WO2012020511A1 - 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法 - Google Patents

加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012020511A1
WO2012020511A1 PCT/JP2010/063949 JP2010063949W WO2012020511A1 WO 2012020511 A1 WO2012020511 A1 WO 2012020511A1 JP 2010063949 W JP2010063949 W JP 2010063949W WO 2012020511 A1 WO2012020511 A1 WO 2012020511A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
impact resistance
temperature
workability
Prior art date
Application number
PCT/JP2010/063949
Other languages
English (en)
French (fr)
Inventor
中垣内達也
松岡才二
金子真次郎
川崎由康
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2010/063949 priority Critical patent/WO2012020511A1/ja
Priority to US13/816,561 priority patent/US20130133792A1/en
Priority to KR1020137003735A priority patent/KR20130036763A/ko
Priority to MX2013001456A priority patent/MX2013001456A/es
Priority to EP10855912.1A priority patent/EP2604715B1/en
Priority to CA2805834A priority patent/CA2805834C/en
Priority to CN2010800685780A priority patent/CN103069040A/zh
Publication of WO2012020511A1 publication Critical patent/WO2012020511A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet excellent in formability for skeletal members and suspension members mainly used in the automotive industry and a method for producing the same.
  • Patent Document 1 discloses a method for producing a high-strength steel sheet excellent in workability that secures retained austenite and achieves high ductility by adding a large amount of Si.
  • these DP steels and TRIP steels are excellent in elongation characteristics, there is a problem that the hole expandability is inferior.
  • Hole expansibility is an index indicating workability when a processed hole is expanded to form a flange, and is an important characteristic required for high-strength steel sheets together with elongation characteristics.
  • Patent Document 2 discloses a technique for improving the hole expandability by annealing and soaking, followed by quenching and tempering to obtain a composite structure of ferrite and tempered martensite. ing.
  • Patent Document 2 discloses a technique for improving the hole expandability by annealing and soaking, followed by quenching and tempering to obtain a composite structure of ferrite and tempered martensite. ing.
  • Such techniques can provide high hole expansibility, low elongation is a problem.
  • the present invention has been made paying attention to the above-mentioned problems, and an object of the present invention is to provide a high-strength cold-rolled steel sheet excellent in ductility and stretch flangeability, and a method for producing the same.
  • the present inventors have conducted earnest research from the viewpoint of the composition and microstructure of the steel sheet.
  • the alloy elements are appropriately adjusted, and when cooling from the soaking temperature in the annealing process, the alloy element is strongly cooled to a temperature range of 150 to 350 ° C., and then reheated, whereby the ferrite is 20% or more in area ratio, It was found that a structure containing 10 to 60% tempered martensite and 3 to 15% residual austenite at a volume ratio was obtained, and high ductility and stretch flangeability became possible.
  • both high ductility and high stretch flangeability can be achieved.
  • the details of why high stretch flangeability is possible even in the presence of retained austenite are unclear, but the coexistence of retained austenite with tempered martensite reduces the adverse effect of retained austenite on stretch flangeability. it is conceivable that.
  • the impact resistance characteristics can be improved in addition to high workability by making the steel sheet structure having an average crystal grain size of 3 ⁇ m or less of the low temperature transformation phase composed of martensite, tempered martensite and retained austenite. .
  • the present invention has been made based on the above-described findings, and the gist thereof is as follows.
  • 1st invention is the mass%, C: 0.05-0.3%, Si: 0.3-2.5%, Mn: 0.5-3.5%, P: 0.003-0 100%, S: 0.02% or less, Al: 0.010 to 0.5%, the balance is iron and inevitable impurities, and ferrite is 20% or more in area ratio, tempered martensite A high-strength cold-rolled steel sheet having a structure containing 10 to 60%, martensite 0 to 10%, and a volume ratio of 3 to 15% retained austenite and excellent workability and impact resistance.
  • the second invention is a highly excellent workability and impact resistance according to the first invention having a structure in which the average crystal grain size of the low-temperature transformation phase comprising the martensite, tempered martensite, and retained austenite is 3 ⁇ m or less. It is a strength cold-rolled steel sheet.
  • the third invention further includes, in mass%, Cr: 0.005 to 2.00%, Mo: 0.005 to 2.00%, V: 0.005 to 2.00%, Ni: 0.005.
  • the processing according to the first invention or the second invention characterized by containing one or more elements selected from -2.00% and Cu: 0.005-2.00% It is a high-strength cold-rolled steel sheet excellent in heat resistance and impact resistance.
  • the fourth invention further includes one or two elements selected from Ti: 0.01 to 0.20% and Nb: 0.01 to 0.20% by mass%.
  • the fifth aspect of the invention further includes the workability and impact resistance according to any one of the first to fourth aspects of the invention, characterized by containing B: 0.0002 to 0.005% by mass%. It is an excellent high-strength cold-rolled steel sheet.
  • the sixth invention further includes one or two elements selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% by mass%.
  • a temperature of 750 ° C. or higher is applied. After holding at temperature for 10 seconds or more, after cooling from 750 ° C. to a temperature range of 150 to 350 ° C. at an average cooling rate of 10 ° C./s or more, heating to 350 to 600 ° C. and holding for 10 to 600 seconds, It is a method for producing a high-strength cold-rolled steel sheet excellent in workability and impact resistance, characterized by cooling to a low temperature.
  • the eighth invention is a high strength excellent in workability and impact resistance according to the seventh invention, characterized in that the temperature is raised at an average heating rate from 500 ° C. to Ac 1 transformation point at 10 ° C./s or more. It is a manufacturing method of a cold-rolled steel plate.
  • a high-strength cold-rolled steel sheet having excellent workability can be obtained, and it is possible to achieve both the weight reduction of the automobile and the improvement of the collision safety, and the excellent effect of greatly contributing to the enhancement of the performance of the automobile body. Play.
  • C 0.05 to 0.3%
  • C is an element that stabilizes austenite, and is an element necessary for increasing the steel sheet strength and improving the TS-EL balance by increasing the steel sheet strength in order to easily generate phases other than ferrite. If the amount of C is less than 0.05%, it is difficult to secure phases other than ferrite even if the production conditions are optimized, and TS ⁇ EL decreases. On the other hand, when the amount of C exceeds 0.3%, the welded portion and the heat affected zone are significantly hardened, and the mechanical properties of the welded portion are deteriorated. From this point of view, the C content is in the range of 0.05 to 0.3%. Preferably it is 0.08 to 0.15% of range.
  • Si 0.3 to 2.5%
  • Si is an element effective for strengthening steel. Further, it is a ferrite-forming element and has the function of promoting the formation of retained austenite because it promotes the concentration of C in austenite and suppresses the formation of carbides. If the amount of Si is less than 0.3%, the effect of addition becomes poor, so the lower limit was made 0.3%. However, excessive addition deteriorates the surface properties and weldability, so Si was contained at 2.5% or less. Preferably it is 0.7 to 2.0% of range.
