WO2012018140A1 - Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam - Google Patents
Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam Download PDFInfo
- Publication number
- WO2012018140A1 WO2012018140A1 PCT/JP2011/068210 JP2011068210W WO2012018140A1 WO 2012018140 A1 WO2012018140 A1 WO 2012018140A1 JP 2011068210 W JP2011068210 W JP 2011068210W WO 2012018140 A1 WO2012018140 A1 WO 2012018140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crosslinked
- ethylene
- molded article
- foamed molded
- thermoplastic polymer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/122—Soles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/248—Measuring crosslinking reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0092—Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0222—Temperature
Definitions
- the present invention relates to a method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded article, and a crosslinked foamed molded article having a crosslinking density calculated by the measuring method of a certain value or more.
- Crosslinked foamed molded articles made of thermoplastic polymers are widely used for daily goods, flooring materials, sound insulation materials, heat insulating materials and the like.
- a cross-linked foamed molded article made of an ethylene polymer is used for footwear members (outer sole (lower bottom), midsole (upper bottom), insole (sole), etc.)).
- the crosslinked foamed molded product made of an ethylene polymer include a crosslinked foamed molded product obtained by crosslinking and foaming an ethylene-vinyl acetate copolymer as described in JP-B-3-2657, and JP-A-2005-314638.
- cross-linked foamed molded product obtained by cross-linking and foaming an ethylene- ⁇ -olefin copolymer as described in Japanese Patent Publication No. JP-A.
- crosslinking density is known as one of the elements that greatly affect various physical properties of the crosslinked foamed molded article.
- the crosslinking density is also referred to as an effective network chain concentration, and represents the number of cross-linking points between the polymers constituting the crosslinked foamed molded product contained in the unit weight of the foamed molded product.
- a method for measuring the cross-linking density of a vulcanized rubber cross-linked foamed molded article for example, a method described in JP-A-2007-238783 is known.
- two or more solid bodies that is, non-foamed molded bodies, which are the same type of polymer as the foamed molded body whose crosslink density is to be measured and have different crosslinking densities, are used.
- the crosslink density of each solid body is calculated in advance by using equilibrium swelling, and the relaxation times of the solid bodies for which the crosslink density has been calculated are measured by a pulse nuclear magnetic resonance (NMR) apparatus. From the above, a calibration curve of the same kind of polymer is prepared. Next, the relaxation time in the foam molded article is measured by the pulse nuclear magnetic resonance (NMR) apparatus, and the crosslinking density of the foam molded article is calculated based on the calibration curve.
- NMR pulse nuclear magnetic resonance
- FIG. 1 is a diagram showing a correlation between compression set and gel fraction of a crosslinked foamed molded article.
- FIG. 2 is a diagram showing the correlation between the compression set of the crosslinked foamed molded article and the crosslinking density measured by the method of the present invention.
- the present inventor used a stress relaxation behavior obtained by compressively deforming a cross-linked foam molded article to be measured, thereby forming a cross-linked foam molded article made of a thermoplastic polymer. A method for accurately measuring the crosslink density of was found. In addition, the present inventors have found that a crosslinked foamed molded article having a crosslinking density calculated by the above measurement method exceeding a certain value is suitable as a member for shoes.
- the first of the present invention is a cross-linked foamed molded product made of an ethylene polymer, which is subjected to compression deformation under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds.
- the stress relaxation of the crosslinked foamed molded article is measured, and the crosslinked density determined using the relaxation elastic modulus obtained from the stress relaxation measurement is 0.30 mol / kg or more, and the crosslinked foamed molded article made of an ethylene polymer is used.
- the second of the present invention is a member for shoes comprising the above-mentioned crosslinked foamed molded article.
- the third aspect of the present invention is a method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded article, Heating the thermoplastic polymer cross-linked foam to a predetermined temperature; A pressure is applied to the crosslinked foamed molded product made of a thermoplastic polymer maintained at a predetermined temperature to compressively deform the crosslinked foamed molded product, and while maintaining the amount of compressive strain of the crosslinked foamed molded product to be constant, Measuring stress relaxation; A step of obtaining relaxation elastic modulus Gc from stress relaxation, where Gc is the elastic modulus when the stress of the crosslinked foamed molded article becomes constant, Calculating the crosslinking density of the crosslinked foamed thermoplastic polymer from the Gc by the following formula.
- n Gc / RT n: Crosslink density
- R Gas constant
- T Measurement temperature
- Method of measuring crosslinking density of the crosslinked foamed molded article of the present invention is a method of calculating from the relaxation modulus of the crosslinked foamed molded article when obtained by compression deformation of the cross-linked foamed molded article. Specifically, it has a compressible mechanism such as a tensile tester with a compression function and a rotary viscometer with a compression function, and the stress at the time of compression of a cross-linked foamed molded article using an apparatus that can obtain stress data. Measure relaxation. For example, an apparatus equipped with a stress sensor that can measure compressive stress, a parallel plate-shaped jig that sandwiches the sample, an oven that heats the sample, and a position sensor that can measure the amount of compressive strain is used.
- the shape of the sample is preferably a plate shape having parallel planes that can uniformly contact the jig surface.
- the thickness of the sample in the range that can be sandwiched in the jig can be freely set, and preferably 0.1 mm ⁇ 50 mm, more preferably 1 mm ⁇ 20 mm.
- the shape of the sample on the surface in contact with the jig is preferably a point-symmetric shape such as a circle, square, or equilateral triangle.
- the area of the sample on the surface in contact with the jig is preferably equal to or slightly larger than the area of the jig.
- the sample is sandwiched between the jig so that the center of the surface where the sample contacts the jig and the center of the jig coincide.
- a sample sandwiched between jigs is placed in an oven, and the sample is heated to the measurement temperature.
- the measurement temperature can be freely set as long as the shape of the sample can be maintained.
- the measurement temperature is preferably a temperature at which 1% to 100% compressive strain can be applied to the sample.
- the amount of compressive strain applied to the sample is determined by the material, shape, and measurement temperature of the sample.
- the amount of compressive strain is defined by the following equation.
- the amount of compressive strain applied to the sample may be a non-linear region, that is, a region where the viscosity of the sample changes according to the amount of compressive strain when the amount of compressive strain applied to the sample is changed.
- the amount of compressive strain applied to the sample is preferably 1% to 100%, more preferably 10 to 100%.
- the stress relaxation of the sample is measured while keeping the amount of compressive strain applied to the sample constant.
- the measurement time may be a time until the stress of the crosslinked foamed molded article disappears and the stress of the crosslinked foamed molded article becomes substantially constant, or a longer time.
- the calculation method of the crosslinking density used in the present invention is as follows. The relaxation elastic modulus Gc when the stress of the crosslinked foamed molded product is attenuated and the stress of the crosslinked foamed molded product becomes substantially constant is obtained, and the crosslinking density n of the crosslinked foamed molded product is calculated using the following formula.
- the measuring method of the present invention can also be applied to a crosslinked foamed product made of an ethylene polymer, which has conventionally been difficult to accurately measure the crosslinking density.
- a crosslinked foamed product made of an ethylene polymer, which has conventionally been difficult to accurately measure the crosslinking density.
- the method of measuring crosslinking density of the crosslinked foamed molded body formed by using a high-pressure low-density polyethylene and / or ethylene - ⁇ - olefin copolymer it is preferred.
- Crosslinked foamed molded article which is capable of measuring the cross-linking density in the method of the present invention may be a cross-linked foamed molded article crosslinked in any way.
- Examples of the crosslinking method include electron beam crosslinking and a method of crosslinking a polymer with an organic peroxide.
- the measurement method of the present invention is suitable for the measurement of the crosslinking density of a crosslinked foamed molded product obtained by crosslinking a polymer with an organic peroxide.
- Crosslinked foamed molded article of the present invention is mainly composed of ethylene-based polymer, the crosslinking density is 0.30 mol / kg or more cross-linked foamed molded article.
- the crosslinking density of the crosslinked foamed molded product is the compression modulus of the crosslinked foamed molded product obtained under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds.
- the crosslink density is preferably 0.30 mol / kg or more.
- the ethylene polymer in the present invention is an ethylene- ⁇ -olefin copolymer, a high-pressure method low-density polyethylene, or a mixture thereof.
- the ethylene- ⁇ -olefin copolymer is a copolymer containing a monomer unit based on ethylene and a monomer unit based on an ⁇ -olefin.
- ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4 -Methyl- 1-hexene etc. are mention
- the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 20 carbon atoms, more preferably an ⁇ -olefin having 4 to 8 carbon atoms, and still more preferably 1-butene or 1-hexene. , 1-octene and 4-methyl-1-pentene.
- Examples of the ethylene- ⁇ -olefin copolymer include an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, and an ethylene-1-octene copolymer.
- Examples thereof include a polymer, an ethylene-1-butene-1-hexene copolymer, an ethylene-1-butene-4-methyl-1-pentene copolymer, and an ethylene-1-butene-1-octene copolymer.
- a copolymer having a monomer unit based on ethylene and a monomer unit based on an ⁇ -olefin having 6 to 8 carbon atoms specifically, Ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, and ethylene-1-butene-1-octene copolymer.
- the content of monomer units based on ethylene is usually 80 to 98% by weight when the total weight of the ethylene- ⁇ -olefin copolymer is 100% by weight.
- the density of the ethylene polymer is usually 860 to 945 kg / m. 3 It is.
- the density is preferably 865 kg / m from the viewpoint of increasing the rigidity of the crosslinked foamed molded article. 3 Or more, more preferably 870 kg / m 3 Or more, more preferably 900 kg / m 3 That's it.
- 940 kg / m. 3 It is as follows.
- the melt flow rate (MFR; unit is g / 10 minutes) of the ethylene polymer is 0.01 to 3.0 g / 10 minutes.
- An MFR is preferably 0.01 g / 10 min or more because a foamed molded article having a high foaming ratio is obtained and foam moldability is also improved.
- MFR is preferably not more than 3.0 g / 10 min, more preferably not more than 2.5 g / 10 min.
- the MFR is measured by the A method according to JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N.
- an ethylene polymer previously blended with about 1000 ppm of an antioxidant is used.
- the ethylene-based copolymer used in the present invention preferably has a flow activation energy (Ea) of 40 kJ / mol or more from the viewpoint of making the cell properties uniform in the crosslinked foamed molded article and improving the appearance.
- Ea is preferably 50 kJ / mol or more, more preferably 55 kJ / mol or more.
- the flow activation energy (Ea) is a master curve showing the dependence of the melt complex viscosity (unit: Pa ⁇ sec) at 190 ° C. on the angular frequency (unit: rad / sec) based on the temperature-time superposition principle.
- the shift factor (a T ) And a numerical value calculated by the Arrhenius equation and obtained by the following method.
- melt complex viscosity-angular frequency curve of the ethylene- ⁇ -olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. T, unit: ° C.
- melt complex viscosity is Pa ⁇ sec.
- the unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), Shift factor (a) at each temperature (T) obtained when superimposed on the melt complex viscosity-angular frequency curve of the coalesced T ) Is obtained, and each of the temperature (T), from a shift factor (aT) at each temperature (T), by the method of least squares [ln (a T )] And [1 / (T + 273.16)] are calculated. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
- the logarithmic curve has an angular frequency a for each curve. T Double the melt complex viscosity to 1 / a T Move twice.
- the formula (I) in the minimum square method is usually 0.99 or more.
- the melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec.
- the measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.
- the molecular weight distribution (Mw / Mn) of the ethylene-based polymer is preferably 3 or more, more preferably 5 or more, from the viewpoint of improving the moldability. Moreover, from a viewpoint of raising impact strength, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 15 or less.
- the molecular weight distribution (Mw / Mn) is a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
- Mw and Mn are gel permeation chromatograph (GPC). ) Method. Moreover, as measurement conditions of GPC method, the following conditions can be mention
- Apparatus Waters 150C manufactured by Waters
- Separation column TOSOH TSKgelGMH6-HT (3) Measurement temperature: 140 ° C
- Carrier Orthodichlorobenzene (5) Flow rate: 1.0 mL / min (6) Injection volume: 500 ⁇ L (7) Detector: differential refraction (8)
- HMw-Index High Molecular Index
- Aw weight average molecular chain length
- HMw-Index (%) (Component ratio of LogAw> 4.5 or more) / (Component ratio of LogAw> 4.0 or more) ⁇ 100 More HMw-Index is high, can mean that higher proportions of the molecular chain component weight with high molecular weight, achieve a high crosslinking density crosslinked foamed molded article.
- Examples of the method for producing an ethylene- ⁇ -olefin copolymer used for obtaining a crosslinked foamed product made of an ethylene polymer of the present invention having a crosslinking density of 0.30 mol / kg or more include an alkylene group and a silylene group.
- a metallocene complex having a ligand in which two (substituted) indenyl groups are bonded to each other by a bridging group for example, a metallocene catalyst using ethylenebis (1-indenyl) zirconium diphenoxide as a catalyst component, and ethylene and ⁇ -olefin And a method of copolymerizing with.
- a metallocene catalyst using ethylenebis (1-indenyl) zirconium diphenoxide as a catalyst component
- ethylene and ⁇ -olefin ethylene and ⁇ -olefin
- a promoter component that activates the metallocene complex is used.
- the promoter component include organic aluminum oxy compounds, boron compounds, and organic zinc compounds. These promoter components are preferably used by being supported on a particulate carrier.
- a porous material is preferable, and SiO 2 , Al 2 O 3 , MgO, ZrO 2 TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 Inorganic oxides such as; clays and clay minerals such as smectite, montmorillonite, hectorite, laponite, saponite; organic polymers such as polyethylene, polypropylene, styrene-divinylbenzene copolymer, etc. are used.
- the 50% volume average particle diameter of the particulate carrier is usually 10 to 500 ⁇ m, and the 50% volume average particle diameter is measured by a light scattering laser diffraction method or the like.
- the fine particle carrier has a pore volume of usually 0.3 to 10 ml / g, and the pore volume is mainly measured by a gas adsorption method (BET method).
- the specific surface area of the particulate carrier is usually 10 to 1000 m. 2 / G, and the specific surface area is mainly measured by a gas adsorption method (BET method).
- the following promoter support (A) and an alkylene group or a silylene group are used.
- a polymerization catalyst obtained by contacting a metallocene complex (B) having a ligand in which two (substituted) indenyl groups are bonded by a bridging group with an organoaluminum compound (C) ethylene and an ⁇ -olefin Can be used.
- the cocatalyst carrier (A) is composed of component (a) diethylzinc, component (b) two types of fluorinated phenol, component (c) water, component (d) inorganic particulate carrier and component (e) 1,1. , 1,3,3,3-hexamethyldisilazane (((CH 3 ) 3 Si) 2 NH) is a carrier obtained by contact.
- the fluorinated phenol of component (b) include pentafluorophenol, 3,5-difluorophenol, 3,4,5-trifluorophenol, 2,4,6-trifluorophenol and the like.
- pentafluorophenol / 3,4,5-trifluorophenol pentafluorophenol / 2,4,6-trifluorophenol, pentafluorophenol / 3,5-difluoro
- pentafluorophenol / 3,4,5-trifluorophenol pentafluorophenol / 3,4,5-trifluorophenol
- pentafluorophenol / 3,5-difluoro A combination of phenol and the like can be mentioned, and a combination of pentafluorophenol / 3,4,5-trifluorophenol is preferable.
- the molar ratio of the fluorinated phenol having a large number of fluorine and the fluorinated phenol having a small number of fluorine is usually 20/80 to 80/20.
- the inorganic compound particles of component (d) are preferably silica gel.
- the amount of each component used is not particularly limited, but the molar ratio of each component used is the component (a) diethyl.
- the molar ratio of zinc: component (b) 2 types of fluorinated phenol: component (c) water 1: x: y, x and y preferably satisfy the following formula.
- ⁇ 1 X in the above formula is preferably a number from 0.01 to 1.99, more preferably a number from 0.10 to 1.80, and still more preferably a number from 0.20 to 1.50. Most preferably, the number is 0.30 to 1.00.
- the amount of component (d) inorganic fine particle carrier used for component (a) diethyl zinc is included in the particles obtained by contacting component (a) diethyl zinc and component (d) inorganic fine particle carrier.
- the amount of zinc atoms derived from the component (a) diethylzinc is preferably 0.1 mmol or more and 0.5 to 20 mmol in terms of the number of moles of zinc atoms contained in 1 g of the obtained particles. It is more preferable that
- the amount of component (e) trimethyldisilazane used for component (d) inorganic particulate carrier is such that component (e) trimethyldisilazane is 0.1 mmol or more per gram of component (d) inorganic particulate carrier.
- the amount is preferably 0.5 to 20 mmol, and more preferably 0.5 to 20 mmol.
- Preferred examples of the metallocene complex (B) having a ligand in which two (substituted) indenyl groups are bonded by a bridging group such as an alkylene group or a silylene group include ethylenebis (1-indenyl) zirconium diphenoxide. .
- the organoaluminum compound (C) is preferably triisobutylaluminum or trinormaloctylaluminum.
- the amount of the metallocene complex (B) used is preferably 5 ⁇ 10 to 1 g of the promoter support (A). -6 ⁇ 5 ⁇ 10 -4 mol.
- the amount of organoaluminum compound (C) used is 1 to 2000 in terms of the ratio (Al / M) of the number of moles of aluminum atoms in the organoaluminum compound (C) to the number of moles of metal atoms in the metallocene complex (B).
- the promoter support (A) and the metallocene complex (B) are optionally added. It is good also as a polymerization catalyst which makes an electron-donating compound (D) contact an organic aluminum compound (C).
- a small amount of olefin is polymerized (hereinafter referred to as prepolymerization) using a solid catalyst component in which a promoter component is supported on a particulate carrier. )) Obtained by polymerizing a small amount of olefin using a co-polymerized solid component, for example, a co-catalyst carrier, a metallocene complex, and a co-catalyst component (such as an alkylating agent such as an organoaluminum compound).
- a co-polymerized solid component for example, a co-catalyst carrier, a metallocene complex, and a co-catalyst component (such as an alkylating agent such as an organoaluminum compound).
- a method in which ethylene and an ⁇ -olefin are copolymerized using a polymerization solid component as a catalyst component or a catalyst is preferable.
- a polymerization solid component as a catalyst component or a catalyst.
- triethylaluminum as a promoter component in order to increase HMw-Index and further improve compression set performance.
- the olefin used in the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene and cyclohexene. These can be used alone or in combination of two or more.
- the content of the prepolymerized polymer in the prepolymerized solid component is usually 0.1 to 500 g, preferably 1 to 200 g, per 1 g of the solid catalyst component.
- the preliminary polymerization method may be a continuous polymerization method or a batch polymerization method, and examples thereof include a batch type slurry polymerization method, a continuous slurry polymerization method, and a continuous gas phase polymerization method.
- catalyst components such as a promoter carrier, a metallocene complex, and other promoter components (such as an alkylating agent such as an organoaluminum compound) into a polymerization reactor for performing prepolymerization, nitrogen, argon, or the like is usually used.
- the polymerization temperature in the prepolymerization is usually a temperature lower than the melting point of the prepolymerized polymer, preferably 0 to 100 ° C, more preferably 10 to 70 ° C.
- the solvent include hydrocarbons having 20 or less carbon atoms.
- saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane, octane, decane, etc .; aromatic hydrocarbons such as benzene, toluene, xylene, etc., which are used alone Alternatively, two or more kinds are used in combination.
- a method for producing an ethylene- ⁇ -olefin copolymer a continuous polymerization method involving the formation of particles of an ethylene- ⁇ -olefin copolymer is preferable.
- a continuous gas phase polymerization method for example, a continuous gas phase polymerization method, a continuous slurry polymerization method, a continuous bulk weight It is a legal method, preferably a continuous gas phase polymerization method.
- the gas phase polymerization reaction apparatus used in the polymerization method is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion.
- a stirring blade may be installed in the reaction vessel.
- an inert gas such as nitrogen or argon, hydrogen, ethylene or the like is usually used.
- the high-pressure low-density polyethylene is generally a tank-type reactor or a tubular reactor, and a free radical generator such as an organic oxide or oxygen is used.
- a resin produced by polymerizing ethylene under a polymerization pressure of 100 to 300 MPa and a polymerization temperature of 130 to 300 ° C. can be used.
- MFR can also be adjusted by using hydrocarbons such as hydrogen, methane, and ethane as molecular weight regulators.
- the same method as the conventional method for producing a crosslinked foamed molded product of ethylene-vinyl acetate copolymer or high-pressure low-density polyethylene can be used.
- a foaming agent is blended into an ethylene polymer, and this is uniformly mixed using a ribbon blender or the like, and the resulting mixture is substantially decomposed by an extruder or a calender roll.
- the composition is filled into a mold by an injection molding machine or the like, foamed in a pressurized (holding) / heated state, and then cooled to take out a crosslinked foamed molded product, or (3) an ethylene polymer.
- foam The mixture obtained by uniformly mixing using a ribbon blender or the like is melt-kneaded with an extruder or a calender roll at a temperature and pressure at which the foaming agent is not substantially decomposed, and formed into a sheet shape. Examples thereof include a method in which a sheet-like molded body is put in a mold, foamed in a pressurized (holding) / heated state with a pressure press or the like, and then cooled to take out a crosslinked foamed molded body.
- the composition is further injected into the mold under conditions where the foaming agent and the crosslinking agent are not substantially decomposed, and the foaming agent and the crosslinking agent are decomposed in the mold, for example, a temperature of about 130 to 200 degrees.
- a method (injection foaming method) in which the resin is crosslinked and foamed while maintaining the above can also be mentioned.
- foaming agent examples include a thermally decomposable foaming agent having a decomposition temperature equal to or higher than the melting temperature of the ethylene polymer.
- a thermally decomposable foaming agent having a decomposition temperature equal to or higher than the melting temperature of the ethylene polymer.
- azodicarbonamide or sodium hydrogen carbonate is preferable.
- the foaming agent include compounds mainly composed of urea; metal oxides such as zinc oxide and lead oxide; higher fatty acids such as salicylic acid and stearic acid; and metal compounds of the higher fatty acids.
- the amount of the foaming aid used is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight, with the total of the foaming agent and the foaming aid being 100% by weight.
- ionizing radiation is used as a method for crosslinking an ethylene polymer
- ⁇ rays, ⁇ rays, neutrons, electron beams, and the like can be used.
- the irradiation amount is preferably in the range of 5 to 20 Mrad.
- a crosslinking agent is used as a method for crosslinking the ethylene polymer, an organic peroxide having a decomposition temperature equal to or higher than the flow start temperature of the ethylene polymer is suitable.
- dicumyl peroxide 1,1-ditertiary butyl peroxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-ditertiary butyl peroxyhexane, 2,5-dimethyl-2 , 5-ditertiary butyl peroxyhexyne, ⁇ , ⁇ -ditertiary butyl peroxyisopropylbenzene, tertiary butyl peroxyketone, tertiary butyl peroxybenzoate, and the like.
- the blending ratio of the crosslinking agent is usually 0.02 to 3 parts by weight, preferably 0.05 to 1.5 parts by weight, with the total amount of the resin components being 100 parts by weight.
- the temperature at which the cross-linking agent does not substantially decompose is a temperature not higher than the one-hour half-life temperature of the cross-linking agent.
- the 1-hour half-life temperature of a crosslinking agent is described in MSDS etc. of this crosslinking agent.
- the crosslinked foamed molded article of the present invention comprises a heat stabilizer, weathering agent, lubricant, antistatic agent, filler and pigment (metal oxide such as zinc oxide, titanium oxide, calcium oxide, magnesium oxide, silicon oxide; magnesium carbonate, Various additives such as carbonates such as calcium carbonate; fiber materials such as pulp) may be included.
- a resin such as an ethylene-unsaturated ester copolymer, high-density polyethylene, polypropylene, polybutene, or rubber may be included.
- the cross-linked foamed molded product of the present invention or the compression-crosslinked foamed molded product to be described later is used for a shoe sole or a shoe sole member, it is often necessary to adhere to other members such as rubber and a vinyl chloride sheet.
- an ethylene-unsaturated ester copolymer such as a vinyl copolymer in combination with the ethylene polymer.
- the proportion is 100 parts by weight of the ethylene polymer, and the ethylene-unsaturated ester copolymer is based on 100 parts by weight of the polymer.
- the combined amount is preferably 25 to 900 parts by weight, and more preferably 40 to 400 parts by weight.
- the pressure-crosslinking foaming method which is one of the methods for producing a crosslinked foamed molded product, will be described.
- An ethylene polymer, a crosslinking agent, a foaming agent, and the like are melt-kneaded at a temperature at which both components of the crosslinking agent and the foaming agent are not substantially decomposed to produce a foaming resin composition.
- the foaming resin composition is filled into a mold and 50 kg / cm.
- a cross-linked foamed molded article can be obtained by heating at a temperature equal to or higher than the decomposition temperature of the foaming agent and higher than the decomposition temperature of the cross-linking agent while being pressurized.
- the clamping pressure of the mold is 50 to 300 kgf / cm 2
- the pressure holding time is preferably about 10 to 60 minutes.
- the crosslinked foamed molded product of the present invention may be a compression crosslinked foamed molded product obtained by further compression molding the crosslinked foamed molded product. Compression molding is usually 130-200 ° C, 30-200 kg / cm 2 The process is carried out under the condition of 5 to 60 minutes while applying the above load.
- a compression-crosslinked foamed molded article is more suitable for a midsole, which is a kind of footwear member.
- the crosslinked foamed molded article of the present invention may be used after being cut into a desired shape, or may be used after being buffed.
- the crosslinked foamed article of the present invention preferably has a foaming ratio of 4 to 20 times.
- the surface hardness is preferably in the range of 30-80 in Shore C method hardness.
- the crosslinked foamed molded article of the present invention may be laminated with other layers to form a multilayer laminate.
- the material constituting the other layers includes vinyl chloride resin material, styrene copolymer rubber material, olefin copolymer rubber material (ethylene copolymer rubber material, propylene copolymer rubber material, etc.), natural A leather material, an artificial leather material, a cloth material, and the like can be mentioned, and at least one kind of material is used as these materials.
- Examples of a method for producing these multilayer laminates include a method in which the crosslinked foamed molded product of the present invention and another layer formed separately are bonded by heat bonding or a chemical adhesive.
- Known chemical adhesives can be used. Of these, urethane chemical adhesives and chloroprene chemical adhesives are particularly preferable.
- an undercoat agent called a primer may be applied in advance at the time of bonding with these chemical adhesives.
- a crosslinked foamed molded article it is known that the crosslinking density is closely related to compression set. In general, the higher the crosslink density, the lower the compression set of the crosslinked foamed molded product.
- the crosslinked foamed molded article of the present invention exhibits a good compression set because of its high crosslinking density. Compression set is an index that shows how much the foamed molded body has recovered from compression after being compressed for a certain period of time under certain conditions, released from compression and left for a certain period of time. Emphasized as an indicator of fatigue resistance.
- the crosslinked foamed molded article of the present invention preferably has a compression set of 30 to 65% when the hardness of the crosslinked foamed molded article is 50 by the Shore C method. Therefore, for example, the crosslinked foamed molded article of the present invention can be suitably used as a member of footwear such as shoes and sandals in a single layer or multilayer form. Examples of the footwear member include a midsole, an outer sole, an insole and the like. In addition to the footwear member, the crosslinked foamed molded article of the present invention is also used for building materials such as a heat insulating material and a cushioning material.
- HMw-Index (%) (Component ratio of LogAw> 4.5 or more) / (Component ratio of LogAw> 4.0 or more) ⁇ 100 It means that the higher the HMw-Index, the higher the proportion of the molecular chain component amount having a high molecular weight.
- Appearance of crosslinked foamed molded product (unit: none) The beauty of the appearance of the obtained cross-linked foamed molded article was determined visually. Judgment was performed in the following three stages.
- the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. Then, the mixture is allowed to stand, and the solid component is allowed to settle. When the interface between the precipitated solid component layer and the upper slurry portion is visible, the upper slurry portion is removed, and then the remaining liquid components are removed with a filter. Then, 3 liters of toluene was added and stirred at 95 ° C. for 2 hours. The solid component was allowed to settle, and when the interface between the precipitated solid component layer and the upper slurry portion was seen, the upper slurry portion was removed.
- the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant.
- the average polymerization time was 4 hours.
