WO2012020656A1 - 粒状金属鉄の製造装置、および粒状金属鉄の製造方法 - Google Patents

粒状金属鉄の製造装置、および粒状金属鉄の製造方法 Download PDF

Info

Publication number
WO2012020656A1
WO2012020656A1 PCT/JP2011/067470 JP2011067470W WO2012020656A1 WO 2012020656 A1 WO2012020656 A1 WO 2012020656A1 JP 2011067470 W JP2011067470 W JP 2011067470W WO 2012020656 A1 WO2012020656 A1 WO 2012020656A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic separator
magnetic
heating furnace
iron
moving hearth
Prior art date
Application number
PCT/JP2011/067470
Other languages
English (en)
French (fr)
Inventor
修 津下
晶一 菊池
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/811,782 priority Critical patent/US20130118307A1/en
Priority to AU2011290340A priority patent/AU2011290340A1/en
Priority to CA2804305A priority patent/CA2804305A1/en
Priority to RU2013110306/02A priority patent/RU2540285C2/ru
Priority to CN2011800361305A priority patent/CN103025895A/zh
Publication of WO2012020656A1 publication Critical patent/WO2012020656A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/08Making pig-iron other than in blast furnaces in hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/06Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces with movable working chambers or hearths, e.g. tiltable, oscillating or describing a composed movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor

Definitions

  • an agglomerate made of a mixture containing an iron oxide source such as iron ore or iron oxide and a reducing agent containing carbon is charged on the hearth of a moving hearth type heating furnace and heated.
  • the present invention relates to an apparatus for producing granular metallic iron by reducing iron oxide in the agglomerate, and a method for producing granular metallic iron.
  • metallic iron A direct reduction iron manufacturing process has been developed.
  • the agglomerate formed from the raw material mixture is placed on the hearth of a moving hearth-type heating furnace, and heated in the furnace by gas heat transfer or radiant heat by a heating burner. Iron oxide is reduced with a carbonaceous reducing agent, and granular metallic iron can be obtained.
  • the granular metallic iron obtained in the moving hearth type heating furnace is sent to a cooler by a feeder (feeder) and cooled (Patent Document 1).
  • the granular metallic iron at the time of charging into the cooler is usually about 900 to 1000 ° C., cooled to about 150 ° C. in the cooler, and then discharged from the cooler.
  • the temperature of the granular metallic iron when it is discharged from the cooler is higher than 150 ° C., it reacts with moisture in the atmosphere and red rust is easily generated on the surface.
  • Patent Document 2 proposes a method for operating a mobile hearth furnace that collects reduced iron having a size suitable for industrial use in a high yield, and reduces the size of the equipment and the frequency of repairing the equipment.
  • a reduction product generated in a mobile hearth furnace and a part or all of the hearth carbon material are discharged by a discharge device and then classified, and a part or all of the carbon material under the sieve is classified. Is described, and the sieving carbon material after the magnetic selection is reused as the hearth carbon material.
  • Patent Document 2 describes performing magnetic separation on the carbon material under the sieve when the reduction product and the furnace discharge carbon material are classified by a screen.
  • the reduced iron remaining on the sieve is recovered as it is as a product.
  • the present inventors examined since the slag etc. were contained on the sieve in addition to reduced iron, it was found that the yield of reduced iron was low in the method described in Patent Document 2.
  • the present invention has been made paying attention to such circumstances, and an object of the present invention is to provide an apparatus capable of producing granular metallic iron in a high yield. Another object of the present invention is to provide a method capable of reusing the floor covering material contained in the discharge from the moving hearth heating furnace without reheating and producing high-temperature granular metallic iron. It is in.
  • the apparatus for producing granular metallic iron according to the present invention that has solved the above-mentioned problems is an agglomerate made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material, and a furnace of a moving hearth type heating furnace.
  • the manufacturing apparatus further includes a path for returning the non-magnetized material selected by the second magnetic separator to the moving hearth type heating furnace.
  • the method for producing granular metallic iron according to the present invention that has solved the above-mentioned problems is a method for producing agglomerates made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material in a furnace of a moving hearth type heating furnace. It is a method for producing granular metallic iron by charging and heating on the floor and reducing the iron oxide in the agglomerate, and the effluent from the moving hearth type heating furnace is 200-650 ° C. with a classifier.
  • the coarse particles obtained by classification are classified into magnetic and non-magnetized materials by a first magnetic separator, and fine particles obtained by classification are magnetized by a second magnetic separator.
  • the main point is that the non-magnetized material is separated into the kimono and the non-magnetized material, and the non-magnetized material sorted by the second magnetic separator is returned to the moving hearth type heating furnace.
  • the magnetic deposits selected by the first magnetic separator and / or the magnetic deposits selected by the second magnetic separator can be used as an iron source by feeding them to a steelmaking furnace.
  • the threshold is preferably 2 to 8 mm in terms of particle diameter.
  • the magnetic separation efficiency can be increased by selecting the coarse particles and fine particles separated by the classifier using an appropriate magnetic separator.
  • the recovery rate can be improved.
  • the discharge from the moving hearth-type heating furnace is classified with a classifier at 200 to 650 ° C., and the coarse and fine particles obtained by classification are classified.
  • the floor covering material contained in the discharge can be returned to the moving hearth-type heating furnace with a high temperature. Accordingly, it is possible to produce granular metallic iron while suppressing energy loss when the flooring material is reused.
  • granular metallic iron can be collect
  • Drawing 1 is a figure for explaining the process at the time of manufacturing granular metallic iron from an agglomerate.
  • the inventors charged an agglomerate using a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material on the hearth of a moving hearth type heating furnace, and heated the agglomerate in the agglomerate.
  • the recovery rate of granular metallic iron is increased, and the flooring material contained in the discharge from the moving hearth heating furnace is regenerated in the moving hearth heating furnace.
  • the apparatus for producing granular metallic iron according to the present invention is characterized in that it further includes a classifier, a first magnetic separator, and a second magnetic separator in addition to the moving hearth type heating furnace.
  • the flow (flow) when manufacturing granular metal iron from an agglomerate using this manufacturing apparatus is demonstrated based on FIG.
  • 1 is a moving hearth type heating furnace
  • 2 is a classifier
  • 3 is a first magnetic separator
  • 4 is a second magnetic separator.
  • the moving hearth furnace 1 and the classifier 2 are the path 101
  • the classifier 2 and the first magnetic separator 3 are the path 102
  • the classifier 2 and the second magnetic separator 4 are the path 103
  • the type heating furnaces 1 are connected to each other through a path 104.
  • 100 is a path for supplying agglomerates to the moving hearth type heating furnace
  • 105 is a path for discharging non-magnetized materials selected by the first magnetic separator 3
  • 106 is selected by the first magnetic separator 3.
  • a path 107 for discharging the magnetized material, and 107 a path for discharging the magnetized material selected by the second magnetic separator 4 respectively.
  • the flow when producing granular metallic iron from the agglomerates is as follows (1) to (5).
  • an agglomerate made from a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged onto the hearth of the moving hearth-type heating furnace 1 from the path 100.
  • the granular metallic iron obtained in the moving hearth-type heating furnace 1 is discharged to the outside of the furnace through the path 101 together with by-product slag and flooring material, and supplied to the classifier 2.
  • the discharge from the moving hearth heating furnace 1 is separated into coarse particles and fine particles.
  • the coarse particles separated by the classifier 2 are supplied to the first magnetic separator 3 through the path 102 and magnetically selected.
  • the fine particles separated by the classifier 2 are supplied to the second magnetic separator 4 through the path 103 to perform magnetic separation.
  • the first and second magnetic separators 3 and 4 separate the discharged particles that have been separated into coarse and fine particles by the classifier 2 and are magnetically selected. It is possible to increase the magnetic separation efficiency than to do.
  • the particle size is not adjusted, the size of the magnetic separation object varies, and thus the mass of the magnetic separation object also varies. Therefore, even if the magnetic selection object contains the same amount of iron, depending on the mass of the magnetic selection object, it may or may not be magnetically attached, and the magnetic separation efficiency decreases.
  • the particle size adjustment of the magnetic separation object is performed before the magnetic separation, the sizes of the magnetic separation object can be made uniform, so that the mass of the magnetic separation object becomes substantially uniform. Therefore, if the magnetic separation conditions are appropriately adjusted on the coarse grain side and the fine grain side, the recovery rate of the granular metallic iron can be improved.