  • Mn 0.5 to 3.5%
  • Mn is an element effective for strengthening steel and promotes the generation of low-temperature transformation phases such as tempered martensite. Such an effect is recognized when the Mn content is 0.5% or more.
  • the Mn content is set to a range of 0.5 to 3.5%. Preferably, it is in the range of 1.5 to 3.0%.
  • P 0.003 to 0.100%
  • P is an element effective for strengthening steel, and this effect is obtained at 0.003% or more.
  • excessive addition over 0.100% causes embrittlement due to grain boundary segregation and degrades impact resistance. Therefore, the P content is in the range of 0.003% to 0.100%.
  • S 0.02% or less S is an inclusion such as MnS, which causes deterioration of impact resistance and cracks along the metal flow of the weld. 0.02% or less.
  • Al acts as a deoxidizer and is an element effective for the cleanliness of steel, and is preferably added in the deoxidation step. If the amount of Al is less than 0.01%, the effect of addition becomes poor, so the lower limit was made 0.01%. However, if added in a large amount, the risk of steel piece cracking during continuous casting increases and the productivity decreases. Therefore, the upper limit of the amount of Al is 0.5%.
  • the high-strength cold-rolled steel sheet in the present invention has the above-described component composition as a basic component and the balance is composed of iron and unavoidable impurities, but can appropriately contain the components described below according to desired characteristics.
  • Cr 0.005 to 2.00%
  • Mo 0.005 to 2.00%
  • V 0.005 to 2.00%
  • Ni 0.005 to 2.00%
  • Cu 0.005 to
  • One or more selected from 2.00% Cr, Mo, V, Ni, Cu suppresses the formation of pearlite during cooling from the annealing temperature, promotes the formation of low-temperature transformation phase, and strengthens the steel Works effectively. This effect is obtained by adding 0.005% or more of at least one of Cr, Mo, V, Ni, and Cu. However, when each component of Cr, Mo, V, Ni, and Cu exceeds 2.00%, the effect is saturated, resulting in a cost increase. Accordingly, the amounts of Cr, Mo, V, Ni, and Cu are each in the range of 0.005 to 2.00%.
  • Ti and Nb form carbonitrides and strengthen steel by precipitation strengthening Have the effect of Such an effect is recognized at 0.01% or more.
  • Ti and Nb are contained in amounts exceeding 0.20%, the strength is excessively increased and the ductility is lowered. For this reason, the amounts of Ti and Nb are each in the range of 0.01 to 0.20%.
  • B 0.0002 to 0.005%
  • B has the effect of suppressing the formation of ferrite from the austenite grain boundaries and increasing the strength. The effect is obtained at 0.0002% or more. However, if the amount of B exceeds 0.005%, the effect is saturated, which causes a cost increase. Therefore, the B content is in the range of 0.0002 to 0.005%.
  • Ca and REM both have the effect of improving workability by controlling the form of sulfide. And can contain 0.001% or more of one or two of Ca and REM as required. However, excessive addition may adversely affect cleanliness, so each content is made 0.005% or less.
  • Ferrite area ratio 20% or more If the area ratio of ferrite is less than 20%, TS ⁇ EL decreases, so it is 20% or more. Preferably it is 50% or more.
  • Tempered martensite area ratio 10-60%
  • Ac 1 transformation point martensite and tempered martensite preferably an complex structure of high ferrite and cementite dislocation density obtained by heating to a temperature lower than the Ac 1 transformation point, effectively strengthening the steel work.
  • the structure obtained by heating martensite to a temperature exceeding the Ac 1 transformation point is a structure not containing cementite in the ferrite, and is basically different from the tempered martensite intended in the present invention.
  • tempered martensite has a smaller adverse effect on hole expansibility than martensite, and is an effective phase for ensuring strength without a significant decrease in hole expansibility. If the area ratio of tempered martensite is less than 10%, it is difficult to ensure strength, and if it exceeds 60%, TS ⁇ EL decreases, so the area ratio of tempered martensite is 10 to 60%.
  • Martensite area ratio 0-10% Martensite works effectively to increase the strength of steel, but if the area ratio exceeds 10%, stretch flangeability is significantly reduced. Therefore, the area ratio of martensite is set to 0 to 10%.
  • volume ratio of retained austenite 3-15% Residual austenite not only contributes to the strengthening of the steel, but also works effectively to improve and improve the TS ⁇ EL of the steel. Such an effect is obtained when the volume ratio is 3% or more. On the other hand, when the retained austenite exceeds 15%, the hole expansibility decreases. Therefore, the volume ratio of retained austenite is 3 to 15%.
  • Average crystal grain size of low-temperature transformation phase composed of martensite, tempered martensite, and retained austenite 3 ⁇ m or less
  • the low-temperature transformation phase composed of martensite, tempered martensite, and retained austenite works effectively to improve impact resistance.
  • the impact resistance is improved by finely dispersing the low-temperature transformation phase, and the effect becomes remarkable when the average crystal grain size of the low-temperature transformation phase is 3 ⁇ m or less. Therefore, the average crystal grain size of the low temperature transformation phase is set to 3 ⁇ m or less.
  • phases other than ferrite, tempered martensite, martensite, and retained austenite may contain pearlite and bainite, but there is no problem as long as the above phase structure is satisfied.
  • the pearlite content is desirably 3% or less.
  • Manufacturing conditions Steel adjusted to the above component composition is melted in a converter or the like, and is made into a slab by a continuous casting method or the like. This steel material is subjected to continuous annealing after hot rolling and cold rolling.
  • the manufacturing method is not particularly limited, but a suitable manufacturing method is described below. Casting conditions
  • the steel slab used is continuously cast to prevent macro segregation of components. However, it may be produced by an ingot-making method or a thin slab casting method.
  • Hot rolling conditions Slab heating temperature: 1100 ° C or higher
  • low-temperature heating is preferable in terms of energy, but if the heating temperature is less than 1100 ° C, carbides cannot be sufficiently dissolved or heat due to an increase in rolling load. Problems such as an increased risk of trouble during hot rolling occur.
  • the slab heating temperature is desirably 1300 ° C. or less because of an increase in scale loss accompanying an increase in oxidized weight.
  • a sheet bar heater which heats a sheet bar from a viewpoint of preventing the trouble at the time of hot rolling even if slab heating temperature is made low.
  • Finish rolling end temperature Ar 3 transformation point or higher If the finish rolling end temperature is less than the Ar 3 transformation point, ferrite and austenite are generated during rolling, and a band-like structure is easily generated in the steel sheet. It may remain even after hot rolling or after annealing, causing anisotropy in material properties or reducing workability. For this reason, it is desirable that the finish rolling temperature is not less than the Ar 3 transformation point.
  • Winding temperature 450 ⁇ 700 °C
  • the coiling temperature is less than 450 ° C.
  • problems such as a decrease in cold rolling property may occur.
  • the coiling temperature exceeds 700 ° C.
  • problems such as decarburization may occur in the surface layer of the railway.