- the obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C.
- an ethylene-1-hexene copolymer hereinafter referred to as PE (1) was obtained.
- the molecular weight distribution (Mw / Mn) of PE (1) was 6.9, and HMw-Index was 11.4%.
- Table 1 shows the physical properties of PE (1).
- “Cermic CE” ADCA type chemical foaming agent” 4.2 parts by weight and 0.7 parts by weight of dicumyl peroxide were kneaded at a roll temperature of 120 ° C. using a roll kneader. Kneading was performed for 5 minutes to obtain a resin composition. The resin composition is filled into a 13 cm ⁇ 13 cm ⁇ 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2
- a cross-linked foamed molded article (1) was obtained by pressure-crosslinking foaming under the conditions of Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- Example 2 Pressure cross-linked foaming Except for changing the amount of the chemical foaming agent to 2.2 parts by weight, a crosslinked foamed molded article (2) was obtained by kneading and pressure-crosslinking foaming under the same conditions as in Example 1. Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- Example 3 (1) Production of ethylene- ⁇ -olefin copolymer Using the prepolymerized catalyst component (1) obtained in Example 1, copolymerization of ethylene and 1-hexene was carried out in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder.
- the polymerization temperature was 84 ° C.
- the polymerization pressure was 2 MPa
- the hydrogen molar ratio to ethylene was 0.38%
- the 1-hexene molar ratio to the total of ethylene and 1-hexene was 2.0%.
- ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant.
- the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant.
- the average polymerization time was 4 hours.
- the obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C.
- an ethylene-1-hexene copolymer hereinafter referred to as PE (2)
- Mw / Mn The molecular weight distribution (Mw / Mn) of PE (2) was 6.8, and HMw-Index was 11.4%. Table 1 shows the physical properties of PE (2).
- Example 1 (1) To the toluene slurry obtained in Example 1 (1) above, 4.98 kg of a 32.0 wt% diethylzinc hexane solution as the compound (a) was added and stirred. Then, after cooling to 5 ° C., 2.66 kg of a 3,4,5-trifluorophenol toluene solution prepared as a compound (b) at a concentration of 35.4 wt% was added, and the temperature of the reactor contents was adjusted to 5 ⁇ 3. It was added dropwise over 60 minutes while maintaining the temperature. The molar ratio y of the compound (b) to the compound (a) corresponds to 0.49. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour and at 40 ° C. for 1 hour.
- the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant.
- the average polymerization time was 4 hours.
- the obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C.
- an ethylene-1-hexene copolymer hereinafter referred to as PE (3) was obtained.
- the molecular weight distribution (Mw / Mn) of PE (3) was 4.8, and HMw-Index was 17.9%.
- Table 1 shows the physical properties of PE (3).
- Pressure cross-linked foaming PE (3) 60 parts, EVA 40 parts, heavy calcium carbonate 10 parts, stearic acid 1.0 part, zinc oxide 1.0 part, chemical foaming agent 2.2 part, The resin composition was obtained by kneading 0.7 parts by weight of mill peroxide using a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes.
- the resin composition is filled into a 13 cm ⁇ 13 cm ⁇ 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2
- a cross-linked foamed molded article (4) was obtained by pressure-crosslinking foaming under the following conditions. Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results. Comparative Example 1 (1) Preparation of promoter support Silica heated by a nitrogen-replaced stirrer at 300 ° C.
- the obtained solid component was washed 6 times with 2 liters of toluene. Thereafter, 2 liters of toluene was added to form a slurry, which was allowed to stand overnight.
- To the slurry obtained above 0.27 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.05 kg of pentafluorophenol and 0.09 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C.
- the mixture is allowed to stand, and the solid component is allowed to settle.
- the upper slurry portion is removed, and then the remaining liquid components are removed with a filter.
- 3 liters of toluene was added and stirred at 95 ° C. for 2 hours.
- the solid component was allowed to settle, and when the interface between the precipitated solid component layer and the upper slurry portion was seen, the upper slurry portion was removed.
- the mixture is allowed to stand to precipitate the solid component.
- the polymerization conditions were a polymerization temperature of 80 ° C., a polymerization pressure of 2 MPa, a hydrogen molar ratio to ethylene of 1.6%, and a 1-hexene molar ratio to the total of ethylene and 1-hexene of 1.5%.
- ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant.
- the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant.
- the average polymerization time was 4 hours.
- the obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C.
- an ethylene-1-hexene copolymer hereinafter referred to as PE (4)
- the results of physical property evaluation of the obtained copolymer are shown in Table 1.
- the molecular weight distribution (Mw / Mn) of PE (4) was 8.8, and HMw-Index was 5.4%.
- Table 2 shows the physical properties of PE (4).
- a cross-linked foamed molded article (5) was obtained by pressure-crosslinking foaming under the conditions described above.
- Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- Comparative Example 2 (1) Pressure cross-linked foaming 40 parts by weight of ethylene-1-hexene copolymer (Sumikacene E FV401 manufactured by Sumitomo Chemical Co., Ltd., hereinafter PE (5), physical properties are shown in Table 2), 60 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, stearin 1.0 parts by weight of acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, and 0.7 parts by weight of dicumyl peroxide were mixed at a roll temperature of 120 ° C.
- the resin composition was obtained by kneading under a condition of kneading time of 5 minutes.
- the resin composition is filled into a 13 cm ⁇ 13 cm ⁇ 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2
- a cross-linked foamed molded article (6) was obtained by pressure-crosslinking foaming under the conditions described above.
- Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- a cross-linked foamed molded article (7) was obtained by pressure-crosslinking foaming under the conditions described above.
- Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- Comparative Example 4 (1) Pressure cross-linked foaming 60 parts by weight of ethylene-1-hexene copolymer (Sumikacene E FV403 manufactured by Sumitomo Chemical Co., Ltd., hereinafter PE (6), physical properties are shown in Table 2), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, stearin 1.0 parts by weight of acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, and 0.7 parts by weight of dicumyl peroxide were mixed at a roll temperature of 120 ° C.
- a cross-linked foamed molded article (8) was obtained by pressure-crosslinking foaming under the conditions of Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- Comparative Example 5 Pressure cross-linked foaming EVA 100 parts by weight, heavy calcium carbonate 10 parts by weight, stearic acid 1.0 part by weight, zinc oxide 1.0 part by weight, chemical foaming agent 2.6 parts by weight, dicumyl peroxide 0.7 part by weight Were kneaded under the conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes using a roll kneader to obtain a resin composition. The resin composition is filled into a 13 cm ⁇ 13 cm ⁇ 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm.
- a crosslinked foamed molded article (9) was obtained by pressure-crosslinking foaming under the following conditions.
- Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
- the crosslink density of a cross-linked foamed molded article made of a polyethylene polymer can be calculated easily and accurately.
- the accuracy of the crosslink density measured by the method of the present invention is that, as shown in FIGS. 1 and 2, the correlation with the compression set of the foamed molded product is one of known methods for identifying effective network chain structures. It is clear from the fact that the crosslink density measured by the method of the present invention is better than the gel fraction.
- the crosslink density of a cross-linked foamed molded article made of a thermoplastic polymer can be accurately measured.
- the measuring method of the present invention is suitable for measuring the crosslinking density of a crosslinked foamed product made of an ethylene polymer, which has conventionally been difficult to accurately measure the crosslinking density.
- the crosslinked foamed molded product made of an ethylene polymer of the present invention has a high crosslinking density and excellent compression set performance, and is suitable as a member for shoes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
The present invention relates to a molded article of a crosslinked ethylenic polymer foam. The molded article of a crosslinked ethylenic polymer foam has a crosslinking density of 0.30 mol/kg or higher as determined using a relaxation modulus based on a stress relaxation measurement obtained by measuring the stress relaxation of the molded article of the crosslinked foam when the molded article of the crosslinked foam is subjected to compressive deformation under conditions of a measurement temperature of 60ºC, compressive strain of 50%, and a measurement time of 1,800 seconds. The present invention also relates to a method for measuring the crosslinking density of a molded article of a crosslinked thermoplastic polymer foam, the method comprising: a step for heating the molded article of the crosslinked thermoplastic polymer foam to a predetermined temperature; a step for applying pressure to the molded article of the crosslinked thermoplastic polymer foam, which is maintained at the predetermined temperature, in order to induce compressive deformation of the molded article of the crosslinked foam, and for measuring the stress relaxation of the molded article of the crosslinked foam while the compressive strain of the molded article of the crosslinked foam is maintained at a constant level; a step for determining a relaxation modulus (Gc) from the stress relaxation; and a step for calculating the crosslinking density of the crosslinked thermoplastic polymer foam from Gc using the following formula in which Gc is the elastic modulus when the stress of the molded article of the crosslinked foam is at a constant level: n = Gc/RT (n: crosslinking density, R: gas constant, T: measurement temperature).
Description
本発明は、熱可塑性重合体製架橋発泡成形体の架橋密度の測定方法、および該測定方法により算出される架橋密度が一定の値以上の架橋発泡成形体に関するものである。
The present invention relates to a method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded article, and a crosslinked foamed molded article having a crosslinking density calculated by the measuring method of a certain value or more.
熱可塑性重合体製架橋発泡成形体は、日用雑貨、床材、遮音材、断熱材等に幅広く用いられている。中でもエチレン系重合体からなる架橋発泡成形体は、履き物用部材(アウターソール(下部底)、ミッドソール(上部底)、インソール(中敷)など)に使用されている。エチレン系重合体製架橋発泡成形体としては、特公平3−2657号公報に記載されているようなエチレン−酢酸ビニル共重合体を架橋発泡してなる架橋発泡成形体や、特開2005−314638号公報に記載されているようなエチレン−α−オレフィン共重合体を架橋発泡してなる架橋発泡成形体が知られている。
ところで架橋発泡成形体の各種物性に多大な影響を与える要素の一つとして、架橋密度が知られている。架橋密度は、有効網目鎖濃度ともいわれ、発泡成形体の単位重量に含まれる架橋発泡成形体を構成している重合体同士の架橋結合点の数を表すものである。加硫ゴム製架橋発泡成形体の架橋密度の測定方法としては、例えば特開2007−238783号公報に記載されている方法が知られている。該方法では、架橋密度を測定すべき発泡成形体と同種類のポリマーであり、架橋密度の夫々異なるソリッド体、すなわち非発泡成形体を2つ以上使用する。各ソリッド体の架橋密度を予め平衡膨潤の利用によって算出し、架橋密度算出済みのソリッド体の緩和時間をパルス核磁気共鳴(NMR)装置により夫々測定し、得られた各緩和時間と前記架橋密度とから、前記同種類のポリマーの検量線を作成する。次いで前記発泡成形体における緩和時間を前記パルス核磁気共鳴(NMR)装置により測定し、前記検量線に基づき発泡成形体の架橋密度を算出する方法である。
しかしながら特開2007−238783号公報に記載された方法によって、エチレン系重合体製架橋発泡成形体の架橋密度を測定することは困難であった。これは、エチレン系重合体製架橋発泡成形体の架橋密度が、加硫ゴム製架橋発泡成形体のそれと比べると大幅に低いために、当該測定方法では十分な精度が得られないと推測される。
また、架橋発泡成形体の有効網目鎖構造の多寡を簡便に知る方法として、ゲル分率を測定する方法が知られている。これは、有効網目鎖構造が一般にあらゆる溶媒に不溶である性質を利用するもので、架橋発泡成形体を有機溶媒に浸潤させ、一定の条件で加熱することで、溶媒に可溶な成分を抽出し、残った有効網目鎖構造を有する部分の量を判定するものである。しかしこの方法では、有効網目鎖構造を有する部分の大まかな量は判定できるものの、その大きさだけで選別されるため、小さい有効網目鎖構造は有効網目鎖構造として認識されないという問題があり、架橋密度のより正確な測定方法が求められていた。 Crosslinked foamed molded articles made of thermoplastic polymers are widely used for daily goods, flooring materials, sound insulation materials, heat insulating materials and the like. Among them, a cross-linked foamed molded article made of an ethylene polymer is used for footwear members (outer sole (lower bottom), midsole (upper bottom), insole (sole), etc.)). Examples of the crosslinked foamed molded product made of an ethylene polymer include a crosslinked foamed molded product obtained by crosslinking and foaming an ethylene-vinyl acetate copolymer as described in JP-B-3-2657, and JP-A-2005-314638. There is known a cross-linked foamed molded product obtained by cross-linking and foaming an ethylene-α-olefin copolymer as described in Japanese Patent Publication No. JP-A.
By the way, crosslinking density is known as one of the elements that greatly affect various physical properties of the crosslinked foamed molded article. The crosslinking density is also referred to as an effective network chain concentration, and represents the number of cross-linking points between the polymers constituting the crosslinked foamed molded product contained in the unit weight of the foamed molded product. As a method for measuring the cross-linking density of a vulcanized rubber cross-linked foamed molded article, for example, a method described in JP-A-2007-238783 is known. In this method, two or more solid bodies, that is, non-foamed molded bodies, which are the same type of polymer as the foamed molded body whose crosslink density is to be measured and have different crosslinking densities, are used. The crosslink density of each solid body is calculated in advance by using equilibrium swelling, and the relaxation times of the solid bodies for which the crosslink density has been calculated are measured by a pulse nuclear magnetic resonance (NMR) apparatus. From the above, a calibration curve of the same kind of polymer is prepared. Next, the relaxation time in the foam molded article is measured by the pulse nuclear magnetic resonance (NMR) apparatus, and the crosslinking density of the foam molded article is calculated based on the calibration curve.
However, it has been difficult to measure the crosslink density of a crosslinked foamed product made of an ethylene polymer by the method described in JP-A-2007-238783. This is presumed that the measurement method does not provide sufficient accuracy because the crosslink density of the cross-linked foamed product made of an ethylene polymer is much lower than that of the cross-linked foamed product made of vulcanized rubber. .
Further, as a method for easily knowing the amount of effective network chain structure of a crosslinked foamed molded product, a method for measuring a gel fraction is known. This utilizes the property that the effective network chain structure is generally insoluble in any solvent. By infiltrating the crosslinked foamed product into an organic solvent and heating it under certain conditions, components soluble in the solvent are extracted. The amount of the portion having the remaining effective network chain structure is determined. However, in this method, although the rough amount of the portion having an effective network chain structure can be determined, since it is selected only by its size, there is a problem that a small effective network chain structure is not recognized as an effective network chain structure. There has been a need for a more accurate method of measuring density.
ところで架橋発泡成形体の各種物性に多大な影響を与える要素の一つとして、架橋密度が知られている。架橋密度は、有効網目鎖濃度ともいわれ、発泡成形体の単位重量に含まれる架橋発泡成形体を構成している重合体同士の架橋結合点の数を表すものである。加硫ゴム製架橋発泡成形体の架橋密度の測定方法としては、例えば特開2007−238783号公報に記載されている方法が知られている。該方法では、架橋密度を測定すべき発泡成形体と同種類のポリマーであり、架橋密度の夫々異なるソリッド体、すなわち非発泡成形体を2つ以上使用する。各ソリッド体の架橋密度を予め平衡膨潤の利用によって算出し、架橋密度算出済みのソリッド体の緩和時間をパルス核磁気共鳴(NMR)装置により夫々測定し、得られた各緩和時間と前記架橋密度とから、前記同種類のポリマーの検量線を作成する。次いで前記発泡成形体における緩和時間を前記パルス核磁気共鳴(NMR)装置により測定し、前記検量線に基づき発泡成形体の架橋密度を算出する方法である。
しかしながら特開2007−238783号公報に記載された方法によって、エチレン系重合体製架橋発泡成形体の架橋密度を測定することは困難であった。これは、エチレン系重合体製架橋発泡成形体の架橋密度が、加硫ゴム製架橋発泡成形体のそれと比べると大幅に低いために、当該測定方法では十分な精度が得られないと推測される。
また、架橋発泡成形体の有効網目鎖構造の多寡を簡便に知る方法として、ゲル分率を測定する方法が知られている。これは、有効網目鎖構造が一般にあらゆる溶媒に不溶である性質を利用するもので、架橋発泡成形体を有機溶媒に浸潤させ、一定の条件で加熱することで、溶媒に可溶な成分を抽出し、残った有効網目鎖構造を有する部分の量を判定するものである。しかしこの方法では、有効網目鎖構造を有する部分の大まかな量は判定できるものの、その大きさだけで選別されるため、小さい有効網目鎖構造は有効網目鎖構造として認識されないという問題があり、架橋密度のより正確な測定方法が求められていた。 Crosslinked foamed molded articles made of thermoplastic polymers are widely used for daily goods, flooring materials, sound insulation materials, heat insulating materials and the like. Among them, a cross-linked foamed molded article made of an ethylene polymer is used for footwear members (outer sole (lower bottom), midsole (upper bottom), insole (sole), etc.)). Examples of the crosslinked foamed molded product made of an ethylene polymer include a crosslinked foamed molded product obtained by crosslinking and foaming an ethylene-vinyl acetate copolymer as described in JP-B-3-2657, and JP-A-2005-314638. There is known a cross-linked foamed molded product obtained by cross-linking and foaming an ethylene-α-olefin copolymer as described in Japanese Patent Publication No. JP-A.
By the way, crosslinking density is known as one of the elements that greatly affect various physical properties of the crosslinked foamed molded article. The crosslinking density is also referred to as an effective network chain concentration, and represents the number of cross-linking points between the polymers constituting the crosslinked foamed molded product contained in the unit weight of the foamed molded product. As a method for measuring the cross-linking density of a vulcanized rubber cross-linked foamed molded article, for example, a method described in JP-A-2007-238783 is known. In this method, two or more solid bodies, that is, non-foamed molded bodies, which are the same type of polymer as the foamed molded body whose crosslink density is to be measured and have different crosslinking densities, are used. The crosslink density of each solid body is calculated in advance by using equilibrium swelling, and the relaxation times of the solid bodies for which the crosslink density has been calculated are measured by a pulse nuclear magnetic resonance (NMR) apparatus. From the above, a calibration curve of the same kind of polymer is prepared. Next, the relaxation time in the foam molded article is measured by the pulse nuclear magnetic resonance (NMR) apparatus, and the crosslinking density of the foam molded article is calculated based on the calibration curve.
However, it has been difficult to measure the crosslink density of a crosslinked foamed product made of an ethylene polymer by the method described in JP-A-2007-238783. This is presumed that the measurement method does not provide sufficient accuracy because the crosslink density of the cross-linked foamed product made of an ethylene polymer is much lower than that of the cross-linked foamed product made of vulcanized rubber. .
Further, as a method for easily knowing the amount of effective network chain structure of a crosslinked foamed molded product, a method for measuring a gel fraction is known. This utilizes the property that the effective network chain structure is generally insoluble in any solvent. By infiltrating the crosslinked foamed product into an organic solvent and heating it under certain conditions, components soluble in the solvent are extracted. The amount of the portion having the remaining effective network chain structure is determined. However, in this method, although the rough amount of the portion having an effective network chain structure can be determined, since it is selected only by its size, there is a problem that a small effective network chain structure is not recognized as an effective network chain structure. There has been a need for a more accurate method of measuring density.
図1は架橋発泡成形体の圧縮永久歪みとゲル分率との相関を示す図である。
図2は架橋発泡成形体の圧縮永久歪みと、本発明の方法で測定される架橋密度との相関を示す図である。 FIG. 1 is a diagram showing a correlation between compression set and gel fraction of a crosslinked foamed molded article.
FIG. 2 is a diagram showing the correlation between the compression set of the crosslinked foamed molded article and the crosslinking density measured by the method of the present invention.
図2は架橋発泡成形体の圧縮永久歪みと、本発明の方法で測定される架橋密度との相関を示す図である。 FIG. 1 is a diagram showing a correlation between compression set and gel fraction of a crosslinked foamed molded article.
FIG. 2 is a diagram showing the correlation between the compression set of the crosslinked foamed molded article and the crosslinking density measured by the method of the present invention.
前記課題を克服すべく、鋭意検討した結果、本発明者は測定すべき架橋発泡成形体を圧縮変形することで得られた応力緩和挙動を用いることで、熱可塑性重合体からなる架橋発泡成形体の架橋密度を精度よく測定する方法を見出した。加えて、上記測定方法による算出された架橋密度が一定の値を超える架橋発泡成形体が、靴用部材として好適であることを見出した。
すなわち本発明の第一は、エチレン系重合体製架橋発泡成形体であって、該架橋発泡成形体を、測定温度60℃、圧縮歪量50%、測定時間1800秒の条件で圧縮変形させて該架橋発泡成形体の応力緩和を測定し、応力緩和測定から得られた緩和弾性率を用いて求めた架橋密度が0.30mol/kg以上である、エチレン系重合体製架橋発泡成形体に係るものである。
本発明の第二は、上記架橋発泡成形体からなる靴用部材である。
本発明の第三は、熱可塑性重合体製架橋発泡成形体の架橋密度の測定方法であって、
熱可塑性重合体製架橋発泡成形体を所定の温度まで加熱する工程と、
所定の温度に保たれた熱可塑性重合体製架橋発泡成形体に圧力を付加して架橋発泡成形体を圧縮変形させ、架橋発泡成形体の圧縮歪量を一定に保ちながら、架橋発泡成形体の応力緩和を測定する工程と、
応力緩和から緩和弾性率Gcを求める工程と、ここでGcは架橋発泡成形体の応力が一定となったとき弾性率であり、
前記Gcから以下の式によって前記熱可塑性重合体製架橋発泡体の架橋密度を算出する工程と、を有する方法である。
n=Gc/RT
n:架橋密度
R:気体定数
T:測定温度 As a result of diligent studies to overcome the above-mentioned problems, the present inventor used a stress relaxation behavior obtained by compressively deforming a cross-linked foam molded article to be measured, thereby forming a cross-linked foam molded article made of a thermoplastic polymer. A method for accurately measuring the crosslink density of was found. In addition, the present inventors have found that a crosslinked foamed molded article having a crosslinking density calculated by the above measurement method exceeding a certain value is suitable as a member for shoes.
That is, the first of the present invention is a cross-linked foamed molded product made of an ethylene polymer, which is subjected to compression deformation under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds. The stress relaxation of the crosslinked foamed molded article is measured, and the crosslinked density determined using the relaxation elastic modulus obtained from the stress relaxation measurement is 0.30 mol / kg or more, and the crosslinked foamed molded article made of an ethylene polymer is used. Is.
The second of the present invention is a member for shoes comprising the above-mentioned crosslinked foamed molded article.
The third aspect of the present invention is a method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded article,
Heating the thermoplastic polymer cross-linked foam to a predetermined temperature;
A pressure is applied to the crosslinked foamed molded product made of a thermoplastic polymer maintained at a predetermined temperature to compressively deform the crosslinked foamed molded product, and while maintaining the amount of compressive strain of the crosslinked foamed molded product to be constant, Measuring stress relaxation;
A step of obtaining relaxation elastic modulus Gc from stress relaxation, where Gc is the elastic modulus when the stress of the crosslinked foamed molded article becomes constant,
Calculating the crosslinking density of the crosslinked foamed thermoplastic polymer from the Gc by the following formula.
n = Gc / RT
n: Crosslink density R: Gas constant T: Measurement temperature
すなわち本発明の第一は、エチレン系重合体製架橋発泡成形体であって、該架橋発泡成形体を、測定温度60℃、圧縮歪量50%、測定時間1800秒の条件で圧縮変形させて該架橋発泡成形体の応力緩和を測定し、応力緩和測定から得られた緩和弾性率を用いて求めた架橋密度が0.30mol/kg以上である、エチレン系重合体製架橋発泡成形体に係るものである。
本発明の第二は、上記架橋発泡成形体からなる靴用部材である。
本発明の第三は、熱可塑性重合体製架橋発泡成形体の架橋密度の測定方法であって、
熱可塑性重合体製架橋発泡成形体を所定の温度まで加熱する工程と、
所定の温度に保たれた熱可塑性重合体製架橋発泡成形体に圧力を付加して架橋発泡成形体を圧縮変形させ、架橋発泡成形体の圧縮歪量を一定に保ちながら、架橋発泡成形体の応力緩和を測定する工程と、
応力緩和から緩和弾性率Gcを求める工程と、ここでGcは架橋発泡成形体の応力が一定となったとき弾性率であり、
前記Gcから以下の式によって前記熱可塑性重合体製架橋発泡体の架橋密度を算出する工程と、を有する方法である。
n=Gc/RT
n:架橋密度
R:気体定数
T:測定温度 As a result of diligent studies to overcome the above-mentioned problems, the present inventor used a stress relaxation behavior obtained by compressively deforming a cross-linked foam molded article to be measured, thereby forming a cross-linked foam molded article made of a thermoplastic polymer. A method for accurately measuring the crosslink density of was found. In addition, the present inventors have found that a crosslinked foamed molded article having a crosslinking density calculated by the above measurement method exceeding a certain value is suitable as a member for shoes.
That is, the first of the present invention is a cross-linked foamed molded product made of an ethylene polymer, which is subjected to compression deformation under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds. The stress relaxation of the crosslinked foamed molded article is measured, and the crosslinked density determined using the relaxation elastic modulus obtained from the stress relaxation measurement is 0.30 mol / kg or more, and the crosslinked foamed molded article made of an ethylene polymer is used. Is.
The second of the present invention is a member for shoes comprising the above-mentioned crosslinked foamed molded article.
