WO2012021083A1 - Способ обогащения полиминеральных суспензий - Google Patents

Способ обогащения полиминеральных суспензий Download PDF

Info

Publication number
WO2012021083A1
WO2012021083A1 PCT/RU2010/000444 RU2010000444W WO2012021083A1 WO 2012021083 A1 WO2012021083 A1 WO 2012021083A1 RU 2010000444 W RU2010000444 W RU 2010000444W WO 2012021083 A1 WO2012021083 A1 WO 2012021083A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
enrichment
oligomer
formaldehyde
dressing
Prior art date
Application number
PCT/RU2010/000444
Other languages
English (en)
French (fr)
Original Assignee
ЛАРИН, Валентин Борисович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЛАРИН, Валентин Борисович filed Critical ЛАРИН, Валентин Борисович
Priority to PCT/RU2010/000444 priority Critical patent/WO2012021083A1/ru
Publication of WO2012021083A1 publication Critical patent/WO2012021083A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • B03B1/04Conditioning for facilitating separation by altering physical properties of the matter to be treated by additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap

Definitions

  • the invention relates to the processing technology of suspensions — a fluid-based raw material or a material in a fluid medium, and can be used in oil, mining, hydrometallurgy, enrichment of ore and non-metallic materials and other industries.
  • the disadvantage of these methods is the difficulty of separating polymineral suspensions of ores with particle sizes less than 40 microns.
  • one connection can perform more than one function.
  • Specific additives used in a particular flotation process are usually chosen depending on the nature of the ore, This is the reason for the flotation of the mineral to be extracted, and the type of other additives that are going to be used in combination with them.
  • the “Method of enrichment of coal sludge” is known by dispersing a certain amount of surfactant throughout the sludge, in which the surface of the coal particles was selectively coated with a surfactant to form activated coal particles. Then the surface of the activated particles of coal was selectively coated with oil to form oiled particles of coal, followed by flotation of oiled particles of coal. (RU, Patent No. 2223828, B03D1 / 02.2004.02.20).
  • a special place in the improvement of methods for the separation of solids in aqueous suspensions is occupied by polyelectrolytes — polymers or polyacids, the macromolecules of which contain ionic and non-ionic groups.
  • the “Method of enrichment of sulphide minerals” is known, which includes the formation of a suspension containing water and ore particles, a mixture of this suspension with a foaming agent and a collector, which is ⁇ -butoxycarbonyl-O-alkylthionocarbamate (RU, patent No. 2318607). B03D 1 / 012,2008.03.10).
  • Method of extracting fine gold refers to the enrichment of minerals, in which the starting material is mixed with water in a ratio of T: W-1: 0.25 with the simultaneous introduction of a reagent, after contact with which the suspension subject to gravity enrichment.
  • the reagent used is a mixture of iodine and potassium iodide in the amount of 24-50 g / t, solid at pH 4-8 (RU, patent Ne 2235796 ,, ⁇ 03 ⁇ 1 / 00, 2004.09.10).
  • the prototype of the present invention is to use an aromatic polyalkyl sulfonic acid solution, which uses dinonylnaphthalene disulfonic acid (US 4166837 and 4255395), to isolate metals from aqueous solutions.
  • an aromatic polyalkyl sulfonic acid solution which uses dinonylnaphthalene disulfonic acid (US 4166837 and 4255395), to isolate metals from aqueous solutions.
  • This method has limited application and is used purposefully to extract metallic particles of copper and zinc.
  • the technical result of the invention is to isolate and separate polymineral fine suspensions with a particle size of less than 40 microns.
  • a method for enriching polymineral suspensions involving the preparation of a suspension and its gravitational enrichment, characterized in that for the selective isolation of fine monomineral fractions, polyacrylic acid salts containing 120 monomer units or alkylnaphthalene sulfonic acid are introduced into the suspension ,
  • the formaldehyde-modified compound containing from 2 to 8 monomineral units in an amount of less than 2.5 wt. % of the weight of the solid phase of the suspension.
  • the method is characterized in that butyl and isobutyl are used as alkyl.