  • the coiling temperature is preferably in the range of 450 to 700 ° C.
  • part or all of the finish rolling may be lubricated rolling in order to reduce the rolling load during hot rolling.
  • Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material.
  • the friction coefficient during the lubricating rolling is preferably in the range of 0.25 to 0.10.
  • the application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.
  • pickling conditions and cold rolling conditions are not particularly limited, and may be in accordance with conventional methods.
  • the rolling reduction of cold rolling is preferably 40% or more.
  • Average heating rate at 500 ° C. to Ac 1 transformation point 10 ° C./s or more
  • average heating rate at the Ac 1 transformation point from 500 ° C. which is the recrystallization temperature range in the steel of the present invention to 10 ° C./s or more
  • Recrystallization at the time of heating and heating is suppressed, and it effectively works for refining austenite generated at the Ac 1 transformation point or higher, and thus for refining the structure after annealing and cooling, and the average grain size of the low temperature transformation phase is 3 ⁇ m or less. It becomes possible.
  • the average heating rate at 500 ° C. to Ac 1 transformation point is set to 10 ° C./s or more.
  • a preferable range of the average heating rate is 20 ° C./s or more.
  • the heating temperature is lower than 750 ° C. or holding time is shorter than 10 seconds, austenite is not sufficiently generated during annealing, and a sufficient amount of low-temperature transformation phase cannot be secured after annealing cooling. .
  • the upper limit of the holding temperature and holding time is not particularly specified, but if the holding temperature is 900 ° C. or more and the holding time is 600 seconds or more, the effect is saturated and the cost is increased. Therefore, the holding temperature is less than 900 ° C. and the holding time is 600 Less than a second is preferred.
  • the cooling rate from 750 ° C. is set to 10 ° C./s or more.
  • Cooling temperature condition is one of the most important conditions in this technology. When the cooling is stopped, a part of austenite is transformed into martensite, and the rest becomes untransformed austenite. By reheating from there and cooling to room temperature after plating and alloying treatment, martensite becomes tempered martensite and untransformed austenite becomes retained austenite or martensite.
  • the final martensite and residual austenite and tempered martensite are controlled by controlling the cooling temperature. Is determined.
  • the temperature reached by cooling is higher than 350 ° C.
  • the martensite transformation at the time of cooling stop is insufficient and the amount of untransformed austenite increases, resulting in excessive formation of final martensite or residual austenite, which decreases hole expandability.
  • the temperature reached by cooling is lower than 150 ° C.
  • most of the austenite is transformed into martensite during cooling and the amount of untransformed austenite is reduced, and 3% or more of retained austenite cannot be obtained. Therefore, the temperature at which the cooling is achieved is in the range of 150 to 350 ° C.
  • any cooling method such as gas jet cooling, mist cooling, water cooling, or metal quenching may be used as long as the target cooling rate and cooling stop temperature can be achieved.
  • the martensite generated during the cooling is tempered
  • the hole expandability is improved, and untransformed austenite that has not been transformed into martensite at the time of cooling is stabilized, and finally 3% or more of retained austenite is obtained, and ductility is improved. improves.
  • the heating temperature is 350 to 600 ° C.
  • the reheating temperature is in the range of 350 to 600 ° C., and the holding time in that temperature range is 10 to 600 seconds.
  • the annealed steel sheet may be subjected to temper rolling for adjustment of shape correction, surface roughness, and the like.
  • the cross-sectional microstructure of the steel sheet is revealed with a 3% nital solution (3% nitric acid + ethanol), the depth direction plate thickness 1/4 position is observed with a scanning electron microscope, and the photographed structure photograph is used.
  • Image analysis processing was performed to quantify the ferrite phase fraction (in addition, commercially available image processing software can be used for image analysis processing).
  • the martensite area ratio and tempered martensite area ratio were quantified with image processing software by taking SEM photographs at an appropriate magnification of 1000 to 3000 times depending on the fineness of the structure.
  • the average particle size of the low-temperature transformation phase was obtained by dividing the area of the low-temperature transformation phase in the observed visual field by the number of low-temperature transformation phases to obtain an average area, and the 1/2 power was taken as the average particle size.
  • the volume ratio of retained austenite was determined by polishing the steel plate to a 1 ⁇ 4 surface in the plate thickness direction and diffracting X-ray intensity of the 1 ⁇ 4 surface thickness. MoK ⁇ rays are used as incident X-rays, and the peaks of ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes of retained austenite and ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ planes of ferrite phases are used. Intensity ratios were determined for all combinations of integrated intensities, and the average value of these ratios was taken as the volume fraction of retained austenite.
  • the tensile properties were determined by performing a tensile test in accordance with JISZ2241, using a JIS No. 5 test piece sampled so that the tensile direction was perpendicular to the rolling direction of the steel sheet, and TS (tensile strength) and EL (elongation).
  • TS tensile strength
  • EL elongation
  • the strength-elongation balance value represented by the product of strength and elongation (TS ⁇ EL) was determined.
  • the hole expansion rate ⁇ was measured as an index for evaluating stretch flangeability.
  • the hole expansion rate ⁇ is determined by performing a hole expansion test in accordance with the Japan Iron and Steel Federation Standard JFST1001, and the hole diameter at the time of punching and punching through the hole thickness penetrates the plate thickness. It was determined from the ratio with the diameter of the hole at the time of the test.
  • the shock absorption characteristic is obtained by distorting a stress-true strain curve obtained by performing a tensile test at a strain rate of 2000 / s using a test piece having a width of 5 mm and a length of 7 mm taken from a direction perpendicular to the rolling direction of the steel sheet. Absorption energy was calculated and evaluated by integrating in the range of 0 to 10% (see Iron and Steel, 83 (1997) p748).
  • the steel plate of the present invention shows excellent strength, ductility and stretch flangeability with TS ⁇ EL of 22000 MPa ⁇ % or more and ⁇ of 70% or more.
  • the steel plate of the comparative example which deviates from the scope of the present invention has TS ⁇ EL of less than 22000 MPa ⁇ % and / or ⁇ of less than 70%, and has excellent strength, ductility and stretch flangeability like the steel plate of the present invention. Cannot be obtained. Furthermore, by setting the average particle size of the low-temperature transformation phase to 3 ⁇ m or less, excellent impact resistance characteristics with a ratio of absorbed energy to TS (AE / TS) of 0.063 or more can be obtained.
  • the present invention can contribute to reducing the weight and fuel consumption of automobiles as a high-strength cold-rolled steel sheet excellent in workability and impact resistance.