The third aspect of the present invention is a method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded article,
Heating the thermoplastic polymer cross-linked foam to a predetermined temperature;
A pressure is applied to the crosslinked foamed molded product made of a thermoplastic polymer maintained at a predetermined temperature to compressively deform the crosslinked foamed molded product, and while maintaining the amount of compressive strain of the crosslinked foamed molded product to be constant, Measuring stress relaxation;
A step of obtaining relaxation elastic modulus Gc from stress relaxation, where Gc is the elastic modulus when the stress of the crosslinked foamed molded article becomes constant,
Calculating the crosslinking density of the crosslinked foamed thermoplastic polymer from the Gc by the following formula.
n = Gc / RT
n: Crosslink density R: Gas constant T: Measurement temperature
本発明の架橋発泡成形体の架橋密度の測定方法は、架橋発泡成形体を圧縮変形させた際の架橋発泡成形体の緩和弾性率より算出する方法である。具体的には、圧縮機能を有する引張試験機、圧縮機能を有する回転式粘度計などのように圧縮できる機構を有し、応力データが得られる装置を用いて架橋発泡成形体の圧縮時の応力緩和を測定する。
例えば、圧縮応力が測定できる応力センサー、試料を挟む平行平板形状の治具、試料を加熱するオーブン、圧縮歪量が計測できる位置センサーを装備した装置を用いる。架橋発泡成形体を加熱して測定する場合には、圧縮機能を有する回転式粘度計を用いることが温度制御しやすいため好ましい。
試料の形状は治具表面に均一に接触できる平行な平面をもつ板状が好ましい。
試料の厚みは治具に挟み込むことが出来る範囲で、自由に設定することができるが、好ましくは0.1mm~50mm、より好ましくは1mm~20mmである。
治具に接する面の試料の形状は円形、正方形、正三角形などのような点対称の形状が好ましい。治具に接する面の試料の面積は、治具の面積と同等か、少し大きいことが好ましい。
試料が治具に接する面の中心と治具の中心が一致するように、試料を治具で挟む。治具で挟んだ試料をオーブンにいれ、試料を測定温度まで加熱する。
測定温度は、試料の形状が維持できる範囲で自由に設定できる。測定温度は、サンプルに1%~100%の圧縮歪を加えることが可能な温度が好ましい。試料を構成する重合体の融点又はガラス転移点以上で形状を維持できる試料の場合、重合体の融点又はガラス転移点以上の温度で測定を行うことが好ましい。
次に、試料の温度を保ちながら、上部の治具を試料に押し付けて試料を圧縮する。試料に与える圧縮歪量は、試料の材質、形状、測定温度により決定する。圧縮歪量は、下記式で定義される。試料に与える圧縮歪量は、非線形領域、すなわち試料に与える圧縮歪量を変化させたとき、試料の粘度が圧縮歪量に応じて変化する領域であればよい。試料に与える圧縮歪量は、好ましくは1%~100%、更に好ましくは10~100%である。
試料に与える圧縮歪量を一定に保ちながら、試料の応力緩和を測定する。測定時間は、架橋発泡成形体の応力減衰がなくなり、架橋発泡成形体の応力がほぼ一定になるまでの時間、又は、それより長い時間であればよい。
本発明で用いられる架橋密度の算出方法は、下記の通りである。
架橋発泡成形体の応力が減衰して、架橋発泡成形体の応力がほぼ一定になったときの緩和弾性率Gcを求め、下記式を用いて、架橋発泡成形体の架橋密度nを算出する。
n=Gc/RT
n:架橋密度
R:気体定数
T:測定温度
本発明の測定方法は、従来架橋密度の正確な測定が困難であった、エチレン系重合体製架橋発泡成形体にも適用可能である。とりわけ、高圧法低密度ポリエチレンおよび/またはエチレン−α−オレフィン共重合体を用いて形成される架橋発泡成形体の架橋密度の測定方法として、好適である。
本発明の方法で架橋密度を測定することができる架橋発泡成形体は、どのような方法で架橋された架橋発泡成形体であってもよい。架橋方法としては、電子線架橋や、有機過酸化物により重合体を架橋する方法が挙げられる。本発明の測定方法は、有機過酸化物により重合体が架橋された架橋発泡成形体の架橋密度の測定に好適である。
本発明の架橋発泡成形体は、エチレン系重合体を主成分とし、架橋密度が0.30mol/kg以上の架橋発泡成形体である。なお、該架橋発泡成形体の架橋密度とは、測定温度60℃、圧縮歪量50%、測定時間1800秒の条件で、架橋発泡成形体を圧縮変形させ、得られた緩和弾性率Gcを用いて算出される値である。架橋密度は、0.30mol/kg以上であることが好ましい。
本発明におけるエチレン系重合体とは、エチレン−α−オレフィン共重合体、高圧法低密度ポリエチレン、またはこれらの混合物である。
エチレン−α−オレフィン共重合体は、エチレンに基づく単量体単位とα−オレフィンに基づく単量体単位とを含む共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは、炭素原子数3~20のα−オレフィンであり、より好ましくは、炭素原子数4~8のα−オレフィンであり、更に好ましくは、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテンから選ばれる少なくとも1種のα−オレフィンである。
エチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられる。架橋発泡成形体の強度を高める観点から、好ましくは、エチレンに基づく単量体単位および炭素原子数6~8のα−オレフィンに基づく単量体単位を有する共重合体であり、具体的には、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられる。
エチレン−α−オレフィン共重合体において、エチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量を100重量%とするとき、通常、80~98重量%であり、α−オレフィンに基づく単量体単位の含有量は、エチレン系重合体の全重量を100重量%とするとき、通常、2~20重量%である。
エチレン系重合体の密度は、通常、860~945kg/m3である。該密度は、架橋発泡成形体の剛性を高める観点から、好ましくは865kg/m3以上であり、より好ましくは870kg/m3以上であり、更に好ましくは900kg/m3以上である。また、架橋発泡成形体の軽量性を高める観点から、好ましくは940kg/m3以下である。該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に規定された水中置換法に従って測定される。
エチレン系重合体のメルトフローレート(MFR;単位はg/10分である。)は、0.01~3.0g/10分である。高い発泡倍率の発泡成形体が得られ、また発泡成形性も向上することから、MFRは好ましくは0.01g/10分以上である。また、強度に優れる架橋発泡成形体が得られることから、MFRは好ましくは3.0g/10分以下であり、より好ましくは2.5g/10分以下である。なお、該MFRは、JIS K7210−1995に従い、温度190℃および荷重21.18Nの条件でA法により測定される。なお、該メルトフローレートの測定では、通常、エチレン系重合体に予め酸化防止剤を1000ppm程度配合したものを用いる。
本発明で用いられるエチレン系共重合体は、架橋発泡成形体中の気泡性状を均一にし、外観を良好にする観点から、流動の活性化エネルギー(Ea)が40kJ/mol以上であることが好ましい。Eaとしては、好ましくは50kJ/mol以上であり、より好ましくは55kJ/mol以上である。また、該Eaは、架橋発泡成形体の表面をより滑らかにする観点から、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である。
流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT)=m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
aT:シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5~2mm、ストレイン:5%、角周波数:0.1~100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。
エチレン系重合体の分子量分布(Mw/Mn)は、成形加工性を高める観点から、好ましくは3以上であり、より好ましくは5以上である。また、衝撃強度を高める観点から、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。該分子量分布(Mw/Mn)は、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)であり、MwとMnは、ゲル・パーミエイション・クロマトグラフ(GPC)法により測定される。また、GPC法の測定条件としては、例えば、次の条件をあげることができる。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
分子鎖間の架橋反応は、分子量の高い成分から優先的に進行していくことが一般に知られている。そのため、架橋密度の高い架橋発泡成形体を得るためには、分子量の高い成分を多く含むエチレン系重合体を用いて架橋発泡成形体を製造することが好ましい。エチレン系重合体は、上記GPC法にて算出されるHMw−Index(High Molecular Index)が8.0%を上回ることが好ましい。なおHMw−Indexは、GPC法から得られる重量平均分子鎖長(Aw)のプロファイルから、下式に従い算出することができる。
HMw−Index(%)
=(LogAw>4.5以上の成分割合)/(LogAw>4.0以上の成分割合)×100
HMw−Indexが高いほど、高分子量を有する分子鎖成分量の割合が高いことを意味し、架橋密度の高い架橋発泡成形体を得ることができる。
架橋密度が0.30mol/kg以上である本発明のエチレン系重合体製架橋発泡成形体を得るために用いられるエチレン−α−オレフィン共重合体の製造方法としては、アルキレン基やシリレン基等の架橋基で2つの(置換)インデニル基が結合された配位子を有するメタロセン錯体、例えば、エチレンビス(1−インデニル)ジルコニウムジフェノキシドを触媒成分として用いたメタロセン系触媒で、エチレンとα−オレフィンとを共重合する方法をあげることができる。
メタロセン系触媒では、メタロセン錯体を活性化させる助触媒成分を使用する。該助触媒成分としては、有機アルミニウムオキシ化合物、ホウ素化合物、有機亜鉛化合物などをあげることができる。これらの助触媒成分は、微粒子状担体に担持して用いることが好ましい。
微粒子状担体としては、多孔性の物質が好ましく、SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土や粘土鉱物;ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体などの有機ポリマーなどが使用される。該微粒子状担体の50%体積平均粒子径は、通常、10~500μmであり、該50%体積平均粒子径は、光散乱式レーザー回折法などで測定される。また、該微粒子状担体の細孔容量は、通常0.3~10ml/gであり、該細孔容量は、主にガス吸着法(BET法)で測定される。該微粒子状担体の比表面積は、通常、10~1000m2/gであり、該比表面積は、主にガス吸着法(BET法)で測定される。
本発明の架橋発泡成形体を靴用部材として使用する際には、圧縮永久歪性能に優れる架橋発泡成形体が望ましい。圧縮永久歪に優れる架橋発泡成形体を得るために用いられるエチレン−α−オレフィン共重合体の製造方法として、特に好適には、下記の助触媒担体(A)と、アルキレン基やシリレン基等の架橋基で2つの(置換)インデニル基が結合された配位子を有するメタロセン錯体(B)と、有機アルミニウム化合物(C)とを接触させてなる重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法があげられる。
上記の助触媒担体(A)は、成分(a)ジエチル亜鉛、成分(b)2種類のフッ素化フェノール、成分(c)水、成分(d)無機微粒子状担体および成分(e)1,1,1,3,3,3−ヘキサメチルジシラザン(((CH3)3Si)2NH)を接触させて得られる担体である。
成分(b)のフッ素化フェノールとしては、ペンタフルオロフェノール、3,5−ジフルオロフェノール、3,4,5−トリフルオロフェノール、2,4,6−トリフルオロフェノール等をあげることができる。エチレン−α−オレフィン共重合体の流動の活性化エネルギー(Ea)を高め、HMw−Indexを増大させ、架橋密度を高める観点から、3,4,5−トリフルオロフェノールを単独で用いるか、もしくはフッ素数の異なる2種類のフッ素化フェノールを用いることが好ましい。異なる2種類のフッ素化フェノールを用いる場合は例えば、ペンタフルオロフェノール/3,4,5−トリフルオロフェノール、ペンタフルオロフェノール/2,4,6−トリフルオロフェノール、ペンタフルオロフェノール/3,5−ジフルオロフェノールなどの組み合せがあげられ、好ましくはペンタフルオロフェノール/3,4,5−トリフルオロフェノールの組み合せである。フッ素数が多いフッ素化フェノールとフッ素数が少ないフッ素化フェノールとのモル比としては、通常、20/80~80/20である。
成分(d)の無機化合物粒子としては、好ましくはシリカゲルである。
成分(a)ジエチル亜鉛、成分(b)2種類のフッ素化フェノール、成分(c)水の各成分の使用量は特に制限はないが、各成分の使用量のモル比率を成分(a)ジエチル亜鉛:成分(b)2種類のフッ素化フェノール:成分(c)水=1:x:yのモル比率とすると、xおよびyが下記式を満足することが好ましい。
|2−x−2y|≦1
上記式のxとしては、好ましくは0.01~1.99の数であり、より好ましくは0.10~1.80の数であり、さらに好ましくは0.20~1.50の数であり、最も好ましくは0.30~1.00の数である。
また、成分(a)ジエチル亜鉛に対して使用する成分(d)無機微粒子状担体の量としては、成分(a)ジエチル亜鉛と成分(d)無機微粒子状担体との接触により得られる粒子に含まれる成分(a)ジエチル亜鉛に由来する亜鉛原子が、得られる粒子1gに含まれる亜鉛原子のモル数にして、0.1mmol以上となる量であることが好ましく、0.5~20mmolとなる量であることがより好ましい。成分(d)無機微粒子状担体に対して使用する成分(e)トリメチルジシラザンの量としては、成分(d)無機微粒子状担体1gにつき成分(e)トリメチルジシラザン0.1mmol以上となる量であることが好ましく、0.5~20mmolとなる量であることがより好ましい。
アルキレン基やシリレン基等の架橋基で2つの(置換)インデニル基が結合された配位子を有するメタロセン錯体(B)として好ましくは、エチレンビス(1−インデニル)ジルコニウムジフェノキシドをあげることができる。
有機アルミニウム化合物(C)として、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。
メタロセン錯体(B)の使用量は、助触媒担体(A)1gに対し、好ましくは5×10−6~5×10−4molである。また有機アルミニウム化合物(C)の使用量として、好ま
しくは、メタロセン錯体(B)の金属原子モル数に対する有機アルミニウム化合物(C)のアルミニウム原子のモル数の比(Al/M)で表して、1~2000である。
上記の助触媒担体(A)とメタロセン錯体(B)と有機アルミニウム化合物(C)とを接触させてなる重合触媒においては、必要に応じて、助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とに、電子供与性化合物(D)を接触させてなる重合触媒としてもよい。
成分(A)のエチレン−α−オレフィン共重合体の製造方法としては、微粒子状担体に助触媒成分が担持されてなる固体触媒成分を用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合固体成分、例えば、助触媒担体とメタロセン錯体と助触媒成分(有機アルミニウム化合物などのアルキル化剤など)とを用いて少量のオレフィンを重合して得られた予備重合固体成分を、触媒成分または触媒として用いて、エチレンとα−オレフィンとを共重合する方法が好ましい。本発明の架橋発泡成形体を靴用部材として使用する際には、HMw−Indexを増大させ、圧縮永久歪性能を更に改良するために、助触媒成分としてトリエチルアルミを添加することが好ましい。
予備重合で用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。また、予備重合固体成分中の予備重合された重合体の含有量は、固体触媒成分1g当たり、通常0.1~500gであり、好ましくは1~200gである。
予備重合方法としては、連続重合法でもバッチ重合法でもよく、例えば、バッチ式スラリー重合法、連続式スラリー重合法、連続気相重合法である。予備重合を行う重合反応槽に、助触媒担体、メタロセン系錯体、他の助触媒成分(有機アルミニウム化合物などのアルキル化剤など)などの各触媒成分を投入する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で投入する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で投入する方法が用いられる。また、予備重合での重合温度は、通常、予備重合された重合体の融点よりも低い温度であり、好ましくは0~100℃であり、より好ましくは10~70℃である。
予備重合をスラリー重合法で行う場合、溶媒としては、炭素原子数20以下の炭化水素があげられる。例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン等の飽和脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素があげられ、これらは単独あるいは2種以上組み合わせて用いられる。
エチレン−α−オレフィン共重合体の製造方法としては、エチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合方法が好ましく、例えば、連続気相重合法、連続スラリー重合法、連続バルク重合法であり、好ましくは、連続気相重合法である。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に攪拌翼が設置されていてもよい。
予備重合された予備重合固体成分をエチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。
エチレン系重合体として高圧法低密度ポリエチレンを用いる場合、該高圧法低密度ポリエチレンとしては、一般に槽型反応器または管型反応器を用いて、有機化酸化物または酸素等の遊離基発生剤を重合開始剤とし、通常、重合圧力100~300MPa、重合温度130~300℃の条件下でエチレンを重合させることによって製造される樹脂を使用できる。分子量調整剤として水素やメタン、エタンなどの炭化水素を用いることによってMFRを調整することもできる。
本発明の架橋発泡成形体を製造する方法としては、従来のエチレン−酢酸ビニル共重合体や高圧法低密度ポリエチレンの架橋発泡成形体を製造する方法と同様の方法が使用できる。
例えば、(1)エチレン系重合体に発泡剤を配合し、これをリボンブレンダー等を使用して均一に混合し、得られた混合物を、押出機又はカレンダーロールによって、発泡剤が実質的に分解しない温度、圧力で溶融混練してシート状に成形し、該シート状成形体に電離性放射線を照射することによって架橋し、その後発泡剤の分解温度以上に加熱することにより架橋発泡成形体を得る方法、或は(2)エチレン系重合体に発泡剤、架橋剤を配合し、発泡剤および架橋剤が実質的に分解しない温度で、ミキシングロール、ニーダー、押出機等によって溶融混合して得られた組成物を、射出成形機等によって金型に充填し、加圧(保圧)・加熱状態で発泡させ、次いで冷却して架橋発泡成形体を取り出す方法、或は(3)エチレン系重合体に発泡剤を配合し、これをリボンブレンダー等を使用して均一に混合した混合物を、押出機又はカレンダーロールによって、発泡剤が実質的に分解しない温度、圧力で溶融混練してシート状に成形し、該シート状成形体を金型に入れ、加圧プレス機等により加圧(保圧)・加熱状態で発泡させ、次いで冷却して架橋発泡成形体を取り出す方法等があげられる。
また、例えば(4)エチレン系重合体に発泡剤と架橋剤とを配合し、発泡剤および架橋剤が実質的に分解しない温度で、ミキシングロール、ニーダー、押出機等によって溶融混合して得られた組成物を、更に発泡剤および架橋剤が実質的に分解しない条件で金型内に射出して、金型内で発泡剤および架橋剤が分解する温度、例えば130度~200度程度の温度に保って架橋発泡させる方法(射出発泡法)も挙げることができる。
本発明で使用し得る発泡剤としては、エチレン系重合体の溶融温度以上の分解温度を有する熱分解型発泡剤をあげることができる。例えば、アゾジカルボンアミド、アゾジカルボン酸バリウム、アゾビスブチルニトリル、ニトロジグアニジン、N,N−ジニトロソペンタメチレンテトラミン、N,N’−ジメチル−N,N’−ジニトロソテレフタルアミド、P−トルエンスルホニルヒドラジド、P,P’−オキシビス(ベンゼンスルホニルヒドラジド)アゾビスイソブチロニトリル、P,P’−オキシビスベンゼンスルホニルセミカルバジッド、5−フェニルテトラゾール、トリヒドラジノトリアジン、ヒドラゾジカルボンアミド等をあげることができ、これは1種類あるいは2種類以上を組み合わせて用いられる。これらの中でもアゾジカルボンアミドまたは炭酸水素ナトリウムが好ましい。また、本発明の架橋発泡成形体の製造には、樹脂成分100重量部と、該樹脂成分100重量部に対し発泡剤を0.5~50重量部含むことが好ましく、1~20重量部含むことがより好ましく、1~15重量部含むことがさらに好ましい。
架橋発泡成形体を製造する際には、必要に応じて、発泡助剤を配合してもよい。該発泡助剤としては、尿素を主成分とした化合物;酸化亜鉛、酸化鉛等の金属酸化物;サリチル酸、ステアリン酸等などの高級脂肪酸;該高級脂肪酸の金属化合物などがあげられる。発泡助剤の使用量は、発泡剤と発泡助剤との合計を100重量%として、好ましくは0.1~30重量%であり、より好ましくは1~20重量%である。
エチレン系重合体を架橋する方法として電離性放射線を使用する場合は、β線、γ線、ニュートロン、電子線等を使用することができる。照射量は、5~20Mradの範囲が好ましい。
エチレン系重合体を架橋する方法として架橋剤を用いる場合は、エチレン系重合体の流動開始温度以上の分解温度を有する有機過酸化物が好適である。例えば、ジクミルパーオキサイド、1,1−ジターシャリーブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキシン、α,α−ジターシャリーブチルパーオキシイソプロピルベンゼン、ターシャリーブチルパーオキシケトン、ターシャリーブチルパーオキシベンゾエートなどをあげることができる。架橋剤の配合割合は、架橋密度を高める観点から、樹脂成分の総量を100重量部として、通常、0.02~3重量部、好ましくは0.05~1.5重量部である。なお、架橋剤が実質的に分解しない温度とは、架橋剤の1時間半減期温度以下の温度である。通常、架橋剤の1時間半減期温度は、該架橋剤のMSDS等に記載されている。
本発明の架橋発泡成形体は、耐熱安定剤、耐候剤、滑剤、帯電防止剤、充填材や顔料(酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化ケイ素等の金属酸化物;炭酸マグネシウム、炭酸カルシウム等の炭酸塩;パルプ等の繊維物質など)などの各種添加剤を含んでいてもよい。また、樹脂成分として、エチレン−不飽和エステル系共重合体、高密度ポリエチレン、ポリプロピレン、ポリブテン等の樹脂やゴムを含んでいてもよい。特に本発明の架橋発泡成形体や、後述する圧縮架橋発泡成形体を靴底や靴底部材に用いる場合、ゴムや塩ビシート等他部材との接着が必要となることが多いため、エチレン・酢酸ビニル共重合体などのエチレン−不飽和エステル系共重合体を、エチレン系重合体と併用することが好ましい。エチレン系重合体とエチレン−不飽和エステル系共重合体とを併用する場合、その割合は、エチレン系重合体100重量部と、該重合体100重量部に対し、エチレン−不飽和エステル系共重合体が25~900重量部であることが好ましく、40~400重量部であることがより好ましい。
架橋発泡成形体を製造する方法の一つである、加圧架橋発泡法について説明する。エチレン系重合体、架橋剤、発泡剤などを、架橋剤と発泡剤の両成分が実質的に分解しない温度で溶融混練し、発泡用樹脂組成物を製造する。該発泡用樹脂組成物を成形型に充填し、50kg/cm2以上で加圧しながら、発泡剤の分解温度以上であって、かつ架橋剤の分解温度以上の温度で加熱して架橋発泡せしめることにより、架橋発泡成形体を得ることができる。成形型の型締め圧力は50~300kgf/cm2であることが好ましく、保圧時間は10~60分程度が好ましい。
また本発明の架橋発泡成形体は、架橋発泡成形体を更に圧縮成形して得られる圧縮架橋発泡成形体であってもよい。圧縮成形は通常130~200℃で、30~200kg/cm2の荷重を印加しながら5~60分の条件で行われる。なお、履物用部材の一種であるミッドソールには、圧縮架橋発泡成形体がより好適である。
本発明の架橋発泡成形体は、所望の形状に裁断して使用してもよく、バフかけ加工して使用してもよい。
本発明の架橋発泡成形体は、発泡倍率が4倍~20倍であることが好ましい。また、表面硬度がShoreC法硬度で30−80の範囲であることが好ましい。
本発明の架橋発泡成形体は、他の層と積層して多層積層体としてもよい。他の層を構成する材料としては、塩化ビニル樹脂材料、スチレン系共重合体ゴム材料、オレフィン系共重合体ゴム材料(エチレン系共重合体ゴム材料、プロピレン系共重合体ゴム材料など)、天然皮革材料、人工皮革材料、布材料などがあげられ、これらの材料は、少なくとも1種の材料が用いられる。
これら多層積層体の製造方法としては、例えば、本発明の架橋発泡成形体と、別途成形した他の層とを、熱貼合あるいは化学接着剤などによる貼合する方法などがあげられる。
該化学接着剤としては公知のものが使用できる。その中でも特にウレタン系化学接着剤やクロロプレン系化学接着剤などが好ましい。またこれら化学接着剤による貼合の際に、プライマーと呼ばれる下塗り剤を事前に塗布してもよい。
架橋発泡成形体において、架橋密度は、圧縮永久歪と密接な関係があることが知られている。一般に、架橋密度の高い架橋発泡成形体ほど、圧縮永久歪が小さい。
本発明の架橋発泡成形体は、架橋密度が高いため、良好な圧縮永久歪を示す。圧縮永久歪は、特定の条件下で発泡成形体を一定時間圧縮し、圧縮から開放し一定時間放置した後、圧縮からどれだけ回復したかを表す指標であり、発泡成形体の持つ耐久性・耐疲労性の指標として重視されている。本発明の架橋発泡成形体は、架橋発泡成形体の硬度がShoreC法で50のときの圧縮永久歪が30~65%であることが好ましい。そのため、例えば、本発明の架橋発泡成形体は、単層または多層の形態で、靴、サンダルなどの履き物の部材などとして好適に用いることができる。履き物用部材としては、ミッドソール、アウターソール、インソールなどがあげられる。また本発明の架橋発泡成形体は、履き物用部材以外に、断熱材、緩衝材などの建築資材などにも用いられる。 Method of measuring crosslinking density of the crosslinked foamed molded article of the present invention is a method of calculating from the relaxation modulus of the crosslinked foamed molded article when obtained by compression deformation of the cross-linked foamed molded article. Specifically, it has a compressible mechanism such as a tensile tester with a compression function and a rotary viscometer with a compression function, and the stress at the time of compression of a cross-linked foamed molded article using an apparatus that can obtain stress data. Measure relaxation.
For example, an apparatus equipped with a stress sensor that can measure compressive stress, a parallel plate-shaped jig that sandwiches the sample, an oven that heats the sample, and a position sensor that can measure the amount of compressive strain is used. When measuring by heating a crosslinked foamed molded article, it is preferable to use a rotary viscometer having a compression function because the temperature can be easily controlled.
The shape of the sample is preferably a plate shape having parallel planes that can uniformly contact the jig surface.
The thickness of the sample in the range that can be sandwiched in the jig, can be freely set, and preferably 0.1 mm ~ 50 mm, more preferably 1 mm ~ 20 mm.
The shape of the sample on the surface in contact with the jig is preferably a point-symmetric shape such as a circle, square, or equilateral triangle. The area of the sample on the surface in contact with the jig is preferably equal to or slightly larger than the area of the jig.
The sample is sandwiched between the jig so that the center of the surface where the sample contacts the jig and the center of the jig coincide. A sample sandwiched between jigs is placed in an oven, and the sample is heated to the measurement temperature.
The measurement temperature can be freely set as long as the shape of the sample can be maintained. The measurement temperature is preferably a temperature at which 1% to 100% compressive strain can be applied to the sample. For samples of polymer melting or shape a glass transition point above which constitutes the sample can be maintained, it is preferable to carry out the measurements at the melting point or glass transition point above the temperature of the polymer.
Next, the sample is compressed by pressing the upper jig against the sample while maintaining the temperature of the sample. The amount of compressive strain applied to the sample is determined by the material, shape, and measurement temperature of the sample. The amount of compressive strain is defined by the following equation. The amount of compressive strain applied to the sample may be a non-linear region, that is, a region where the viscosity of the sample changes according to the amount of compressive strain when the amount of compressive strain applied to the sample is changed. The amount of compressive strain applied to the sample is preferably 1% to 100%, more preferably 10 to 100%.
The stress relaxation of the sample is measured while keeping the amount of compressive strain applied to the sample constant. The measurement time may be a time until the stress of the crosslinked foamed molded article disappears and the stress of the crosslinked foamed molded article becomes substantially constant, or a longer time.
The calculation method of the crosslinking density used in the present invention is as follows.
The relaxation elastic modulus Gc when the stress of the crosslinked foamed molded product is attenuated and the stress of the crosslinked foamed molded product becomes substantially constant is obtained, and the crosslinking density n of the crosslinked foamed molded product is calculated using the following formula.
n = Gc / RT
n: Crosslink density
R: Gas constant
T: Measurement temperature
The measuring method of the present invention can also be applied to a crosslinked foamed product made of an ethylene polymer, which has conventionally been difficult to accurately measure the crosslinking density. Especially, as the method of measuring crosslinking density of the crosslinked foamed molded body formed by using a high-pressure low-density polyethylene and / or ethylene -α- olefin copolymer, it is preferred.
Crosslinked foamed molded article which is capable of measuring the cross-linking density in the method of the present invention may be a cross-linked foamed molded article crosslinked in any way. Examples of the crosslinking method include electron beam crosslinking and a method of crosslinking a polymer with an organic peroxide. The measurement method of the present invention is suitable for the measurement of the crosslinking density of a crosslinked foamed molded product obtained by crosslinking a polymer with an organic peroxide.
Crosslinked foamed molded article of the present invention is mainly composed of ethylene-based polymer, the crosslinking density is 0.30 mol / kg or more cross-linked foamed molded article. The crosslinking density of the crosslinked foamed molded product is the compression modulus of the crosslinked foamed molded product obtained under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds. This is a calculated value. The crosslink density is preferably 0.30 mol / kg or more.
The ethylene polymer in the present invention is an ethylene-α-olefin copolymer, a high-pressure method low-density polyethylene, or a mixture thereof.
The ethylene-α-olefin copolymer is a copolymer containing a monomer unit based on ethylene and a monomer unit based on an α-olefin. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4 -Methyl- 1-hexene etc. are mention | raise | lifted and these may be used independently and 2 or more types may be used together. The α-olefin is preferably an α-olefin having 3 to 20 carbon atoms, more preferably an α-olefin having 4 to 8 carbon atoms, and still more preferably 1-butene or 1-hexene. , 1-octene and 4-methyl-1-pentene.
Examples of the ethylene-α-olefin copolymer include an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, and an ethylene-1-octene copolymer. Examples thereof include a polymer, an ethylene-1-butene-1-hexene copolymer, an ethylene-1-butene-4-methyl-1-pentene copolymer, and an ethylene-1-butene-1-octene copolymer. From the viewpoint of increasing the strength of the crosslinked foamed molded article, a copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 6 to 8 carbon atoms, specifically, Ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, and ethylene-1-butene-1-octene copolymer.
In the ethylene-α-olefin copolymer, the content of monomer units based on ethylene is usually 80 to 98% by weight when the total weight of the ethylene-α-olefin copolymer is 100% by weight. , the content of the monomer unit based on α- olefins, when the total weight of the ethylene-based polymer is 100% by weight, usually 2-20% by weight.
The density of the ethylene polymer is usually 860 to 945 kg / m. 3 It is. The density is preferably 865 kg / m from the viewpoint of increasing the rigidity of the crosslinked foamed molded article. 3 Or more, more preferably 870 kg / m 3 Or more, more preferably 900 kg / m 3 That's it. Further, from the viewpoint of increasing the lightness of the crosslinked foamed molded article, preferably 940 kg / m. 3 It is as follows. It said seal degree, after annealed according to JIS K6760-1995, measured in accordance with the prescribed in JIS K7112-1980 underwater substitution method.
The melt flow rate (MFR; unit is g / 10 minutes) of the ethylene polymer is 0.01 to 3.0 g / 10 minutes. An MFR is preferably 0.01 g / 10 min or more because a foamed molded article having a high foaming ratio is obtained and foam moldability is also improved. Further, since the cross-linked foamed molded article having excellent strength can be obtained, MFR is preferably not more than 3.0 g / 10 min, more preferably not more than 2.5 g / 10 min. The MFR is measured by the A method according to JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N. In the measurement of the melt flow rate, usually, an ethylene polymer previously blended with about 1000 ppm of an antioxidant is used.
