WO2012019503A1 - 新型无介质三极场发射器 - Google Patents

新型无介质三极场发射器 Download PDF

Info

Publication number
WO2012019503A1
WO2012019503A1 PCT/CN2011/077229 CN2011077229W WO2012019503A1 WO 2012019503 A1 WO2012019503 A1 WO 2012019503A1 CN 2011077229 W CN2011077229 W CN 2011077229W WO 2012019503 A1 WO2012019503 A1 WO 2012019503A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal oxide
field emitter
electrodes
metal
Prior art date
Application number
PCT/CN2011/077229
Other languages
English (en)
French (fr)
Inventor
郭太良
张永爱
于荣光
叶芸
翁卫祥
张�杰
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2012019503A1 publication Critical patent/WO2012019503A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • H01J2329/041Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • H01J2329/0439Field emission cathodes characterised by the emitter material

Definitions

  • the invention relates to the technical field of manufacturing electronic display devices, in particular to a novel medium-free three-pole field emitter. Background technique
  • a gateless one is simply called a two-pole FED, and a gate is called a three-pole FED.
  • the anode needs high voltage to give the electron enough energy to bombard the phosphor to achieve high brightness.
  • the anode electrode acts as a modulation electrode, and the connection driving circuit requires low-voltage modulation, so there is a relationship between the luminance and the modulation voltage.
  • the modulation gate must be introduced on the basis of the two-pole structure, the voltage is modulated by the gate, and the brightness is controlled by the anode.
  • the three-pole FED can be divided into a front gate type FED, a back gate type FED, and a planar type FED according to the position of the gate.
  • the fabrication of the front gate structure is difficult. The preparation requires 3-5 mask processes, and the field emission source is easily damaged during the fabrication process.
  • the gate is added to the gate due to the positive voltage applied. Intercept and cathode emission are sensitive to parameters such as dielectric layer thickness and modulation pole opening.
  • the back gate type FED buryes the gate under the cathode, which solves the problem of difficulty in fabricating the front gate structure, but the structure loses the shielding effect of the gate to the anode and the cathode is easily bombarded by ions, and the anode voltage cannot be too high.
  • the planar FED means that the gate and the cathode are on the same plane, the structure is simple to manufacture, the cost is low, and it is very suitable for large-area fabrication and future industrial production.
  • the conventional planar FED has a high turn-on voltage and a narrow dynamic modulation voltage range.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a novel medium-free three-pole field emitter, which not only helps to enhance the edge emission effect of the electrode, enhances the electrode regulation, and reduces the on-field of the field emission, and
  • the manufacturing process is simple and easy to manufacture.
  • a novel medium-free three-pole field emitter comprising a female grid substrate and an anode substrate working together, wherein: the field emitter is a dielectric-free three-pole a plurality of mutually parallel strip electrodes are arranged side by side on the negative grid substrate, wherein the strip electrodes are sequentially stacked by two or more electrodes, and the bottom layer is a metal oxide conductive film electrode, which can be limited a flow resistance layer, the upper layer is a metal or conductive metal particle electrode, the edge of the metal oxide conductive film electrode is a zigzag or rectangular structure, and a field emission material or a metal is disposed at an edge of the metal oxide conductive film electrode Providing an electron conducting layer at a gap between the electrodes of the oxide conductive film;
  • the beneficial effects of the invention are that the edge enhancement effect of the electrode is fully utilized, the electrode regulation effect is enhanced, and the on-field of the field emission is reduced, thereby improving the field emission performance of the medium
  • the field emitter can be fabricated on the substrate by ordinary coating and photolithography processes, and the manufacturing process is simple, which greatly reduces the complexity and difficulty of the process, is not only easy to produce but also low in manufacturing cost, and is extremely suitable for large Area production and future industrial production have broad market application prospects.
  • FIG. 1 is a schematic view showing the structure of a novel medium-free three-pole field emitter of the present invention.
  • Figure 4 is a schematic cross-sectional view showing the cathode structure of a novel dielectricless three-pole field emitter corresponding to Figure 2.
  • Fig. 5 is a schematic view showing the cathode structure of a novel medium-free three-pole field emitter according to a second embodiment of the present invention (the electrode edge is a rectangular structure).
  • Fig. 6 is a schematic view showing the cathode structure of a novel medium-free three-pole field emitter having a regulating function corresponding to Fig. 5.
  • Figure 7 is a schematic cross-sectional view showing the cathode structure of a novel dielectricless three-pole field emitter corresponding to Figure 5.