  • Peptizers in the form of salts of polyacrylic acid or alkylnaphthalene sulfonic acid modified with formaldehyde create an adsorbed layer on the surface of the suspension particles, which, due to the shielding effect, prevents the manifestation of long-range Coulomb forces and, accordingly, the emergence of stable periodic colloidal structures and other ordered formations that require costs energy for their destruction in the process of enrichment.
  • Such colloidal periodic structures are rather stable and cannot always be destroyed completely by gravity methods and, accordingly, their formation prevents the fuller enrichment of the suspension in the target products.
  • the surface adsorption structures based on polyacrylic acid salts or alkylnataline sulphoxyloses modified with formaldehyde change the structure of the surface water layers, significantly reducing their thickness, which, in turn, weakens the long-range interaction forces between suspension particles and promotes the sliding of the suspension particles relative to each other with a significantly lower shear force.
  • a decrease in the thickness of the surface layers contributes to a decrease in the weight of the suspension particles and a more complete manifestation of the weight factor in the case of their gravitational separation.
  • Alkylnaphthalene sulfonic acid is used by modifying it by condensation with formaldehyde to oligomers. containing from 2 to 8 monomer units, butyl may be butyl, iso-butyl.
  • the effectiveness of the method was tested with the enrichment of a suspension of chalk.
  • an aqueous 40% suspension of chalk with a maximum particle size was prepared under continuous mixing. 6 microns, which was subject to enrichment. 10 grams of a 25% solution of a salt of polyacrylic acid were injected into every 90 grams of the suspension with vigorous stirring. The resulting mixture was centrifuged at a speed of 6 thousand revolutions per minute for 3 minutes. After turning off the centrifuge, the transparent layer of the aqueous solution of the liquid was drained, the precipitate was dried in a thermostat at a temperature of 105 ° C for 1 hour. The lower and upper parts of the sediment, having a darker color, are separated from the lightest middle part.
  • the degree of enrichment of the chalk suspension is estimated by the whiteness of the powdered chalk as compared to the whiteness of the original chalky product.
  • the original chalk showed a whiteness of 88 units.
  • the chalky suspension after gravitational enrichment using the proposed method showed a whiteness of 93 units.
  • a chalk suspension prepared without using the inventive polyacid salts did not show a noticeable separation in color, and the color indicator remained at the level of 88 units.
  • the slurry cycle in the gravitational enrichment of chromite ores includes:
  • Pulp N26 - Sludge with oligomer of sodium salt of butylnaphthalene sulfonic acid modified with formaldehyde the concentration of the oligomer is 2.5% of the solid content.
  • Pulp N27 - Sludge with oligomer of sodium salt of butylnaphthalene sulfonic acid modified with formaldehyde the concentration of oligomer 2.8% of the solids content.
  • Pulp N21 was enriched according to the standard enrichment cycle of sludge.
  • Pulp N ° 2,4,5,6,7 was enriched by a simpler scheme in a closed cycle with the exception of pee cleaner.
  • Pulp N ° 3 - sludge with oligomer of sodium salt of acrylic acid the concentration of oligomer 2.5% of the solids content.
  • Pulp consumption is 1.7 liters per minute.
  • the introduction of the modifier at an initial concentration of 0.02% weight. of the solid content makes it possible to realize a noticeable accumulation of the target element in the heavy fraction up to 0.48% with the initial content of 0.22%.
  • a further increase in the concentration of the modifier above 2.5%, to 2.8% does not allow a substantial change in the course of the enrichment process and a significant accumulation of the target product in the concentrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение может быть использовано в нефтяной, горнодобывающей промышленности, гидрометаллургии, при обогащении рудных и нерудных материалов и других отраслях промышленности. Способ обогащения полиминеральных суспензий включает приготовление суспензии с последующим её гравитационным обогащением, введение в суспензию соли полиакриловой кислоты или алкилнафталинсуфокислоту, модифицированную формальдегидом, в количестве менее 2,5 вес. % от веса твердой фазы суспензии. Технический результат - селективное выделение тонкодисперсных мономинеральных фракций.