The ethylene-based copolymer used in the present invention preferably has a flow activation energy (Ea) of 40 kJ / mol or more from the viewpoint of making the cell properties uniform in the crosslinked foamed molded article and improving the appearance. . Ea is preferably 50 kJ / mol or more, more preferably 55 kJ / mol or more. Furthermore, the Ea, from the viewpoint of the surface of the cross-linked foamed molded article smoother, preferably not more than 100 kJ / mol, more preferably not more than 90 kJ / mol.
The flow activation energy (Ea) is a master curve showing the dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. on the angular frequency (unit: rad / sec) based on the temperature-time superposition principle. The shift factor (a T ) And a numerical value calculated by the Arrhenius equation and obtained by the following method. That is, the melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (the unit of melt complex viscosity is Pa · sec. The unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), Shift factor (a) at each temperature (T) obtained when superimposed on the melt complex viscosity-angular frequency curve of the coalesced T ) Is obtained, and each of the temperature (T), from a shift factor (aT) at each temperature (T), by the method of least squares [ln (a T )] And [1 / (T + 273.16)] are calculated. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = M (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor
Ea: activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4.
The shift factor (a T ) Is obtained by moving the logarithmic curve of the melt complex viscosity-angular frequency at each temperature (T) in the log (Y) = − log (X) axis direction (where the Y axis is the melt complex viscosity, the X axis Is the amount of movement when superposed on the melt complex viscosity-angular frequency curve at 190 ° C., and in the superposition, both the melt complex viscosity and the angular frequency at each temperature (T) are obtained. The logarithmic curve has an angular frequency a for each curve. T Double the melt complex viscosity to 1 / a T Move twice. Moreover, the correlation coefficient when determining 130 ° C., 0.99 ° C., from the values of four points 170 ° C. and 190 ° C. The formula (I) in the minimum square method is usually 0.99 or more.
The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec. The measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.
The molecular weight distribution (Mw / Mn) of the ethylene-based polymer is preferably 3 or more, more preferably 5 or more, from the viewpoint of improving the moldability. Moreover, from a viewpoint of raising impact strength, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 15 or less. The molecular weight distribution (Mw / Mn) is a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). Mw and Mn are gel permeation chromatograph (GPC). ) Method. Moreover, as measurement conditions of GPC method, the following conditions can be mention | raise | lifted, for example.
(1) Apparatus: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: differential refraction
(8) Molecular weight reference material: Standard polystyrene
It is generally known that a cross-linking reaction between molecular chains proceeds preferentially from a component having a high molecular weight. Therefore, in order to obtain a high crosslink density cross-linked foamed molded article, it is preferred to produce a cross-linked foamed molded article using the ethylene polymer containing a large amount of high molecular weight components. The ethylene polymer preferably has an HMw-Index (High Molecular Index) calculated by the GPC method of more than 8.0%. HMw-Index can be calculated according to the following formula from the profile of weight average molecular chain length (Aw) obtained from the GPC method.
HMw-Index (%)
= (Component ratio of LogAw> 4.5 or more) / (Component ratio of LogAw> 4.0 or more) × 100
More HMw-Index is high, can mean that higher proportions of the molecular chain component weight with high molecular weight, achieve a high crosslinking density crosslinked foamed molded article.
Examples of the method for producing an ethylene-α-olefin copolymer used for obtaining a crosslinked foamed product made of an ethylene polymer of the present invention having a crosslinking density of 0.30 mol / kg or more include an alkylene group and a silylene group. A metallocene complex having a ligand in which two (substituted) indenyl groups are bonded to each other by a bridging group, for example, a metallocene catalyst using ethylenebis (1-indenyl) zirconium diphenoxide as a catalyst component, and ethylene and α-olefin And a method of copolymerizing with.
In the metallocene-based catalyst, a promoter component that activates the metallocene complex is used. Examples of the promoter component include organic aluminum oxy compounds, boron compounds, and organic zinc compounds. These promoter components are preferably used by being supported on a particulate carrier.
As the particulate carrier, a porous material is preferable, and SiO 2 , Al 2 O 3 , MgO, ZrO 2 TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 Inorganic oxides such as; clays and clay minerals such as smectite, montmorillonite, hectorite, laponite, saponite; organic polymers such as polyethylene, polypropylene, styrene-divinylbenzene copolymer, etc. are used. The 50% volume average particle diameter of the particulate carrier is usually 10 to 500 μm, and the 50% volume average particle diameter is measured by a light scattering laser diffraction method or the like. The fine particle carrier has a pore volume of usually 0.3 to 10 ml / g, and the pore volume is mainly measured by a gas adsorption method (BET method). The specific surface area of the particulate carrier is usually 10 to 1000 m. 2 / G, and the specific surface area is mainly measured by a gas adsorption method (BET method).
When the crosslinked foamed molded article of the present invention is used as a shoe member, a crosslinked foamed molded article excellent in compression set performance is desirable. As the method for producing an ethylene-α-olefin copolymer used for obtaining a crosslinked foamed article having excellent compression set, particularly preferably, the following promoter support (A) and an alkylene group or a silylene group are used. In the presence of a polymerization catalyst obtained by contacting a metallocene complex (B) having a ligand in which two (substituted) indenyl groups are bonded by a bridging group with an organoaluminum compound (C), ethylene and an α-olefin Can be used.
The cocatalyst carrier (A) is composed of component (a) diethylzinc, component (b) two types of fluorinated phenol, component (c) water, component (d) inorganic particulate carrier and component (e) 1,1. , 1,3,3,3-hexamethyldisilazane (((CH 3 ) 3 Si) 2 NH) is a carrier obtained by contact.
Examples of the fluorinated phenol of component (b) include pentafluorophenol, 3,5-difluorophenol, 3,4,5-trifluorophenol, 2,4,6-trifluorophenol and the like. From the viewpoint of increasing the activation energy (Ea) of the flow of the ethylene-α-olefin copolymer, increasing the HMw-Index, and increasing the crosslinking density, 3,4,5-trifluorophenol is used alone, or It is preferable to use two types of fluorinated phenols having different numbers of fluorines. When two different kinds of fluorinated phenols are used, for example, pentafluorophenol / 3,4,5-trifluorophenol, pentafluorophenol / 2,4,6-trifluorophenol, pentafluorophenol / 3,5-difluoro A combination of phenol and the like can be mentioned, and a combination of pentafluorophenol / 3,4,5-trifluorophenol is preferable. The molar ratio of the fluorinated phenol having a large number of fluorine and the fluorinated phenol having a small number of fluorine is usually 20/80 to 80/20.
The inorganic compound particles of component (d) are preferably silica gel.
Component (a) diethyl zinc, component (b) 2 types of fluorinated phenol, component (c) The amount of each component used is not particularly limited, but the molar ratio of each component used is the component (a) diethyl. When the molar ratio of zinc: component (b) 2 types of fluorinated phenol: component (c) water = 1: x: y, x and y preferably satisfy the following formula.
| 2-x-2y | ≦ 1
X in the above formula is preferably a number from 0.01 to 1.99, more preferably a number from 0.10 to 1.80, and still more preferably a number from 0.20 to 1.50. Most preferably, the number is 0.30 to 1.00.
The amount of component (d) inorganic fine particle carrier used for component (a) diethyl zinc is included in the particles obtained by contacting component (a) diethyl zinc and component (d) inorganic fine particle carrier. The amount of zinc atoms derived from the component (a) diethylzinc is preferably 0.1 mmol or more and 0.5 to 20 mmol in terms of the number of moles of zinc atoms contained in 1 g of the obtained particles. It is more preferable that The amount of component (e) trimethyldisilazane used for component (d) inorganic particulate carrier is such that component (e) trimethyldisilazane is 0.1 mmol or more per gram of component (d) inorganic particulate carrier. The amount is preferably 0.5 to 20 mmol, and more preferably 0.5 to 20 mmol.
Preferred examples of the metallocene complex (B) having a ligand in which two (substituted) indenyl groups are bonded by a bridging group such as an alkylene group or a silylene group include ethylenebis (1-indenyl) zirconium diphenoxide. .
The organoaluminum compound (C) is preferably triisobutylaluminum or trinormaloctylaluminum.
The amount of the metallocene complex (B) used is preferably 5 × 10 to 1 g of the promoter support (A). -6 ~ 5 × 10 -4 mol. Also preferred as the amount of organoaluminum compound (C) used.
Alternatively, it is 1 to 2000 in terms of the ratio (Al / M) of the number of moles of aluminum atoms in the organoaluminum compound (C) to the number of moles of metal atoms in the metallocene complex (B).
In the polymerization catalyst obtained by bringing the promoter support (A), the metallocene complex (B), and the organoaluminum compound (C) into contact with each other, the promoter support (A) and the metallocene complex (B) are optionally added. It is good also as a polymerization catalyst which makes an electron-donating compound (D) contact an organic aluminum compound (C).
As a method for producing an ethylene-α-olefin copolymer of component (A), a small amount of olefin is polymerized (hereinafter referred to as prepolymerization) using a solid catalyst component in which a promoter component is supported on a particulate carrier. )) Obtained by polymerizing a small amount of olefin using a co-polymerized solid component, for example, a co-catalyst carrier, a metallocene complex, and a co-catalyst component (such as an alkylating agent such as an organoaluminum compound). A method in which ethylene and an α-olefin are copolymerized using a polymerization solid component as a catalyst component or a catalyst is preferable. When the crosslinked foamed molded article of the present invention is used as a shoe member, it is preferable to add triethylaluminum as a promoter component in order to increase HMw-Index and further improve compression set performance.
Examples of the olefin used in the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene and cyclohexene. These can be used alone or in combination of two or more. The content of the prepolymerized polymer in the prepolymerized solid component is usually 0.1 to 500 g, preferably 1 to 200 g, per 1 g of the solid catalyst component.
The preliminary polymerization method may be a continuous polymerization method or a batch polymerization method, and examples thereof include a batch type slurry polymerization method, a continuous slurry polymerization method, and a continuous gas phase polymerization method. As a method for introducing catalyst components such as a promoter carrier, a metallocene complex, and other promoter components (such as an alkylating agent such as an organoaluminum compound) into a polymerization reactor for performing prepolymerization, nitrogen, argon, or the like is usually used. A method in which an inert gas such as hydrogen, ethylene, or the like is used without adding moisture, or a method in which each component is dissolved or diluted in a solvent and added in a solution or slurry state is used. In addition, the polymerization temperature in the prepolymerization is usually a temperature lower than the melting point of the prepolymerized polymer, preferably 0 to 100 ° C, more preferably 10 to 70 ° C.
When the prepolymerization is performed by a slurry polymerization method, examples of the solvent include hydrocarbons having 20 or less carbon atoms. For example, saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane, octane, decane, etc .; aromatic hydrocarbons such as benzene, toluene, xylene, etc., which are used alone Alternatively, two or more kinds are used in combination.
As a method for producing an ethylene-α-olefin copolymer, a continuous polymerization method involving the formation of particles of an ethylene-α-olefin copolymer is preferable. For example, a continuous gas phase polymerization method, a continuous slurry polymerization method, a continuous bulk weight It is a legal method, preferably a continuous gas phase polymerization method. The gas phase polymerization reaction apparatus used in the polymerization method is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion. A stirring blade may be installed in the reaction vessel.
As a method of supplying the prepolymerized prepolymerized solid component to a continuous polymerization reaction tank accompanied by the formation of ethylene-α-olefin copolymer particles, an inert gas such as nitrogen or argon, hydrogen, ethylene or the like is usually used. And a method in which the components are supplied without moisture, and a method in which each component is dissolved or diluted in a solvent and supplied in a solution or slurry state.
When high-pressure low-density polyethylene is used as the ethylene-based polymer, the high-pressure low-density polyethylene is generally a tank-type reactor or a tubular reactor, and a free radical generator such as an organic oxide or oxygen is used. As the polymerization initiator, a resin produced by polymerizing ethylene under a polymerization pressure of 100 to 300 MPa and a polymerization temperature of 130 to 300 ° C. can be used. MFR can also be adjusted by using hydrocarbons such as hydrogen, methane, and ethane as molecular weight regulators.
As a method for producing the crosslinked foamed molded product of the present invention, the same method as the conventional method for producing a crosslinked foamed molded product of ethylene-vinyl acetate copolymer or high-pressure low-density polyethylene can be used.
For example, (1) A foaming agent is blended into an ethylene polymer, and this is uniformly mixed using a ribbon blender or the like, and the resulting mixture is substantially decomposed by an extruder or a calender roll. Melt-kneaded at a temperature and pressure to form a sheet, crosslink by irradiating the sheet-shaped molded body with ionizing radiation, and then heat above the decomposition temperature of the foaming agent to obtain a crosslinked foamed molded body Method, or (2) obtained by blending a foaming agent and a crosslinking agent in an ethylene polymer and melt-mixing the mixture with a mixing roll, kneader, extruder, etc. at a temperature at which the foaming agent and the crosslinking agent are not substantially decomposed. The composition is filled into a mold by an injection molding machine or the like, foamed in a pressurized (holding) / heated state, and then cooled to take out a crosslinked foamed molded product, or (3) an ethylene polymer. To foam The mixture obtained by uniformly mixing using a ribbon blender or the like is melt-kneaded with an extruder or a calender roll at a temperature and pressure at which the foaming agent is not substantially decomposed, and formed into a sheet shape. Examples thereof include a method in which a sheet-like molded body is put in a mold, foamed in a pressurized (holding) / heated state with a pressure press or the like, and then cooled to take out a crosslinked foamed molded body.
Further, for example, (4) obtained by blending a foaming agent and a crosslinking agent in an ethylene polymer, and melt-mixing with a mixing roll, kneader, extruder, etc. at a temperature at which the foaming agent and the crosslinking agent are not substantially decomposed. The composition is further injected into the mold under conditions where the foaming agent and the crosslinking agent are not substantially decomposed, and the foaming agent and the crosslinking agent are decomposed in the mold, for example, a temperature of about 130 to 200 degrees. A method (injection foaming method) in which the resin is crosslinked and foamed while maintaining the above can also be mentioned.
Examples of the foaming agent that can be used in the present invention include a thermally decomposable foaming agent having a decomposition temperature equal to or higher than the melting temperature of the ethylene polymer. For example, azodicarbonamide, barium azodicarboxylate, azobisbutylnitrile, nitrodiguanidine, N, N-dinitrosopentamethylenetetramine, N, N′-dimethyl-N, N′-dinitrosotephthalamide, P-toluene Sulfonyl hydrazide, P, P′-oxybis (benzenesulfonylhydrazide) azobisisobutyronitrile, P, P′-oxybisbenzenesulfonyl semicarbazide, 5-phenyltetrazole, trihydrazinotriazine, hydrazodicarbonamide, etc. These may be used alone or in combination of two or more. Among these, azodicarbonamide or sodium hydrogen carbonate is preferable. In the production of the crosslinked foamed molded article of the present invention, it is preferable that 100 parts by weight of the resin component and 0.5 to 50 parts by weight of the foaming agent are contained with respect to 100 parts by weight of the resin component. The content is more preferably 1 to 15 parts by weight.
When producing a crosslinked foamed molded article, a foaming aid may be blended as necessary. Examples of the foaming aid include compounds mainly composed of urea; metal oxides such as zinc oxide and lead oxide; higher fatty acids such as salicylic acid and stearic acid; and metal compounds of the higher fatty acids. The amount of the foaming aid used is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight, with the total of the foaming agent and the foaming aid being 100% by weight.
When ionizing radiation is used as a method for crosslinking an ethylene polymer, β rays, γ rays, neutrons, electron beams, and the like can be used. The irradiation amount is preferably in the range of 5 to 20 Mrad.
When a crosslinking agent is used as a method for crosslinking the ethylene polymer, an organic peroxide having a decomposition temperature equal to or higher than the flow start temperature of the ethylene polymer is suitable. For example, dicumyl peroxide, 1,1-ditertiary butyl peroxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-ditertiary butyl peroxyhexane, 2,5-dimethyl-2 , 5-ditertiary butyl peroxyhexyne, α, α-ditertiary butyl peroxyisopropylbenzene, tertiary butyl peroxyketone, tertiary butyl peroxybenzoate, and the like. From the viewpoint of increasing the crosslinking density, the blending ratio of the crosslinking agent is usually 0.02 to 3 parts by weight, preferably 0.05 to 1.5 parts by weight, with the total amount of the resin components being 100 parts by weight. The temperature at which the cross-linking agent does not substantially decompose is a temperature not higher than the one-hour half-life temperature of the cross-linking agent. Usually, the 1-hour half-life temperature of a crosslinking agent is described in MSDS etc. of this crosslinking agent.
The crosslinked foamed molded article of the present invention comprises a heat stabilizer, weathering agent, lubricant, antistatic agent, filler and pigment (metal oxide such as zinc oxide, titanium oxide, calcium oxide, magnesium oxide, silicon oxide; magnesium carbonate, Various additives such as carbonates such as calcium carbonate; fiber materials such as pulp) may be included. Further, as the resin component, a resin such as an ethylene-unsaturated ester copolymer, high-density polyethylene, polypropylene, polybutene, or rubber may be included. In particular, when the cross-linked foamed molded product of the present invention or the compression-crosslinked foamed molded product to be described later is used for a shoe sole or a shoe sole member, it is often necessary to adhere to other members such as rubber and a vinyl chloride sheet. It is preferable to use an ethylene-unsaturated ester copolymer such as a vinyl copolymer in combination with the ethylene polymer. When the ethylene polymer and the ethylene-unsaturated ester copolymer are used in combination, the proportion is 100 parts by weight of the ethylene polymer, and the ethylene-unsaturated ester copolymer is based on 100 parts by weight of the polymer. The combined amount is preferably 25 to 900 parts by weight, and more preferably 40 to 400 parts by weight.
The pressure-crosslinking foaming method, which is one of the methods for producing a crosslinked foamed molded product, will be described. An ethylene polymer, a crosslinking agent, a foaming agent, and the like are melt-kneaded at a temperature at which both components of the crosslinking agent and the foaming agent are not substantially decomposed to produce a foaming resin composition. The foaming resin composition is filled into a mold and 50 kg / cm. 2 A cross-linked foamed molded article can be obtained by heating at a temperature equal to or higher than the decomposition temperature of the foaming agent and higher than the decomposition temperature of the cross-linking agent while being pressurized. The clamping pressure of the mold is 50 to 300 kgf / cm 2 The pressure holding time is preferably about 10 to 60 minutes.
The crosslinked foamed molded product of the present invention may be a compression crosslinked foamed molded product obtained by further compression molding the crosslinked foamed molded product. Compression molding is usually 130-200 ° C, 30-200 kg / cm 2 The process is carried out under the condition of 5 to 60 minutes while applying the above load. Note that a compression-crosslinked foamed molded article is more suitable for a midsole, which is a kind of footwear member.
The crosslinked foamed molded article of the present invention may be used after being cut into a desired shape, or may be used after being buffed.
The crosslinked foamed article of the present invention preferably has a foaming ratio of 4 to 20 times. The surface hardness is preferably in the range of 30-80 in Shore C method hardness.
The crosslinked foamed molded article of the present invention may be laminated with other layers to form a multilayer laminate. The material constituting the other layers includes vinyl chloride resin material, styrene copolymer rubber material, olefin copolymer rubber material (ethylene copolymer rubber material, propylene copolymer rubber material, etc.), natural A leather material, an artificial leather material, a cloth material, and the like can be mentioned, and at least one kind of material is used as these materials.
Examples of a method for producing these multilayer laminates include a method in which the crosslinked foamed molded product of the present invention and another layer formed separately are bonded by heat bonding or a chemical adhesive.
Known chemical adhesives can be used. Of these, urethane chemical adhesives and chloroprene chemical adhesives are particularly preferable. In addition, an undercoat agent called a primer may be applied in advance at the time of bonding with these chemical adhesives.
In a crosslinked foamed molded article, it is known that the crosslinking density is closely related to compression set. In general, the higher the crosslink density, the lower the compression set of the crosslinked foamed molded product.
The crosslinked foamed molded article of the present invention exhibits a good compression set because of its high crosslinking density. Compression set is an index that shows how much the foamed molded body has recovered from compression after being compressed for a certain period of time under certain conditions, released from compression and left for a certain period of time. Emphasized as an indicator of fatigue resistance. The crosslinked foamed molded article of the present invention preferably has a compression set of 30 to 65% when the hardness of the crosslinked foamed molded article is 50 by the Shore C method. Therefore, for example, the crosslinked foamed molded article of the present invention can be suitably used as a member of footwear such as shoes and sandals in a single layer or multilayer form. Examples of the footwear member include a midsole, an outer sole, an insole and the like. In addition to the footwear member, the crosslinked foamed molded article of the present invention is also used for building materials such as a heat insulating material and a cushioning material.