Abstract

延性および伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法を提供する。質量%で、C:0.05~0.3%、Si:0.3~2.5%、Mn:0.5~3.5%、P:0.003~0.100%、S:0.02%以下、Al:0.010~0.5%を含み、残部が鉄および不可避的不純物からなり、かつ、面積率でフェライトを20%以上、焼戻しマルテンサイトを10~60%、マルテンサイトを0~10%、体積率で残留オーステナイトを3~15%含む組織を有する加工性および耐衝撃性に優れた高強度冷延鋼板。

Description

加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
 本発明は、主に自動車の産業分野で使用される骨格部材用および足回り部材用の成形性に優れた高強度冷延鋼板およびその製造方法に関するものである。
 近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。しかしながら、鋼板の高強度化は延性の低下、即ち成形加工性の低下を招くことから、高強度と高加工性を併せ持つ材料の開発が望まれている。
 このような要求に対して、これまでにフェライト、マルテンサイト二相鋼(以下DP鋼と呼ぶ)や残留オーステナイトの変態誘起塑性を利用したTRIP鋼など、種々の複合組織型冷延鋼板が開発されてきた。
 例えば、特許文献1では多量のSiを添加することにより残留オーステナイトを確保し高延性を達成する加工性に優れた高強度鋼板の製造方法が開示されている。
しかし、これらDP鋼やTRIP鋼は伸び特性には優れるものの穴拡げ性が劣るという問題がある。穴拡げ性は加工穴部を拡張してフランジ成形させるときの加工性を示す指標で、伸び特性と共に高強度鋼板に要求される重要な特性である。
 伸びフランジ性に優れる冷延鋼板の製造方法として、特許文献2には焼鈍均熱後、焼入れ−焼戻しを行いフェライトと焼戻しマルテンサイトの複合組織とすることにより穴拡げ性を向上させる技術が開示されている。しかし、このような技術では高い穴拡げ性が得られるものの、伸びが低いことが問題となる。
 このように、従来の技術では、優れた伸び特性および伸びフランジ性を兼ね備える冷延鋼板は得られていない。
特開平2−101117号公報 特開2004−256872号公報
 本発明は上記の様な問題点に着目してなされたものであって、その目的は延性および伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法を提供することにある。
 本発明者らは、上記した課題を達成し、延性および伸びフランジ性に優れる高強度冷延鋼板を製造するため、鋼板の組成およびミクロ組織の観点から鋭意研究を重ねた。その結果、合金元素を適正に調整して、焼鈍過程における均熱温度からの冷却時に150~350℃の温度域まで強冷却し、その後再加熱することにより、面積率でフェライトを20%以上、焼き戻しマルテンサイトを10~60%、体積率で残留オーステナイトを3~15%含む組織が得られ、高い延性および伸びフランジ性が可能となることが分った。
 一般的に残留オーステナイトが存在すると残留オーステナイトのTRIP効果により延性が向上する。しかし、歪の付加により残留オーステナイトが変態して生成するマルテンサイトは非常に硬質なものとなり、その結果、主相であるフェライトとの硬度差が大きくなり伸びフランジ性が低下することが知られている。
 しかし本発明における成分および組織構成においては、高い延性と高い伸びフランジ性が両立可能となる。残留オーステナイトが存在しても高い伸びフランジ性が可能となる理由について詳細は不明であるが、残留オーステナイトが焼戻しマルテンサイトと共存することにより、残留オーステナイトの伸びフランジ性への悪影響が低減されるためと考えられる。
 さらにマルテンサイト、焼戻しマルテンサイト、残留オーステナイトからなる低温変態相の平均結晶粒径が3μm以下の鋼板組織とすることで、高い加工性と併せて耐衝撃特性の向上も可能となることがわかった。
本発明は、上記した知見に基づいてなされたもので、その要旨は以下の通りである。
 第一の発明は、質量%で、C:0.05~0.3%、Si:0.3~2.5%、Mn:0.5~3.5%、P:0.003~0.100%、S:0.02%以下、Al:0.010~0.5%を含み、残部が鉄および不可避的不純物からなり、かつ、面積率でフェライトを20%以上、焼戻しマルテンサイトを10~60%、マルテンサイトを0~10%、体積率で残留オーステナイトを3~15%含む組織を有する加工性および耐衝撃性に優れた高強度冷延鋼板である。
 第二の発明は、前記マルテンサイト、焼戻しマルテンサイト、残留オーステナイトからなる低温変態相の平均結晶粒径が3μm以下の組織を有する第一の発明に記載の加工性および耐衝撃性に優れた高強度冷延鋼板である。
 第三の発明は、更に、質量%で、Cr:0.005~2.00%、Mo:0.005~2.00%、V:0.005~2.00%、Ni:0.005~2.00%、Cu:0.005~2.00%の中から選ばれる1種または2種以上の元素を含有することを特徴とする第一の発明または第二の発明に記載の加工性および耐衝撃性に優れた高強度冷延鋼板である。
 第四の発明は、更に、質量%で、Ti:0.01~0.20%、Nb:0.01~0.20%の中から選ばれる1種または2種の元素を含有することを特徴とする第一~第三の発明のいずれかに記載の加工性および耐衝撃性に優れた高強度冷延鋼板である。
 第五の発明は、更に、質量%で、B:0.0002~0.005%を含有することを特徴とする第一~第四の発明のいずれかに記載の加工性および耐衝撃性に優れた高強度冷延鋼板である。
 第六の発明は、更に、質量%で、Ca:0.001~0.005%、REM:0.001~0.005%の中から選ばれる1種または2種の元素を含有することを特徴とする第一~第五の発明のいずれかに記載の加工性および耐衝撃性に優れた高強度冷延鋼板である。
 第七の発明は、第一~第六の発明のいずれかに記載の成分を有するスラブに熱間圧延および冷間圧延を施して製造した冷延鋼板に連続焼鈍を施すに際し、750℃以上の温度で10秒以上保持した後、750℃から平均10℃/s以上の冷却速度で150~350℃の温度域まで冷却した後、350~600℃まで加熱し10~600秒保持した後、室温まで冷却することを特徴とする加工性および耐衝撃性に優れた高強度冷延鋼板の製造方法である。
 第八の発明は、500℃~Ac変態点における平均加熱速度を10℃/s以上で昇温することを特徴とする第七の発明に記載の加工性および耐衝撃性に優れた高強度冷延鋼板の製造方法である。
 本発明によれば加工性に優れた高強度冷延鋼板が得られ、自動車の軽量化と衝突安全性向上との両立を可能とし、自動車車体の高性能化に大きく寄与するという優れた効果を奏する。
 以下、本発明を具体的に説明する。
 1.成分組成について
 まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する%表示は特に断らない限り質量%を意味するものとする。
 C:0.05~0.3%
 Cはオーステナイトを安定化させる元素であり、フェライト以外の相を生成しやすくするため、鋼板強度を上昇させるとともに、組織を複合化してTS−ELバランスを向上させるために必要な元素である。C量が0.05%未満では製造条件の最適化を図ったとしてもフェライト以外の相の確保が難しく、TS×ELが低下する。一方、C量が0.3%を超えると、溶接部および熱影響部の硬化が著しく、溶接部の機械的特性が劣化する。こうした観点からC量は、0.05~0.3%の範囲とする。好ましくは0.08~0.15%の範囲である。
 Si:0.3~2.5%
 Siは鋼の強化に有効な元素である。また、フェライト生成元素であり、オーステナイト中へのCの濃化促進および炭化物の生成を抑制することから、残留オーステナイトの生成を促進する働きを有する。ここに、Si量が0.3%に満たないとその添加効果に乏しくなるので、下限を0.3%とした。ただし過剰な添加は、表面性状、溶接性を劣化させるので、Siは2.5%以下で含有させるものとした。好ましくは0.7~2.0%の範囲である。