  • FIG. 8 is a schematic view showing the cathode structure of a novel dielectric-free three-pole field emitter having a conductive film according to Embodiment 3 of the present invention (the electrode edge is a rectangular structure).
  • FIG. 9 is a schematic view showing the cathode structure of a novel dielectric-free three-pole field emitter having a conductive film according to Embodiment 3 of the present invention (the electrode edge is a sawtooth structure).
  • Figure 10 is a schematic cross-sectional view of a cathode structure of a novel dielectricless three-pole field emitter corresponding to Figure 8 (edge without field emission material).
  • Figure 11 is a schematic cross-sectional view showing the cathode structure of the novel dielectric-free tripole field emitter corresponding to Figure 8 (the edge is provided with a field emission material).
  • the novel medium-free three-pole field emitter of the present invention comprises a negative grid substrate and an anode substrate which cooperate with each other.
  • the field emitter is a dielectric-free three-pole structure, and the plurality of mutually parallel strips are arranged side by side on the cathode grid substrate.
  • a strip electrode wherein the strip electrodes are composed of two or more layers of electrodes, and the bottom layer is a metal oxide conductive film electrode, which can be used as a current limiting resistor.
  • the upper layer is a metal or conductive metal particle electrode
  • the edge of the metal oxide conductive film electrode is a zigzag or rectangular structure
  • a field emission material or a two metal oxide is disposed at an edge of the metal oxide conductive film electrode
  • An electron conducting layer is disposed at a space between the conductive film electrodes; an anode electrode and a phosphor layer are disposed on the anode substrate.
  • the present invention employs a screen printing method, an electrophoretic deposition method, a chemical vapor deposition method, or a physical vapor deposition method to provide a field emission material at the edge of the metal oxide conductive film electrode or a gap between the electrodes of the two metal oxide conductive films.
  • the field emitter material can be single or two or more micro-nano materials, and has good emission properties.
  • Metal oxide nanowires such as CNT, C film or Sn0 2 , ZnO, Bi 2 0 3 , the particle size is 1 nm- ⁇ ; the electron conducting material is Cu, Ag, Au, Pt, Pd, Au, Zn, etc. .
  • the metal electrode for fabricating the upper layer of the strip electrode is formed by a combination of vacuum coating technology and photolithography, and the conductive metal particle electrode for manufacturing the upper layer of the strip electrode is screen-printed. production.
  • the material for manufacturing the metal oxide conductive film electrode includes one or two or more oxides of an element of conductive Sn, Zn, In, Sb, Bi, and Cd, and an oxide of the combination of the elements, electrode width For (10-1000) ⁇ .
  • the material for manufacturing the metal or conductive metal particle electrode includes a single-layer film of a film conductive electrode material of Cr, Cu, Ag, Fe, Al, Ni, Au, Pt, Ti or a multilayer composite film or alloy film of any combination thereof. Or a conductive metal layer with an electrode width of (5-500) ⁇ .
  • the spacing between adjacent strip electrodes ranges from (0.01-100) ⁇ .
  • Embodiment 1 Referring to FIG. 2-4, when the cathode plate is fabricated, the substrate (21) is first provided, and the material of the substrate (21) is, for example, glass. Take the 100*100mm panel process as an example,
  • a 100*100mm glass panel is used as a negative grid substrate.
  • the parallel electrodes are thin film conductive electrodes made by a combination of coating technology and photolithography, and have a thickness of 100-1000 nm.
  • the bottom layer of the electrode is a metal oxide conductive film (22), which is combined with a plating technique and a photolithography technique.
  • a metal oxide conductive film is prepared by magnetron sputtering on the substrate (21), and then photolithography is used.
  • Electrodes Exposing, developing, etching, and de-bonding, forming mutually parallel electrodes with electrodes at both ends, and the edges of the electrodes are serrated, as shown in Figure 2-4 (25), the electrode width is 100-200 ⁇ m, The gap width (26) between the adjacent protruding serrated structures is 10-100 ⁇ m.
  • Patterned substrate Exposing, developing, etching, and de-bonding, forming mutually parallel electrodes with electrodes at both ends, and the edges of the electrodes are serrated, as shown in Figure 2-4 (25), the electrode width is 100-200 ⁇ m, The gap width (26) between the adjacent protruding serrated structures is 10-100 ⁇ m.
  • a Cr/Cu/Ag/Cu/Cr composite metal film is used as the top layer (23) of the electrode, and a Cr film is deposited by sputtering on the surface of the substrate (21) by DC magnetron sputtering.
  • the film is used to prepare a Cr/Cu/Ag/Cu/Cr composite metal film electrode on the electrode of the metal oxide conductive film, and the electrode width is slightly smaller than the width of the bottom electrode, which is 50-100 ⁇ .