例えば、圧縮応力が測定できる応力センサー、試料を挟む平行平板形状の治具、試料を加熱するオーブン、圧縮歪量が計測できる位置センサーを装備した装置を用いる。架橋発泡成形体を加熱して測定する場合には、圧縮機能を有する回転式粘度計を用いることが温度制御しやすいため好ましい。
試料の形状は治具表面に均一に接触できる平行な平面をもつ板状が好ましい。
試料の厚みは治具に挟み込むことが出来る範囲で、自由に設定することができるが、好ましくは0.1mm~50mm、より好ましくは1mm~20mmである。
治具に接する面の試料の形状は円形、正方形、正三角形などのような点対称の形状が好ましい。治具に接する面の試料の面積は、治具の面積と同等か、少し大きいことが好ましい。
試料が治具に接する面の中心と治具の中心が一致するように、試料を治具で挟む。治具で挟んだ試料をオーブンにいれ、試料を測定温度まで加熱する。
測定温度は、試料の形状が維持できる範囲で自由に設定できる。測定温度は、サンプルに1%~100%の圧縮歪を加えることが可能な温度が好ましい。試料を構成する重合体の融点又はガラス転移点以上で形状を維持できる試料の場合、重合体の融点又はガラス転移点以上の温度で測定を行うことが好ましい。
次に、試料の温度を保ちながら、上部の治具を試料に押し付けて試料を圧縮する。試料に与える圧縮歪量は、試料の材質、形状、測定温度により決定する。圧縮歪量は、下記式で定義される。試料に与える圧縮歪量は、非線形領域、すなわち試料に与える圧縮歪量を変化させたとき、試料の粘度が圧縮歪量に応じて変化する領域であればよい。試料に与える圧縮歪量は、好ましくは1%~100%、更に好ましくは10~100%である。
試料に与える圧縮歪量を一定に保ちながら、試料の応力緩和を測定する。測定時間は、架橋発泡成形体の応力減衰がなくなり、架橋発泡成形体の応力がほぼ一定になるまでの時間、又は、それより長い時間であればよい。
本発明で用いられる架橋密度の算出方法は、下記の通りである。
架橋発泡成形体の応力が減衰して、架橋発泡成形体の応力がほぼ一定になったときの緩和弾性率Gcを求め、下記式を用いて、架橋発泡成形体の架橋密度nを算出する。
n=Gc/RT
n:架橋密度
R:気体定数
T:測定温度
本発明の測定方法は、従来架橋密度の正確な測定が困難であった、エチレン系重合体製架橋発泡成形体にも適用可能である。とりわけ、高圧法低密度ポリエチレンおよび/またはエチレン−α−オレフィン共重合体を用いて形成される架橋発泡成形体の架橋密度の測定方法として、好適である。
本発明の方法で架橋密度を測定することができる架橋発泡成形体は、どのような方法で架橋された架橋発泡成形体であってもよい。架橋方法としては、電子線架橋や、有機過酸化物により重合体を架橋する方法が挙げられる。本発明の測定方法は、有機過酸化物により重合体が架橋された架橋発泡成形体の架橋密度の測定に好適である。
本発明の架橋発泡成形体は、エチレン系重合体を主成分とし、架橋密度が0.30mol/kg以上の架橋発泡成形体である。なお、該架橋発泡成形体の架橋密度とは、測定温度60℃、圧縮歪量50%、測定時間1800秒の条件で、架橋発泡成形体を圧縮変形させ、得られた緩和弾性率Gcを用いて算出される値である。架橋密度は、0.30mol/kg以上であることが好ましい。
本発明におけるエチレン系重合体とは、エチレン−α−オレフィン共重合体、高圧法低密度ポリエチレン、またはこれらの混合物である。
エチレン−α−オレフィン共重合体は、エチレンに基づく単量体単位とα−オレフィンに基づく単量体単位とを含む共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは、炭素原子数3~20のα−オレフィンであり、より好ましくは、炭素原子数4~8のα−オレフィンであり、更に好ましくは、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテンから選ばれる少なくとも1種のα−オレフィンである。
エチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられる。架橋発泡成形体の強度を高める観点から、好ましくは、エチレンに基づく単量体単位および炭素原子数6~8のα−オレフィンに基づく単量体単位を有する共重合体であり、具体的には、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体等があげられる。
エチレン−α−オレフィン共重合体において、エチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量を100重量%とするとき、通常、80~98重量%であり、α−オレフィンに基づく単量体単位の含有量は、エチレン系重合体の全重量を100重量%とするとき、通常、2~20重量%である。
エチレン系重合体の密度は、通常、860~945kg/m3である。該密度は、架橋発泡成形体の剛性を高める観点から、好ましくは865kg/m3以上であり、より好ましくは870kg/m3以上であり、更に好ましくは900kg/m3以上である。また、架橋発泡成形体の軽量性を高める観点から、好ましくは940kg/m3以下である。該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に規定された水中置換法に従って測定される。
エチレン系重合体のメルトフローレート(MFR;単位はg/10分である。)は、0.01~3.0g/10分である。高い発泡倍率の発泡成形体が得られ、また発泡成形性も向上することから、MFRは好ましくは0.01g/10分以上である。また、強度に優れる架橋発泡成形体が得られることから、MFRは好ましくは3.0g/10分以下であり、より好ましくは2.5g/10分以下である。なお、該MFRは、JIS K7210−1995に従い、温度190℃および荷重21.18Nの条件でA法により測定される。なお、該メルトフローレートの測定では、通常、エチレン系重合体に予め酸化防止剤を1000ppm程度配合したものを用いる。
本発明で用いられるエチレン系共重合体は、架橋発泡成形体中の気泡性状を均一にし、外観を良好にする観点から、流動の活性化エネルギー(Ea)が40kJ/mol以上であることが好ましい。Eaとしては、好ましくは50kJ/mol以上であり、より好ましくは55kJ/mol以上である。また、該Eaは、架橋発泡成形体の表面をより滑らかにする観点から、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である。
流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT)=m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
aT:シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5~2mm、ストレイン:5%、角周波数:0.1~100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。
エチレン系重合体の分子量分布(Mw/Mn)は、成形加工性を高める観点から、好ましくは3以上であり、より好ましくは5以上である。また、衝撃強度を高める観点から、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。該分子量分布(Mw/Mn)は、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)であり、MwとMnは、ゲル・パーミエイション・クロマトグラフ(GPC)法により測定される。また、GPC法の測定条件としては、例えば、次の条件をあげることができる。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
分子鎖間の架橋反応は、分子量の高い成分から優先的に進行していくことが一般に知られている。そのため、架橋密度の高い架橋発泡成形体を得るためには、分子量の高い成分を多く含むエチレン系重合体を用いて架橋発泡成形体を製造することが好ましい。エチレン系重合体は、上記GPC法にて算出されるHMw−Index(High Molecular Index)が8.0%を上回ることが好ましい。なおHMw−Indexは、GPC法から得られる重量平均分子鎖長(Aw)のプロファイルから、下式に従い算出することができる。
HMw−Index(%)
=(LogAw>4.5以上の成分割合)/(LogAw>4.0以上の成分割合)×100
HMw−Indexが高いほど、高分子量を有する分子鎖成分量の割合が高いことを意味し、架橋密度の高い架橋発泡成形体を得ることができる。
架橋密度が0.30mol/kg以上である本発明のエチレン系重合体製架橋発泡成形体を得るために用いられるエチレン−α−オレフィン共重合体の製造方法としては、アルキレン基やシリレン基等の架橋基で2つの(置換)インデニル基が結合された配位子を有するメタロセン錯体、例えば、エチレンビス(1−インデニル)ジルコニウムジフェノキシドを触媒成分として用いたメタロセン系触媒で、エチレンとα−オレフィンとを共重合する方法をあげることができる。
メタロセン系触媒では、メタロセン錯体を活性化させる助触媒成分を使用する。該助触媒成分としては、有機アルミニウムオキシ化合物、ホウ素化合物、有機亜鉛化合物などをあげることができる。これらの助触媒成分は、微粒子状担体に担持して用いることが好ましい。
微粒子状担体としては、多孔性の物質が好ましく、SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2等の無機酸化物;スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイト等の粘土や粘土鉱物;ポリエチレン、ポリプロピレン、スチレン−ジビニルベンゼン共重合体などの有機ポリマーなどが使用される。該微粒子状担体の50%体積平均粒子径は、通常、10~500μmであり、該50%体積平均粒子径は、光散乱式レーザー回折法などで測定される。また、該微粒子状担体の細孔容量は、通常0.3~10ml/gであり、該細孔容量は、主にガス吸着法(BET法)で測定される。該微粒子状担体の比表面積は、通常、10~1000m2/gであり、該比表面積は、主にガス吸着法(BET法)で測定される。
本発明の架橋発泡成形体を靴用部材として使用する際には、圧縮永久歪性能に優れる架橋発泡成形体が望ましい。圧縮永久歪に優れる架橋発泡成形体を得るために用いられるエチレン−α−オレフィン共重合体の製造方法として、特に好適には、下記の助触媒担体(A)と、アルキレン基やシリレン基等の架橋基で2つの(置換)インデニル基が結合された配位子を有するメタロセン錯体(B)と、有機アルミニウム化合物(C)とを接触させてなる重合触媒の存在下、エチレンとα−オレフィンとを共重合する方法があげられる。
上記の助触媒担体(A)は、成分(a)ジエチル亜鉛、成分(b)2種類のフッ素化フェノール、成分(c)水、成分(d)無機微粒子状担体および成分(e)1,1,1,3,3,3−ヘキサメチルジシラザン(((CH3)3Si)2NH)を接触させて得られる担体である。
成分(b)のフッ素化フェノールとしては、ペンタフルオロフェノール、3,5−ジフルオロフェノール、3,4,5−トリフルオロフェノール、2,4,6−トリフルオロフェノール等をあげることができる。エチレン−α−オレフィン共重合体の流動の活性化エネルギー(Ea)を高め、HMw−Indexを増大させ、架橋密度を高める観点から、3,4,5−トリフルオロフェノールを単独で用いるか、もしくはフッ素数の異なる2種類のフッ素化フェノールを用いることが好ましい。異なる2種類のフッ素化フェノールを用いる場合は例えば、ペンタフルオロフェノール/3,4,5−トリフルオロフェノール、ペンタフルオロフェノール/2,4,6−トリフルオロフェノール、ペンタフルオロフェノール/3,5−ジフルオロフェノールなどの組み合せがあげられ、好ましくはペンタフルオロフェノール/3,4,5−トリフルオロフェノールの組み合せである。フッ素数が多いフッ素化フェノールとフッ素数が少ないフッ素化フェノールとのモル比としては、通常、20/80~80/20である。
成分(d)の無機化合物粒子としては、好ましくはシリカゲルである。
成分(a)ジエチル亜鉛、成分(b)2種類のフッ素化フェノール、成分(c)水の各成分の使用量は特に制限はないが、各成分の使用量のモル比率を成分(a)ジエチル亜鉛:成分(b)2種類のフッ素化フェノール:成分(c)水=1:x:yのモル比率とすると、xおよびyが下記式を満足することが好ましい。
|2−x−2y|≦1
上記式のxとしては、好ましくは0.01~1.99の数であり、より好ましくは0.10~1.80の数であり、さらに好ましくは0.20~1.50の数であり、最も好ましくは0.30~1.00の数である。
また、成分(a)ジエチル亜鉛に対して使用する成分(d)無機微粒子状担体の量としては、成分(a)ジエチル亜鉛と成分(d)無機微粒子状担体との接触により得られる粒子に含まれる成分(a)ジエチル亜鉛に由来する亜鉛原子が、得られる粒子1gに含まれる亜鉛原子のモル数にして、0.1mmol以上となる量であることが好ましく、0.5~20mmolとなる量であることがより好ましい。成分(d)無機微粒子状担体に対して使用する成分(e)トリメチルジシラザンの量としては、成分(d)無機微粒子状担体1gにつき成分(e)トリメチルジシラザン0.1mmol以上となる量であることが好ましく、0.5~20mmolとなる量であることがより好ましい。
アルキレン基やシリレン基等の架橋基で2つの(置換)インデニル基が結合された配位子を有するメタロセン錯体(B)として好ましくは、エチレンビス(1−インデニル)ジルコニウムジフェノキシドをあげることができる。
有機アルミニウム化合物(C)として、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。
メタロセン錯体(B)の使用量は、助触媒担体(A)1gに対し、好ましくは5×10−6~5×10−4molである。また有機アルミニウム化合物(C)の使用量として、好ま
しくは、メタロセン錯体(B)の金属原子モル数に対する有機アルミニウム化合物(C)のアルミニウム原子のモル数の比(Al/M)で表して、1~2000である。
上記の助触媒担体(A)とメタロセン錯体(B)と有機アルミニウム化合物(C)とを接触させてなる重合触媒においては、必要に応じて、助触媒担体(A)とメタロセン系錯体(B)と有機アルミニウム化合物(C)とに、電子供与性化合物(D)を接触させてなる重合触媒としてもよい。
成分(A)のエチレン−α−オレフィン共重合体の製造方法としては、微粒子状担体に助触媒成分が担持されてなる固体触媒成分を用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合固体成分、例えば、助触媒担体とメタロセン錯体と助触媒成分(有機アルミニウム化合物などのアルキル化剤など)とを用いて少量のオレフィンを重合して得られた予備重合固体成分を、触媒成分または触媒として用いて、エチレンとα−オレフィンとを共重合する方法が好ましい。本発明の架橋発泡成形体を靴用部材として使用する際には、HMw−Indexを増大させ、圧縮永久歪性能を更に改良するために、助触媒成分としてトリエチルアルミを添加することが好ましい。
予備重合で用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。また、予備重合固体成分中の予備重合された重合体の含有量は、固体触媒成分1g当たり、通常0.1~500gであり、好ましくは1~200gである。
予備重合方法としては、連続重合法でもバッチ重合法でもよく、例えば、バッチ式スラリー重合法、連続式スラリー重合法、連続気相重合法である。予備重合を行う重合反応槽に、助触媒担体、メタロセン系錯体、他の助触媒成分(有機アルミニウム化合物などのアルキル化剤など)などの各触媒成分を投入する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で投入する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で投入する方法が用いられる。また、予備重合での重合温度は、通常、予備重合された重合体の融点よりも低い温度であり、好ましくは0~100℃であり、より好ましくは10~70℃である。
予備重合をスラリー重合法で行う場合、溶媒としては、炭素原子数20以下の炭化水素があげられる。例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン等の飽和脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素があげられ、これらは単独あるいは2種以上組み合わせて用いられる。
エチレン−α−オレフィン共重合体の製造方法としては、エチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合方法が好ましく、例えば、連続気相重合法、連続スラリー重合法、連続バルク重合法であり、好ましくは、連続気相重合法である。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に攪拌翼が設置されていてもよい。
予備重合された予備重合固体成分をエチレン−α−オレフィン共重合体の粒子の形成を伴う連続重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。
エチレン系重合体として高圧法低密度ポリエチレンを用いる場合、該高圧法低密度ポリエチレンとしては、一般に槽型反応器または管型反応器を用いて、有機化酸化物または酸素等の遊離基発生剤を重合開始剤とし、通常、重合圧力100~300MPa、重合温度130~300℃の条件下でエチレンを重合させることによって製造される樹脂を使用できる。分子量調整剤として水素やメタン、エタンなどの炭化水素を用いることによってMFRを調整することもできる。
本発明の架橋発泡成形体を製造する方法としては、従来のエチレン−酢酸ビニル共重合体や高圧法低密度ポリエチレンの架橋発泡成形体を製造する方法と同様の方法が使用できる。
例えば、(1)エチレン系重合体に発泡剤を配合し、これをリボンブレンダー等を使用して均一に混合し、得られた混合物を、押出機又はカレンダーロールによって、発泡剤が実質的に分解しない温度、圧力で溶融混練してシート状に成形し、該シート状成形体に電離性放射線を照射することによって架橋し、その後発泡剤の分解温度以上に加熱することにより架橋発泡成形体を得る方法、或は(2)エチレン系重合体に発泡剤、架橋剤を配合し、発泡剤および架橋剤が実質的に分解しない温度で、ミキシングロール、ニーダー、押出機等によって溶融混合して得られた組成物を、射出成形機等によって金型に充填し、加圧(保圧)・加熱状態で発泡させ、次いで冷却して架橋発泡成形体を取り出す方法、或は(3)エチレン系重合体に発泡剤を配合し、これをリボンブレンダー等を使用して均一に混合した混合物を、押出機又はカレンダーロールによって、発泡剤が実質的に分解しない温度、圧力で溶融混練してシート状に成形し、該シート状成形体を金型に入れ、加圧プレス機等により加圧(保圧)・加熱状態で発泡させ、次いで冷却して架橋発泡成形体を取り出す方法等があげられる。
また、例えば(4)エチレン系重合体に発泡剤と架橋剤とを配合し、発泡剤および架橋剤が実質的に分解しない温度で、ミキシングロール、ニーダー、押出機等によって溶融混合して得られた組成物を、更に発泡剤および架橋剤が実質的に分解しない条件で金型内に射出して、金型内で発泡剤および架橋剤が分解する温度、例えば130度~200度程度の温度に保って架橋発泡させる方法(射出発泡法)も挙げることができる。
本発明で使用し得る発泡剤としては、エチレン系重合体の溶融温度以上の分解温度を有する熱分解型発泡剤をあげることができる。例えば、アゾジカルボンアミド、アゾジカルボン酸バリウム、アゾビスブチルニトリル、ニトロジグアニジン、N,N−ジニトロソペンタメチレンテトラミン、N,N’−ジメチル−N,N’−ジニトロソテレフタルアミド、P−トルエンスルホニルヒドラジド、P,P’−オキシビス(ベンゼンスルホニルヒドラジド)アゾビスイソブチロニトリル、P,P’−オキシビスベンゼンスルホニルセミカルバジッド、5−フェニルテトラゾール、トリヒドラジノトリアジン、ヒドラゾジカルボンアミド等をあげることができ、これは1種類あるいは2種類以上を組み合わせて用いられる。これらの中でもアゾジカルボンアミドまたは炭酸水素ナトリウムが好ましい。また、本発明の架橋発泡成形体の製造には、樹脂成分100重量部と、該樹脂成分100重量部に対し発泡剤を0.5~50重量部含むことが好ましく、1~20重量部含むことがより好ましく、1~15重量部含むことがさらに好ましい。
架橋発泡成形体を製造する際には、必要に応じて、発泡助剤を配合してもよい。該発泡助剤としては、尿素を主成分とした化合物;酸化亜鉛、酸化鉛等の金属酸化物;サリチル酸、ステアリン酸等などの高級脂肪酸;該高級脂肪酸の金属化合物などがあげられる。発泡助剤の使用量は、発泡剤と発泡助剤との合計を100重量%として、好ましくは0.1~30重量%であり、より好ましくは1~20重量%である。
エチレン系重合体を架橋する方法として電離性放射線を使用する場合は、β線、γ線、ニュートロン、電子線等を使用することができる。照射量は、5~20Mradの範囲が好ましい。
エチレン系重合体を架橋する方法として架橋剤を用いる場合は、エチレン系重合体の流動開始温度以上の分解温度を有する有機過酸化物が好適である。例えば、ジクミルパーオキサイド、1,1−ジターシャリーブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキシン、α,α−ジターシャリーブチルパーオキシイソプロピルベンゼン、ターシャリーブチルパーオキシケトン、ターシャリーブチルパーオキシベンゾエートなどをあげることができる。架橋剤の配合割合は、架橋密度を高める観点から、樹脂成分の総量を100重量部として、通常、0.02~3重量部、好ましくは0.05~1.5重量部である。なお、架橋剤が実質的に分解しない温度とは、架橋剤の1時間半減期温度以下の温度である。通常、架橋剤の1時間半減期温度は、該架橋剤のMSDS等に記載されている。
本発明の架橋発泡成形体は、耐熱安定剤、耐候剤、滑剤、帯電防止剤、充填材や顔料(酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化ケイ素等の金属酸化物;炭酸マグネシウム、炭酸カルシウム等の炭酸塩;パルプ等の繊維物質など)などの各種添加剤を含んでいてもよい。また、樹脂成分として、エチレン−不飽和エステル系共重合体、高密度ポリエチレン、ポリプロピレン、ポリブテン等の樹脂やゴムを含んでいてもよい。特に本発明の架橋発泡成形体や、後述する圧縮架橋発泡成形体を靴底や靴底部材に用いる場合、ゴムや塩ビシート等他部材との接着が必要となることが多いため、エチレン・酢酸ビニル共重合体などのエチレン−不飽和エステル系共重合体を、エチレン系重合体と併用することが好ましい。エチレン系重合体とエチレン−不飽和エステル系共重合体とを併用する場合、その割合は、エチレン系重合体100重量部と、該重合体100重量部に対し、エチレン−不飽和エステル系共重合体が25~900重量部であることが好ましく、40~400重量部であることがより好ましい。
架橋発泡成形体を製造する方法の一つである、加圧架橋発泡法について説明する。エチレン系重合体、架橋剤、発泡剤などを、架橋剤と発泡剤の両成分が実質的に分解しない温度で溶融混練し、発泡用樹脂組成物を製造する。該発泡用樹脂組成物を成形型に充填し、50kg/cm2以上で加圧しながら、発泡剤の分解温度以上であって、かつ架橋剤の分解温度以上の温度で加熱して架橋発泡せしめることにより、架橋発泡成形体を得ることができる。成形型の型締め圧力は50~300kgf/cm2であることが好ましく、保圧時間は10~60分程度が好ましい。
また本発明の架橋発泡成形体は、架橋発泡成形体を更に圧縮成形して得られる圧縮架橋発泡成形体であってもよい。圧縮成形は通常130~200℃で、30~200kg/cm2の荷重を印加しながら5~60分の条件で行われる。なお、履物用部材の一種であるミッドソールには、圧縮架橋発泡成形体がより好適である。
本発明の架橋発泡成形体は、所望の形状に裁断して使用してもよく、バフかけ加工して使用してもよい。
本発明の架橋発泡成形体は、発泡倍率が4倍~20倍であることが好ましい。また、表面硬度がShoreC法硬度で30−80の範囲であることが好ましい。
本発明の架橋発泡成形体は、他の層と積層して多層積層体としてもよい。他の層を構成する材料としては、塩化ビニル樹脂材料、スチレン系共重合体ゴム材料、オレフィン系共重合体ゴム材料(エチレン系共重合体ゴム材料、プロピレン系共重合体ゴム材料など)、天然皮革材料、人工皮革材料、布材料などがあげられ、これらの材料は、少なくとも1種の材料が用いられる。
これら多層積層体の製造方法としては、例えば、本発明の架橋発泡成形体と、別途成形した他の層とを、熱貼合あるいは化学接着剤などによる貼合する方法などがあげられる。
該化学接着剤としては公知のものが使用できる。その中でも特にウレタン系化学接着剤やクロロプレン系化学接着剤などが好ましい。またこれら化学接着剤による貼合の際に、プライマーと呼ばれる下塗り剤を事前に塗布してもよい。
架橋発泡成形体において、架橋密度は、圧縮永久歪と密接な関係があることが知られている。一般に、架橋密度の高い架橋発泡成形体ほど、圧縮永久歪が小さい。
本発明の架橋発泡成形体は、架橋密度が高いため、良好な圧縮永久歪を示す。圧縮永久歪は、特定の条件下で発泡成形体を一定時間圧縮し、圧縮から開放し一定時間放置した後、圧縮からどれだけ回復したかを表す指標であり、発泡成形体の持つ耐久性・耐疲労性の指標として重視されている。本発明の架橋発泡成形体は、架橋発泡成形体の硬度がShoreC法で50のときの圧縮永久歪が30~65%であることが好ましい。そのため、例えば、本発明の架橋発泡成形体は、単層または多層の形態で、靴、サンダルなどの履き物の部材などとして好適に用いることができる。履き物用部材としては、ミッドソール、アウターソール、インソールなどがあげられる。また本発明の架橋発泡成形体は、履き物用部材以外に、断熱材、緩衝材などの建築資材などにも用いられる。 Method of measuring crosslinking density of the crosslinked foamed molded article of the present invention is a method of calculating from the relaxation modulus of the crosslinked foamed molded article when obtained by compression deformation of the cross-linked foamed molded article. Specifically, it has a compressible mechanism such as a tensile tester with a compression function and a rotary viscometer with a compression function, and the stress at the time of compression of a cross-linked foamed molded article using an apparatus that can obtain stress data. Measure relaxation.
For example, an apparatus equipped with a stress sensor that can measure compressive stress, a parallel plate-shaped jig that sandwiches the sample, an oven that heats the sample, and a position sensor that can measure the amount of compressive strain is used. When measuring by heating a crosslinked foamed molded article, it is preferable to use a rotary viscometer having a compression function because the temperature can be easily controlled.
The shape of the sample is preferably a plate shape having parallel planes that can uniformly contact the jig surface.
The thickness of the sample in the range that can be sandwiched in the jig, can be freely set, and preferably 0.1 mm ~ 50 mm, more preferably 1 mm ~ 20 mm.
The shape of the sample on the surface in contact with the jig is preferably a point-symmetric shape such as a circle, square, or equilateral triangle. The area of the sample on the surface in contact with the jig is preferably equal to or slightly larger than the area of the jig.
The sample is sandwiched between the jig so that the center of the surface where the sample contacts the jig and the center of the jig coincide. A sample sandwiched between jigs is placed in an oven, and the sample is heated to the measurement temperature.
The measurement temperature can be freely set as long as the shape of the sample can be maintained. The measurement temperature is preferably a temperature at which 1% to 100% compressive strain can be applied to the sample. For samples of polymer melting or shape a glass transition point above which constitutes the sample can be maintained, it is preferable to carry out the measurements at the melting point or glass transition point above the temperature of the polymer.
Next, the sample is compressed by pressing the upper jig against the sample while maintaining the temperature of the sample. The amount of compressive strain applied to the sample is determined by the material, shape, and measurement temperature of the sample. The amount of compressive strain is defined by the following equation. The amount of compressive strain applied to the sample may be a non-linear region, that is, a region where the viscosity of the sample changes according to the amount of compressive strain when the amount of compressive strain applied to the sample is changed. The amount of compressive strain applied to the sample is preferably 1% to 100%, more preferably 10 to 100%.
The stress relaxation of the sample is measured while keeping the amount of compressive strain applied to the sample constant. The measurement time may be a time until the stress of the crosslinked foamed molded article disappears and the stress of the crosslinked foamed molded article becomes substantially constant, or a longer time.
The calculation method of the crosslinking density used in the present invention is as follows.
The relaxation elastic modulus Gc when the stress of the crosslinked foamed molded product is attenuated and the stress of the crosslinked foamed molded product becomes substantially constant is obtained, and the crosslinking density n of the crosslinked foamed molded product is calculated using the following formula.
n = Gc / RT
n: Crosslink density
R: Gas constant
T: Measurement temperature
The measuring method of the present invention can also be applied to a crosslinked foamed product made of an ethylene polymer, which has conventionally been difficult to accurately measure the crosslinking density. Especially, as the method of measuring crosslinking density of the crosslinked foamed molded body formed by using a high-pressure low-density polyethylene and / or ethylene -α- olefin copolymer, it is preferred.
Crosslinked foamed molded article which is capable of measuring the cross-linking density in the method of the present invention may be a cross-linked foamed molded article crosslinked in any way. Examples of the crosslinking method include electron beam crosslinking and a method of crosslinking a polymer with an organic peroxide. The measurement method of the present invention is suitable for the measurement of the crosslinking density of a crosslinked foamed molded product obtained by crosslinking a polymer with an organic peroxide.
Crosslinked foamed molded article of the present invention is mainly composed of ethylene-based polymer, the crosslinking density is 0.30 mol / kg or more cross-linked foamed molded article. The crosslinking density of the crosslinked foamed molded product is the compression modulus of the crosslinked foamed molded product obtained under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds. This is a calculated value. The crosslink density is preferably 0.30 mol / kg or more.
The ethylene polymer in the present invention is an ethylene-α-olefin copolymer, a high-pressure method low-density polyethylene, or a mixture thereof.
The ethylene-α-olefin copolymer is a copolymer containing a monomer unit based on ethylene and a monomer unit based on an α-olefin. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4 -Methyl- 1-hexene etc. are mention | raise | lifted and these may be used independently and 2 or more types may be used together. The α-olefin is preferably an α-olefin having 3 to 20 carbon atoms, more preferably an α-olefin having 4 to 8 carbon atoms, and still more preferably 1-butene or 1-hexene. , 1-octene and 4-methyl-1-pentene.
Examples of the ethylene-α-olefin copolymer include an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, and an ethylene-1-octene copolymer. Examples thereof include a polymer, an ethylene-1-butene-1-hexene copolymer, an ethylene-1-butene-4-methyl-1-pentene copolymer, and an ethylene-1-butene-1-octene copolymer. From the viewpoint of increasing the strength of the crosslinked foamed molded article, a copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 6 to 8 carbon atoms, specifically, Ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, and ethylene-1-butene-1-octene copolymer.
In the ethylene-α-olefin copolymer, the content of monomer units based on ethylene is usually 80 to 98% by weight when the total weight of the ethylene-α-olefin copolymer is 100% by weight. , the content of the monomer unit based on α- olefins, when the total weight of the ethylene-based polymer is 100% by weight, usually 2-20% by weight.
The density of the ethylene polymer is usually 860 to 945 kg / m. 3 It is. The density is preferably 865 kg / m from the viewpoint of increasing the rigidity of the crosslinked foamed molded article. 3 Or more, more preferably 870 kg / m 3 Or more, more preferably 900 kg / m 3 That's it. Further, from the viewpoint of increasing the lightness of the crosslinked foamed molded article, preferably 940 kg / m. 3 It is as follows. It said seal degree, after annealed according to JIS K6760-1995, measured in accordance with the prescribed in JIS K7112-1980 underwater substitution method.
The melt flow rate (MFR; unit is g / 10 minutes) of the ethylene polymer is 0.01 to 3.0 g / 10 minutes. An MFR is preferably 0.01 g / 10 min or more because a foamed molded article having a high foaming ratio is obtained and foam moldability is also improved. Further, since the cross-linked foamed molded article having excellent strength can be obtained, MFR is preferably not more than 3.0 g / 10 min, more preferably not more than 2.5 g / 10 min. The MFR is measured by the A method according to JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N. In the measurement of the melt flow rate, usually, an ethylene polymer previously blended with about 1000 ppm of an antioxidant is used.
The ethylene-based copolymer used in the present invention preferably has a flow activation energy (Ea) of 40 kJ / mol or more from the viewpoint of making the cell properties uniform in the crosslinked foamed molded article and improving the appearance. . Ea is preferably 50 kJ / mol or more, more preferably 55 kJ / mol or more. Furthermore, the Ea, from the viewpoint of the surface of the cross-linked foamed molded article smoother, preferably not more than 100 kJ / mol, more preferably not more than 90 kJ / mol.
The flow activation energy (Ea) is a master curve showing the dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. on the angular frequency (unit: rad / sec) based on the temperature-time superposition principle. The shift factor (a T ) And a numerical value calculated by the Arrhenius equation and obtained by the following method. That is, the melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (the unit of melt complex viscosity is Pa · sec. The unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), Shift factor (a) at each temperature (T) obtained when superimposed on the melt complex viscosity-angular frequency curve of the coalesced T ) Is obtained, and each of the temperature (T), from a shift factor (aT) at each temperature (T), by the method of least squares [ln (a T )] And [1 / (T + 273.16)] are calculated. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = M (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor
Ea: activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4.
The shift factor (a T ) Is obtained by moving the logarithmic curve of the melt complex viscosity-angular frequency at each temperature (T) in the log (Y) = − log (X) axis direction (where the Y axis is the melt complex viscosity, the X axis Is the amount of movement when superposed on the melt complex viscosity-angular frequency curve at 190 ° C., and in the superposition, both the melt complex viscosity and the angular frequency at each temperature (T) are obtained. The logarithmic curve has an angular frequency a for each curve. T Double the melt complex viscosity to 1 / a T Move twice. Moreover, the correlation coefficient when determining 130 ° C., 0.99 ° C., from the values of four points 170 ° C. and 190 ° C. The formula (I) in the minimum square method is usually 0.99 or more.
The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec. The measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.
The molecular weight distribution (Mw / Mn) of the ethylene-based polymer is preferably 3 or more, more preferably 5 or more, from the viewpoint of improving the moldability. Moreover, from a viewpoint of raising impact strength, Preferably it is 25 or less, More preferably, it is 20 or less, More preferably, it is 15 or less. The molecular weight distribution (Mw / Mn) is a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). Mw and Mn are gel permeation chromatograph (GPC). ) Method. Moreover, as measurement conditions of GPC method, the following conditions can be mention | raise | lifted, for example.
(1) Apparatus: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: differential refraction
(8) Molecular weight reference material: Standard polystyrene
It is generally known that a cross-linking reaction between molecular chains proceeds preferentially from a component having a high molecular weight. Therefore, in order to obtain a high crosslink density cross-linked foamed molded article, it is preferred to produce a cross-linked foamed molded article using the ethylene polymer containing a large amount of high molecular weight components. The ethylene polymer preferably has an HMw-Index (High Molecular Index) calculated by the GPC method of more than 8.0%. HMw-Index can be calculated according to the following formula from the profile of weight average molecular chain length (Aw) obtained from the GPC method.
HMw-Index (%)
= (Component ratio of LogAw> 4.5 or more) / (Component ratio of LogAw> 4.0 or more) × 100
More HMw-Index is high, can mean that higher proportions of the molecular chain component weight with high molecular weight, achieve a high crosslinking density crosslinked foamed molded article.
Examples of the method for producing an ethylene-α-olefin copolymer used for obtaining a crosslinked foamed product made of an ethylene polymer of the present invention having a crosslinking density of 0.30 mol / kg or more include an alkylene group and a silylene group. A metallocene complex having a ligand in which two (substituted) indenyl groups are bonded to each other by a bridging group, for example, a metallocene catalyst using ethylenebis (1-indenyl) zirconium diphenoxide as a catalyst component, and ethylene and α-olefin And a method of copolymerizing with.
In the metallocene-based catalyst, a promoter component that activates the metallocene complex is used. Examples of the promoter component include organic aluminum oxy compounds, boron compounds, and organic zinc compounds. These promoter components are preferably used by being supported on a particulate carrier.
As the particulate carrier, a porous material is preferable, and SiO 2 , Al 2 O 3 , MgO, ZrO 2 TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 Inorganic oxides such as; clays and clay minerals such as smectite, montmorillonite, hectorite, laponite, saponite; organic polymers such as polyethylene, polypropylene, styrene-divinylbenzene copolymer, etc. are used. The 50% volume average particle diameter of the particulate carrier is usually 10 to 500 μm, and the 50% volume average particle diameter is measured by a light scattering laser diffraction method or the like. The fine particle carrier has a pore volume of usually 0.3 to 10 ml / g, and the pore volume is mainly measured by a gas adsorption method (BET method). The specific surface area of the particulate carrier is usually 10 to 1000 m. 2 / G, and the specific surface area is mainly measured by a gas adsorption method (BET method).
When the crosslinked foamed molded article of the present invention is used as a shoe member, a crosslinked foamed molded article excellent in compression set performance is desirable. As the method for producing an ethylene-α-olefin copolymer used for obtaining a crosslinked foamed article having excellent compression set, particularly preferably, the following promoter support (A) and an alkylene group or a silylene group are used. In the presence of a polymerization catalyst obtained by contacting a metallocene complex (B) having a ligand in which two (substituted) indenyl groups are bonded by a bridging group with an organoaluminum compound (C), ethylene and an α-olefin Can be used.