 Mn:0.5~3.5%
 Mnは鋼の強化に有効な元素であり、焼戻しマルテンサイト等の低温変態相の生成を促進する。このような作用は、Mn含有量が0.5%以上で認められる。ただし、Mnを3.5%を超えて過剰に添加すると、第二相分率の過剰な増加や固溶強化によるフェライトの延性劣化が著しくなり成形性が低下する。従って、Mn量を0.5~3.5%の範囲とする。好ましくは1.5~3.0%の範囲である。
 P:0.003~0.100%
 Pは鋼の強化に有効な元素であり、この効果は0.003%以上で得られる。しかし、0.100%を超えて過剰に添加すると粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。従って、P量は0.003%~0.100%の範囲とする。
 S:0.02%以下
 SはMnSなどの介在物となって、耐衝撃特性の劣化や溶接部のメタルフローに沿った割れの原因になるので極力低い方が良いが、製造コストの面から0.02%以下とする。
 Al:0.010~0.5%
 Alは脱酸剤として作用し、鋼の清浄度に有効な元素であり、脱酸工程で添加することが好ましい。ここに、Al量が0.01%に満たないとその添加効果に乏しくなるので、下限を0.01%とした。しかし多量に添加すると連続鋳造時の鋼片割れ発生の危険性が高まり製造性を低下させる。従ってAlの添加量の上限は0.5%とする。
 本発明における高強度冷延鋼板は、上記の成分組成を基本成分とし、残部は鉄および不可避的不純物からなるが、所望の特性に応じて、以下に述べる成分を適宜含有させることができる。
 Cr:0.005~2.00%、Mo:0.005~2.00%、V:0.005~2.00%、Ni:0.005~2.00%、Cu:0.005~2.00%の中から選ばれる1種または2種以上
 Cr、Mo、V、Ni、Cuは焼鈍温度からの冷却時にパーライトの生成を抑制し、低温変態相の生成を促進し鋼の強化に有効に働く。この効果は、Cr、Mo、V、Ni、Cuの少なくとも1種を0.005%以上含有させることで得られる。しかし、Cr、Mo、V、Ni、Cuのそれぞれの成分が2.00%を超えるとその効果は飽和し、コストアップの要因となる。従ってCr、Mo、V、Ni、Cuの量はそれぞれ、0.005~2.00%の範囲とする。
 Ti:0.01~0.20%、Nb:0.01~0.20%の中から選ばれる1種または2種
 Ti、Nbは炭窒化物を形成し、鋼を析出強化により高強度化する作用を有する。このような効果はそれぞれ0.01%以上で認められる。一方、Ti、Nbはそれぞれ0.20%を超えて含有しても、過度に高強度化し、延性が低下する。このため、Ti、Nbの量はそれぞれ0.01~0.20%の範囲とする。
 B:0.0002~0.005%
 Bはオーステナイト粒界からのフェライトの生成を抑制し強度を上昇させる作用を有する。その効果は0.0002%以上で得られる。しかし、B量が0.005%を超えるとその効果は飽和し、コストアップの要因となる。従って、B量は0.0002~0.005%の範囲とする。
 Ca:0.001~0.005%、REM:0.001~0.005%の中から選ばれる1種または2種
 Ca、REMはいずれも硫化物の形態制御により加工性を改善する効果を有しており、必要に応じてCa、REMの1種または2種を0.001%以上含有させることができる。しかしながら過剰な添加は清浄度に悪影響を及ぼす恐れがあるため、それぞれ0.005%以下とする。
 2.組織について
 次に鋼の組織について説明する。
 フェライトの面積率:20%以上
 フェライトの面積率が20%未満だとTS×ELが低下するため20%以上とする。好ましくは50%以上である。
 焼戻しマルテンサイトの面積率:10~60%
 焼戻しマルテンサイトとはマルテンサイトをAc変態点以下、好ましくはAc変態点よりも低い温度に加熱して得られる転位密度の高いフェライトとセメンタイトとの複合組織を示し、鋼の強化に有効に働く。また、マルテンサイトをAc変態点を超える温度に加熱して得られる組織は、フェライト中にセメンタイトを含まない組織であり、本願発明で意図する焼戻しマルテンサイトとは基本的に異なるものである。
 また、焼戻しマルテンサイトはマルテンサイトに比べて穴拡げ性への悪影響が小さく、顕著な穴拡げ性の低下なしに強度を確保するのに有効な相である。焼戻しマルテンサイトの面積率が10%未満では強度確保が困難となり、60%を超えるとTS×ELが低下するため、焼戻しマルテンサイトの面積率は10~60%とする。
 マルテンサイトの面積率:0~10%
 マルテンサイトは鋼の高強度化に有効に働くが、その面積率が10%を超えると伸びフランジ性が顕著に低下する。従って、マルテンサイトの面積率は0~10%とする。
 残留オーステナイトの体積率:3~15%
 残留オーステナイトは鋼の強化に寄与するだけでなく、鋼のTS×ELの向上およびに有効に働く。このような効果は体積率が3%以上で得られる。また、残留オーステナイトが15%を超えると穴拡げ性が低下する。従って、残留オーステナイトの体積率は3~15%とする。
 マルテンサイト、焼戻しマルテンサイト、残留オーステナイトからなる低温変態相の平均結晶粒径:3μm以下
 マルテンサイト、焼戻しマルテンサイト、残留オーステナイトからなる低温変態相は耐衝撃特性の向上に有効に働く。特に低温変態相を微細に分散させることにより耐衝撃特性が向上し、低温変態相の平均結晶粒径が3μm以下でその効果が顕著となる。従って低温変態相の平均結晶粒径を3μm以下とする。
 また、フェライト、焼戻しマルテンサイト、マルテンサイト、残留オーステナイト以外の相としてはパーライトおよびベイナイトを含む可能性があるが、上記相構成を満たしていれば問題ない。ただし、延性および穴拡げ性確保の観点からパーライトは3%以下とすることが望ましい。
 3.製造条件について
 上記の成分組成に調整した鋼を転炉などで溶製し、連続鋳造法等でスラブとする。この鋼素材を熱間圧延および冷間圧延を施した後、連続焼鈍を行う。鋳造、熱延圧延、冷間圧延については特に製造方法を限定するものではないが、以下に好適な製造方法について説明する
 鋳造条件
 使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱をおこなった後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
 熱間圧延条件
 スラブ加熱温度:1100℃以上
 スラブ加熱温度は、低温加熱がエネルギー的には好ましいが、加熱温度が1100℃未満では、炭化物が十分に固溶できなかったり、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。なお、酸化重量の増加にともなうスケールロスの増大などから、スラブ加熱温度は1300℃以下とすることが望ましい。
 なお、スラブ加熱温度を低くしても熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用してもよい。
 仕上圧延終了温度:Ar変態点以上
 仕上げ圧延終了温度がAr変態点未満では、圧延中にフェライトとオーステナイトが生成して、鋼板にバンド状組織が生成し易くなり、かかるバンド状組織は冷間圧延後や焼鈍後にも残留し、材料特性に異方性を生じさせたり、加工性を低下させる原因となる場合がある。このため、仕上げ圧延温度はAr変態点以上とすることが望ましい。
 巻取り温度:450~700℃
 巻取り温度が450℃未満だと巻取り温度の制御が難しく温度ムラが生じやすくなり、その結果冷間圧延性が低下するなどの問題が生じることがある。また巻取り温度が700℃を超えると地鉄表層で脱炭が生じるなどの問題が起こることがある。このため、巻取り温度は450~700℃の範囲とするのが望ましい。
 なお、本発明における熱延工程では、熱間圧延時の圧延荷重を低減するために仕上圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.25~0.10の範囲とすることが好ましい。また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