  • a field emission material (24) is disposed on the serrated edge of the electrode metal oxide conductive film.
  • the material of the field emitter is single or two or more kinds of nano materials, and CNT, C film or metal oxide nanowires such as Sn0 2 , Zn0, Bi 2 0 3 with good emission properties are selected, and the particle size is 1 nm. -10 ⁇ .
  • carbon nanotubes (CNTs) are used as field emitters, and CNT nanomaterials are transferred to the electrode edges by electrophoretic deposition.
  • the carbon nanotubes are dispersed with ethyl cellulose, terpineol, trace additives and isopropanol.
  • a uniform and stable CNT electrophoresis fluid after which a carbon nanotube nanomaterial is electrophoretically deposited at the edge of the electrode by a DC voltage source or a pulse voltage source, and the deposition is controlled by controlling electrophoretic fluid concentration, electrophoresis voltage, electrophoresis current, electrophoresis time and the like.
  • the amount of CNT material on the edge of the electrode After the electrophoresis is completed, sintering is performed to remove residual organic solvents, organic substances, etc., and a patterned field emitter having good adhesion is formed, and the thickness is 2-600 nm and the width is 0.5-5 ⁇ . Fabrication of a dielectric-free three-pole field emitter negative grid substrate.
  • the CNT field emission material is transferred by electrophoretic deposition, and the CNT field emission material can be deposited on the edge of the electrode, which is beneficial to utilize the edge enhancement effect of the field emission.
  • the regulation of the gate to the cathode is enhanced, the field strength of the electrode is lowered, and the field emission performance of the field emission cathode is improved, and the process is simple and the cost is low.
  • the substrate is first provided.
  • a substrate (31) is provided, and the material of the substrate (31) is, for example, glass. Taking a 100*100mm panel process as an example, a 100*100mm glass panel is used as a negative grid substrate.
  • the parallel electrodes are thin film conductive electrodes made by a combination of coating technology and photolithography technology, and have a thickness of 100-1000 nm.
  • the bottom layer of the electrode is a metal oxide conductive film (32), which is combined with a plating technique and a photolithography technique.
  • a silver paste thick film electrode (33) is selected as the top layer of the electrode, and a silver paste electrode is overprinted on the glass substrate having the electrode pattern by using a screen printing technique, so that the electrode width is in the middle of the metal oxide conductive film electrode. It is slightly smaller than the width of the bottom electrode and is 50-100 ⁇ m.
  • the material of the field emitter is single or two or more kinds of nano materials.
  • CNT, C film or metal oxide nanowires such as Sn0 2 , ZnO, Bi 2 0 3 with good emission properties are selected, and the particle size is 1 ⁇ . -10 ⁇ .
  • four-needle nano zinc oxide is used as a field emitter, and nanomaterials are printed on the edge of the metal oxide conductive film electrode (32) by screen printing.
  • four-needle-shaped whiskers need to be formulated into a slurry. Before the ZnO paste is printed, the dust adsorbed on the surface of the electrode substrate (31) is removed, and then the screen plate and the cathode substrate are paired.
  • the next step is to enter the sintering process. Sintering is carried out in a programmed oven. The operating procedure is set and kept at 450 ° C for 30 min. 0 The entire sintering process is mainly to remove the organic solvent in the slurry. At the same time, high temperature annealing of the four-needle 0 semiconductor is beneficial to improve ZnO.
  • the emission stability is completed, and the fabrication of the dielectric-free three-pole field emission cathode grid substrate is completed.
  • the ZnO field emission material is transferred by screen printing to realize the deposition of ZnO field emission material on the edge of the electrode, which is beneficial to the edge enhancement effect of field emission.
  • the regulation of the gate to the cathode is enhanced, the electrode opening field strength is lowered, the field emission performance of the field emission cathode is improved, and the process is simple and the cost is low.
  • the mask layer and the composite metal film are etched to prepare a Cr/Cu/Ag/Cu/Cr composite metal film electrode (43) on the electrode of the metal oxide conductive film, and the electrode width is slightly smaller than the width of the bottom electrode. 50-100 ⁇ .
  • the etched electrode is temporarily not degreased, and the photoresist acts as a mask layer in the preparation of the electron conducting layer.
  • the thickness of the conductive film is on the order of nanometers, forming a discontinuous island shape, and the gap between the islands is more than ten nanometers. Due to the tunneling effect, electrons can be conducted between the islands to form a current. Depending on the type of metal, the thickness varies from 30 to 200 nm. Thus, the fabrication of a dielectric-free three-pole field emission negative grid substrate having a conductive film is completed.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