The cocatalyst carrier (A) is composed of component (a) diethylzinc, component (b) two types of fluorinated phenol, component (c) water, component (d) inorganic particulate carrier and component (e) 1,1. , 1,3,3,3-hexamethyldisilazane (((CH 3 ) 3 Si) 2 NH) is a carrier obtained by contact.
Examples of the fluorinated phenol of component (b) include pentafluorophenol, 3,5-difluorophenol, 3,4,5-trifluorophenol, 2,4,6-trifluorophenol and the like. From the viewpoint of increasing the activation energy (Ea) of the flow of the ethylene-α-olefin copolymer, increasing the HMw-Index, and increasing the crosslinking density, 3,4,5-trifluorophenol is used alone, or It is preferable to use two types of fluorinated phenols having different numbers of fluorines. When two different kinds of fluorinated phenols are used, for example, pentafluorophenol / 3,4,5-trifluorophenol, pentafluorophenol / 2,4,6-trifluorophenol, pentafluorophenol / 3,5-difluoro A combination of phenol and the like can be mentioned, and a combination of pentafluorophenol / 3,4,5-trifluorophenol is preferable. The molar ratio of the fluorinated phenol having a large number of fluorine and the fluorinated phenol having a small number of fluorine is usually 20/80 to 80/20.
The inorganic compound particles of component (d) are preferably silica gel.
Component (a) diethyl zinc, component (b) 2 types of fluorinated phenol, component (c) The amount of each component used is not particularly limited, but the molar ratio of each component used is the component (a) diethyl. When the molar ratio of zinc: component (b) 2 types of fluorinated phenol: component (c) water = 1: x: y, x and y preferably satisfy the following formula.
| 2-x-2y | ≦ 1
X in the above formula is preferably a number from 0.01 to 1.99, more preferably a number from 0.10 to 1.80, and still more preferably a number from 0.20 to 1.50. Most preferably, the number is 0.30 to 1.00.
The amount of component (d) inorganic fine particle carrier used for component (a) diethyl zinc is included in the particles obtained by contacting component (a) diethyl zinc and component (d) inorganic fine particle carrier. The amount of zinc atoms derived from the component (a) diethylzinc is preferably 0.1 mmol or more and 0.5 to 20 mmol in terms of the number of moles of zinc atoms contained in 1 g of the obtained particles. It is more preferable that The amount of component (e) trimethyldisilazane used for component (d) inorganic particulate carrier is such that component (e) trimethyldisilazane is 0.1 mmol or more per gram of component (d) inorganic particulate carrier. The amount is preferably 0.5 to 20 mmol, and more preferably 0.5 to 20 mmol.
Preferred examples of the metallocene complex (B) having a ligand in which two (substituted) indenyl groups are bonded by a bridging group such as an alkylene group or a silylene group include ethylenebis (1-indenyl) zirconium diphenoxide. .
The organoaluminum compound (C) is preferably triisobutylaluminum or trinormaloctylaluminum.
The amount of the metallocene complex (B) used is preferably 5 × 10 to 1 g of the promoter support (A). -6 ~ 5 × 10 -4 mol. Also preferred as the amount of organoaluminum compound (C) used.
Alternatively, it is 1 to 2000 in terms of the ratio (Al / M) of the number of moles of aluminum atoms in the organoaluminum compound (C) to the number of moles of metal atoms in the metallocene complex (B).
In the polymerization catalyst obtained by bringing the promoter support (A), the metallocene complex (B), and the organoaluminum compound (C) into contact with each other, the promoter support (A) and the metallocene complex (B) are optionally added. It is good also as a polymerization catalyst which makes an electron-donating compound (D) contact an organic aluminum compound (C).
As a method for producing an ethylene-α-olefin copolymer of component (A), a small amount of olefin is polymerized (hereinafter referred to as prepolymerization) using a solid catalyst component in which a promoter component is supported on a particulate carrier. )) Obtained by polymerizing a small amount of olefin using a co-polymerized solid component, for example, a co-catalyst carrier, a metallocene complex, and a co-catalyst component (such as an alkylating agent such as an organoaluminum compound). A method in which ethylene and an α-olefin are copolymerized using a polymerization solid component as a catalyst component or a catalyst is preferable. When the crosslinked foamed molded article of the present invention is used as a shoe member, it is preferable to add triethylaluminum as a promoter component in order to increase HMw-Index and further improve compression set performance.
Examples of the olefin used in the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene and cyclohexene. These can be used alone or in combination of two or more. The content of the prepolymerized polymer in the prepolymerized solid component is usually 0.1 to 500 g, preferably 1 to 200 g, per 1 g of the solid catalyst component.
The preliminary polymerization method may be a continuous polymerization method or a batch polymerization method, and examples thereof include a batch type slurry polymerization method, a continuous slurry polymerization method, and a continuous gas phase polymerization method. As a method for introducing catalyst components such as a promoter carrier, a metallocene complex, and other promoter components (such as an alkylating agent such as an organoaluminum compound) into a polymerization reactor for performing prepolymerization, nitrogen, argon, or the like is usually used. A method in which an inert gas such as hydrogen, ethylene, or the like is used without adding moisture, or a method in which each component is dissolved or diluted in a solvent and added in a solution or slurry state is used. In addition, the polymerization temperature in the prepolymerization is usually a temperature lower than the melting point of the prepolymerized polymer, preferably 0 to 100 ° C, more preferably 10 to 70 ° C.
When the prepolymerization is performed by a slurry polymerization method, examples of the solvent include hydrocarbons having 20 or less carbon atoms. For example, saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane, octane, decane, etc .; aromatic hydrocarbons such as benzene, toluene, xylene, etc., which are used alone Alternatively, two or more kinds are used in combination.
As a method for producing an ethylene-α-olefin copolymer, a continuous polymerization method involving the formation of particles of an ethylene-α-olefin copolymer is preferable. For example, a continuous gas phase polymerization method, a continuous slurry polymerization method, a continuous bulk weight It is a legal method, preferably a continuous gas phase polymerization method. The gas phase polymerization reaction apparatus used in the polymerization method is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion. A stirring blade may be installed in the reaction vessel.
As a method of supplying the prepolymerized prepolymerized solid component to a continuous polymerization reaction tank accompanied by the formation of ethylene-α-olefin copolymer particles, an inert gas such as nitrogen or argon, hydrogen, ethylene or the like is usually used. And a method in which the components are supplied without moisture, and a method in which each component is dissolved or diluted in a solvent and supplied in a solution or slurry state.
When high-pressure low-density polyethylene is used as the ethylene-based polymer, the high-pressure low-density polyethylene is generally a tank-type reactor or a tubular reactor, and a free radical generator such as an organic oxide or oxygen is used. As the polymerization initiator, a resin produced by polymerizing ethylene under a polymerization pressure of 100 to 300 MPa and a polymerization temperature of 130 to 300 ° C. can be used. MFR can also be adjusted by using hydrocarbons such as hydrogen, methane, and ethane as molecular weight regulators.
As a method for producing the crosslinked foamed molded product of the present invention, the same method as the conventional method for producing a crosslinked foamed molded product of ethylene-vinyl acetate copolymer or high-pressure low-density polyethylene can be used.
For example, (1) A foaming agent is blended into an ethylene polymer, and this is uniformly mixed using a ribbon blender or the like, and the resulting mixture is substantially decomposed by an extruder or a calender roll. Melt-kneaded at a temperature and pressure to form a sheet, crosslink by irradiating the sheet-shaped molded body with ionizing radiation, and then heat above the decomposition temperature of the foaming agent to obtain a crosslinked foamed molded body Method, or (2) obtained by blending a foaming agent and a crosslinking agent in an ethylene polymer and melt-mixing the mixture with a mixing roll, kneader, extruder, etc. at a temperature at which the foaming agent and the crosslinking agent are not substantially decomposed. The composition is filled into a mold by an injection molding machine or the like, foamed in a pressurized (holding) / heated state, and then cooled to take out a crosslinked foamed molded product, or (3) an ethylene polymer. To foam The mixture obtained by uniformly mixing using a ribbon blender or the like is melt-kneaded with an extruder or a calender roll at a temperature and pressure at which the foaming agent is not substantially decomposed, and formed into a sheet shape. Examples thereof include a method in which a sheet-like molded body is put in a mold, foamed in a pressurized (holding) / heated state with a pressure press or the like, and then cooled to take out a crosslinked foamed molded body.
Further, for example, (4) obtained by blending a foaming agent and a crosslinking agent in an ethylene polymer, and melt-mixing with a mixing roll, kneader, extruder, etc. at a temperature at which the foaming agent and the crosslinking agent are not substantially decomposed. The composition is further injected into the mold under conditions where the foaming agent and the crosslinking agent are not substantially decomposed, and the foaming agent and the crosslinking agent are decomposed in the mold, for example, a temperature of about 130 to 200 degrees. A method (injection foaming method) in which the resin is crosslinked and foamed while maintaining the above can also be mentioned.
Examples of the foaming agent that can be used in the present invention include a thermally decomposable foaming agent having a decomposition temperature equal to or higher than the melting temperature of the ethylene polymer. For example, azodicarbonamide, barium azodicarboxylate, azobisbutylnitrile, nitrodiguanidine, N, N-dinitrosopentamethylenetetramine, N, N′-dimethyl-N, N′-dinitrosotephthalamide, P-toluene Sulfonyl hydrazide, P, P′-oxybis (benzenesulfonylhydrazide) azobisisobutyronitrile, P, P′-oxybisbenzenesulfonyl semicarbazide, 5-phenyltetrazole, trihydrazinotriazine, hydrazodicarbonamide, etc. These may be used alone or in combination of two or more. Among these, azodicarbonamide or sodium hydrogen carbonate is preferable. In the production of the crosslinked foamed molded article of the present invention, it is preferable that 100 parts by weight of the resin component and 0.5 to 50 parts by weight of the foaming agent are contained with respect to 100 parts by weight of the resin component. The content is more preferably 1 to 15 parts by weight.
When producing a crosslinked foamed molded article, a foaming aid may be blended as necessary. Examples of the foaming aid include compounds mainly composed of urea; metal oxides such as zinc oxide and lead oxide; higher fatty acids such as salicylic acid and stearic acid; and metal compounds of the higher fatty acids. The amount of the foaming aid used is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight, with the total of the foaming agent and the foaming aid being 100% by weight.
When ionizing radiation is used as a method for crosslinking an ethylene polymer, β rays, γ rays, neutrons, electron beams, and the like can be used. The irradiation amount is preferably in the range of 5 to 20 Mrad.
When a crosslinking agent is used as a method for crosslinking the ethylene polymer, an organic peroxide having a decomposition temperature equal to or higher than the flow start temperature of the ethylene polymer is suitable. For example, dicumyl peroxide, 1,1-ditertiary butyl peroxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-ditertiary butyl peroxyhexane, 2,5-dimethyl-2 , 5-ditertiary butyl peroxyhexyne, α, α-ditertiary butyl peroxyisopropylbenzene, tertiary butyl peroxyketone, tertiary butyl peroxybenzoate, and the like. From the viewpoint of increasing the crosslinking density, the blending ratio of the crosslinking agent is usually 0.02 to 3 parts by weight, preferably 0.05 to 1.5 parts by weight, with the total amount of the resin components being 100 parts by weight. The temperature at which the cross-linking agent does not substantially decompose is a temperature not higher than the one-hour half-life temperature of the cross-linking agent. Usually, the 1-hour half-life temperature of a crosslinking agent is described in MSDS etc. of this crosslinking agent.
The crosslinked foamed molded article of the present invention comprises a heat stabilizer, weathering agent, lubricant, antistatic agent, filler and pigment (metal oxide such as zinc oxide, titanium oxide, calcium oxide, magnesium oxide, silicon oxide; magnesium carbonate, Various additives such as carbonates such as calcium carbonate; fiber materials such as pulp) may be included. Further, as the resin component, a resin such as an ethylene-unsaturated ester copolymer, high-density polyethylene, polypropylene, polybutene, or rubber may be included. In particular, when the cross-linked foamed molded product of the present invention or the compression-crosslinked foamed molded product to be described later is used for a shoe sole or a shoe sole member, it is often necessary to adhere to other members such as rubber and a vinyl chloride sheet. It is preferable to use an ethylene-unsaturated ester copolymer such as a vinyl copolymer in combination with the ethylene polymer. When the ethylene polymer and the ethylene-unsaturated ester copolymer are used in combination, the proportion is 100 parts by weight of the ethylene polymer, and the ethylene-unsaturated ester copolymer is based on 100 parts by weight of the polymer. The combined amount is preferably 25 to 900 parts by weight, and more preferably 40 to 400 parts by weight.
The pressure-crosslinking foaming method, which is one of the methods for producing a crosslinked foamed molded product, will be described. An ethylene polymer, a crosslinking agent, a foaming agent, and the like are melt-kneaded at a temperature at which both components of the crosslinking agent and the foaming agent are not substantially decomposed to produce a foaming resin composition. The foaming resin composition is filled into a mold and 50 kg / cm. 2 A cross-linked foamed molded article can be obtained by heating at a temperature equal to or higher than the decomposition temperature of the foaming agent and higher than the decomposition temperature of the cross-linking agent while being pressurized. The clamping pressure of the mold is 50 to 300 kgf / cm 2 The pressure holding time is preferably about 10 to 60 minutes.
The crosslinked foamed molded product of the present invention may be a compression crosslinked foamed molded product obtained by further compression molding the crosslinked foamed molded product. Compression molding is usually 130-200 ° C, 30-200 kg / cm 2 The process is carried out under the condition of 5 to 60 minutes while applying the above load. Note that a compression-crosslinked foamed molded article is more suitable for a midsole, which is a kind of footwear member.
The crosslinked foamed molded article of the present invention may be used after being cut into a desired shape, or may be used after being buffed.
The crosslinked foamed article of the present invention preferably has a foaming ratio of 4 to 20 times. The surface hardness is preferably in the range of 30-80 in Shore C method hardness.
The crosslinked foamed molded article of the present invention may be laminated with other layers to form a multilayer laminate. The material constituting the other layers includes vinyl chloride resin material, styrene copolymer rubber material, olefin copolymer rubber material (ethylene copolymer rubber material, propylene copolymer rubber material, etc.), natural A leather material, an artificial leather material, a cloth material, and the like can be mentioned, and at least one kind of material is used as these materials.
Examples of a method for producing these multilayer laminates include a method in which the crosslinked foamed molded product of the present invention and another layer formed separately are bonded by heat bonding or a chemical adhesive.
Known chemical adhesives can be used. Of these, urethane chemical adhesives and chloroprene chemical adhesives are particularly preferable. In addition, an undercoat agent called a primer may be applied in advance at the time of bonding with these chemical adhesives.
In a crosslinked foamed molded article, it is known that the crosslinking density is closely related to compression set. In general, the higher the crosslink density, the lower the compression set of the crosslinked foamed molded product.
The crosslinked foamed molded article of the present invention exhibits a good compression set because of its high crosslinking density. Compression set is an index that shows how much the foamed molded body has recovered from compression after being compressed for a certain period of time under certain conditions, released from compression and left for a certain period of time. Emphasized as an indicator of fatigue resistance. The crosslinked foamed molded article of the present invention preferably has a compression set of 30 to 65% when the hardness of the crosslinked foamed molded article is 50 by the Shore C method. Therefore, for example, the crosslinked foamed molded article of the present invention can be suitably used as a member of footwear such as shoes and sandals in a single layer or multilayer form. Examples of the footwear member include a midsole, an outer sole, an insole and the like. In addition to the footwear member, the crosslinked foamed molded article of the present invention is also used for building materials such as a heat insulating material and a cushioning material.
以下、実施例および比較例によって、本発明をより詳細に説明する。
(1)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に従い、温度190℃、荷重21.18Nでの条件でA法により測定した。
(2)密度(単位:kg/m3)
JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に記載の水中置換法により測定した。
(3)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での動的粘度−角周波数曲線を測定し、次に、得られた動的粘度−角速度曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5~2mm
ストレイン :5%
角周波数 :0.1~100rad/秒
測定雰囲気 :窒素下
(4)分子量分布(Mw/Mn)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)~(8)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
(5)HMw−Index(単位:%)
(4)のGPC法で得られたAw(重量平均分子鎖長)のクロマトグラムより、下式に従い算出した。
HMw−Index(%)
=(LogAw>4.5以上の成分割合)/(LogAw>4.0以上の成分割合)×100
HMw−Indexが高いほど、高分子量を有する分子鎖成分量の割合が高いことを意味する。
(6)架橋発泡成形体の密度(単位:kg/m3)
ASTM−D297に従って測定した。この値が小さいほど、軽量性に優れる。
(7)架橋発泡成形体の外観(単位:なし)
得られた架橋発泡成形体の外観の美しさを目視で判定した。判定は下記の3段階で行った。
○: 架橋発泡成形体に割れ・裂けなどは見られず、成形体表面も平滑であった。
△: 架橋発泡成形体に割れ・裂けなどは見られなかったものの、成形体表面に皺などが発生した。
×: 架橋発泡成形体に割れ・裂けなどが発生し、美麗な発泡成形体が得られなかった。
(8)架橋発泡成形体の硬度(単位:なし)
得られた架橋発泡成形体の表面(金型設置面)に関して、ASTM−D2240に従って、C法硬度計にて測定した。
(9)架橋発泡成形体の圧縮永久歪(単位:%)
JIS K6301−1995に従って、50℃/6時間、50%圧縮の条件で圧縮永久歪試験を行い、圧縮永久歪を求めた。圧縮前後の試験片厚みはノギスを用いて測定した。この値が小さいほど、耐疲労性に優れる。
(10)架橋発泡成形体のゲル分率測定(単位:%)
架橋発泡成形体1gを400メッシュの粗さのステンレス製金網に封入した後、沸騰キシレン110ml中で24時間抽出した。所定時間後、金網に残った残渣の重量を測定し、(残渣重量,g)÷(抽出前重量、=1g)×100[%]の式に従い、ゲル分率を測定した。この値が小さいほど、網目構造を持つ不溶成分がより多く存在することを表す。
(11)架橋発泡成形体中の架橋密度(単位:mol/kg)
粘弾性測定装置(TA Instruments社製ARES)を用いて、下記測定条件で測定を行い、架橋密度を求めた。
<測定条件>
治具:上部φ8mm、下部φ25mmパラレルプレート
試験片サイズ:10mm×10mm 厚さ3mm
測定温度:60℃
予熱:3分~5分
歪速度:0.1mm/秒
圧縮歪量:50%
測定時間:1800秒
測定雰囲気:窒素下
<算出方法>
Gc=G1800 (G1800:測定時間1800秒のときの緩和弾性率)
Gc=nRT
R:気体定数 T:測定温度(絶対温度)
R=8.31J/K・mol T=333K
n=Gc/RT
n:架橋密度 (mol/m3)
得られた架橋密度を、発泡成形体密度を用いて、単位重量あたりの架橋密度(単位:mol/kg)に変換した。
実施例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=59μm;細孔容量=1.68ml/g;比表面積=313m2/g)0.36kgとトルエン3.5リットルとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.15リットルとトルエン0.2リットルとの混合溶液を反応器内の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体成分をトルエン2リットルで6回、洗浄を行った。その後、トルエン2リットルを加えスラリーとし、一晩静置した。
上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.27リットルを投入し、撹拌した。その後、5℃に冷却した後、ペンタフルオロフェノール0.05kgとトルエン0.09リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 7gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に55℃に昇温し、55℃で2時間攪拌した。その後、室温に冷却し、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.63リットルを投入した。5℃に冷却し、3,4,5−トリフルオロフェノール94gとトルエン0.2リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 17gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に、80℃に昇温し、80℃で2時間撹拌した。その後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除き、次いで残りの液成分をフィルターにて除去した後、トルエン3リットルを加え、95℃で2時間撹拌した。静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次に、95℃でトルエン3リットルにて4回、室温でヘキサン3リットルにて2回、溶媒を加えて撹拌後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次いで残りの液成分をフィルターにて除去した。その後、減圧下、室温で1時間乾燥することにより、固体成分(以下、助触媒担体(a)と称する。)を得た。
(2)予備重合触媒成分(1)の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド50mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。
次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(a)0.7kgを投入し、続いてトリエチルアルミニウム210mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ2.2kg/Hrと6.5リットル(常温常圧体積)/Hrで連続供給することによって合計7.5時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(a)1g当り23.6gのポリエチレンが予備重合された予備重合触媒成分(1)を得た。
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分(1)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を84℃、重合圧力を2MPa、エチレンに対する水素モル比を0.318%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を2.1%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(1))を得た。PE(1)の分子量分布(Mw/Mn)は6.9、HMw−Indexは11.4%であった。PE(1)の物性を表1に示す。
(4)加圧架橋発泡成形
PE(1)60重量部とエチレン−酢酸ビニル共重合体(ザ・ポリオレフィン・カンパニー製「H2181」; メルトフローレイト: 2.0[g/10分]、密度: 940[kg/m3]、酢酸ビニル含量: 18[wt%] 以下EVAとする)40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤(三協化成(株)製「セルマイクCE」ADCA型化学発泡剤)4.2重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(1)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表3に示す。
実施例2
(1)加圧架橋発泡成形
化学発泡剤量を2.2重量部に変更した以外は、全て実施例1同様の条件で混練、加圧架橋発泡させることにより架橋発泡成形体(2)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表3に示す。
実施例3
(1)エチレン−α−オレフィン共重合体の製造
実施例1で得た予備重合触媒成分(1)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を84℃、重合圧力を2MPa、エチレンに対する水素モル比を0.38%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を2.0%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(2))を得た。PE(2)の分子量分布(Mw/Mn)は6.8、HMw−Indexは11.4%であった。PE(2)の物性を表1に示す。
(2)加圧架橋発泡成形
PE(2)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤4.7重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(3)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表3に示す。
実施例4
(1)助触媒担体の調製
窒素置換した撹拌機を備えた50リットルの反応器に、溶媒としてトルエン24.3リットル、粒子(d)として窒素流通下で300℃にて加熱処理したシリカ(デビソン社製 Sylopol948;平均粒子径=58μm;細孔容量=1.60ml/g;比表面積=316m2/g)2.545kgを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン823gとトルエン1.49リットルの混合溶液を反応器の温度を5±3℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間、95℃で3時間攪拌した。その後、得られた固体生成物を95℃にて、トルエン30リットで6回洗浄を行った。次いで、5.4リットルのトルエンを投入しスラリーとした。
上記実施例1(1)で得られたトルエンスラリーへ、化合物(a)として32.0wt%のジエチル亜鉛のヘキサン溶液4.98kgを投入し、攪拌した。その後、5℃に冷却した後、化合物(b)として濃度を35.4wt%に調製した3,4,5−トリフルオロフェノールのトルエン溶液2.66kgを、反応器内容物の温度を5±3℃に保ちながら60分間で滴下した。化合物(a)に対する化合物(b)のモル比率yは、0.49に相当する。滴下終了後、5℃で1時間、40℃で1時間攪拌した。その後、化合物(c)として水0.172リットルを反応器内容物の温度を5±3℃に保ちながら90分で滴下した。化合物(a)に対する化合物(c)のモル比率zは、0.74に相当する。滴下終了後、5℃で1.5時間、40℃で2時間、80℃で2時間攪拌した。その後、静置し、固体成分を沈降させた上層部分を取り除いた。次いで、トルエン13リットルを加えた。その後、95℃に昇温し、4時間攪拌した。その後、95℃でトルエン30リットルにて4回、室温でヘキサン30リットルにて3回、静置し、固体成分を沈降させ、上層部分を取り除いた。固体成分を減圧下、40℃で6時間乾燥を行うことにより固体成分(以下、助触媒担体(b)と称する。)4.10kgを得た。元素分析の結果、亜鉛原子=2.6mmol/g、フッ素原子=3.7mmol/gであった。
(2)予備重合触媒成分(2)の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド90mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。
次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(b)0.7kgを投入し、続いてトリイソブチルアルミニウム263mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.2kg/Hrと9.5リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(b)1g当り24gのポリエチレンが予備重合された予備重合触媒成分(2)を得た。
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分(2)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を80℃、重合圧力を2MPa、エチレンに対する水素モル比を0.19%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.7%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(3))を得た。PE(3)の分子量分布(Mw/Mn)は4.8、HMw−Indexは17.9%であった。PE(3)の物性を表1に示す。
(4)加圧架橋発泡成形
PE(3)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.2重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(4)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表4に示す。
比較例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=59μm;細孔容量=1.68ml/g;比表面積=313m2/g)0.36kgとトルエン3.5リットルとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.15リットルとトルエン0.2リットルとの混合溶液を反応器内の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体成分をトルエン2リットルで6回、洗浄を行った。その後、トルエン2リットルを加えスラリーとし、一晩静置した。
上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.27リットルを投入し、撹拌した。その後、5℃に冷却した後、ペンタフルオロフェノール0.05kgとトルエン0.09リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 7gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に55℃に昇温し、55℃で2時間攪拌した。その後、室温に冷却し、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.63リットルを投入した。5℃に冷却し、3,4,5−トリフルオロフェノール94gとトルエン0.2リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 17gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に、80℃に昇温し、80℃で2時間撹拌した。その後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除き、次いで残りの液成分をフィルターにて除去した後、トルエン3リットルを加え、95℃で2時間撹拌した。静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次に、95℃でトルエン3リットルにて4回、室温でヘキサン3リットルにて2回、溶媒を加えて撹拌後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次いで残りの液成分をフィルターにて除去した。その後、減圧下、室温で1時間乾燥することにより、固体成分(以下、助触媒担体(c)と称する。)を得た。
(2)予備重合触媒成分(3)の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド101mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(c)0.7kgを投入し、続いてトリイソブチルアルミニウム158mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと5.5リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(c)1g当り15gのポリエチレンが予備重合された予備重合触媒成分(3)を得た。
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分(3)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を80℃、重合圧力を2MPa、エチレンに対する水素モル比を1.6%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.5%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(4))を得た。得られた共重合体の物性評価の結果を表1に示した。PE(4)の分子量分布(Mw/Mn)は8.8、HMw−Indexは5.4%であった。PE(4)の物性を表2に示す。
(4)加圧架橋発泡成形
PE(4)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.9重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(5)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表4に示す。
比較例2
(1)加圧架橋発泡成形
エチレン−1−ヘキセン共重合体(住友化学(株)製スミカセンE FV401、以下PE(5)、物性を表2に示す)40重量部とEVA60重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(6)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表4に示す。
比較例3
(1)加圧架橋発泡成形
PE(5)20重量部とEVA80重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤3.0重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(7)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表5に示す。
比較例4
(1)加圧架橋発泡成形
エチレン−1−ヘキセン共重合体(住友化学(株)製スミカセンE FV403、以下PE(6)、物性を表2に示す)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(8)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表5に示す。
比較例5
(1)加圧架橋発泡成形
EVA100重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(9)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表5に示す。
本発明の測定方法を用いることにより、ポリエチレン系重合体からなる架橋発泡成形体の架橋密度を簡便に、かつ精度よく算出することができる。本発明の方法で測定される架橋密度の精度が優れることは、図1および図2に示すように、発泡成形体の圧縮永久歪との相関が、既知の有効網目鎖構造の同定方法の一つであるゲル分率よりも、本発明の方法で測定される架橋密度のほうが良好であることから明らかである。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples.
(1) Melt flow rate (MFR, unit: g / 10 minutes)
According to JIS K7210-1995, it measured by A method on the conditions with a temperature of 190 degreeC and a load of 21.18N.
(2) Density (Unit: kg / m 3 )
After annealing described in JIS K6760-1995, the measurement was performed by an underwater substitution method described in JIS K7112-1980.
(3) Flow activation energy (Ea, unit: kJ / mol)
Using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), dynamic viscosity-angular frequency curves at 130 ° C, 150 ° C, 170 ° C and 190 ° C were measured under the following measurement conditions. From the obtained dynamic viscosity-angular velocity curve, Rheometrics R. The activation energy (Ea) was determined using 4.4.4.
<Measurement conditions>
Geometry: Parallel plate
Plate diameter: 25mm
Plate spacing: 1.5-2mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec
Measurement atmosphere: Under nitrogen
(4) Molecular weight distribution (Mw / Mn)
Using a gel permeation chromatograph (GPC) method, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured under the following conditions (1) to (8), and the molecular weight distribution (Mw / Mn) was determined. The baseline on the chromatogram is a stable horizontal region with a sufficiently long retention time than the appearance of the sample elution peak and a stable horizontal region with a sufficiently long retention time than the solvent elution peak was observed. A straight line formed by connecting the points.