 ついで、好ましくは熱延鋼板の表面の酸化スケールを酸洗により除去した後、冷間圧延に供して所定の板厚の冷延鋼板とする。ここに酸洗条件や冷間圧延条件は特に制限されるものではなく、常法に従えば良い。冷間圧延の圧下率は40%以上とすることが好ましい。
 500℃~Ac変態点における平均加熱速度:10℃/s以上
 本発明の鋼における再結晶温度域である500℃からAc変態点における平均加熱速度を10℃/s以上とすることで、加熱昇温時の再結晶が抑制され、Ac変態点以上で生成するオーステナイトの微細化、ひいては焼鈍冷却後の組織の微細化に有効に働き、低温変態相の平均粒経を3μm以下とすることが可能となる。
 平均加熱速度が10℃/s未満では、加熱昇温時にαの再結晶が起こり、フェライト中に導入された歪が開放され十分な微細化が達成できなくなる。従って、500℃~Ac変態点における平均加熱速度を10℃/s以上とした。該平均加熱速度の好ましい範囲は20℃/s以上である。
 750℃以上の温度で10秒以上保持
 加熱温度が750℃未満あるいは保持時間が10秒未満では、焼鈍時のオーステナイトの生成が不十分となり、焼鈍冷却後に十分な量の低温変態相が確保できなくなる。保持温度および保持時間の上限は特に規定しないが、保持温度が900℃以上および保持時間が600秒以上では効果が飽和する上、コストアップにつながるので、保持温度は900℃未満および保持時間は600秒未満が好ましい。
 750℃から10℃/s以上の平均冷却速度で150~350℃の温度域まで冷却
750℃からの冷却速度が10℃/s未満ではパーライトが生成し、TS×ELおよび穴拡げ性が低下する。従って、750℃からの冷却速度は10℃/s以上とする。冷却到達温度条件は本技術で最も重要な条件の一つである。冷却停止時にはオーステナイトの一部がマルテンサイトに変態し、残りは未変態のオーステナイトとなる。そこから再加熱し、めっき・合金化処理後、室温まで冷却することで、マルテンサイトは焼戻しマルテンサイトとなり、未変態オーステナイトは残留オーステナイトまたはマルテンサイトとなる。焼鈍からの冷却到達温度が低いほど、冷却中に生成するマルテンサイト量が増加し、未変態オーステナイト量が減少するため、冷却到達温度の制御により、最終的なマルテンサイトおよび残留オーステナイトと焼戻しマルテンサイトの面積率が決定される。
 冷却到達温度が350℃より高い温度では、冷却停止時のマルテンサイト変態が不十分で未変態オーステナイト量が多くなり、最終的なマルテンサイトまたは残留オーステナイトが過剰に生成し、穴拡げ性を低下させる。また、冷却到達温度が150℃より低くなると、冷却中にオーステナイトがほとんどマルテンサイトに変態し未変態オーステナイト量が減少し、3%以上の残留オーステナイトが得られない。従って冷却到達温度は150~350℃の範囲とする。冷却の方法については、目標の冷却速度と冷却停止温度が達成できれば、ガスジェット冷却、ミスト冷却、水冷、メタルクエンチ等のいかなる冷却方法を用いても良い。
 350~600℃まで加熱し10~600秒保持
150~350℃の温度範囲までの冷却後、350~600℃の温度範囲で10秒以上保持することで、前記冷却時に生成したマルテンサイトが焼戻され焼戻しマルテンサイトとなることで、穴拡げ性が向上し、さらに前記冷却時にマルテンサイトに変態しなかった未変態オーステナイトが安定化され、最終的に3%以上の残留オーステナイトが得られ、延性が向上する。
 再加熱保持による未変態オーステナイトの安定化のメカニズムについて詳細は不明であるが、過飽和にCが固溶したマルテンサイトから未変態オーステナイトにCが拡散して未変態オーステナイトへのCの濃化が進み、オーステナイトが安定化されるものと考えられる。その際、マルテンサイト中のセメンタイトの析出がCの拡散よりも早く進行すると未変態オーステナイトへのCの濃化が不十分となるため、セメンタイト析出を遅延させることが重要であり、そのために0.3%以上のSi添加が必要となる。
 再加熱温度が350℃未満ではマルテンサイトの焼戻しおよびオーステナイトの安定化が不十分となり穴拡げ性および延性が低下する。また再加熱温度が600℃を超えると、冷却停止時の未変態オーステナイトがパーライトに変態し、最終的に3%以上残留オーステナイトが得られなくなる。従って、加熱温度は350~600℃とする。
 保持時間が10秒未満ではオーステナイトの安定化が不十分となり、また600秒を超えると冷却停止時の未変態オーステナイトがベイナイトに変態し、最終的に3%以上の残留オーステナイトが得られなくなる。従って、再加熱温度は350~600℃の範囲とし、その温度域での保持時間は10~600秒とする。
 なお、焼鈍後の鋼板には、形状矯正、表面粗度等の調整のため調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装等の処理を施しても何ら不都合はない。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にて鋳片とした。得られた鋳片を板厚3.0mmまで熱間圧延した。熱間圧延の条件は仕上げ温度900℃、圧延後の冷却速度10℃/s、巻取り温度600℃で行った。次いで、熱延鋼板を酸洗した後、板厚1.2mmまで冷間圧延し、冷延鋼板を製造した。
 次いで、これら冷延鋼板に、連続焼鈍ラインにて、表2に示す条件で焼鈍処理を施した。
得られた鋼板の断面ミクロ組織、引張特性および穴拡げ性について調査を行い、その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 鋼板の断面ミクロ組織は3%ナイタール溶液(3%硝酸+エタノール)で組織を現出し、走査型電子顕微鏡で深さ方向板厚1/4位置を観察して、撮影した組織写真を用いて、画像解析処理を行ない、フェライト相の分率を定量化した(なお、画像解析処理は市販の画像処理ソフトを用いることができる)。マルテンサイト面積率、焼戻しマルテンサイト面積率は、組織の細かさに応じて1000~3000倍の適切な倍率のSEM写真を撮影し、画像処理ソフトで定量化した。低温変態相の平均粒径は、観察した視野の低温変態相の面積を低温変態相の個数で割り、平均面積を求め、その1/2乗を平均粒径とした。
 残留オーステナイトの体積率は、鋼板を板厚方向の1/4面まで研磨し、この板厚1/4面の回折X線強度により求めた。入射X線にはMoKα線を使用し、残留オーステナイト相の{111}、{200}、{220}、{311}面とフェライト相の{110}、{200}、{211}面のピークの積分強度の全ての組み合わせについて強度比を求め、これらの平均値を残留オーステナイトの体積率とした。
 また、引張特性は、引張方向が鋼板の圧延方向と直角方向となるようサンプル採取したJIS5号試験片を用いて、JISZ2241に準拠した引張試験を行ない、TS(引張強さ)、EL(伸び)を測定し、強度と伸びの積(TS×EL)で表される強度−伸びバランスの値を求めた。
 さらに、伸びフランジ性を評価する指標として、穴拡げ率λを測定した。穴拡げ率λは日本鉄鋼連盟規格JFST1001に準じた穴拡げ試験を行ない、打ち抜き時の穴の初期径(10mmφ)と、これを穴拡げ加工を行なった際に穴縁の亀裂が板厚を貫通した時点の穴の径との比から求めた。
 衝撃吸収特性は、鋼板の圧延方向と直角方向から採取した平行部の幅5mm、長さ7mmの試験片を用い、歪速度2000/sで引張試験を行って採取した応力−真歪曲線を歪量0~10%の範囲で積分することにより、吸収エネルギーを算出して評価した(鉄と鋼、83(1997)p748参照)。
 本発明例の鋼板はTS×ELが22000MPa・%以上、λが70%以上の優れた強度、延性および伸びフランジ性を示す。
 これに対し本発明の範囲をはずれる比較例の鋼板はTS×ELが22000MPa・%未満および(または)λが70%未満となり、本発明例の鋼板のような優れた強度、延性および伸びフランジ性が得られない。さらに、低温変態相の平均粒径を3μm以下とすることで吸収エネルギーとTSとの比(AE/TS)が0.063以上の優れた耐衝撃特性が得られる。
 本発明は、加工性および耐衝撃性に優れた高強度冷延鋼板として自動車の軽量化、低燃費化に貢献することができる。