  • the non-magnetized material selected by the second magnetic separator 4 may be returned to the moving hearth heating furnace through the path 104.
  • the magnetic material selected by the second magnetic separator 4 may be supplied to the steel making furnace through the path 107, and the magnetic material selected by the first magnetic separator 3 may be supplied to the steel making furnace through the path 106.
  • the non-magnetized material selected by the first magnetic separator 3 may be discharged through the path 105.
  • iron oxide-containing substance for example, iron ore, iron sand, iron-making dust, non-ferrous smelting residue, iron-making waste, and the like can be used.
  • a carbon-containing material may be used.
  • coal or coke can be used.
  • a binder, an MgO-containing substance, a CaO-containing substance, or the like may be blended as other components.
  • the binder for example, polysaccharides (for example, starch such as wheat flour and corn starch) can be used.
  • MgO-containing substance for example, an MgO-containing substance extracted from MgO powder, natural ore, seawater, etc., dolomite, magnesium carbonate (MgCO 3 ), or the like can be used.
  • the CaO-containing substance for example, quick lime (CaO) or limestone (main component is CaCO 3 ) can be used.
  • the shape of the agglomerate is not particularly limited, and may be, for example, a pellet shape or a briquette shape.
  • the agglomerates are charged on the hearth of the moving hearth heating furnace 1 through the path 100.
  • the moving hearth type heating furnace 1 is a heating furnace in which the hearth moves within the furnace like a belt conveyor, and specifically, a rotary hearth furnace can be exemplified.
  • the rotary hearth furnace is designed in a circular shape (donut shape) so that the start point and end point of the hearth are in the same position, and the agglomerate supplied on the hearth is It is heated and reduced during one round of production to produce granular metallic iron. Therefore, the charging means for supplying the agglomerate into the furnace is arranged on the most upstream side in the rotation direction, and the most downstream side in the rotation direction (because of the rotating structure, it is actually just upstream of the charging means. A discharge means is provided on the side.
  • Conditions for heating and reducing the iron oxide in the agglomerate in the furnace are not particularly limited, and known conditions may be adopted.
  • the agglomerate may be reduced by heating to 1200 to 1500 ° C. If the burner is used for heating in the furnace and the combustion conditions of the burner are controlled, the temperature of the agglomerate can be adjusted.
  • a carbon material Prior to supplying the agglomerate to the hearth, it is preferable to lay a carbon material in advance on the hearth as a flooring material.
  • the flooring material acts as a hearth protection material and becomes a carbon supply source when the carbon contained in the agglomerate is insufficient.
  • the thickness of the floor covering material is not particularly limited, but is preferably 3 to 30 mm, for example.
  • the carbon material used as the floor covering material those exemplified as the carbonaceous reducing agent can be used. It is recommended to use a carbon material having a particle diameter of about 0.5 to 3.0 mm.
  • the said carbon material contains fine carbon, there exists a possibility of catching fire in the oxygen containing atmosphere of a high temperature state. Therefore, it is necessary to control the oxygen concentration in the atmosphere in the facility or apparatus that handles substances including carbonaceous materials.
  • classifier 2 a known one can be used, and for example, a screen or an air classifier can be used.
  • the threshold value when separating into coarse particles and fine particles in the classifier 2 for example, an arbitrary particle diameter may be adopted from the range of 2 to 8 mm in particle diameter.
  • the threshold value is a reference value when classifying into coarse particles and fine particles. For example, when the threshold value is set to 3 mm, particles having a diameter of 3 mm have a mass ratio between the coarse particles side and the fine particles side. It means a value separated so as to be 1: 1.
  • the classification temperature is 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
  • the coarse and fine particles obtained by classification at a high temperature exceeding 650 ° C. are supplied to the magnetic separator at a high temperature, they cannot be magnetically selected and must be cooled for magnetic selection, resulting in wasted energy.
  • the classification temperature is 650 ° C. or lower, preferably 630 ° C. or lower, more preferably 610 ° C. or lower.
  • the temperature from the moving hearth type heating furnace 1 is 200 to 650 ° C., it may be supplied to the classifier 2 as it is. Since the temperature is about 1000 ° C., a cooler (not shown) is provided on the path 101 connecting the moving hearth-type heating furnace 1 and the classifier 2 to cool the discharge to a temperature of 200 to 650 ° C.
  • cooler for example, a rolling cooler, a vibration cooler, a pan conveyor cooler, or the like can be used.
  • granular metallic iron can be selected as a magnetic deposit
  • slag can be selected as a non-magnetic deposit
  • granular metal iron and iron-rich slag can be selected as magnetic deposits
  • flooring material, slag, or slag-rich granular metal iron can be selected as non-magnetic deposits.
  • the magnetic separation temperature is preferably 650 ° C. or less, more preferably 600 ° C. or less, and still more preferably 550 ° C. or less.
  • the lower limit of the magnetic separation temperature be about 200 ° C. from the viewpoint of reducing energy loss when reusing a magnetic article or non-magnetic article selected by magnetic separation.
  • the magnetic separation temperature is preferably 300 ° C. or higher.
  • magnets used in the first magnetic separator 3 and the second magnetic separator 4 known magnets can be used.
  • Al—Ni—Co-based magnets and Sm—Co-based magnets can be suitably used because there is little decrease in magnetism even at high temperatures.
  • the non-magnetized material selected by the second magnetic separator 4 can be reused by returning it to the moving hearth type heating furnace 1 through the path 104.
  • the temperature of the non-magnetized material selected by the second magnetic separator 4 can be increased. Therefore, since the non-magnetized material can be supplied to the moving hearth type heating furnace 1 at a high temperature, energy loss can be reduced.
  • the magnetic deposit selected by the second magnetic separator 4 can be supplied to the steelmaking furnace through the path 107 and used as an iron source.
  • the magnetic deposit selected by the first magnetic separator 3 can be supplied to the steelmaking furnace through the path 106 and used as an iron source.
  • the magnetized materials selected by the second magnetic separator 4 and the first magnetic separator 3 are also described in the above. Similar to the non-magnetic product selected by the two-magnetic separator 4, it can be reused while maintaining a high temperature. Therefore, it is not necessary to reheat the magnetic deposit before supplying it to the steelmaking furnace, so that energy loss can be reduced.
  • An example of the steelmaking furnace that supplies the magnetic deposit is an electric furnace.
  • non-magnetized materials selected by the first magnetic separator 3 are slag, so they can be discarded or reused as roadbed materials, for example.
  • the coarse particles and fine particles separated by the classifier can be selected by appropriate magnetic separators under appropriate conditions. Therefore, the magnetic separation efficiency can be increased and the recovery rate of granular metallic iron can be improved.
  • the discharge from the moving hearth type heating furnace is classified into coarse and fine particles at 200 to 650 ° C. with a classifier, and the coarse and fine particles obtained by classification are classified.
  • the coarse and fine particles obtained by classification are classified.
  • the manufacturing method of this invention since it becomes possible to transfer the granular metal iron contained in the said discharge
  • an agglomerate made from a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged on the hearth of a moving hearth-type heating furnace and heated, It is possible to improve the recovery rate of granular metallic iron when reducing granular iron oxide to produce granular metallic iron.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造する装置であって、当該装置は、前記移動炉床式加熱炉の他、更に分級機、第一磁選機、および第二磁選機を備えており、且つ前記移動炉床式加熱炉からの排出物を前記分級機へ供給する経路、前記分級機で分けられた粗粒を前記第一磁選機へ供給する経路、および前記分級機で分けられた細粒を前記第二磁選機へ供給する経路を備えている製造装置。