(1) Apparatus: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: differential refraction
(8) Molecular weight reference material: Standard polystyrene
(5) HMw-Index (unit:%)
It calculated according to the following formula from the chromatogram of Aw (weight average molecular chain length) obtained by GPC method of (4).
HMw-Index (%)
= (Component ratio of LogAw> 4.5 or more) / (Component ratio of LogAw> 4.0 or more) × 100
It means that the higher the HMw-Index, the higher the proportion of the molecular chain component amount having a high molecular weight.
(6) Density of crosslinked foamed molded product (unit: kg / m 3 )
Measured according to ASTM-D297. The smaller this value, the better the lightness.
(7) Appearance of crosslinked foamed molded product (unit: none)
The beauty of the appearance of the obtained cross-linked foamed molded article was determined visually. Judgment was performed in the following three stages.
○: No cracks or tears were observed in the crosslinked foamed molded product, and the surface of the molded product was smooth.
Δ: No cracks or tears were found in the crosslinked foamed molded product, but wrinkles and the like were generated on the surface of the molded product.
X: Cracking, tearing, etc. occurred in the crosslinked foamed molded article, and a beautiful foamed molded article could not be obtained.
(8) Hardness of crosslinked foamed molded product (unit: none)
The surface of the obtained cross-linked foamed molded article (mold installation surface) was measured with a C method hardness meter in accordance with ASTM-D2240.
(9) Compression set of crosslinked foamed molded product (unit:%)
In accordance with JIS K6301-1995, a compression set test was performed under the conditions of 50 ° C./6 hours and 50% compression to determine the compression set. The specimen thickness before and after compression was measured using calipers. The smaller this value, the better the fatigue resistance.
(10) Measurement of gel fraction of crosslinked foamed molded product (unit:%)
1 g of the crosslinked foamed molded product was sealed in a 400-mesh stainless steel wire mesh, and then extracted in 110 ml of boiling xylene for 24 hours. After a predetermined time, the weight of the residue remaining on the wire mesh was measured, and the gel fraction was measured according to the formula of (residue weight, g) / (weight before extraction, = 1 g) × 100 [%]. The smaller this value, the more insoluble components having a network structure are present.
(11) Crosslink density in the crosslinked foamed molded product (unit: mol / kg)
Using a viscoelasticity measuring apparatus (ARES manufactured by TA Instruments), measurement was performed under the following measurement conditions to obtain a crosslinking density.
<Measurement conditions>
Jig: Upper φ8mm, Lower φ25mm Parallel plate
Test piece size: 10 mm x 10 mm, thickness 3 mm
Measurement temperature: 60 ° C
Preheating: 3-5 minutes
Strain rate: 0.1 mm / sec
Compression strain: 50%
Measurement time: 1800 seconds
Measurement atmosphere: under nitrogen
<Calculation method>
Gc = G 1800 (G 1800 : Relaxation elastic modulus when the measurement time is 1800 seconds)
Gc = nRT
R: Gas constant T: Measurement temperature (absolute temperature)
R = 8.31J / K · mol T = 333K
n = Gc / RT
n: Crosslink density (mol / m 3 )
The obtained crosslink density was converted into a crosslink density per unit weight (unit: mol / kg) using the foamed product density.
Example 1
(1) Preparation of promoter support
Silica heated by a nitrogen-replaced stirrer at 300 ° C. under a nitrogen stream (Sypolol 948 manufactured by Devison; 50% volume average particle size = 59 μm; pore volume = 1.68 ml / g; specific surface area = 313m 2 / G) 0.36 kg and 3.5 liters of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 1,1,1,3,3,3-hexamethyldisilazane 0.15 liter and toluene 0.2 liter was kept at 5 ° C. in the reactor. The solution was added dropwise over 30 minutes. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid component was washed 6 times with 2 liters of toluene. Thereafter, 2 liters of toluene was added to form a slurry, which was allowed to stand overnight.
To the slurry obtained above, 0.27 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.05 kg of pentafluorophenol and 0.09 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 7 g of O was added dropwise over 1.5 hours while keeping the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1.5 hours, then heated to 55 ° C. and stirred at 55 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, and 0.63 liter of diethyl zinc in hexane solution (diethyl zinc concentration: 2 mol / liter) was added. After cooling to 5 ° C., a mixed solution of 94 g of 3,4,5-trifluorophenol and 0.2 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 17 g of O was added dropwise over 1.5 hours while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. Then, the mixture is allowed to stand, and the solid component is allowed to settle. When the interface between the precipitated solid component layer and the upper slurry portion is visible, the upper slurry portion is removed, and then the remaining liquid components are removed with a filter. Then, 3 liters of toluene was added and stirred at 95 ° C. for 2 hours. The solid component was allowed to settle, and when the interface between the precipitated solid component layer and the upper slurry portion was seen, the upper slurry portion was removed. Next, at 95 ° C., 4 times with 3 liters of toluene and twice with 3 liters of hexane at room temperature, after adding a solvent and stirring, the mixture is allowed to stand to precipitate the solid component. When the interface with the slurry portion was visible, the upper slurry portion was removed. Subsequently, the remaining liquid components were removed with a filter. Then, the solid component (henceforth a promoter support (a)) was obtained by drying at room temperature under reduced pressure for 1 hour.
(2) Preparation of prepolymerization catalyst component (1)
After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters, which was previously purged with nitrogen, 50 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added, and the autoclave was heated to 50 ° C. and stirred. For 2 hours.
Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, 0.03 MPa of ethylene was charged at the gas phase pressure in the autoclave, 0.7 kg of the promoter support (a) was added, and then triethylaluminum was added. Polymerization was started by adding 210 mmol. After 30 minutes while ethylene was continuously supplied at 0.7 kg / Hr, the temperature was raised to 50 ° C., and ethylene and hydrogen were respectively 2.2 kg / Hr and 6.5 liters (room temperature and normal pressure volume) / Hr. A total of 7.5 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, ethylene, butane, hydrogen gas, etc. are purged and the remaining solid is vacuum-dried at room temperature, and a prepolymerized catalyst component (23.6 g of polyethylene preliminarily polymerized per 1 g of the promoter support (a) ( 1) was obtained.
(3) Production of ethylene-α-olefin copolymer
Using the preliminary polymerization catalyst component (1) obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. As polymerization conditions, the polymerization temperature was 84 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 0.318%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 2.1%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (1)) was obtained. The molecular weight distribution (Mw / Mn) of PE (1) was 6.9, and HMw-Index was 11.4%. Table 1 shows the physical properties of PE (1).
(4) Pressure cross-linked foaming
60 parts by weight of PE (1) and ethylene-vinyl acetate copolymer (“H2181” manufactured by The Polyolefin Company; melt flow rate: 2.0 [g / 10 min], density: 940 [kg / m 3 ], Vinyl acetate content: 18 [wt%] hereinafter referred to as EVA) 40 parts by weight, heavy calcium carbonate 10 parts by weight, stearic acid 1.0 part by weight, zinc oxide 1.0 part by weight, chemical foaming agent (Sankyo Chemical Co., Ltd. “Cermic CE” ADCA type chemical foaming agent) 4.2 parts by weight and 0.7 parts by weight of dicumyl peroxide were kneaded at a roll temperature of 120 ° C. using a roll kneader. Kneading was performed for 5 minutes to obtain a resin composition. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (1) was obtained by pressure-crosslinking foaming under the conditions of Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Example 2
(1) Pressure cross-linked foaming
Except for changing the amount of the chemical foaming agent to 2.2 parts by weight, a crosslinked foamed molded article (2) was obtained by kneading and pressure-crosslinking foaming under the same conditions as in Example 1. Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Example 3
(1) Production of ethylene-α-olefin copolymer
Using the prepolymerized catalyst component (1) obtained in Example 1, copolymerization of ethylene and 1-hexene was carried out in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. As polymerization conditions, the polymerization temperature was 84 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 0.38%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 2.0%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (2)) was obtained. The molecular weight distribution (Mw / Mn) of PE (2) was 6.8, and HMw-Index was 11.4%. Table 1 shows the physical properties of PE (2).
(2) Pressure cross-linking foam molding
60 parts by weight of PE (2), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, 1.0 part by weight of stearic acid, 1.0 part by weight of zinc oxide, 4.7 parts by weight of chemical blowing agent, The resin composition was obtained by kneading 0.7 parts by weight of mill peroxide using a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (3) was obtained by pressure-crosslinking foaming under the conditions described above. Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Example 4
(1) Preparation of promoter support
In a 50 liter reactor equipped with a nitrogen-replaced stirrer, 24.3 liters of toluene as a solvent and silica heat-treated at 300 ° C. under nitrogen flow as particles (d) (Sypolol 948 manufactured by Devison; average particle size = 58 μm; pore volume = 1.60 ml / g; specific surface area = 316 m 2 / G) 2.545 kg was added and stirred. Then, after cooling to 5 ° C., a mixed solution of 823 g of 1,1,1,3,3,3-hexamethyldisilazane and 1.49 liters of toluene was maintained for 30 minutes while maintaining the reactor temperature at 5 ± 3 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour and at 95 ° C. for 3 hours. Thereafter, the obtained solid product was washed 6 times with 95 liters of toluene at 95 ° C. Next, 5.4 liters of toluene was added to form a slurry.
To the toluene slurry obtained in Example 1 (1) above, 4.98 kg of a 32.0 wt% diethylzinc hexane solution as the compound (a) was added and stirred. Then, after cooling to 5 ° C., 2.66 kg of a 3,4,5-trifluorophenol toluene solution prepared as a compound (b) at a concentration of 35.4 wt% was added, and the temperature of the reactor contents was adjusted to 5 ± 3. It was added dropwise over 60 minutes while maintaining the temperature. The molar ratio y of the compound (b) to the compound (a) corresponds to 0.49. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour and at 40 ° C. for 1 hour. Thereafter, 0.172 liters of water as compound (c) was added dropwise over 90 minutes while maintaining the temperature of the reactor contents at 5 ± 3 ° C. The molar ratio z of the compound (c) to the compound (a) corresponds to 0.74. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, at 40 ° C for 2 hours, and at 80 ° C for 2 hours. Then, it left still and the upper layer part which settled the solid component was removed. Then 13 liters of toluene was added. Then, it heated up at 95 degreeC and stirred for 4 hours. Thereafter, the mixture was allowed to stand at 95 ° C. with 30 liters of toluene four times and at room temperature with 30 liters of hexane three times to precipitate the solid component, and the upper layer portion was removed. The solid component was dried at 40 ° C. under reduced pressure for 6 hours to obtain 4.10 kg of a solid component (hereinafter referred to as promoter support (b)). As a result of elemental analysis, zinc atom = 2.6 mmol / g, fluorine atom = 3.7 mmol / g.
(2) Preparation of prepolymerization catalyst component (2)
After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters, which was previously purged with nitrogen, 90 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added, and the autoclave was heated to 50 ° C. and stirred. For 2 hours.
Next, after the temperature of the autoclave is lowered to 30 ° C. and the system is stabilized, 0.03 MPa of ethylene is charged at a gas phase pressure in the autoclave, and 0.7 kg of the promoter support (b) is added, and then triisobutyl is added. Polymerization was started by adding 263 mmol of aluminum. After 30 minutes while ethylene was continuously supplied at 0.7 kg / Hr, the temperature was raised to 50 ° C., and ethylene and hydrogen were charged at 3.2 kg / Hr and 9.5 liters (room temperature and normal pressure volume) / Hr, respectively. A total of 6 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, the remaining solids purged with ethylene, butane, hydrogen gas and the like are vacuum-dried at room temperature, and the prepolymerized catalyst component (2) in which 24 g of polyethylene is preliminarily polymerized per 1 g of the promoter support (b). Got.
(3) Production of ethylene-α-olefin copolymer
Using the prepolymerized catalyst component (2) obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. As polymerization conditions, the polymerization temperature was 80 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 0.19%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 1.7%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (3)) was obtained. The molecular weight distribution (Mw / Mn) of PE (3) was 4.8, and HMw-Index was 17.9%. Table 1 shows the physical properties of PE (3).
(4) Pressure cross-linked foaming
PE (3) 60 parts,EVA 40 parts, heavy calcium carbonate 10 parts, stearic acid 1.0 part, zinc oxide 1.0 part, chemical foaming agent 2.2 part, The resin composition was obtained by kneading 0.7 parts by weight of mill peroxide using a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (4) was obtained by pressure-crosslinking foaming under the following conditions. Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 1
(1) Preparation of promoter support
Silica heated by a nitrogen-replaced stirrer at 300 ° C. under a nitrogen stream (Sypolol 948 manufactured by Devison; 50% volume average particle size = 59 μm; pore volume = 1.68 ml / g; specific surface area = 313m 2 / G) 0.36 kg and 3.5 liters of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 1,1,1,3,3,3-hexamethyldisilazane 0.15 liter and toluene 0.2 liter was kept at 5 ° C. in the reactor. The solution was added dropwise over 30 minutes. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid component was washed 6 times with 2 liters of toluene. Thereafter, 2 liters of toluene was added to form a slurry, which was allowed to stand overnight.
To the slurry obtained above, 0.27 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.05 kg of pentafluorophenol and 0.09 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 7 g of O was added dropwise over 1.5 hours while keeping the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 55 ° C, and stirred at 55 ° C for 2 hours. Thereafter, the mixture was cooled to room temperature, and 0.63 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added. After cooling to 5 ° C., a mixed solution of 94 g of 3,4,5-trifluorophenol and 0.2 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 17 g of O was added dropwise over 1.5 hours while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. Then, the mixture is allowed to stand, and the solid component is allowed to settle. When the interface between the precipitated solid component layer and the upper slurry portion is visible, the upper slurry portion is removed, and then the remaining liquid components are removed with a filter. Then, 3 liters of toluene was added and stirred at 95 ° C. for 2 hours. The solid component was allowed to settle, and when the interface between the precipitated solid component layer and the upper slurry portion was seen, the upper slurry portion was removed. Next, at 95 ° C., 4 times with 3 liters of toluene and twice with 3 liters of hexane at room temperature, after adding a solvent and stirring, the mixture is allowed to stand to precipitate the solid component. When the interface with the slurry portion was visible, the upper slurry portion was removed. Subsequently, the remaining liquid components were removed with a filter. Then, the solid component (henceforth a promoter support (c)) was obtained by drying at room temperature under reduced pressure for 1 hour.
(2) Preparation of prepolymerization catalyst component (3)
After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters that has been purged with nitrogen in advance, 101 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide is added, and the autoclave is heated to 50 ° C. and stirred. For 2 hours. Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, ethylene was charged in an amount of 0.03 MPa at the gas phase pressure in the autoclave, and 0.7 kg of the promoter support (c) was added, followed by triisobutyl. Polymerization was started by charging 158 mmol of aluminum. After 30 minutes while continuously supplying ethylene at 0.7 kg / Hr, the temperature was raised to 50 ° C., and ethylene and hydrogen were respectively 3.5 kg / Hr and 5.5 liters (room temperature and normal pressure volume) / Hr. A total of 4 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, the remaining solids purged with ethylene, butane, hydrogen gas and the like are vacuum-dried at room temperature, and the prepolymerized catalyst component (3) in which 15 g of polyethylene is prepolymerized per 1 g of the promoter support (c). Got.
(3) Production of ethylene-α-olefin copolymer
Using the prepolymerized catalyst component (3) obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. The polymerization conditions were a polymerization temperature of 80 ° C., a polymerization pressure of 2 MPa, a hydrogen molar ratio to ethylene of 1.6%, and a 1-hexene molar ratio to the total of ethylene and 1-hexene of 1.5%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (4)) was obtained. The results of physical property evaluation of the obtained copolymer are shown in Table 1. The molecular weight distribution (Mw / Mn) of PE (4) was 8.8, and HMw-Index was 5.4%. Table 2 shows the physical properties of PE (4).
(4) Pressure cross-linked foaming
60 parts by weight of PE (4), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, 1.0 part by weight of stearic acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, 0.9 parts by weight of mill peroxide was kneaded using a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes to obtain a resin composition. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (5) was obtained by pressure-crosslinking foaming under the conditions described above. Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 2
(1) Pressure cross-linked foaming
40 parts by weight of ethylene-1-hexene copolymer (Sumikacene E FV401 manufactured by Sumitomo Chemical Co., Ltd., hereinafter PE (5), physical properties are shown in Table 2), 60 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, stearin 1.0 parts by weight of acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, and 0.7 parts by weight of dicumyl peroxide were mixed at a roll temperature of 120 ° C. using a roll kneader. The resin composition was obtained by kneading under a condition of kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (6) was obtained by pressure-crosslinking foaming under the conditions described above. Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 3
(1) Pressure cross-linked foaming
PE (5) 20 parts byweight EVA 80 parts by weight heavy calcium carbonate 10 parts by weight stearic acid 1.0 part by weight zinc oxide 1.0 part by weight chemical foaming agent 3.0 part by weight The resin composition was obtained by kneading 0.7 parts by weight of mill peroxide with a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (7) was obtained by pressure-crosslinking foaming under the conditions described above. Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 4
(1) Pressure cross-linked foaming
60 parts by weight of ethylene-1-hexene copolymer (Sumikacene E FV403 manufactured by Sumitomo Chemical Co., Ltd., hereinafter PE (6), physical properties are shown in Table 2), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, stearin 1.0 parts by weight of acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, and 0.7 parts by weight of dicumyl peroxide were mixed at a roll temperature of 120 ° C. using a roll kneader. The resin composition was obtained by kneading under a condition of kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (8) was obtained by pressure-crosslinking foaming under the conditions of Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 5
(1) Pressure cross-linked foaming
EVA 100 parts by weight, heavy calcium carbonate 10 parts by weight, stearic acid 1.0 part by weight, zinc oxide 1.0 part by weight, chemical foaming agent 2.6 parts by weight, dicumyl peroxide 0.7 part by weight Were kneaded under the conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes using a roll kneader to obtain a resin composition. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A crosslinked foamed molded article (9) was obtained by pressure-crosslinking foaming under the following conditions. Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
By using the measurement method of the present invention, the crosslink density of a cross-linked foamed molded article made of a polyethylene polymer can be calculated easily and accurately. The accuracy of the crosslink density measured by the method of the present invention is that, as shown in FIGS. 1 and 2, the correlation with the compression set of the foamed molded product is one of known methods for identifying effective network chain structures. It is clear from the fact that the crosslink density measured by the method of the present invention is better than the gel fraction.
(1)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に従い、温度190℃、荷重21.18Nでの条件でA法により測定した。
(2)密度(単位:kg/m3)
JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に記載の水中置換法により測定した。
(3)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での動的粘度−角周波数曲線を測定し、次に、得られた動的粘度−角速度曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5~2mm
ストレイン :5%
角周波数 :0.1~100rad/秒
測定雰囲気 :窒素下
(4)分子量分布(Mw/Mn)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)~(8)により、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
(5)HMw−Index(単位:%)
(4)のGPC法で得られたAw(重量平均分子鎖長)のクロマトグラムより、下式に従い算出した。
HMw−Index(%)
=(LogAw>4.5以上の成分割合)/(LogAw>4.0以上の成分割合)×100
HMw−Indexが高いほど、高分子量を有する分子鎖成分量の割合が高いことを意味する。
(6)架橋発泡成形体の密度(単位:kg/m3)
ASTM−D297に従って測定した。この値が小さいほど、軽量性に優れる。
(7)架橋発泡成形体の外観(単位:なし)
得られた架橋発泡成形体の外観の美しさを目視で判定した。判定は下記の3段階で行った。
○: 架橋発泡成形体に割れ・裂けなどは見られず、成形体表面も平滑であった。
△: 架橋発泡成形体に割れ・裂けなどは見られなかったものの、成形体表面に皺などが発生した。
×: 架橋発泡成形体に割れ・裂けなどが発生し、美麗な発泡成形体が得られなかった。
(8)架橋発泡成形体の硬度(単位:なし)
得られた架橋発泡成形体の表面(金型設置面)に関して、ASTM−D2240に従って、C法硬度計にて測定した。
(9)架橋発泡成形体の圧縮永久歪(単位:%)
JIS K6301−1995に従って、50℃/6時間、50%圧縮の条件で圧縮永久歪試験を行い、圧縮永久歪を求めた。圧縮前後の試験片厚みはノギスを用いて測定した。この値が小さいほど、耐疲労性に優れる。
(10)架橋発泡成形体のゲル分率測定(単位:%)
架橋発泡成形体1gを400メッシュの粗さのステンレス製金網に封入した後、沸騰キシレン110ml中で24時間抽出した。所定時間後、金網に残った残渣の重量を測定し、(残渣重量,g)÷(抽出前重量、=1g)×100[%]の式に従い、ゲル分率を測定した。この値が小さいほど、網目構造を持つ不溶成分がより多く存在することを表す。
(11)架橋発泡成形体中の架橋密度(単位:mol/kg)
粘弾性測定装置(TA Instruments社製ARES)を用いて、下記測定条件で測定を行い、架橋密度を求めた。
<測定条件>
治具:上部φ8mm、下部φ25mmパラレルプレート
試験片サイズ:10mm×10mm 厚さ3mm
測定温度:60℃
予熱:3分~5分
歪速度:0.1mm/秒
圧縮歪量:50%
測定時間:1800秒
測定雰囲気:窒素下
<算出方法>
Gc=G1800 (G1800:測定時間1800秒のときの緩和弾性率)
Gc=nRT
R:気体定数 T:測定温度(絶対温度)
R=8.31J/K・mol T=333K
n=Gc/RT
n:架橋密度 (mol/m3)
得られた架橋密度を、発泡成形体密度を用いて、単位重量あたりの架橋密度(単位:mol/kg)に変換した。
実施例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=59μm;細孔容量=1.68ml/g;比表面積=313m2/g)0.36kgとトルエン3.5リットルとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.15リットルとトルエン0.2リットルとの混合溶液を反応器内の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体成分をトルエン2リットルで6回、洗浄を行った。その後、トルエン2リットルを加えスラリーとし、一晩静置した。
上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.27リットルを投入し、撹拌した。その後、5℃に冷却した後、ペンタフルオロフェノール0.05kgとトルエン0.09リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 7gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に55℃に昇温し、55℃で2時間攪拌した。その後、室温に冷却し、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.63リットルを投入した。5℃に冷却し、3,4,5−トリフルオロフェノール94gとトルエン0.2リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 17gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に、80℃に昇温し、80℃で2時間撹拌した。その後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除き、次いで残りの液成分をフィルターにて除去した後、トルエン3リットルを加え、95℃で2時間撹拌した。静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次に、95℃でトルエン3リットルにて4回、室温でヘキサン3リットルにて2回、溶媒を加えて撹拌後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次いで残りの液成分をフィルターにて除去した。その後、減圧下、室温で1時間乾燥することにより、固体成分(以下、助触媒担体(a)と称する。)を得た。
(2)予備重合触媒成分(1)の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド50mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。
次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(a)0.7kgを投入し、続いてトリエチルアルミニウム210mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ2.2kg/Hrと6.5リットル(常温常圧体積)/Hrで連続供給することによって合計7.5時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(a)1g当り23.6gのポリエチレンが予備重合された予備重合触媒成分(1)を得た。
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分(1)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を84℃、重合圧力を2MPa、エチレンに対する水素モル比を0.318%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を2.1%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(1))を得た。PE(1)の分子量分布(Mw/Mn)は6.9、HMw−Indexは11.4%であった。PE(1)の物性を表1に示す。
(4)加圧架橋発泡成形
PE(1)60重量部とエチレン−酢酸ビニル共重合体(ザ・ポリオレフィン・カンパニー製「H2181」; メルトフローレイト: 2.0[g/10分]、密度: 940[kg/m3]、酢酸ビニル含量: 18[wt%] 以下EVAとする)40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤(三協化成(株)製「セルマイクCE」ADCA型化学発泡剤)4.2重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(1)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表3に示す。
実施例2
(1)加圧架橋発泡成形
化学発泡剤量を2.2重量部に変更した以外は、全て実施例1同様の条件で混練、加圧架橋発泡させることにより架橋発泡成形体(2)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表3に示す。
実施例3
(1)エチレン−α−オレフィン共重合体の製造
実施例1で得た予備重合触媒成分(1)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を84℃、重合圧力を2MPa、エチレンに対する水素モル比を0.38%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を2.0%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(2))を得た。PE(2)の分子量分布(Mw/Mn)は6.8、HMw−Indexは11.4%であった。PE(2)の物性を表1に示す。
(2)加圧架橋発泡成形
PE(2)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤4.7重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(3)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表3に示す。
実施例4
(1)助触媒担体の調製
窒素置換した撹拌機を備えた50リットルの反応器に、溶媒としてトルエン24.3リットル、粒子(d)として窒素流通下で300℃にて加熱処理したシリカ(デビソン社製 Sylopol948;平均粒子径=58μm;細孔容量=1.60ml/g;比表面積=316m2/g)2.545kgを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン823gとトルエン1.49リットルの混合溶液を反応器の温度を5±3℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間、95℃で3時間攪拌した。その後、得られた固体生成物を95℃にて、トルエン30リットで6回洗浄を行った。次いで、5.4リットルのトルエンを投入しスラリーとした。
上記実施例1(1)で得られたトルエンスラリーへ、化合物(a)として32.0wt%のジエチル亜鉛のヘキサン溶液4.98kgを投入し、攪拌した。その後、5℃に冷却した後、化合物(b)として濃度を35.4wt%に調製した3,4,5−トリフルオロフェノールのトルエン溶液2.66kgを、反応器内容物の温度を5±3℃に保ちながら60分間で滴下した。化合物(a)に対する化合物(b)のモル比率yは、0.49に相当する。滴下終了後、5℃で1時間、40℃で1時間攪拌した。その後、化合物(c)として水0.172リットルを反応器内容物の温度を5±3℃に保ちながら90分で滴下した。化合物(a)に対する化合物(c)のモル比率zは、0.74に相当する。滴下終了後、5℃で1.5時間、40℃で2時間、80℃で2時間攪拌した。その後、静置し、固体成分を沈降させた上層部分を取り除いた。次いで、トルエン13リットルを加えた。その後、95℃に昇温し、4時間攪拌した。その後、95℃でトルエン30リットルにて4回、室温でヘキサン30リットルにて3回、静置し、固体成分を沈降させ、上層部分を取り除いた。固体成分を減圧下、40℃で6時間乾燥を行うことにより固体成分(以下、助触媒担体(b)と称する。)4.10kgを得た。元素分析の結果、亜鉛原子=2.6mmol/g、フッ素原子=3.7mmol/gであった。
(2)予備重合触媒成分(2)の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド90mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。
次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(b)0.7kgを投入し、続いてトリイソブチルアルミニウム263mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.2kg/Hrと9.5リットル(常温常圧体積)/Hrで連続供給することによって合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(b)1g当り24gのポリエチレンが予備重合された予備重合触媒成分(2)を得た。
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分(2)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を80℃、重合圧力を2MPa、エチレンに対する水素モル比を0.19%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.7%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(3))を得た。PE(3)の分子量分布(Mw/Mn)は4.8、HMw−Indexは17.9%であった。PE(3)の物性を表1に示す。
(4)加圧架橋発泡成形
PE(3)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.2重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(4)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表4に示す。
比較例1
(1)助触媒担体の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=59μm;細孔容量=1.68ml/g;比表面積=313m2/g)0.36kgとトルエン3.5リットルとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.15リットルとトルエン0.2リットルとの混合溶液を反応器内の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体成分をトルエン2リットルで6回、洗浄を行った。その後、トルエン2リットルを加えスラリーとし、一晩静置した。
上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.27リットルを投入し、撹拌した。その後、5℃に冷却した後、ペンタフルオロフェノール0.05kgとトルエン0.09リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 7gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に55℃に昇温し、55℃で2時間攪拌した。その後、室温に冷却し、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:2モル/リットル)0.63リットルを投入した。5℃に冷却し、3,4,5−トリフルオロフェノール94gとトルエン0.2リットルとの混合溶液を、反応器内の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、5℃に冷却し、H2O 17gを反応器内の温度を5℃に保ちながら1.5時間で滴下した。滴下終了後、5℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に、80℃に昇温し、80℃で2時間撹拌した。その後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除き、次いで残りの液成分をフィルターにて除去した後、トルエン3リットルを加え、95℃で2時間撹拌した。静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次に、95℃でトルエン3リットルにて4回、室温でヘキサン3リットルにて2回、溶媒を加えて撹拌後、静置し、固体成分を沈降させ、沈降した固体成分の層と上層のスラリー部分との界面が見えた時点で上層のスラリー部分を取り除いた。次いで残りの液成分をフィルターにて除去した。その後、減圧下、室温で1時間乾燥することにより、固体成分(以下、助触媒担体(c)と称する。)を得た。
(2)予備重合触媒成分(3)の調製
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、ブタン80リットルを投入した後、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド101mmolを投入し、オートクレーブを50℃まで昇温して撹拌を2時間行った。次にオートクレーブを30℃まで降温して系内が安定した後、エチレンをオートクレーブ内のガス相圧力で0.03MPa分仕込み、上記助触媒担体(c)0.7kgを投入し、続いてトリイソブチルアルミニウム158mmolを投入して重合を開始した。エチレンを0.7kg/Hrで連続供給しながら30分経過した後、50℃へ昇温するとともに、エチレンと水素をそれぞれ3.5kg/Hrと5.5リットル(常温常圧体積)/Hrで連続供給することによって合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(c)1g当り15gのポリエチレンが予備重合された予備重合触媒成分(3)を得た。
(3)エチレン−α−オレフィン共重合体の製造
上記で得た予備重合触媒成分(3)を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施し、重合体パウダーを得た。重合条件としては、重合温度を80℃、重合圧力を2MPa、エチレンに対する水素モル比を1.6%、エチレンと1−ヘキセンとの合計に対する1−ヘキセンモル比を1.5%とした。重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。また、上記予備重合触媒成分とトリイソブチルアルミニウムを連続的に供給し、流動床の総パウダー重量80kgを一定に維持した。平均重合時間4hrであった。得られた重合体パウダーを押出機(神戸製鋼所社製 LCM50)を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200~230℃の条件で造粒することによりエチレン−1−ヘキセン共重合体(以下PE(4))を得た。得られた共重合体の物性評価の結果を表1に示した。PE(4)の分子量分布(Mw/Mn)は8.8、HMw−Indexは5.4%であった。PE(4)の物性を表2に示す。
(4)加圧架橋発泡成形
PE(4)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.9重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(5)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表4に示す。
比較例2
(1)加圧架橋発泡成形
エチレン−1−ヘキセン共重合体(住友化学(株)製スミカセンE FV401、以下PE(5)、物性を表2に示す)40重量部とEVA60重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(6)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表4に示す。
比較例3
(1)加圧架橋発泡成形
PE(5)20重量部とEVA80重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤3.0重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(7)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表5に示す。
比較例4
(1)加圧架橋発泡成形
エチレン−1−ヘキセン共重合体(住友化学(株)製スミカセンE FV403、以下PE(6)、物性を表2に示す)60重量部とEVA40重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(8)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表5に示す。
比較例5
(1)加圧架橋発泡成形
EVA100重量部、重質炭酸カルシウム10重量部と、ステアリン酸1.0重量部と、酸化亜鉛1.0重量部と、化学発泡剤2.6重量部と、ジクミルパーオキサイド0.7重量部とを、ロール混練機を用いて、ロール温度120℃、混練時間5分間の条件で混練を行い、樹脂組成物を得た。該樹脂組成物を13cm×13cm×2.0cmの金型に充填し、温度165℃、時間30分間、圧力200kg/cm2の条件で加圧架橋発泡させることにより架橋発泡成形体(9)を得た。得られた架橋発泡成形体の物性評価結果、ならびに架橋密度、ゲル分率評価結果を表5に示す。
(1) Melt flow rate (MFR, unit: g / 10 minutes)
According to JIS K7210-1995, it measured by A method on the conditions with a temperature of 190 degreeC and a load of 21.18N.