新型无介质三极场发射器
技术领域
本发明涉及电子显示器件制造技术领域, 特别是一种新型无介质三 极场发射器。 背景技术
场致电子发射是靠很强的外部电场来压抑物体表面的势垒, 使势垒 高度降低, 宽度变窄, 当势垒的宽度窄到可以同电子的波长相比拟 时, 电子通过隧道效应穿透势垒逸入真空。
场发射显示器 (FED) 的分类方法有很多, 按结构可简单地将无栅 极的称为二极 FED, 有栅极的称为三极 FED。 二极 FED中, 一方面阳 极需要高压才能给电子足够能量轰击荧光粉实现高亮度, 另一方面阳 极电极又充当调制电极, 连接驱动电路又需要低压调制, 因此存在发 光亮度和调制电压之间的不可调和的矛盾, 必须在二极结构的基础上 引入调制栅极, 由栅极进行电压调制, 由阳极控制亮度。 三极 FED按 栅极的位置不同, 可分为前栅型 FED、 后栅型 FED和平面型 FED。 前 栅极结构的制作较为困难, 制备需要 3-5次掩膜工艺, 而且在制作过程 中场致发射源容易受到破坏, 栅极由于加的正电压使得场发射电子可 能打在栅极而被截获并且阴极发射对介质层厚度、 调制极开口等参数 都很敏感。 后栅型 FED是将栅极埋在阴极之下, 解决了前栅结构的制 作困难问题, 但是该结构失去了栅极对阳极的屏蔽作用而使阴极容易 受到离子轰击, 且阳极电压不能太高, 否则栅极调控作用减弱甚至蜕 变为二极 FED。 。 前栅和后栅场致发射显示器都需要制作阴栅绝缘 层, 而大面积的绝缘层制作对工艺要求很高, 且绝缘性能很难保证, 故器件成本高, 不易实现大面积显示。 平面型 FED是指其栅极和阴极 处在同一个平面上, 结构制作简单, 成本低, 极适合大面积制作和未 来工业化生产, 但传统平面型 FED存在开启电压高和动态调制电压范 围窄等技术瓶颈, 而且不能进行矩阵寻址。 作为一种新型显示技术, 其离市场化还有较大的差距。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种新型无介质三极 场发射器, 该场发射器不仅有利于增强电极边缘发射效应, 增强电极 调控作用, 降低场发射的开启电场, 而且制造工艺简单, 易于生产制 造。
为实现上述目的, 本发明的技术方案是: 1、 一种新型无介质三极 场发射器, 包括相互配合工作的阴栅基板和阳极基板, 其特征在于: 该场发射器为无介质三极结构, 所述阴栅基板上并排设有多个相互平 行的条状电极, 所述各条状电极由两层或两层以上电极依次叠加组 成, 底层为金属氧化物导电薄膜电极, 可作为限流电阻层, 上层为金 属或导电金属颗粒电极, 所述金属氧化物导电薄膜电极的边缘为锯齿 状或矩形结构, 在所述金属氧化物导电薄膜电极的边缘设置有场发射 材料或在两金属氧化物导电薄膜电极之间的空隙处设置电子传导层; 本发明的有益效果是充分利用电极的边缘增强效应, 增强电极调控 作用, 降低场发射的开启电场, 从而提高无介质三极型场发射器的场 发射性能。 此外, 该场发射器采用普通的镀膜和光刻工艺就可以在基 片上完成电极的制作, 制造工艺简单, 其大大降低了工艺的复杂性及 难度, 不仅易于生产而且制造成本低, 极适合大面积制作和未来工业 化生产, 具有广阔的市场应用前景。 附图说明
图 1为本发明的新型无介质三极场发射器的结构示意图。
图 2为本发明实施例一中的新型无介质三极场发射器的阴极结构示 意图 (电极边缘为锯齿状结构) 。
图 3为与图 2相对应的具有调控作用的新型无介质三极场发射器的 阴极结构示意图。
图 4为与图 2相对应的新型无介质三极场发射器的阴极结构的横截 面示意图。
图 5为本发明实施例二中的新型无介质三极场发射器的阴极结构示 意图 (电极边缘为矩形状结构) 。
图 6为与图 5相对应的具有调控作用的新型无介质三极场发射器的 阴极结构示意图。
图 7为与图 5相对应的新型无介质三极场发射器的阴极结构的横截 面示意图。
图 8为本发明实施例三中具有导电薄膜的新型无介质三极场发射器 的阴极结构示意图 (电极边缘为矩形结构) 。 图 9为本发明实施例三中具有导电薄膜的新型无介质三极场发射器 的阴极结构示意图 (电极边缘为锯齿状结构) 。
图 10为与图 8相对应的新型无介质三极场发射器的阴极结构的横 截面示意图 (边缘无场发射材料) 。
图 11为与图 8相对应的新型无介质三极场发射器的阴极结构的横 截面示意图 (边缘设置有场发射材料) 。
附图中, 主要元件标记说明如下:
11、 21、 31、 41: 阴栅基板
12、 22、 32、 42: 底层金属氧化物导电薄膜电极
13、 23、 33、 43: 上层金属或导电金属颗粒电极
14、 24、 34: 场发射材料
44: 电子传导层
15、 25、 35、 45: 锯齿状或矩形结构
26、 36、 46: 电极之间的空隙处
16: 阳极基板
17: ITO薄膜
18: 荧光粉层 具体实施方式