Description

Способ обогащения полиминеральных суспензий
t
Изобретение относится к технологиям обработки суспензий - жидко- текучего сырья или материала, находящегося в жидкотекучей среде, и может быть использовано в нефтяной, горнодобывающей, гидроме- таллургии, при обогащении рудных и нерудных материалов и других отраслях промышленности.
Известны способы обогащения суспензий гравитационным обога- щением, где разделение частиц, отличающихся плотностью, разме- ром, формой, обусловлено их различием в характере и скорости их движения под действием сил тяжести и сил сопротивления среды разделения (В.Н. Шохин, А.Г.Лопатин, Гравитационные методы обо- гащения. Издательство «Недра», 1993).
Недостатком данных способов является трудность разделения полиминеральных суспензий руд с размерами частиц менее 40 мик- рон.
Для осуществления обогащения полиминеральных суспензий руд методом пенной флотации известно использование множества со- единений, таких, как коллекторы, вспениватели, модификаторы, де- прессоры, диспергаторы, регуляторы рН и различные промоторы и добавки ("Reagents for Better Metallurgy", опубликовано Society for Mining Metallurgy and Exploration, Inc. 1994)
При этом одно соединение может выполнять более чем одну функ- цию. Конкретные добавки, применяемые при определенном способе флотации, обычно выбирают в зависимости от природы руды, уело- вий, при которых происходит флотация подлежащего извлечению ми- нерала, и от вида других добавок, которые собираются использовать в комбинации с ними.
Алкилированные диарилоксидмоносульфонатные коллекторы пред- ставлены в патенте US 5015367. Диалкиларилмоносульфонатные коллекторы раскрыты в патенте US 5173176. Способ флотации фос- фатов, в котором применяют различные арилдисульфонаты, раскрыт в патенте US 4172029 =
Известен «Способ обогащения угольных шламов» путем дисперги- рования некоторого количества поверхностно-активного вещества по объему шлама, при котором поверхность частиц угля селективно по- крывалась поверхностно-активным веществом с образованием акти- вированных частиц угля. Затем поверхность активированных частиц угля селективно покрывалась маслом с образованием промасленных частиц угля с последующей флотацией промасленных частиц угля. (RU, патент N2 2223828, B03D1/02.2004.02.20).
Известен способ разделения твердых веществ в водных суспензиях, при котором к водной суспензии добавляют алканоламин, способный изменить характер взаимодействия твердых веществ с водной сре- дой, обеспечивающий улучшенное селективное разделение твердых BeinecTB(RU, патент Ns 2078614, В03В1/00, 1997.05.10)
Несмотря на множество соединений и комбинаций соединений, специалисты в данной области постоянно работают над новыми спо- собами усовершенствования обогащения руд и разделения твердых веществ в водных суспензиях.
Особое место в улучшении способов разделения твердых веществ в водных суспензиях занимают полиэлектролиты - полимеры или по- ликислоты, в макромолекулах которых содержатся ионогенные и неио- генные группы. Известен «Способ обогащения сульфидных минералов», включаю- щий образование суспензии, содержащей воду и частицы руды, сме- шение указанной суспензии со вспенивающим агентом и коллектором, в качестве которого использован Ν-бутоксикарбонил-О- алкилтионокарбамат (RU, патент N° 2318607.B03D 1/012,2008.03.10).