Description

粒状金属鉄の製造装置、および粒状金属鉄の製造方法
 本発明は、鉄鉱石や酸化鉄等の酸化鉄源と炭素を含む還元剤とを含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状の金属鉄を製造する装置、および粒状金属鉄を製造する方法に関するものである。
 鉄鉱石や酸化鉄等の酸化鉄源(以下、酸化鉄含有物質ということがある。)と炭素を含む還元剤(以下、炭素質還元剤ということがある。)を含む原料混合物から、金属鉄を製造する直接還元製鉄法が開発されている。この製鉄法では、上記原料混合物を成形した塊成物を移動炉床式加熱炉の炉床上に装入し、炉内で加熱バーナーによるガス伝熱や輻射熱で加熱することによって塊成物中の酸化鉄が炭素質還元剤で還元され、粒状の金属鉄を得ることができる。
 移動炉床式加熱炉で得られた粒状金属鉄は、供給機(フィーダー)で冷却器へ送られ、冷却される(特許文献1)。冷却器に装入される時点での粒状金属鉄は、通常、900~1000℃程度であり、冷却器内で150℃程度まで冷却された後、冷却器から排出される。冷却器から排出されるときの粒状金属鉄の温度が150℃よりも高い場合は、大気中の水分と反応して表面に赤錆が発生し易くなる。
 ところで、粒状金属鉄が生成する際には、スラグが副生する。また、上記移動炉床式加熱炉の炉床上には、炉床を溶融スラグから保護するために、通常、炭材が床敷材として敷かれている。そのため、上記粒状金属鉄は、スラグと床敷材が混在した状態で移動炉床式加熱炉から排出される。従って移動炉床式加熱炉からの排出物から、粒状金属鉄のみを分離回収するには、磁力選別(磁選)や篩分けを行なう必要がある。
 工業的な利用に適した大きさの還元鉄を高収率で回収し、且つ設備の小型化と設備の補修頻度が少ない移動型炉床炉の操業方法が特許文献2に提案されている。この文献には、移動型炉床炉で生成させた還元生成物および炉床炭材の一部または全部を排出装置で排出した後にこれらを分級し、篩下の炭材についてその一部または全部を磁力選別し、その磁力選別後の篩下炭材を上記炉床炭材として再利用することが記載されている。
特表2009-530501号公報 特開2008-189972号公報
 上記特許文献1に記載されているように、移動炉床式加熱炉からの排出物を150℃程度まで冷却すると、排出物に混合されている床敷材も150℃程度に冷却される。一方、上記移動炉床式加熱炉の炉内は、1200~1500℃程度に加熱されている。そのため、冷却された床敷材を移動炉床式加熱炉へ返送して再利用すると、炉内の温度を低下させる。従って、炉内の温度を低下させずに床敷材を再利用するには、床敷材を再加熱しなければならない。また、上記排出物を冷却すると、粒状金属鉄の有する顕熱を有効利用できない。
 また、上記特許文献2には、還元生成物および炉排出炭材をスクリーンで分級したときの篩下の炭材に対して磁選を行うことについて記載されている。しかし、篩上に残った還元鉄は、製品としてそのまま回収されている。ところが、本発明者らが検討したところ篩上には還元鉄以外にスラグ等が含まれるため、特許文献2に記載の方法では、還元鉄の収率が低いことが判明した。
 本発明は、このような事情に着目して成されたものであり、その目的は、粒状金属鉄を高収率で製造できる装置を提供することにある。また、本発明の他の目的は、移動炉床式加熱炉からの排出物に含まれる床敷材を再加熱することなく再利用でき、しかも高温の粒状金属鉄を製造できる方法を提供することにある。
 上記課題を解決することのできた本発明に係る粒状金属鉄の製造装置とは、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造する装置であり、当該装置は、前記移動炉床式加熱炉の他、更に分級機、第一磁選機、および第二磁選機を備えており、且つ前記移動炉床式加熱炉からの排出物を前記分級機へ供給する経路、前記分級機で分けられた粗粒を前記第一磁選機へ供給する経路、および前記分級機で分けられた細粒を前記第二磁選機へ供給する経路を備えている点に要旨を有している。
 上記製造装置は、更に、前記第二磁選機で選別された非磁着物を前記移動炉床式加熱炉へ返送する経路を備えていることが好ましい。
 上記課題を解決することのできた本発明に係る粒状金属鉄の製造方法とは、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造する方法であり、前記移動炉床式加熱炉からの排出物を分級機で200~650℃で粗粒と細粒に分級し、分級して得られた粗粒を第一磁選機で磁着物と非磁着物に分別し、且つ分級して得られた細粒を第二磁選機で磁着物と非磁着物に分別し、前記第二磁選機で選別された非磁着物を前記移動炉床式加熱炉へ返送する点に要旨を有している。
 前記第一磁選機で選別された磁着物、および/または前記第二磁選機で選別された磁着物は、製鋼炉へ送給することによって鉄源として利用できる。前記移動炉床式加熱炉からの排出物を分級機で粗粒と細粒に分級するにあたり、閾値は粒子直径で2~8mmとすることが好ましい。
 本発明に係る粒状金属鉄の製造装置によれば、分級機で分けられた粗粒と細粒を、それぞれ適切な磁選機で選別することによって磁選効率を高めることができるため、粒状金属鉄の回収率を向上できる。
 また、本発明に係る粒状金属鉄の製造方法によれば、移動炉床式加熱炉からの排出物を分級機で200~650℃で分級し、分級して得られた粗粒と細粒を、別々にそれぞれ適切な磁選機で選別することによって、上記排出物に含まれる床敷材を高温のまま移動炉床式加熱炉へ返送することができる。従って床敷材を再利用したときのエネルギー損失を抑えつつ粒状金属鉄を製造できる。また、上記温度で分級することによって粒状金属鉄を高温のまま回収できるため、粒状金属鉄の有する顕熱を有効利用できる。
図1は、塊成物から粒状金属鉄を製造するときの工程を説明するための図である。