本发明的新型无介质三极场发射器, 包括相互配合工作的阴栅基板 和阳极基板, 该场发射器为无介质三极结构, 所述阴栅基板上并排设 有多个相互平行的条状电极, 所述各条状电极由两层或两层以上电极 依次叠加组成, 底层为金属氧化物导电薄膜电极, 可作为限流电阻 层, 上层为金属或导电金属颗粒电极, 所述金属氧化物导电薄膜电极 的边缘为锯齿状或矩形结构, 在所述金属氧化物导电薄膜电极的边缘 设置有场发射材料或在两金属氧化物导电薄膜电极之间的空隙处设置 电子传导层; 在所述阳极基板上设有阳极电极和荧光粉层。
本发明采用丝网印刷法、 电泳沉积法、 化学气相沉积法或物理气相 沉积法在所述金属氧化物导电薄膜电极的边缘设置场发射材料或在两 金属氧化物导电薄膜电极之间的空隙处设置电子传导层。 场发射体材 料可为单种或者两种及其以上的微纳材料, 选用具有良好发射性能的
CNT、 C膜或 Sn02、 ZnO、 Bi203等金属氧化物纳米线, 其颗粒尺度为 lnm-ΙΟμηΐ; 电子传导材料为 Cu、 Ag、 Au、 Pt、 Pd、 Au、 Zn等导电性 材料。
在本发明中, 用于制造所述条状电极上层的金属电极采用真空镀膜 技术与光刻技术相结合制成, 而用于制造所述条状电极上层的导电金 属颗粒电极采用丝网印刷技术制成。
上述金属氧化物导电薄膜电极的制造材料包括具有导电性的 Sn、 Zn、 In, Sb、 Bi、 Cd元素的氧化物中的一种或两种及其以上该些元素 组合的氧化物, 电极宽度为 (10-1000) μηι。
上述金属或导电金属颗粒电极的制造材料包括薄膜导电电极材质为 Cr、 Cu、 Ag、 Fe、 Al、 Ni、 Au、 Pt、 Ti的单层薄膜或者由其任意组合 的多层复合薄膜、 合金薄膜或导电金属层, 电极宽度为 (5-500) μη。
相邻的条状电极之间间距的取值范围为 (0.01-100) μηι。
下面结合附图及具体实施例对本发明作进一步的详细说明。
实施例一 请参照图 2-4, 在制作阴极板时, 首先提供基板 (21 ) , 基板 (21 ) 材质例如为玻璃。 以 100*100mm面板工艺为例, 以
100* 100mm的玻璃面板作为阴栅基板。 相互平行的电极是以镀膜技 术、 光刻技术相结合所制作成的薄膜导电电极, 其厚度为 100-1000 nm。 电极底层为金属氧化物导电薄膜 (22) , 其制作结合镀膜技术和 光刻技术, 首先在基板 (21 ) 采用磁控溅射法制备一层金属氧化物导 电薄膜, 再采用光刻技术, 经过曝光、 显影、 刻蚀、 退胶, 形成相互 平行的、 引出极分别在两端的电极, 且电极边缘为锯齿状结构, 如图 2-4 (25 ) 所示, 其电极宽度为 100-200μηι, 其相邻突出的锯齿状结构 之间的间隙宽度 (26) 为为 10-100μηι。 再把已经形成图案的基板
(21 ) 清洗干净, 本实施例选用 Cr/Cu/Ag/Cu/Cr复合金属薄膜作为电 极的顶层 (23 ) , 采用直流磁控溅射法在基板 (21 ) 表面依次溅射沉 积 Cr膜、 Cu膜、 Ag膜、 Cu膜、 Cr膜, 形成 Cr/Cu/Ag/Cu/Cr复合金 属薄膜, 然后利用光刻技术, 在金属氧化物导电薄膜电极中间制作电 极掩膜层, 刻蚀复合金属薄膜, 便制备出在金属氧化物导电薄膜电极 上的 Cr/Cu/Ag/Cu/Cr复合金属薄膜电极, 其电极宽度比底层电极宽度 略小, 为 50-100 μηι。
最后, 在电极底层金属氧化物导电薄膜的锯齿状边缘设置场发射 材料 (24) 。 场发射体的材质为单种或者两种及其以上的纳米材料, 选用具有良好发射性能的 CNT、 C膜或 Sn02、 Zn0、 Bi203等金属氧化物 纳米线, 其颗粒尺度为 lnm-10 μηι。 本实施例中以碳纳米管 (CNT) 作为场发射体, 采用电泳沉积法将 CNT纳米材料转移至电极边缘。 首 先碳纳米管与乙基纤维素、 松油醇、 微量添加剂及异丙醇配成分散均 匀且稳定的 CNT电泳液, 之后, 采用直流电压源或者脉冲电压源在电 极边缘电泳沉积碳纳米管纳米材料, 通过控制电泳液浓度、 电泳电 压、 电泳电流、 电泳时间等电泳参数来控制沉积在电极边缘上的 CNT 材料的量。 电泳完成后, 进行烧结, 以去除残留的有机溶剂、 有机物 等, 制成附着性良好的图形化的场发射体, 其厚度为 2-600 nm, 宽度 为 0.5-5 μη ο 于此即完成了无介质三极型场发射器阴栅基板的制作。
根据本实施例所制作的新型无介质三极场发射器, 采用电泳沉积 法转移 CNT场发射材料, 可以在电极边缘的沉积上 CNT场发射材 料, 这都有利于利用场发射的边缘增强效应, 增强栅极对阴极的调控 作用, 降低电极开启场强, 提高场发射阴极的场发射性能, 工艺简 单, 成本低。
实施例二