Известен также «Способ извлечения мелкого золота», который от- носится к обогащению полезных ископаемых, в котором исходный ма- териал смешивают с водой в соотношении Т: Ж-1 :0,25 с одновремен- ным введением реагента, после контакта с которым суспензию под- вергают гравитационному обогащению. В качестве реагента исполь- зуют смесь иода и йодистого калия в количестве 24-50 г/т, твердого при рН среды 4-8 (RU, патент Ne 2235796,, В03В1/00, 2004.09.10).
Данные способы не позволяют разделять полиминеральные тонко- дисперсные дисперсии с размером частиц менее540 микрон
Прототипом настоящего изобретения является использование для выделения из водных растворов металлов с помощью раствора поли- алкил ароматической сульфокислоты, в качестве которой использо- вана динонилнафталиндисульфоновая кислота (US 4166837 и 4255395).
Данный способ имеет ограниченное применение и используется целенаправленно на извлечение металлических частиц меди и цинка.
Технический результат предлагаемого изобретения является - вы- деление и разделение полиминеральных тонкодисперсных суспензий с размером частиц менее 40 микрон.
Для достижения указанного результата предлагается способ обогащения полиминеральных суспензий включающий приготовление суспензии и её гравитационное обогащение, отличающийся тем, что для селективного выделения тонкодисперсных мономинеральных фракций в суспензию вводят соли полиакриловой кислоты содержа- щей от Юдо 120 мономерных звеньев или алкилнафталинсуфокисло- з ,
ту, модифицированную формальдегидом, содержащую от 2 до 8 мо- номинеральных звеньев, в количестве менее 2,5 вес. % от веса твердой фазы суспензии. Способ отличающийся тем, что в качестве ал кила используют бутил, изобутил.
Пептизаторы в виде солей полиакриловой кислоты или алкилнаф- талинсуфокислоты модифицированная формальдегидом, на поверх- ности частиц суспензии создают адсорбированный слой, который вследствие экранирующего действия препятствует эффективности проявления дальнедействующих кулоновских сил и соответственно возникновению устойчивых периодических коллоидных структур и дру- гих упорядоченных образований, которые требуют затрат энергии на их разрушение в процессе обогащения. Такие коллоидные периоди- ческие структуры довольно устойчивы и не всегда могут быть разру- шены полностью гравитационными методами и, соответственно, их образование препятствует более полному обогащению суспензии по целевым продуктам.
Проявление эффектов ослабления дальнедействующих сил и усиления близкодействующих между частицами' одного типа по хими- ческому составу и минералогической форме, наблюдается при вве- дении уже 0.001% весового соли полиакриловой кислоты или алкил- нафталинсульфокислоты, модифицированной формальдегидом. Экс- периментально установлено, что повышение концентрации данных реагентов выше 2,5% не дает заметного повешения эффективности выделения тонкодисперсных фракций и однородности фракций по ми- неральному составу.
Кроме того, поверхностные адсорбционные структуры на основе солей полиакриловой кислоты или алкилнаталинсульфоксилоты, мо- дифицированной формальдегидом изменяют структуру поверхност- ных водных слоев, существенно уменьшая их толщину, что, в свою очередь, ослабляет дальнедействующие силы взаимодействия между частицами суспензии и способствует скольжению частиц суспензии относительно друг друга при значительно меньшем сдвиговом усилии. Уменьшение толщины поверхностных слоев способствует снижению веса частиц суспензии и более полному проявлению весового факто- ра при их гравитационном разделении.