 本発明者らは、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造するにあたり、粒状金属鉄の回収率を高めること、および移動炉床式加熱炉からの排出物に含まれる床敷材を移動炉床式加熱炉で再利用するときのエネルギー損失を抑えたうえで粒状金属鉄を製造することを目指して鋭意検討を重ねてきた。その結果、移動炉床式加熱炉からの排出物をそのまま磁選機にかけ、粒状金属鉄を選別しようとすると、磁選機のドラムに細粒が付着し、粗粒の回収率が低下することが明らかとなった。そこで移動炉床式加熱炉からの排出物を分級機で粗粒と細粒に分け、得られた粗粒と細粒を、別々にそれぞれ適切な磁選機で選別すれば、移動炉床式加熱炉からの排出物を粗粒と細粒に分級せずに磁選するときよりも磁選効率を高めることができるため、粒状金属鉄の回収率を向上できること、また上記排出物の分級を200~650℃で行なえば、床敷材を再利用するときのエネルギー損失を抑えたうえで粒状金属鉄を製造できること、および得られた粒状金属鉄は高温のままであるため顕熱を有効利用できることを見出し、本発明を完成した。以下、本発明について説明する。
 本発明に係る粒状金属鉄の製造装置は、移動炉床式加熱炉の他、更に分級機、第一磁選機、および第二磁選機を備えているところに特徴を有している。この製造装置を用い、塊成物から粒状金属鉄を製造するときの流れ(フロー)を図1に基づいて説明する。
 図1中、1は移動炉床式加熱炉、2は分級機、3は第一磁選機、4は第二磁選機を夫々示している。移動炉床式加熱炉1と分級機2は経路101、分級機2と第一磁選機3は経路102、分級機2と第二磁選機4は経路103、第二磁選機4と移動炉床式加熱炉1は経路104で夫々接続されている。図1において100は移動炉床式加熱炉へ塊成物を供給する経路、105は第一磁選機3で選別された非磁着物を排出する経路、106は第一磁選機3で選別された磁着物を排出する経路、107は第二磁選機4で選別された磁着物を排出する経路を夫々示している。
 上記塊成物から粒状金属鉄を製造するときのフローは、下記(1)~(5)の通りである。
 (1)まず、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を経路100から移動炉床式加熱炉1の炉床上に装入する。
 (2)次に、移動炉床式加熱炉1の炉床上に装入した上記塊成物を炉内で加熱することによって、塊成物中の酸化鉄を還元し、粒状金属鉄を製造する。
 上記粒状金属鉄が生成する際には、上記混合物に含まれる酸化物由来のスラグが副生する。また、上記炉床上には、炉床を溶融スラグから保護すると共に、上記塊成物に含まれる酸化鉄の還元を促進するために、通常、床敷材として炭材が敷かれる。
 (3)上記移動炉床式加熱炉1で得られた粒状金属鉄は、副生するスラグや床敷材と共に経路101を通して炉外へ排出され、分級機2へ供給される。上記分級機2では、移動炉床式加熱炉1からの排出物を粗粒と細粒に分離する。
 (4)上記分級機2で分けられた粗粒は、経路102を通して第一磁選機3へ供給し、磁選を行なう。一方、上記分級機2で分けられた細粒は、経路103を通して第二磁選機4へ供給し、磁選を行なう。第一磁選機3と第二磁選機4を用いて磁選対象物に応じた適切な条件で選別することによって磁選効率(磁選精度)を高めることができ、粒状金属鉄の回収率を向上させることができる。
 即ち、上記分級機2で粗粒と細粒に分離して粒度調整された排出物を第一磁選機3と第二磁選機4で夫々磁選することによって、粒度調整していない排出物を磁選するよりも磁選効率を高めることができる。粒度調整していない場合は、磁選対象物の大きさにバラツキが生じるため、磁選対象物の質量にもバラツキが生じる。そのため、磁選対象物に同量の鉄が含まれていても、磁選対象物の質量によっては磁着するときと磁着しないときがあり、磁選効率が低下する。これに対し、磁選を行う前に磁選対象物の粒度調整を行えば、磁選対象物の大きさを揃えることができるため、磁選対象物の質量もほぼ均一となる。そのため、粗粒側と細粒側で磁選条件を適切に調整すれば、粒状金属鉄の回収率を向上させることができる。
 (5)第二磁選機4で選別された非磁着物は、経路104を通して上記移動炉床式加熱炉へ返送すればよい。また、第二磁選機4で選別された磁着物は経路107を通して製鋼炉へ供給すればよく、第一磁選機3で選別された磁着物は経路106を通して製鋼炉へ供給すればよい。第一磁選機3で選別された非磁着物は経路105を通して排出すればよい。
 以下、上記(1)~(5)のフローについて詳細に説明する。
 (1)上記酸化鉄含有物質としては、例えば、鉄鉱石、砂鉄、製鉄ダスト、非鉄製錬残渣、製鉄廃棄物などを用いることができる。
 上記炭素質還元剤としては、炭素含有物質を用いればよく、例えば、石炭やコークスなどを用いることができる。
 上記酸化鉄含有物質と上記炭素質還元剤を含む混合物には、その他の成分として、バインダーやMgO含有物質、CaO含有物質などを配合してもよい。バインダーとしては、例えば、多糖類(例えば、小麦粉やコーンスターチ等の澱粉など)などを用いることができる。MgO含有物質としては、例えば、MgO粉末や天然鉱石や海水などから抽出されるMgO含有物質、或いはドロマイトや炭酸マグネシウム(MgCO3)などを用いることができる。CaO含有物質としては、例えば、生石灰(CaO)や石灰石(主成分はCaCO3)などを用いることができる。
 上記塊成物の形状は特に限定されず、例えば、ペレット状やブリケット状などであればよい。
 上記塊成物は、経路100を通して移動炉床式加熱炉1の炉床上に装入される。
 上記移動炉床式加熱炉1とは、炉床がベルトコンベアのように炉内を移動する加熱炉であり、具体的には、回転炉床炉が例示できる。回転炉床炉は、炉床の始点と終点が同じ位置になるように、炉床の外観形状が円形(ドーナツ状)に設計されており、炉床上に供給された塊成物は、炉内を一周する間に加熱還元されて粒状金属鉄を生成する。従って、回転方向の最上流側には塊成物を炉内に供給する装入手段が配置されると共に、回転方向の最下流側(回転構造であるため、実際には装入手段の直上流側になる)には排出手段が設けられる。
 (2)上記塊成物中の酸化鉄を炉内で加熱還元するときの条件は特に限定されず、公知の条件を採用すればよい。例えば、上記塊成物が1200~1500℃となるように加熱して還元すればよい。炉内の加熱には、バーナーを用い、該バーナーの燃焼条件を制御すれば、塊成物の温度を調整できる。
 上記塊成物を炉床上に供給するに先立って、炉床上には、床敷材として炭材を予め敷いておくことが好ましい。床敷材は、炉床保護材として作用すると共に、塊成物に含まれる炭素が不足したときの炭素供給源となる。