请参照图 5-7, 首先提供基板。 首先提供基板 (31 ) , 基板 (31 ) 材质例如为玻璃。 以 100*100mm面板工艺为例, 以 100* 100mm的玻 璃面板作为阴栅基板。 相互平行的电极是以镀膜技术、 光刻技术相结 合所制作成的薄膜导电电极, 其厚度为 100-1000 nm。 电极底层为金 属氧化物导电薄膜 (32) , 其制作结合镀膜技术和光刻技术。 首先在 基板 (31 ) 采用磁控溅射法制备一层金属氧化物导电薄膜电极, 再采 用光刻技术, 经过曝光、 显影、 刻蚀、 退胶, 形成相互平行的、 引出 极分别在两端的电极, 且电极边缘为矩形结构, 如图 5-7 (35 ) 所示, 其电极宽度为 100-200μηι, 其相邻突出的矩形结构之间的宽度 (36) 为为 10-100μηι。 把已经形成电极图案的基板 (31 ) 清洗干净并烘干, 然后在金属氧化物导电薄膜电极 (32 ) 的上面制作汇流电极 (33 ) 。 本实施例选用银浆厚膜电极 (33) 作为电极顶层, 采用丝网印刷技 术, 在已经有电极图案的玻璃基板套印上银浆电极, 使其在金属氧化 物导电薄膜电极中间, 其电极宽度比底层电极宽度略小, 为 50-100μ m。
最后, 在金属氧化物导电薄膜电极 (32) 的边缘设置场发射体
(34) 。 场发射体的材质为单种或者两种及其以上的纳米材料, 选用 具有良好发射性能的 CNT、 C膜或 Sn02、 ZnO, Bi203等金属氧化物纳米 线, 其颗粒尺度为 1ηη -10μη。 本实施例中以四针状纳米氧化锌作为场 发射体, 采用丝网印刷法在金属氧化物导电薄膜电极 (32) 边缘印刷 纳米材料。 为了便于丝网印刷,需要将四针状 0晶须配制成浆料, 在 ZnO浆料印刷前,先除去电极基板 (31 ) 表面吸附的粉尘,然后进行丝网 印版与阴极基片的对准,然后采用手工丝网印刷机,采用 250目尼龙丝 网,将材料浆料倒在印版一侧,用刮板在丝网上均匀的涂敷一层浆料。 然后均匀地印在阴极电极边缘的矩形结构 (35) 上。 印刷完成后下一 步进入烧结工序。 烧结在程序控制的烘箱中进行,设置好运行程序,在 450°C保温 30 min0 整个烧结过程主要是去除浆料中的有机溶剂,同时 对四针状 0半导体进行高温退火,有利于提高 ZnO的发射稳定性, 于 此即完成了无介质三极场发射阴栅基板的制作。
根据本实施例所制作的新型无介质三极场发射器, 采用丝网印刷 法转移 ZnO场发射材料, 实现在电极边缘的沉积上 ZnO场发射材料, 这都有利于利用场发射的边缘增强效应, 增强栅极对阴极的调控作 用, 降低电极开启场强, 提高场发射阴极的场发射性能, 而且工艺简 单, 成本低。 实施例三
请参照图 8-11, 在制作阴极板时, 首先提供基板 (41 ) , 基板 (41 ) 材质例如为玻璃。 以 100*100mm面板工艺为例, 以
100* 100mm的玻璃面板作为阴栅基板。 相互平行的条状电极是以镀膜 技术、 光刻技术相结合所制作成的薄膜导电电极, 其总厚度为 100- 1000 nm。 电极底层为金属氧化物导电薄膜 (42) , 其制作结合镀膜技 术和光刻技术, 首先在基板 (41 ) 采用磁控溅射法制备一层金属氧化 物导电薄膜, 再采用光刻技术, 经过曝光、 显影、 刻蚀、 退胶, 形成 相互平行的、 引出极分别在两端的金属氧化物导电薄膜电极 (42) , 且电极边缘为矩形结构, 如图 8-11 (45 ) 所示, 其电极宽度为 100-200 μη , 其相邻突出的矩形结构或锯齿状结构之间的间隙宽度 (46) 为为 10-100μηι。 再把已经形成电极图案的基板 (41 ) 清洗干净, 本实施例 选用 Cr/Cu/Ag/Cu/Cr复合金属薄膜作为电极的顶层 (43 ) , 采用直流 磁控溅射法在基板 (41 ) 表面依次溅射沉积 Cr膜、 Cu膜、 Ag膜、 Cu 膜、 Cr膜, 形成 Cr/Cu/Ag/Cu/Cr复合金属薄膜, 然后利用光刻技术制 作在金属氧化物导电薄膜电极中间制作电极掩膜层, 刻蚀复合金属薄 膜, 便制备出在金属氧化物导电薄膜电极上的 Cr/Cu/Ag/Cu/Cr复合金 属薄膜电极 (43 ) , 其电极宽度比底层电极宽度略小, 为 50-100 μη。 刻蚀后的电极先暂时不退胶, 光刻胶在电子传导层的制备中作为 掩膜层。
然后, 把玻璃基底 (41 ) 清洗烘干, 在相互平行的电极相邻突出 的矩形结构 (45 ) 之间的空隙设置电子传导层 (44) 。 利用磁控溅射 法在已清洗干净的玻璃基底 (41 ) 制作具有电子发射能力的导电薄膜 (44) , 一般可以使用 Cu、 Ag、 Au、 Pt、 Pd、 Au、 Zn等导电性材料 充当靶材, 并根据不同金属的特性, 在磁控溅射过程中控制不同的温 度和通氧量, 在玻璃基底上溅射形成金属和金属氧化物混合的导电薄 膜。 导电薄膜厚度为纳米量级, 成不连续的孤岛状, 孤岛间的间隙为 十几纳米, 由于隧穿效应电子可在孤岛间传导, 形成电流。 根据金属 种类的不同, 其厚度也不一样, 在 30-200nm间。 于此即完成了具有导 电薄膜的无介质三极场发射阴栅基板的制作。
以上是本发明的较佳实施例, 凡依本发明技术方案所作的改变, 所产 生的功能作用未超出本发明技术方案的范围时, 均属于本发明的保护 范围。