Обеспечение солями полиакриловой кислоты или алкилнафта- линсульфокислотой, модифицированной формальдегидом, направ- ленное модифицирование поверхностных слоев в части уменьшения их толщины и изменения их структуры, создаёт условия проявления селективности взаимодействия между частицами одного минералоги- ческого состава, ослабляя взаимодействия между разнородными час- тицами.
Примеры осуществления предлагаемого способа.
Готовят 25% раствор соли полиакриловой кислоты, содержащей от 10 до 120 мономерных звеньев. С этой целью расчетное количество воды нагревают до 60 градусов и при интенсивном перемешивании вводят заданное количество порошка полиакрилата натрия, калия или аммония до полного растворения Затем раствор при перемешивании нагревают до 95 градусов, выдерживают 10-15 минут для стабилиза- ции раствора и охлаждают. Максимальная рабочая концентрация соли полиакрилата в рабочей суспензии не должна превышать 2,5 вес.% от содержания твердой фазы. Полученный раствор вводят в рабочую суспензию, тщательно перемешивают в течение 10-15 минут
Алкилнафталинсуфокислоту используют, модифицируя ее реакци- ей конденсацией с формальдегидом до олигомеров. содержащих от 2 до 8 мономерных звеньев, в качестве алкила может быть бутил, изо- бутил.
Эффективность способа проверялось при обогащении суспензии мела. С этой целью было приготовлена при непрерывном перемеши- вании водная 40% суспензия мела с максимальным размером частиц 6 микрон, которая подлежала обогащению. В каждые 90 грамм сус- пензии при интенсивном перемешивании вводилось 10 грамм 25% раствора соли полиакриловой кислоты. Полученную смесь центрифу- гировали со скоростью 6 тысяч оборотов в минуту в течение 3 минут. После отключения центрифуги, прозрачный слой водного раствора жидкости сливали, осадок высушивали в термостате при температуре 105° С в течение 1 часа. Нижнюю и верхнюю части осадка, имеющие более тёмную окраску, отделяем от самой светлой средней части. Степень обогащения меловой суспензии оцениваем по белизне по- рошка мела по сравнению с белизной исходного мелового продукта. Исходный мел показал белизну на уровне 88 единиц. Меловая сус- пензия после гравитационного обогащения по предлагаемому способу показала белизну равную 93 единицы.
Суспензия мела, приготовленная без использования заявляемых со- лей поликислот, не показала заметного разделения по цвету, а цве- товой показатель остался на уровне 88 единиц.
Пример осуществления предлагаемого способа обогащения хромитовых шламов на винтовом шлюзе.
Обычно, шламовый цикл при гравитационном обогащении хромитовых руд включает:
- основную концентрацию на винтовом шлюзе;
- двукратную перечистку концентрата основной операции;
- двукратную контрольную операцию хвостов основной сепа- рации;
- двукратную перечистку концентрата контрольных операций. Крупность шламов: -0,074мм.
Для обогащения были приготовлены следующие составы:
Пульпа N°l - Шлам с водой, содержание твердого 70%. Пульпа N°2 - Шлам с олигомером натриевой соли акриловой кислоты, концентрация олигомера 0.02% от содержания твердого. Пульпа N23 - Шлам с олигомером натриевой соли акриловой кислоты, концентрация олигомера 2.5% от содержания твердого.