 上記床敷材の厚みは特に限定されないが、例えば、3~30mmとすることが好ましい。上記床敷材として用いる炭材としては、上記炭素質還元剤として例示したものを用いることができる。上記炭材としては、粒子直径が0.5~3.0mm程度のものを用いることが推奨される。なお、上記炭材は、微粒炭素を含んでいるため、高温状態の酸素含有雰囲気下では発火する可能性がある。従って炭材を含む物質を扱う設備や装置内の雰囲気の酸素濃度を制御する必要がある。
 (3)上記分級機2としては、公知のものを用いることができ、例えば、篩(スクリーン)や気流分級機などを用いることができる。
 上記分級機2において粗粒と細粒に分離するときの閾値は、例えば、粒子直径で2~8mmの範囲から任意の粒子直径を採用すればよい。閾値とは、粗粒と細粒に分級するときの基準となる値であり、例えば、閾値を3mmに設定した場合には、直径が3mmの粒子が粗粒側と細粒側に質量比で1:1となるように分離される値を意味する。
 上記移動炉床式加熱炉1からの排出物の分級は、200~650℃で行なう必要がある。分級温度が低過ぎると、下工程における第二磁選機4で選別される非磁着物の温度が低くなるため、この非磁着物を移動炉床式加熱炉1へ返送すると炉内の温度が低下する。従ってエネルギー効率が悪くなる。よって分級温度は200℃以上、好ましくは250℃以上、より好ましくは300℃以上とする。しかし650℃を超える高温で分級して得られた粗粒と細粒を高温のまま磁選機へ供給しても磁選できないため、磁選するには冷却しなければならず、エネルギーの無駄となる。即ち、鉄のキュリー点は760℃であるため、この温度を超えると急激に磁性を失うため、磁選できなくなる。そのため高温で分級しても磁選前に冷却しなければならない。よって分級温度は650℃以下、好ましくは630℃以下、より好ましくは610℃以下とする。
 ところで、上記移動炉床式加熱炉1からの排出物は、その温度が200~650℃であれば、そのまま分級機2へ供給してもよいが、当該排出物の温度は、通常、900~1000℃程度になっているため、移動炉床式加熱炉1と分級機2を結ぶ経路101上に冷却器(図示しない)を設けて上記排出物を、200~650℃の温度に冷却する。
 上記冷却器としては、例えば、転動式の冷却器、振動式の冷却器、パンコンベア式の冷却器などを用いることができる。
 (4)上記第一磁選機3では、磁着物として粒状金属鉄を選別でき、非磁着物としてスラグを選別できる。一方、上記第二磁選機4では、磁着物として粒状金属鉄や鉄リッチなスラグを選別でき、非磁着物として床敷材、スラグ、或いはスラグリッチな粒状金属鉄を選別できる。
 上記第一磁選機3および上記第二磁選機4では、650℃以下で磁選を行なうことが推奨される。磁選温度が650℃を超えると、上述したように、鉄の磁性が低下するため、磁選効率が低下する。従って磁選温度は650℃以下とすることが好ましく、より好ましくは600℃以下、更に好ましくは550℃以下である。なお、磁選温度の下限は、磁選によって選別された磁着物や非磁着物を再利用するときのエネルギー損失を低減する観点から200℃程度とすることが推奨される。磁選温度は、好ましくは300℃以上である。
 上記第一磁選機3および第二磁選機4で用いる磁石は、公知のものを用いることができ、例えば、Al-Ni-Co系磁石、Sm-Co系磁石、Nd-Fe-B系磁石などが挙げられる。特にAl-Ni-Co系磁石およびSm-Co系磁石は、高温でも磁性の低下が少ないため、好適に用いることができる。なお、上記第一磁選機3および第二磁選機4で用いる磁石は、必要に応じて、断熱したり、冷却して磁性が低下しないように保護することが推奨される。
 (5)第二磁選機4で選別された非磁着物は、経路104を通して上記移動炉床式加熱炉1へ返送することによって再利用できる。このとき、本発明では、上記分級機2における分級を200~650℃の高温で行なっているため、第二磁選機4で選別してられる非磁着物の温度を高めることができる。従って高温のまま非磁着物を上記移動炉床式加熱炉1へ供給できるため、エネルギー損失を低減できる。一方、第二磁選機4で選別された磁着物は、経路107を通して製鋼炉へ供給し、鉄源として利用することができる。また、第一磁選機3で選別された磁着物は、経路106を通して製鋼炉へ供給し、鉄源として利用することができる。このとき、本発明では、上記分級機2における分級を200~650℃の高温で行なっているため、上記第二磁選機4および上記第一磁選機3で選別された磁着物についても、上記第二磁選機4で選別された非磁着物と同様に、高温を維持したまま再利用できる。従って製鋼炉へ供給する前に上記磁着物を再加熱する必要がないため、エネルギー損失の低減が可能となる。
 例えば、650℃の粒状金属鉄と25℃の粒状金属鉄の差は、粒状金属鉄の比熱を0.17kcal/kgとすると、下記式に示されるように0.11Gcalとなる。
0.17×1000×(650-25)=0.11Gcal
  0.11Gcalを顕熱に換算すると、粒状金属鉄1トンあたり、130kWhとなる。従って磁着物を25℃に冷却してから製鋼炉へ供給するよりも、650℃のまま製鋼炉へ供給することによって、顕熱を有効利用できる。
 上記磁着物を供給する製鋼炉としては、例えば、電気炉が挙げられる。
 第一磁選機3で選別された非磁着物は、その殆どがスラグであるため、廃棄するか、例えば、路盤材として再利用すればよい。
 以上の通り、本発明の製造装置によれば、分級機で分けられた粗粒と細粒を、それぞれ適切な磁選機で、適切な条件で選別できる。従って、磁選効率を高めることができ、粒状金属鉄の回収率を向上できる。また、本発明の製造方法によれば、移動炉床式加熱炉からの排出物を分級機で200~650℃で粗粒と細粒に分級し、分級して得られた粗粒と細粒を、別々にそれぞれ適切な磁選機で、適切な条件で選別しているため、上記排出物に含まれる床敷材を高温のまま移動炉床式加熱炉へ返送することが可能となる。従って、床敷材を再利用したときのエネルギー損失を抑えつつ粒状金属鉄を製造できる。また、本発明の製造方法によれば、上記排出物に含まれる粒状金属鉄を高温のまま製鋼炉へ移送することが可能となるため、粒状金属鉄の有する顕熱を有効利用できる。
 本発明によれば、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造する際の粒状金属鉄の回収率を向上させることができる。