Claims

权利要求书
1、 一种新型无介质三极场发射器, 包括相互配合工作的阴栅基板 和阳极基板, 其特征在于: 该场发射器为无介质三极结构, 所述阴栅 基板上并排设有多个相互平行的条状电极, 所述各条状电极由两层或 两层以上电极依次叠加组成, 底层为金属氧化物导电薄膜电极, 上层 为金属或导电金属颗粒电极, 所述金属氧化物导电薄膜电极的边缘为 锯齿状或矩形结构, 在所述金属氧化物导电薄膜电极的边缘设置有场 发射材料或在两金属氧化物导电薄膜电极之间的空隙处设置电子传导 层; 在所述阳极基板上设有阳极电极和荧光粉层。
2、 根据权利要求 1所述的新型无介质三极场发射器, 其特征在 于: 采用丝网印刷法、 电泳沉积法、 化学气相沉积法或物理气相沉积 法在所述金属氧化物导电薄膜电极的边缘设置场发射材料或在两金属 氧化物导电薄膜电极之间的空隙处设置电子传导层。
3、 根据权利要求 1所述的新型无介质三极场发射器, 其特征在 于: 用于制造所述条状电极上层的金属电极采用真空镀膜技术与光刻 技术相结合制成。
4、 根据权利要求 1所述的新型无介质三极场发射器, 其特征在 于: 用于制造所述条状电极上层的导电金属颗粒电极采用丝网印刷技 术制成。
5、 根据权利要求 1所述的新型无介质三极场发射器, 其特征在 于: 所述金属氧化物导电薄膜电极的制造材料包括具有导电性的 Sn、 Zn、 In, Sb、 Bi、 Cd元素的氧化物中的一种或两种及其以上该些元素 组合的氧化物。
6、 根据权利要求 1所述的新型无介质三极场发射器, 其特征在 于: 所述金属或导电金属颗粒电极的制造材料包括薄膜导电电极材质 为 Cr、 Cu、 Ag、 Fe、 Al、 Ni、 Au、 Pt、 Ti的单层薄膜或者由其任意组 合的多层复合薄膜、 合金薄膜或导电金属层。
7、 根据权利要求 1所述的新型无介质三极场发射器, 其特征在 于: 相邻的条状电极之间间距的取值范围为 (0.01-100) μηι。
PCT/CN2011/077229 2010-08-12 2011-07-16 新型无介质三极场发射器 WO2012019503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010251052 CN101894726A (zh) 2010-08-12 2010-08-12 新型无介质三极场发射器
CN201010251052.8 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012019503A1 true WO2012019503A1 (zh) 2012-02-16

Family

ID=43103882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077229 WO2012019503A1 (zh) 2010-08-12 2011-07-16 新型无介质三极场发射器