Claims (8)

  1.  質量%で、C:0.05~0.3%、Si:0.3~2.5%、Mn:0.5~3.5%、P:0.003~0.100%、S:0.02%以下、Al:0.010~0.5%を含み、残部が鉄および不可避的不純物からなり、かつ、面積率でフェライトを20%以上、焼戻しマルテンサイトを10~60%、マルテンサイトを0~10%、体積率で残留オーステナイトを3~15%含む組織を有する加工性および耐衝撃性に優れた高強度冷延鋼板。
  2.  前記マルテンサイト、焼戻しマルテンサイト、残留オーステナイトからなる低温変態相の平均結晶粒径が3μm以下の組織を有する請求項1記載の加工性および耐衝撃性に優れた高強度冷延鋼板。
  3.  更に、質量%で、Cr:0.005~2.00%、Mo:0.005~2.00%、V:0.005~2.00%、Ni:0.005~2.00%、Cu:0.005~2.00%の中から選ばれる1種または2種以上の元素を含有することを特徴とする請求項1または2に記載の加工性および耐衝撃性に優れた高強度冷延鋼板。
  4.  更に、質量%で、Ti:0.01~0.20%、Nb:0.01~0.20%の中から選ばれる1種または2種の元素を含有することを特徴とする請求項1~3のいずれかに記載の加工性および耐衝撃性に優れた高強度冷延鋼板。
  5.  更に、質量%で、B:0.0002~0.005%を含有することを特徴とする請求項1~4のいずれかに記載の加工性および耐衝撃性に優れた高強度冷延鋼板。
  6.  更に、質量%で、Ca:0.001~0.005%、REM:0.001~0.005%の中から選ばれる1種または2種の元素を含有することを特徴とする請求項1~5のいずれかに記載の加工性および耐衝撃性に優れた高強度冷延鋼板。
  7.  請求項1~6のいずれかに記載の成分を有するスラブに熱間圧延および冷間圧延を施して製造した冷延鋼板に連続焼鈍を施すに際し、750℃以上の温度で10秒以上保持した後、750℃から平均10℃/s以上の冷却速度で150~350℃の温度域まで冷却した後、350~600℃まで加熱し10~600秒保持した後、室温まで冷却することを特徴とする加工性および耐衝撃性に優れた高強度冷延鋼板の製造方法。
  8. 500℃~Ac変態点における平均加熱速度を10℃/s以上で昇温することを特徴とする請求項7に記載の加工性および耐衝撃性に優れた高強度冷延鋼板の製造方法。
PCT/JP2010/063949 2010-08-12 2010-08-12 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法 WO2012020511A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2010/063949 WO2012020511A1 (ja) 2010-08-12 2010-08-12 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
US13/816,561 US20130133792A1 (en) 2010-08-12 2010-08-12 High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
KR1020137003735A KR20130036763A (ko) 2010-08-12 2010-08-12 가공성 및 내충격성이 우수한 고강도 냉연 강판 및 그 제조 방법
MX2013001456A MX2013001456A (es) 2010-08-12 2010-08-12 Lamina de acero laminada en frio, de alta resistencia, que tiene excelente trabajabilidad y resistencia al impacto, y metodo para manufacturar la misma.
EP10855912.1A EP2604715B1 (en) 2010-08-12 2010-08-12 Method for manufacturing a high-strength cold-rolled steel sheet having excellent formability and crashworthiness
CA2805834A CA2805834C (en) 2010-08-12 2010-08-12 High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
CN2010800685780A CN103069040A (zh) 2010-08-12 2010-08-12 加工性和耐冲击性优良的高强度冷轧钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063949 WO2012020511A1 (ja) 2010-08-12 2010-08-12 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2012020511A1 true WO2012020511A1 (ja) 2012-02-16

Family

ID=45567489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063949 WO2012020511A1 (ja) 2010-08-12 2010-08-12 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20130133792A1 (ja)
EP (1) EP2604715B1 (ja)
KR (1) KR20130036763A (ja)
CN (1) CN103069040A (ja)
CA (1) CA2805834C (ja)
MX (1) MX2013001456A (ja)
WO (1) WO2012020511A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876972A (zh) * 2012-11-01 2013-01-16 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102899563A (zh) * 2012-11-01 2013-01-30 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
WO2014075404A1 (zh) * 2012-11-15 2014-05-22 宝山钢铁股份有限公司 一种高成形性超高强度冷轧钢板及其制造方法
WO2014075405A1 (zh) * 2012-11-15 2014-05-22 宝山钢铁股份有限公司 一种高成形性热镀锌超高强度钢板及其制造方法
JP2015105384A (ja) * 2013-11-28 2015-06-08 新日鐵住金株式会社 衝撃吸収特性に優れた高強度鋼
EP2818569A4 (en) * 2012-02-22 2015-12-30 Nippon Steel & Sumitomo Metal Corp COLD-ROLLED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
US9587288B2 (en) 2012-03-30 2017-03-07 Kobe Steel, Ltd. Gear having excellent seizing resistance
US20170211163A1 (en) * 2014-08-07 2017-07-27 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US20170218472A1 (en) * 2014-08-07 2017-08-03 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
EP2772556B1 (en) * 2011-10-24 2018-12-19 JFE Steel Corporation Method for producing high-strength steel sheet having superior workability
JP6264176B2 (ja) * 2013-04-23 2018-01-24 新日鐵住金株式会社 冷延鋼板およびその製造方法
JP5821911B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高降伏比高強度冷延鋼板およびその製造方法
WO2015102050A1 (ja) 2014-01-06 2015-07-09 新日鐵住金株式会社 鋼材およびその製造方法
EP3093359A4 (en) 2014-01-06 2017-08-23 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and process for manufacturing same
KR101912512B1 (ko) * 2014-01-29 2018-10-26 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그 제조 방법
EP3128026B1 (en) 2014-03-31 2019-03-06 JFE Steel Corporation High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
US10435762B2 (en) * 2014-03-31 2019-10-08 Jfe Steel Corporation High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
KR101594670B1 (ko) 2014-05-13 2016-02-17 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
JP6379716B2 (ja) * 2014-06-23 2018-08-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
JP6303866B2 (ja) * 2014-06-26 2018-04-04 新日鐵住金株式会社 高強度鋼材およびその製造方法
WO2016092733A1 (ja) * 2014-12-12 2016-06-16 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
JP6435864B2 (ja) * 2015-01-07 2018-12-12 新日鐵住金株式会社 冷延鋼板およびその製造方法
EP3219822B1 (en) 2015-01-15 2018-08-22 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
JP6417977B2 (ja) * 2015-01-29 2018-11-07 新日鐵住金株式会社 鋼板ブランク
MX2017010910A (es) * 2015-02-27 2017-11-24 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia y metodo para fabricar la misma.
JP6037087B1 (ja) 2015-03-13 2016-11-30 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP6554397B2 (ja) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
JP6453140B2 (ja) * 2015-03-31 2019-01-16 株式会社神戸製鋼所 切断端面の耐遅れ破壊性に優れた高強度鋼板およびその製造方法
DE102015106153A1 (de) * 2015-04-22 2016-10-27 Západoceská Univerzita V Plzni Verfahren zur Wärmebehandlung von Stahlteilen
CN105039846B (zh) * 2015-08-17 2016-09-14 攀钢集团攀枝花钢铁研究院有限公司 钒微合金化tam钢及其制造方法
WO2017109542A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
WO2017109540A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
WO2017109541A1 (en) 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet
WO2017109538A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
JP6694511B2 (ja) * 2015-12-23 2020-05-13 ポスコPosco 延性、穴加工性、及び表面処理特性に優れた高強度冷延鋼板、溶融亜鉛めっき鋼板、並びにそれらの製造方法
CN109072381B (zh) 2016-04-14 2020-12-15 杰富意钢铁株式会社 高强度钢板及其制造方法
WO2017222160A1 (ko) * 2016-06-21 2017-12-28 현대제철 주식회사 굽힘 특성이 우수한 고강도 냉연강판 및 그 제조 방법
JP6737338B2 (ja) 2016-08-08 2020-08-05 日本製鉄株式会社 鋼板
WO2018043456A1 (ja) 2016-08-31 2018-03-08 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法
JP6566168B1 (ja) 2017-11-29 2019-08-28 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
KR102433938B1 (ko) * 2018-01-31 2022-08-19 제이에프이 스틸 가부시키가이샤 고강도 냉연강판, 고강도 도금강판 및 그것들의 제조방법
KR102385480B1 (ko) * 2018-03-30 2022-04-12 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
CN112703265A (zh) * 2018-10-04 2021-04-23 日本制铁株式会社 冷轧钢板
JP6809648B1 (ja) * 2019-01-29 2021-01-06 Jfeスチール株式会社 高強度鋼板及びその製造方法
CN112760554A (zh) * 2019-10-21 2021-05-07 宝山钢铁股份有限公司 一种延展性优异的高强度钢及其制造方法
CN117660846A (zh) * 2022-08-23 2024-03-08 宝山钢铁股份有限公司 一种120公斤级冷轧低合金退火双相钢及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101117A (ja) 1988-10-05 1990-04-12 Nippon Steel Corp 成形性良好な高強度鋼板の製造方法
JP2001003150A (ja) * 1999-04-21 2001-01-09 Kawasaki Steel Corp 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003171735A (ja) * 2001-02-28 2003-06-20 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2004218025A (ja) * 2003-01-16 2004-08-05 Kobe Steel Ltd 加工性および形状凍結性に優れた高強度鋼板、並びにその製法
JP2004256872A (ja) 2003-02-26 2004-09-16 Jfe Steel Kk 伸びおよび伸びフランジ性に優れる高張力冷延鋼板およびその製造方法
WO2009054539A1 (ja) * 2007-10-25 2009-04-30 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2009096344A1 (ja) * 2008-01-31 2009-08-06 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010196115A (ja) * 2009-02-25 2010-09-09 Jfe Steel Corp 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE383452T1 (de) * 2001-10-04 2008-01-15 Nippon Steel Corp Ziehbares hochfestes dünnes stahlblech mit hervorragender formfixierungseigenschaft und herstellungsverfahren dafür
ATE526424T1 (de) * 2003-08-29 2011-10-15 Kobe Steel Ltd Hohes stahlblech der dehnfestigkeit ausgezeichnet für die verarbeitung und proze für die produktion desselben
EP1865085B1 (en) * 2005-03-31 2016-03-09 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
TWI510641B (zh) * 2011-12-26 2015-12-01 Jfe Steel Corp High strength steel sheet and manufacturing method thereof
IN2014DN11262A (ja) * 2012-07-31 2015-10-09 Jfe Steel Corp