Claims (6)

  1.  酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造する装置であって、
     当該装置は、前記移動炉床式加熱炉の他、更に分級機、第一磁選機、および第二磁選機を備えており、且つ
     前記移動炉床式加熱炉からの排出物を前記分級機へ供給する経路、
     前記分級機で分けられた粗粒を前記第一磁選機へ供給する経路、および
     前記分級機で分けられた細粒を前記第二磁選機へ供給する経路
    を備えていることを特徴とする粒状金属鉄の製造装置。
  2.  更に、前記第二磁選機で選別された非磁着物を前記移動炉床式加熱炉へ返送する経路を備えている請求項1に記載の製造装置。
  3.  酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して粒状金属鉄を製造する方法であって、
     前記移動炉床式加熱炉からの排出物を分級機で200~650℃で粗粒と細粒に分級し、
     分級して得られた粗粒を第一磁選機で磁着物と非磁着物に分別し、且つ
     分級して得られた細粒を第二磁選機で磁着物と非磁着物に分別し、
     前記第二磁選機で選別された非磁着物を前記移動炉床式加熱炉へ返送することを特徴とする粒状金属鉄の製造方法。
  4.  前記第一磁選機で選別された磁着物を製鋼炉へ送給する請求項3に記載の製造方法。
  5.  前記第二磁選機で選別された磁着物を製鋼炉へ送給する請求項3に記載の製造方法。
  6.  前記移動炉床式加熱炉からの排出物を分級機で粗粒と細粒に分級するにあたり、閾値を粒子直径で2~8mmとする請求項3~5のいずれかに記載の製造方法。
PCT/JP2011/067470 2010-08-09 2011-07-29 粒状金属鉄の製造装置、および粒状金属鉄の製造方法 WO2012020656A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/811,782 US20130118307A1 (en) 2010-08-09 2011-07-29 Device for producing granular metal iron and process for producing granular metal iron
AU2011290340A AU2011290340A1 (en) 2010-08-09 2011-07-29 Device for production of granular metal iron, and process for production of granular metal iron
CA2804305A CA2804305A1 (en) 2010-08-09 2011-07-29 Device for producing granular metal iron and process for producing granular metal iron
RU2013110306/02A RU2540285C2 (ru) 2010-08-09 2011-07-29 Устройство для получения гранулированного металлического железа и способ получения гранулированного металлического железа
CN2011800361305A CN103025895A (zh) 2010-08-09 2011-07-29 粒状金属铁的制造装置和粒状金属铁的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010178961A JP5406803B2 (ja) 2010-08-09 2010-08-09 粒状金属鉄の製造装置、および粒状金属鉄の製造方法
JP2010-178961 2010-08-09