Пульпа N24 - Шлам с олигомером натриевой соли акриловой кислоты, концентрация олигомера 2.8% от содержания твердого.
Пульпа N25 - Шлам с олигомером натриевой соли бутил- нафталинсульфокислоты модифицированной формальдегидом, концентрация олигомера 0.02% от содержания твердого.
Пульпа N26 - Шлам с олигомером натриевой соли бутилнаф- талинсульфокислоты модифицированной формальдегидом, кон- центрация олигомера 2.5% от содержания твердого.
Пульпа N27 - Шлам с олигомером натриевой соли бутилнаф- талинсульфокислоты модифицированной формальдегидом, кон- центрация олигомера 2.8% от содержания твердого.
Таблица 1
Результаты обогащения хромитовых шламов.
Figure imgf000008_0001
Figure imgf000009_0001
Пульпа N21 обогащалась по стандартному циклу обогащения шламов.
Пульпа N°2,4,5,6,7 обогащалась по более простой схеме в замкнутом цикле с исключением перечисток.
Результаты опытов приведены в таблице, из которой видно, что использование предлагаемого способа позволяет получить бо- лее богатый концентрат с содержанием Сг203 45.2%,... 45,7% против 40.7%, а извлечение увеличить до 80,18%.
Увеличение концентрации модификатора до 2.8% по сравне- нию с концентрацией 2,5% рекомендуемой по предлагаемому спо- собу относительно содержания твердого в пульпе не позволило достичь более существенного накопления целевого продукта в концентрате.
Пример осуществления предлагаемого способа обогащения шламов (-0,020 +0,005мм) содержащих ниобий на концентрацион- ном столе фирмы Холман.
Для обогащения были приготовлены следующие составы:
Пульпа N21 - шлам с водой, содержание твердого 40%. Пульпа N°2 - шлам с олигомером натриевой соли акриловой кислоты, концентрация олигомера 0.02% от содержания твердого.
Пульпа N°3 - шлам с олигомером натриевой соли акриловой кислоты, концентрация олигомера 2.5% от содержания твердого.
Пульпа N°4 - шлам с олигомером натриевой соли акриловой кислоты, концентрация олигомера 2.8% от содержания твердого.
Пульпа N°5 - шлам с олигомером натриевой соли бутилнаф- талинсульфокислоты модифицированной формальдегидом, кон- центрация олигомера 0.02% от содержания твердого.
Пульпа N°6 - шлам с олигомером натриевой соли бутилнаф- тал и нсульфо кислоты модифицированной формальдегидом, кон- центрация олигомера 2.5% от содержания твердого.
Пульпа N27 - шлам с олигомером натриевой соли бутилнаф- талинсульфокислоты модифицированной формальдегидом, кон- центрация олигомера 2.8% от содержания твердого.
Расход пульпы составляет 1.7л в минуту.
Таблица 2
Результаты обогащения шламов (класс -0,020+0,005мм) со- держащих ниобий на концентрационном столе фирмы Холман. Со- держание Nb205 в шламе 0.22%.
Figure imgf000010_0001
JVfo6 /2.5 381,4 / 0,47 1 180,6 / 0,13
24,41 75,59
7 /2.8 382.3/24.4 0.42 1 179.7/75.5 0.15
7 2
Обогащение водной пульпы -0,020+0,005мм с концентрацией твердого 40% на концентрационном столе не позволяет достичь накопления целевого продукта ни в одной из двух фракций.
Введение модификатора при начальной концентрации 0.02% вес. от содержания твердого дает возможность реализовать замет- ное накопление целевого элемента в тяжелой фракции до 0.48% при исходном содержании 0.22%. Дальнейшее увеличение концен- трации модификатора выше 2.5%, до 2.8% не позволяет сущест- венно изменить протекание процесса обогащения и достичь суще- ственного накопления целевого продукта в концентрате.

Claims

Формула изобретения
1. Способ обогащения полиминеральных суспензий включающий приготовление суспензии и её гравитационное обогащение, от- личающийся тем, что для селективного выделения тонкодис- персных мономинеральных фракций в суспензию вводят соли полиакриловой кислоты содержащей от 10 до 120 мономерных звеньев или алкилнафталинсуфокислоту, модифицированную формальдегидом, содержащую от 2 до 8 мономерных звеньев в количестве менее 2,5 вес. % от веса твердой фазы суспензии.
2. Способ по п.1 , отличающийся тем, что в качестве алкила ис- пользуют бутил, изобутил.
PCT/RU2010/000444 2010-08-12 2010-08-12 Способ обогащения полиминеральных суспензий WO2012021083A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2010/000444 WO2012021083A1 (ru) 2010-08-12 2010-08-12 Способ обогащения полиминеральных суспензий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2010/000444 WO2012021083A1 (ru) 2010-08-12 2010-08-12 Способ обогащения полиминеральных суспензий

Publications (1)

Publication Number Publication Date
WO2012021083A1 true WO2012021083A1 (ru) 2012-02-16

Family

ID=45567855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000444 WO2012021083A1 (ru) 2010-08-12 2010-08-12 Способ обогащения полиминеральных суспензий

Country Status (1)

Country Link
WO (1) WO2012021083A1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1153991A1 (ru) * 1983-12-30 1985-05-07 Сибирский государственный проектный и научно-исследовательский институт цветной металлургии Способ флотации флюоритсодержащих руд
SU1555286A1 (ru) * 1987-06-22 1990-04-07 Брянский технологический институт Способ получени тонкодисперсного мела
RU1808377C (ru) * 1990-11-16 1993-04-15 Московский институт стали и сплавов Способ обогащени минеральной суспензии
JPH08188975A (ja) * 1994-09-10 1996-07-23 Hoechst Ag シリコン塗布紙を再生する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1153991A1 (ru) * 1983-12-30 1985-05-07 Сибирский государственный проектный и научно-исследовательский институт цветной металлургии Способ флотации флюоритсодержащих руд
SU1555286A1 (ru) * 1987-06-22 1990-04-07 Брянский технологический институт Способ получени тонкодисперсного мела
RU1808377C (ru) * 1990-11-16 1993-04-15 Московский институт стали и сплавов Способ обогащени минеральной суспензии
JPH08188975A (ja) * 1994-09-10 1996-07-23 Hoechst Ag シリコン塗布紙を再生する方法

Similar Documents

Publication Publication Date Title
Zhang et al. Systematic review of feldspar beneficiation and its comprehensive application
CA2667933C (en) Method for dispersing and aggregating components of mineral slurries
US6235107B1 (en) Method for separating mixture of finely divided minerals and product thereof
Liu et al. Interaction mechanism of miscible DDA–Kerosene and fine quartz and its effect on the reverse flotation of magnetic separation concentrate
BR112012020336B1 (pt) método para aprimorar a remoção de um material em particular a partir de um minério de sulfeto mineral triturado por um processo de separação por flotação
CN105307774B (zh) 用于分离碳酸钙和石膏的方法
WO2005113687A1 (en) Process and reagent for separating finely divided titaniferrous impurities from kaolin
Eskanlou et al. Phosphatic waste clay: Origin, composition, physicochemical properties, challenges, values and possible remedies–A review
CN110944752A (zh) 使用磁性载体颗粒分离混合物
Ahmed et al. Improvement of Egyptian talc quality for industrial uses by flotation process and leaching
BRPI1104050A2 (pt) Método para processar materiais minerais contendo ilmenita com alto teor de argila e produtos relacionados
WO1999050202A1 (en) Process for removing impurities from kaolin clays
AU2014204543C1 (en) Process for enhancing electrostatic separation in the beneficiation of ores
WO2012021083A1 (ru) Способ обогащения полиминеральных суспензий
RU2401163C1 (ru) Способ обогащения полиминеральных суспензий
RU2388546C1 (ru) Способ извлечения тонкого золота при обогащении золотосодержащих песков россыпных месторождений
BRPI9908873B1 (pt) processo de beneficiamento com floculação seletiva utilizando hidroxamatos e respectivos produtos beneficiados
US10773977B2 (en) Method and treatment system for treating mineral or oil sands tailings
RU2675871C1 (ru) Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента
Abdel-Khalek et al. Impact of cationic-anionic surfactants on selective oil agglomeration of oil shale
JPS626876B2 (ru)
Chukwudi et al. Flocculation of kaolinite clay using natural polymer
Ramirez-Madrid et al. Effect of sodium silicate modified with Fe2+ and Al3+ as dispersant on flotation of molybdenite and chalcopyrite in presence of kaolinite and seawater
US1281018A (en) Process of concentrating ores.
RU2496891C1 (ru) Способ извлечения золота из глинистого рудного и техногенного сырья

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855964

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10855964

Country of ref document: EP

Kind code of ref document: A1