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101117A (ja) 1988-10-05 1990-04-12 Nippon Steel Corp 成形性良好な高強度鋼板の製造方法
JP2001003150A (ja) * 1999-04-21 2001-01-09 Kawasaki Steel Corp 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003171735A (ja) * 2001-02-28 2003-06-20 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2004218025A (ja) * 2003-01-16 2004-08-05 Kobe Steel Ltd 加工性および形状凍結性に優れた高強度鋼板、並びにその製法
JP2004256872A (ja) 2003-02-26 2004-09-16 Jfe Steel Kk 伸びおよび伸びフランジ性に優れる高張力冷延鋼板およびその製造方法
WO2009054539A1 (ja) * 2007-10-25 2009-04-30 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2009096344A1 (ja) * 2008-01-31 2009-08-06 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010196115A (ja) * 2009-02-25 2010-09-09 Jfe Steel Corp 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETSU-TO-HAGANE, vol. 83, 1997, pages 748

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580767B2 (en) 2012-02-22 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet with controlled microstructure, grain diameters, and texture
US10407749B2 (en) 2012-02-22 2019-09-10 Nippon Steel Corporation Process for manufacturing cold-rolled steel sheet
EP2818569A4 (en) * 2012-02-22 2015-12-30 Nippon Steel & Sumitomo Metal Corp COLD-ROLLED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
US9587288B2 (en) 2012-03-30 2017-03-07 Kobe Steel, Ltd. Gear having excellent seizing resistance
CN102899563A (zh) * 2012-11-01 2013-01-30 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102876972A (zh) * 2012-11-01 2013-01-16 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102876972B (zh) * 2012-11-01 2015-10-28 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
CN102899563B (zh) * 2012-11-01 2015-11-11 湖南华菱湘潭钢铁有限公司 一种超高强钢板的生产方法
US10100385B2 (en) 2012-11-15 2018-10-16 Baoshan Iron & Steel Co., Ltd. High-formability and super-strength hot galvanizing steel plate and manufacturing method thereof
WO2014075405A1 (zh) * 2012-11-15 2014-05-22 宝山钢铁股份有限公司 一种高成形性热镀锌超高强度钢板及其制造方法
US10287659B2 (en) 2012-11-15 2019-05-14 Baoshan Iron & Steel Co., Ltd. High-formability and super-strength cold-rolled steel sheet
WO2014075404A1 (zh) * 2012-11-15 2014-05-22 宝山钢铁股份有限公司 一种高成形性超高强度冷轧钢板及其制造方法
JP2015105384A (ja) * 2013-11-28 2015-06-08 新日鐵住金株式会社 衝撃吸収特性に優れた高強度鋼
US20170211163A1 (en) * 2014-08-07 2017-07-27 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US20170218472A1 (en) * 2014-08-07 2017-08-03 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) * 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662495B2 (en) * 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet

Also Published As

Publication number Publication date
EP2604715A1 (en) 2013-06-19
CA2805834C (en) 2016-06-07
US20130133792A1 (en) 2013-05-30
MX2013001456A (es) 2013-04-29
KR20130036763A (ko) 2013-04-12
CA2805834A1 (en) 2012-02-16
EP2604715B1 (en) 2019-12-11
CN103069040A (zh) 2013-04-24
EP2604715A4 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5463685B2 (ja) 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP5786316B2 (ja) 加工性および耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012020511A1 (ja) 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
US9580785B2 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP5369663B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5780086B2 (ja) 高強度鋼板およびその製造方法
JP5493986B2 (ja) 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP4894863B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5402191B2 (ja) 伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP5924332B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101569977B1 (ko) 가공성이 우수한 고항복비를 갖는 고강도 냉연 강판 및 그 제조 방법
WO2012147898A1 (ja) 加工性と材質安定性に優れた高強度鋼板およびその製造方法
WO2014020640A1 (ja) 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP2010255097A (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
JP5509909B2 (ja) 高強度熱延鋼板の製造方法
JPWO2019151017A1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
WO2021172297A1 (ja) 鋼板、部材及びそれらの製造方法
WO2021172298A1 (ja) 鋼板、部材及びそれらの製造方法
TWI475114B (zh) High strength cold rolled steel sheet excellent in workability and impact resistance and a method of manufacturing the same
KR20220060551A (ko) 고강도 강판 및 충격 흡수 부재 그리고 고강도 강판의 제조 방법
JP5515623B2 (ja) 高強度冷延鋼板およびその製造方法
JP7078202B1 (ja) 高強度鋼板およびその製造方法
KR20220058939A (ko) 고강도 강판 및 충격 흡수 부재 그리고 고강도 강판의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068578.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2805834

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010855912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/001456

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13816561

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137003735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP