2021-09-14 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
US11128407B2 (en) 2016-07-18 2021-09-21 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN109478978B (zh) * 2016-07-18 2022-06-07 三星电子株式会社 具有可变传输持续时间的载波聚合
US11451339B2 (en) 2016-07-18 2022-09-20 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
US11799591B2 (en) 2016-07-18 2023-10-24 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations

Also Published As

Publication number Publication date
CN101800622B (zh) 2015-10-21
CN101800622A (zh) 2010-08-11
KR20120104308A (ko) 2012-09-20
MX2012007957A (es) 2012-08-03
US8861455B2 (en) 2014-10-14
EP2509244A4 (en) 2014-12-24
EP2509244A1 (en) 2012-10-10
BR112012016755A2 (pt) 2019-09-24
EP2509244B1 (en) 2018-06-27
JP2013516863A (ja) 2013-05-13
US20120300711A1 (en) 2012-11-29
RU2509420C1 (ru) 2014-03-10

Similar Documents

Publication Publication Date Title
WO2011082574A1 (zh) 物理上行共享信道的信令配置方法及系统
US9749107B2 (en) Method and base station for transmitting downstream link data, and method and user device for receiving downstream link data
EP2577897B1 (en) Method and system for transmitting channel state information in wireless communication systems
CN102884742B (zh) 用于指示上行链路控制信息的传输模式的方法和系统
WO2011137620A1 (zh) 上行解调参考信号的指示方法及系统
CN104782208A (zh) 在载波聚合系统中操作终端的方法和使用该方法的装置
WO2012019451A1 (zh) 一种上行传输方式的指示、确定方法和系统
CN101860424B (zh) 下行控制信息的发送方法和基站
WO2013000253A1 (zh) 协作多点传输系统中信息的交互方法及协作多点传输系统
CN111615193B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114448577B (zh) 一种被用于无线通信的节点中的方法和装置
WO2011085542A1 (zh) 用于降低控制信令开销的方法和设备
WO2010145068A1 (en) Method for transmission of data over a communications channel
CN111669823B (zh) 一种被用于无线通信的节点中的方法和装置
CN113453345B (zh) 一种被用于无线通信的节点中的方法和装置
CN115085878A (zh) 一种被用于无线通信的节点中的方法和装置
CN113556820A (zh) 一种被用于无线通信的节点中的方法和装置
CN113411887B (zh) 一种被用于无线通信的节点中的方法和装置
EP2675096A1 (en) Method for transmitting acknowledgement/negative acknowledgement and terminal for implementing the same
CN114143801A (zh) 一种被用于无线通信的节点中的方法和装置
CN117335943A (zh) 一种被用于无线通信的节点中的方法和装置
CN115333698A (zh) 一种被用于无线通信的节点中的方法和装置
CN114448578A (zh) 一种被用于无线通信的节点中的方法和装置
CN113692061A (zh) 一种被用于无线通信的节点中的方法和装置
CN113630221A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010841917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258968

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012547435

Country of ref document: JP

Ref document number: MX/A/2012/007957

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127017859

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012128335

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012016755

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012016755

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120706