Country Status (2)

Country Link
CN (1) CN101894726A (zh)
WO (1) WO2012019503A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242547B (zh) * 2020-10-19 2021-07-09 苏州科技大学 一种电子皮肤生物燃料电池的制备方法及生物燃料电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243778A (ja) * 1993-02-16 1994-09-02 Sharp Corp 電界放出型電子源及びその駆動方法
US5382867A (en) * 1991-10-02 1995-01-17 Sharp Kabushiki Kaisha Field-emission type electronic device
KR100769721B1 (ko) * 2006-10-16 2007-10-24 삼성전기주식회사 수평구조 전계방출소자 및 그 제조방법
CN101211729A (zh) * 2005-12-29 2008-07-02 三星Sdi株式会社 电子发射器件以及驱动该电子发射器件的方法
CN100465720C (zh) * 2004-01-08 2009-03-04 三星Sdi株式会社 场发射背光装置、背光装置驱动方法及制造下面板的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222357B2 (ja) * 1994-06-09 2001-10-29 キヤノン株式会社 画像形成装置及びその製造方法
JPH0850850A (ja) * 1994-08-09 1996-02-20 Agency Of Ind Science & Technol 電界放出型電子放出素子およびその製造方法
KR100852690B1 (ko) * 2002-04-22 2008-08-19 삼성에스디아이 주식회사 전계 방출 표시소자용 탄소 나노 튜브 에미터 페이스트조성물 및 이를 이용한 전계 방출 표시소자용 탄소 나노튜브 에미터의 제조방법
CN1790598A (zh) * 2004-12-14 2006-06-21 中国科学院西安光学精密机械研究所 一种基于碳纳米管场发射阵列的三电极平面型显示器
CN100487849C (zh) * 2006-08-02 2009-05-13 中原工学院 横向阴极发射结构的平板显示器及其制作工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382867A (en) * 1991-10-02 1995-01-17 Sharp Kabushiki Kaisha Field-emission type electronic device
JPH06243778A (ja) * 1993-02-16 1994-09-02 Sharp Corp 電界放出型電子源及びその駆動方法
CN100465720C (zh) * 2004-01-08 2009-03-04 三星Sdi株式会社 场发射背光装置、背光装置驱动方法及制造下面板的方法
CN101211729A (zh) * 2005-12-29 2008-07-02 三星Sdi株式会社 电子发射器件以及驱动该电子发射器件的方法
KR100769721B1 (ko) * 2006-10-16 2007-10-24 삼성전기주식회사 수평구조 전계방출소자 및 그 제조방법

Also Published As

Publication number Publication date
CN101894726A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
JP2004214164A (ja) 多層構造で形成された電子放出源を備えた電界放出表示装置
CN109473327B (zh) 层叠双雁翅空环尖体阴极坡浪混合线门控结构的发光显示器
US20070111628A1 (en) Method for manufacturing electron-emitting device and method for manufacturing display having electron-emitting device
WO2012094889A1 (zh) 阳栅同基板的三极结构场致发射显示器
KR100932931B1 (ko) 전자 방출원, 전자 방출 소자 및 전자 방출원의 제조 방법
US8269210B2 (en) Cathode assembly containing an ultraviolet light-blocking dielectric layer
US20100264805A1 (en) Under-gate field emission triode with charge dissipation layer
WO2012019503A1 (zh) 新型无介质三极场发射器
CN102262994B (zh) 基于氧化物纳米结构的表面传导电子发射源及其制作方法
KR20050115057A (ko) 전계 방출 소자용 장수명 이미터 및 그 제조 방법
Kaneko et al. Wedge-shaped field emitter arrays for flat display
CN101819913A (zh) 具有边缘增强效应的前栅型场发射阴极结构及其制备方法
WO2013067732A1 (zh) 一种纳米材料-介质-纳米材料结构的电子发射源
JP3944415B2 (ja) 電子源装置とその製造方法および表示装置
JP3023734B2 (ja) 電子放出素子及び画像表示装置
JP3661683B2 (ja) 電子放出素子の製造方法及び表示装置の製造方法
CN102683142B (zh) 一种障壁式场致发射显示器的结构
CN1652283B (zh) 一种场发射电子源器件及其制备方法
JP3854174B2 (ja) 表示装置およびその製造方法
KR100784511B1 (ko) 전계 방출 표시 장치 및 그의 제조방법
TWI324785B (zh)
JPH02247937A (ja) 電子放出素子、それを用いた電子源及び画像形成装置
KR100641104B1 (ko) 표면 전도형 전자방출 소자 및 그 제조 방법
JP2012185942A (ja) 電界放出型発光装置およびその製造方法
Zhang et al. Fabrication and field emission characteristics of SnO2 electron sources based on planar-gate-type cathode arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816062

Country of ref document: EP

Kind code of ref document: A1