Publications (1)

Publication Number Publication Date
WO2012020656A1 true WO2012020656A1 (ja) 2012-02-16

Family

ID=45567625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067470 WO2012020656A1 (ja) 2010-08-09 2011-07-29 粒状金属鉄の製造装置、および粒状金属鉄の製造方法

Country Status (7)

Country Link
US (1) US20130118307A1 (ja)
JP (1) JP5406803B2 (ja)
CN (1) CN103025895A (ja)
AU (1) AU2011290340A1 (ja)
CA (1) CA2804305A1 (ja)
RU (1) RU2540285C2 (ja)
WO (1) WO2012020656A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220612A (ja) * 2000-10-31 2002-08-09 Kawasaki Steel Corp 移動型炉床炉における生成物の排出方法およびその装置
JP2002363624A (ja) * 2001-06-13 2002-12-18 Mitsubishi Heavy Ind Ltd 還元鉄製造方法及び装置
JP2003213312A (ja) * 2001-11-12 2003-07-30 Kobe Steel Ltd 金属鉄の製法
JP2006272246A (ja) * 2005-03-30 2006-10-12 Sumitomo Metal Ind Ltd スラグ中の粒鉄回収方法
JP2008189972A (ja) * 2007-02-02 2008-08-21 Jfe Steel Kk 移動型炉床炉の操業方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617256A (en) * 1968-02-28 1971-11-02 Fmc Corp Process for simultaneously producing powdered iron and active carbon
EP1049190A4 (en) * 1998-10-27 2005-05-25 Mitsui Mining & Smelting Co METHOD AND SYSTEM FOR RECOVERING RECYCLABLE METALS FROM A USED STORAGE BATTERY
JP4757982B2 (ja) * 2000-06-28 2011-08-24 株式会社神戸製鋼所 粒状金属鉄の歩留まり向上方法
RU2222619C2 (ru) * 2000-07-04 2004-01-27 Промисинг Фьюче Корпорэйшн Способ переработки отвальных металлургических шлаков
US20020053307A1 (en) * 2000-10-31 2002-05-09 Natsuo Ishiwata Method for discharging reduced product from a moveable-hearth furnace and a discharging device
JP4167101B2 (ja) * 2003-03-20 2008-10-15 株式会社神戸製鋼所 粒状金属鉄の製法
RU2370318C1 (ru) * 2008-01-10 2009-10-20 Научно-Производственная Фирма "Продэкология" Способ обогащения гематитовых руд

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220612A (ja) * 2000-10-31 2002-08-09 Kawasaki Steel Corp 移動型炉床炉における生成物の排出方法およびその装置
JP2002363624A (ja) * 2001-06-13 2002-12-18 Mitsubishi Heavy Ind Ltd 還元鉄製造方法及び装置
JP2003213312A (ja) * 2001-11-12 2003-07-30 Kobe Steel Ltd 金属鉄の製法
JP2006272246A (ja) * 2005-03-30 2006-10-12 Sumitomo Metal Ind Ltd スラグ中の粒鉄回収方法
JP2008189972A (ja) * 2007-02-02 2008-08-21 Jfe Steel Kk 移動型炉床炉の操業方法

Also Published As

Publication number Publication date
RU2540285C2 (ru) 2015-02-10
US20130118307A1 (en) 2013-05-16
JP2012036466A (ja) 2012-02-23
AU2011290340A1 (en) 2013-03-07
CN103025895A (zh) 2013-04-03
RU2013110306A (ru) 2014-09-20
CA2804305A1 (en) 2012-02-16
JP5406803B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP6228519B2 (ja) 金属鉄の製造方法
US20130098202A1 (en) Process for producing molten steel using granular metallic iron
JP5705726B2 (ja) 非か焼マンガン鉱石からマンガンペレットを製造する方法およびこの方法により得られた凝集物
US10144981B2 (en) Process for manufacturing reduced iron agglomerates
WO2015174450A1 (ja) 粒状金属鉄の製造方法
CA2831461C (en) Use of bimodal carbon distribution in compacts for producing metallic iron nodules
EP1445336A1 (en) Method for producing metallic iron
WO2014129282A1 (ja) 還元鉄の製造方法
JP5406803B2 (ja) 粒状金属鉄の製造装置、および粒状金属鉄の製造方法
JP2014043646A (ja) 金属鉄の製造方法
JP2009041107A (ja) 粒状金属の製法
JP6235439B2 (ja) 粒状金属鉄の製造方法
US20150292055A1 (en) Method for manufacturing reduced iron
US10017836B2 (en) Method for producing reduced iron
JP2015101740A (ja) 還元鉄の製造方法
JP2015196900A (ja) 還元鉄の製造方法
JP6250482B2 (ja) 粒状金属鉄の製造方法
CN116121531A (zh) 高硅酸铁固废渣提取金属铁的装置和方法
JPH09310128A (ja) 含油スラッジの処理方法
JP2015074809A (ja) 粒状金属鉄の製造方法
WO1999051783A1 (en) Method and apparatus for producing molten iron from iron oxides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036130.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2804305

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13811782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011290340

Country of ref document: AU

Date of ref document: 20110729

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013110306

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11816322

Country of ref document: EP

Kind code of ref document: A1