(2) Density (Unit: kg / m 3 )
After annealing described in JIS K6760-1995, the measurement was performed by an underwater substitution method described in JIS K7112-1980.
(3) Flow activation energy (Ea, unit: kJ / mol)
Using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), dynamic viscosity-angular frequency curves at 130 ° C, 150 ° C, 170 ° C and 190 ° C were measured under the following measurement conditions. From the obtained dynamic viscosity-angular velocity curve, Rheometrics R. The activation energy (Ea) was determined using 4.4.4.
<Measurement conditions>
Geometry: Parallel plate
Plate diameter: 25mm
Plate spacing: 1.5-2mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec
Measurement atmosphere: Under nitrogen
(4) Molecular weight distribution (Mw / Mn)
Using a gel permeation chromatograph (GPC) method, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured under the following conditions (1) to (8), and the molecular weight distribution (Mw / Mn) was determined. The baseline on the chromatogram is a stable horizontal region with a sufficiently long retention time than the appearance of the sample elution peak and a stable horizontal region with a sufficiently long retention time than the solvent elution peak was observed. A straight line formed by connecting the points.
(1) Apparatus: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: differential refraction
(8) Molecular weight reference material: Standard polystyrene
(5) HMw-Index (unit:%)
It calculated according to the following formula from the chromatogram of Aw (weight average molecular chain length) obtained by GPC method of (4).
HMw-Index (%)
= (Component ratio of LogAw> 4.5 or more) / (Component ratio of LogAw> 4.0 or more) × 100
It means that the higher the HMw-Index, the higher the proportion of the molecular chain component amount having a high molecular weight.
(6) Density of crosslinked foamed molded product (unit: kg / m 3 )
Measured according to ASTM-D297. The smaller this value, the better the lightness.
(7) Appearance of crosslinked foamed molded product (unit: none)
The beauty of the appearance of the obtained cross-linked foamed molded article was determined visually. Judgment was performed in the following three stages.
○: No cracks or tears were observed in the crosslinked foamed molded product, and the surface of the molded product was smooth.
Δ: No cracks or tears were found in the crosslinked foamed molded product, but wrinkles and the like were generated on the surface of the molded product.
X: Cracking, tearing, etc. occurred in the crosslinked foamed molded article, and a beautiful foamed molded article could not be obtained.
(8) Hardness of crosslinked foamed molded product (unit: none)
The surface of the obtained cross-linked foamed molded article (mold installation surface) was measured with a C method hardness meter in accordance with ASTM-D2240.
(9) Compression set of crosslinked foamed molded product (unit:%)
In accordance with JIS K6301-1995, a compression set test was performed under the conditions of 50 ° C./6 hours and 50% compression to determine the compression set. The specimen thickness before and after compression was measured using calipers. The smaller this value, the better the fatigue resistance.
(10) Measurement of gel fraction of crosslinked foamed molded product (unit:%)
1 g of the crosslinked foamed molded product was sealed in a 400-mesh stainless steel wire mesh, and then extracted in 110 ml of boiling xylene for 24 hours. After a predetermined time, the weight of the residue remaining on the wire mesh was measured, and the gel fraction was measured according to the formula of (residue weight, g) / (weight before extraction, = 1 g) × 100 [%]. The smaller this value, the more insoluble components having a network structure are present.
(11) Crosslink density in the crosslinked foamed molded product (unit: mol / kg)
Using a viscoelasticity measuring apparatus (ARES manufactured by TA Instruments), measurement was performed under the following measurement conditions to obtain a crosslinking density.
<Measurement conditions>
Jig: Upper φ8mm, Lower φ25mm Parallel plate
Test piece size: 10 mm x 10 mm, thickness 3 mm
Measurement temperature: 60 ° C
Preheating: 3-5 minutes
Strain rate: 0.1 mm / sec
Compression strain: 50%
Measurement time: 1800 seconds
Measurement atmosphere: under nitrogen
<Calculation method>
Gc = G 1800 (G 1800 : Relaxation elastic modulus when the measurement time is 1800 seconds)
Gc = nRT
R: Gas constant T: Measurement temperature (absolute temperature)
R = 8.31J / K · mol T = 333K
n = Gc / RT
n: Crosslink density (mol / m 3 )
The obtained crosslink density was converted into a crosslink density per unit weight (unit: mol / kg) using the foamed product density.
Example 1
(1) Preparation of promoter support
Silica heated by a nitrogen-replaced stirrer at 300 ° C. under a nitrogen stream (Sypolol 948 manufactured by Devison; 50% volume average particle size = 59 μm; pore volume = 1.68 ml / g; specific surface area = 313m 2 / G) 0.36 kg and 3.5 liters of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 1,1,1,3,3,3-hexamethyldisilazane 0.15 liter and toluene 0.2 liter was kept at 5 ° C. in the reactor. The solution was added dropwise over 30 minutes. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid component was washed 6 times with 2 liters of toluene. Thereafter, 2 liters of toluene was added to form a slurry, which was allowed to stand overnight.
To the slurry obtained above, 0.27 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.05 kg of pentafluorophenol and 0.09 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 7 g of O was added dropwise over 1.5 hours while keeping the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1.5 hours, then heated to 55 ° C. and stirred at 55 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, and 0.63 liter of diethyl zinc in hexane solution (diethyl zinc concentration: 2 mol / liter) was added. After cooling to 5 ° C., a mixed solution of 94 g of 3,4,5-trifluorophenol and 0.2 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 17 g of O was added dropwise over 1.5 hours while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. Then, the mixture is allowed to stand, and the solid component is allowed to settle. When the interface between the precipitated solid component layer and the upper slurry portion is visible, the upper slurry portion is removed, and then the remaining liquid components are removed with a filter. Then, 3 liters of toluene was added and stirred at 95 ° C. for 2 hours. The solid component was allowed to settle, and when the interface between the precipitated solid component layer and the upper slurry portion was seen, the upper slurry portion was removed. Next, at 95 ° C., 4 times with 3 liters of toluene and twice with 3 liters of hexane at room temperature, after adding a solvent and stirring, the mixture is allowed to stand to precipitate the solid component. When the interface with the slurry portion was visible, the upper slurry portion was removed. Subsequently, the remaining liquid components were removed with a filter. Then, the solid component (henceforth a promoter support (a)) was obtained by drying at room temperature under reduced pressure for 1 hour.
(2) Preparation of prepolymerization catalyst component (1)
After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters, which was previously purged with nitrogen, 50 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added, and the autoclave was heated to 50 ° C. and stirred. For 2 hours.
Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, 0.03 MPa of ethylene was charged at the gas phase pressure in the autoclave, 0.7 kg of the promoter support (a) was added, and then triethylaluminum was added. Polymerization was started by adding 210 mmol. After 30 minutes while ethylene was continuously supplied at 0.7 kg / Hr, the temperature was raised to 50 ° C., and ethylene and hydrogen were respectively 2.2 kg / Hr and 6.5 liters (room temperature and normal pressure volume) / Hr. A total of 7.5 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, ethylene, butane, hydrogen gas, etc. are purged and the remaining solid is vacuum-dried at room temperature, and a prepolymerized catalyst component (23.6 g of polyethylene preliminarily polymerized per 1 g of the promoter support (a) ( 1) was obtained.
(3) Production of ethylene-α-olefin copolymer
Using the preliminary polymerization catalyst component (1) obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. As polymerization conditions, the polymerization temperature was 84 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 0.318%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 2.1%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (1)) was obtained. The molecular weight distribution (Mw / Mn) of PE (1) was 6.9, and HMw-Index was 11.4%. Table 1 shows the physical properties of PE (1).
(4) Pressure cross-linked foaming
60 parts by weight of PE (1) and ethylene-vinyl acetate copolymer (“H2181” manufactured by The Polyolefin Company; melt flow rate: 2.0 [g / 10 min], density: 940 [kg / m 3 ], Vinyl acetate content: 18 [wt%] hereinafter referred to as EVA) 40 parts by weight, heavy calcium carbonate 10 parts by weight, stearic acid 1.0 part by weight, zinc oxide 1.0 part by weight, chemical foaming agent (Sankyo Chemical Co., Ltd. “Cermic CE” ADCA type chemical foaming agent) 4.2 parts by weight and 0.7 parts by weight of dicumyl peroxide were kneaded at a roll temperature of 120 ° C. using a roll kneader. Kneading was performed for 5 minutes to obtain a resin composition. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (1) was obtained by pressure-crosslinking foaming under the conditions of Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Example 2
(1) Pressure cross-linked foaming
Except for changing the amount of the chemical foaming agent to 2.2 parts by weight, a crosslinked foamed molded article (2) was obtained by kneading and pressure-crosslinking foaming under the same conditions as in Example 1. Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Example 3
(1) Production of ethylene-α-olefin copolymer
Using the prepolymerized catalyst component (1) obtained in Example 1, copolymerization of ethylene and 1-hexene was carried out in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. As polymerization conditions, the polymerization temperature was 84 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 0.38%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 2.0%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (2)) was obtained. The molecular weight distribution (Mw / Mn) of PE (2) was 6.8, and HMw-Index was 11.4%. Table 1 shows the physical properties of PE (2).
(2) Pressure cross-linking foam molding
60 parts by weight of PE (2), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, 1.0 part by weight of stearic acid, 1.0 part by weight of zinc oxide, 4.7 parts by weight of chemical blowing agent, The resin composition was obtained by kneading 0.7 parts by weight of mill peroxide using a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (3) was obtained by pressure-crosslinking foaming under the conditions described above. Table 3 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Example 4
(1) Preparation of promoter support
In a 50 liter reactor equipped with a nitrogen-replaced stirrer, 24.3 liters of toluene as a solvent and silica heat-treated at 300 ° C. under nitrogen flow as particles (d) (Sypolol 948 manufactured by Devison; average particle size = 58 μm; pore volume = 1.60 ml / g; specific surface area = 316 m 2 / G) 2.545 kg was added and stirred. Then, after cooling to 5 ° C., a mixed solution of 823 g of 1,1,1,3,3,3-hexamethyldisilazane and 1.49 liters of toluene was maintained for 30 minutes while maintaining the reactor temperature at 5 ± 3 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour and at 95 ° C. for 3 hours. Thereafter, the obtained solid product was washed 6 times with 95 liters of toluene at 95 ° C. Next, 5.4 liters of toluene was added to form a slurry.
To the toluene slurry obtained in Example 1 (1) above, 4.98 kg of a 32.0 wt% diethylzinc hexane solution as the compound (a) was added and stirred. Then, after cooling to 5 ° C., 2.66 kg of a 3,4,5-trifluorophenol toluene solution prepared as a compound (b) at a concentration of 35.4 wt% was added, and the temperature of the reactor contents was adjusted to 5 ± 3. It was added dropwise over 60 minutes while maintaining the temperature. The molar ratio y of the compound (b) to the compound (a) corresponds to 0.49. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour and at 40 ° C. for 1 hour. Thereafter, 0.172 liters of water as compound (c) was added dropwise over 90 minutes while maintaining the temperature of the reactor contents at 5 ± 3 ° C. The molar ratio z of the compound (c) to the compound (a) corresponds to 0.74. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, at 40 ° C for 2 hours, and at 80 ° C for 2 hours. Then, it left still and the upper layer part which settled the solid component was removed. Then 13 liters of toluene was added. Then, it heated up at 95 degreeC and stirred for 4 hours. Thereafter, the mixture was allowed to stand at 95 ° C. with 30 liters of toluene four times and at room temperature with 30 liters of hexane three times to precipitate the solid component, and the upper layer portion was removed. The solid component was dried at 40 ° C. under reduced pressure for 6 hours to obtain 4.10 kg of a solid component (hereinafter referred to as promoter support (b)). As a result of elemental analysis, zinc atom = 2.6 mmol / g, fluorine atom = 3.7 mmol / g.
(2) Preparation of prepolymerization catalyst component (2)
After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters, which was previously purged with nitrogen, 90 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide was added, and the autoclave was heated to 50 ° C. and stirred. For 2 hours.
Next, after the temperature of the autoclave is lowered to 30 ° C. and the system is stabilized, 0.03 MPa of ethylene is charged at a gas phase pressure in the autoclave, and 0.7 kg of the promoter support (b) is added, and then triisobutyl is added. Polymerization was started by adding 263 mmol of aluminum. After 30 minutes while ethylene was continuously supplied at 0.7 kg / Hr, the temperature was raised to 50 ° C., and ethylene and hydrogen were charged at 3.2 kg / Hr and 9.5 liters (room temperature and normal pressure volume) / Hr, respectively. A total of 6 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, the remaining solids purged with ethylene, butane, hydrogen gas and the like are vacuum-dried at room temperature, and the prepolymerized catalyst component (2) in which 24 g of polyethylene is preliminarily polymerized per 1 g of the promoter support (b). Got.
(3) Production of ethylene-α-olefin copolymer
Using the prepolymerized catalyst component (2) obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. As polymerization conditions, the polymerization temperature was 80 ° C., the polymerization pressure was 2 MPa, the hydrogen molar ratio to ethylene was 0.19%, and the 1-hexene molar ratio to the total of ethylene and 1-hexene was 1.7%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (3)) was obtained. The molecular weight distribution (Mw / Mn) of PE (3) was 4.8, and HMw-Index was 17.9%. Table 1 shows the physical properties of PE (3).
(4) Pressure cross-linked foaming
PE (3) 60 parts,
Comparative Example 1
(1) Preparation of promoter support
Silica heated by a nitrogen-replaced stirrer at 300 ° C. under a nitrogen stream (Sypolol 948 manufactured by Devison; 50% volume average particle size = 59 μm; pore volume = 1.68 ml / g; specific surface area = 313m 2 / G) 0.36 kg and 3.5 liters of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 1,1,1,3,3,3-hexamethyldisilazane 0.15 liter and toluene 0.2 liter was kept at 5 ° C. in the reactor. The solution was added dropwise over 30 minutes. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid component was washed 6 times with 2 liters of toluene. Thereafter, 2 liters of toluene was added to form a slurry, which was allowed to stand overnight.
To the slurry obtained above, 0.27 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.05 kg of pentafluorophenol and 0.09 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 7 g of O was added dropwise over 1.5 hours while keeping the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 55 ° C, and stirred at 55 ° C for 2 hours. Thereafter, the mixture was cooled to room temperature, and 0.63 liter of diethyl zinc in hexane (diethyl zinc concentration: 2 mol / liter) was added. After cooling to 5 ° C., a mixed solution of 94 g of 3,4,5-trifluorophenol and 0.2 liter of toluene was added dropwise over 60 minutes while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cool to 5 ° C, 2 17 g of O was added dropwise over 1.5 hours while maintaining the temperature in the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C for 1.5 hours, then heated to 40 ° C, stirred at 40 ° C for 2 hours, further heated to 80 ° C, and stirred at 80 ° C for 2 hours. Then, the mixture is allowed to stand, and the solid component is allowed to settle. When the interface between the precipitated solid component layer and the upper slurry portion is visible, the upper slurry portion is removed, and then the remaining liquid components are removed with a filter. Then, 3 liters of toluene was added and stirred at 95 ° C. for 2 hours. The solid component was allowed to settle, and when the interface between the precipitated solid component layer and the upper slurry portion was seen, the upper slurry portion was removed. Next, at 95 ° C., 4 times with 3 liters of toluene and twice with 3 liters of hexane at room temperature, after adding a solvent and stirring, the mixture is allowed to stand to precipitate the solid component. When the interface with the slurry portion was visible, the upper slurry portion was removed. Subsequently, the remaining liquid components were removed with a filter. Then, the solid component (henceforth a promoter support (c)) was obtained by drying at room temperature under reduced pressure for 1 hour.
(2) Preparation of prepolymerization catalyst component (3)
After adding 80 liters of butane to an autoclave equipped with a stirrer with an internal volume of 210 liters that has been purged with nitrogen in advance, 101 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide is added, and the autoclave is heated to 50 ° C. and stirred. For 2 hours. Next, after the temperature of the autoclave was lowered to 30 ° C. and the system was stabilized, ethylene was charged in an amount of 0.03 MPa at the gas phase pressure in the autoclave, and 0.7 kg of the promoter support (c) was added, followed by triisobutyl. Polymerization was started by charging 158 mmol of aluminum. After 30 minutes while continuously supplying ethylene at 0.7 kg / Hr, the temperature was raised to 50 ° C., and ethylene and hydrogen were respectively 3.5 kg / Hr and 5.5 liters (room temperature and normal pressure volume) / Hr. A total of 4 hours of prepolymerization was carried out by continuous feeding. After completion of the polymerization, the remaining solids purged with ethylene, butane, hydrogen gas and the like are vacuum-dried at room temperature, and the prepolymerized catalyst component (3) in which 15 g of polyethylene is prepolymerized per 1 g of the promoter support (c). Got.
(3) Production of ethylene-α-olefin copolymer
Using the prepolymerized catalyst component (3) obtained above, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus to obtain a polymer powder. The polymerization conditions were a polymerization temperature of 80 ° C., a polymerization pressure of 2 MPa, a hydrogen molar ratio to ethylene of 1.6%, and a 1-hexene molar ratio to the total of ethylene and 1-hexene of 1.5%. During the polymerization, ethylene, 1-hexene and hydrogen were continuously supplied in order to keep the gas composition constant. In addition, the prepolymerization catalyst component and triisobutylaluminum were continuously supplied, and the total powder weight of 80 kg in the fluidized bed was kept constant. The average polymerization time was 4 hours. The obtained polymer powder is fed using an extruder (LCM50 manufactured by Kobe Steel, Ltd.) at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 230 ° C. By granulating under the conditions, an ethylene-1-hexene copolymer (hereinafter referred to as PE (4)) was obtained. The results of physical property evaluation of the obtained copolymer are shown in Table 1. The molecular weight distribution (Mw / Mn) of PE (4) was 8.8, and HMw-Index was 5.4%. Table 2 shows the physical properties of PE (4).
(4) Pressure cross-linked foaming
60 parts by weight of PE (4), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, 1.0 part by weight of stearic acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, 0.9 parts by weight of mill peroxide was kneaded using a roll kneader under conditions of a roll temperature of 120 ° C. and a kneading time of 5 minutes to obtain a resin composition. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (5) was obtained by pressure-crosslinking foaming under the conditions described above. Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 2
(1) Pressure cross-linked foaming
40 parts by weight of ethylene-1-hexene copolymer (Sumikacene E FV401 manufactured by Sumitomo Chemical Co., Ltd., hereinafter PE (5), physical properties are shown in Table 2), 60 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, stearin 1.0 parts by weight of acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, and 0.7 parts by weight of dicumyl peroxide were mixed at a roll temperature of 120 ° C. using a roll kneader. The resin composition was obtained by kneading under a condition of kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (6) was obtained by pressure-crosslinking foaming under the conditions described above. Table 4 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 3
(1) Pressure cross-linked foaming
PE (5) 20 parts by
Comparative Example 4
(1) Pressure cross-linked foaming
60 parts by weight of ethylene-1-hexene copolymer (Sumikacene E FV403 manufactured by Sumitomo Chemical Co., Ltd., hereinafter PE (6), physical properties are shown in Table 2), 40 parts by weight of EVA, 10 parts by weight of heavy calcium carbonate, stearin 1.0 parts by weight of acid, 1.0 part by weight of zinc oxide, 2.6 parts by weight of chemical foaming agent, and 0.7 parts by weight of dicumyl peroxide were mixed at a roll temperature of 120 ° C. using a roll kneader. The resin composition was obtained by kneading under a condition of kneading time of 5 minutes. The resin composition is filled into a 13 cm × 13 cm × 2.0 cm mold, and the temperature is 165 ° C., the time is 30 minutes, and the pressure is 200 kg / cm. 2 A cross-linked foamed molded article (8) was obtained by pressure-crosslinking foaming under the conditions of Table 5 shows the physical property evaluation results of the obtained cross-linked foamed molded article, and the cross-linking density and gel fraction evaluation results.
Comparative Example 5
(1) Pressure cross-linked foaming
本発明により、熱可塑性重合体からなる架橋発泡成形体の架橋密度を精度よく測定することができる。とりわけ本発明の測定方法は、従来架橋密度を精度よく測定する方法が困難であった、エチレン系重合体製架橋発泡成形体の架橋密度の測定に好適である。また、本発明のエチレン系重合体製架橋発泡成形体は、架橋密度が高く、圧縮永久歪性能に優れるものであり、靴用部材として好適である。
According to the present invention, the crosslink density of a cross-linked foamed molded article made of a thermoplastic polymer can be accurately measured. In particular, the measuring method of the present invention is suitable for measuring the crosslinking density of a crosslinked foamed product made of an ethylene polymer, which has conventionally been difficult to accurately measure the crosslinking density. Moreover, the crosslinked foamed molded product made of an ethylene polymer of the present invention has a high crosslinking density and excellent compression set performance, and is suitable as a member for shoes.
Claims (8)
- エチレン系重合体製架橋発泡成形体であって、該架橋発泡成形体を、測定温度60℃、圧縮歪量50%、測定時間1800秒の条件で圧縮変形させて該架橋発泡成形体の応力緩和を測定し、応力緩和測定から得られた緩和弾性率を用いて求めた架橋密度が0.30mol/kg以上である、エチレン系重合体製架橋発泡成形体。 A cross-linked foamed molded product made of an ethylene polymer, wherein the cross-linked foamed molded product is subjected to compression deformation under the conditions of a measurement temperature of 60 ° C., a compression strain of 50%, and a measurement time of 1800 seconds. A cross-linked foamed product made of an ethylene polymer having a cross-link density of 0.30 mol / kg or more determined by using the relaxation elastic modulus obtained from the stress relaxation measurement.
- エチレン系重合体製架橋発泡成形体を製造するために用いられるエチレン系重合体が、高圧法低密度ポリエチレンおよび/またはエチレン−α−オレフィン共重合体である請求項1に記載のエチレン系重合体製架橋発泡成形体。 2. The ethylene polymer according to claim 1, wherein the ethylene polymer used for producing the cross-linked foamed product made of an ethylene polymer is a high-pressure low-density polyethylene and / or an ethylene-α-olefin copolymer. Cross-linked foamed molded product.
- エチレン−α−オレフィン共重合体が、エチレンに基づく単量体単位と炭素原子数3~20のα−オレフィンに基づく単量体単位とを有し、かつ、
該エチレン−α−オレフィン共重合体のメルトフローレート(MFR)が0.01~3.0g/10分であり、流動の活性化エネルギーが40kJ/mol以上であり、ゲル・パーミエイション・クロマトグラフ(GPC)法により測定されるHMw−Index(High Molecular Index)が8.0%以上である請求項2に記載のエチレン系重合体製架橋発泡成形体。 The ethylene-α-olefin copolymer has a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and
The melt flow rate (MFR) of the ethylene-α-olefin copolymer is 0.01 to 3.0 g / 10 minutes, the flow activation energy is 40 kJ / mol or more, and gel permeation chromatography. The crosslinked foamed article made of an ethylene polymer according to claim 2, wherein HMw-Index (High Molecular Index) measured by a graph (GPC) method is 8.0% or more. - 請求項1~3のいずれかに記載のエチレン系重合体製架橋発泡成形体からなる靴用部材。 A member for shoes comprising the crosslinked foamed product made of an ethylene polymer according to any one of claims 1 to 3.
- 熱可塑性重合体製架橋発泡成形体の架橋密度の測定方法であって、
熱可塑性重合体製架橋発泡成形体を所定の温度まで加熱する工程と、
所定の温度に保たれた熱可塑性重合体製架橋発泡成形体に圧力を付加して架橋発泡成形体を圧縮変形させ、架橋発泡成形体の圧縮歪量を一定に保ちながら、架橋発泡成形体の応力緩和を測定する工程と、
応力緩和から緩和弾性率Gcを求める工程と、ここでGcは架橋発泡成形体の応力が一定となったとき弾性率であり、
前記Gcから以下の式によって前記熱可塑性重合体製架橋発泡体の架橋密度を算出する工程と、を有する方法。
n=Gc/RT
n:架橋密度
R:気体定数
T:測定温度 A method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded article,
Heating the thermoplastic polymer cross-linked foam to a predetermined temperature;
A pressure is applied to the crosslinked foamed molded product made of a thermoplastic polymer maintained at a predetermined temperature to compressively deform the crosslinked foamed molded product, and while maintaining the amount of compressive strain of the crosslinked foamed molded product constant, Measuring stress relaxation;
A step of obtaining a relaxation elastic modulus Gc from stress relaxation, wherein Gc is an elastic modulus when the stress of the crosslinked foamed molded article becomes constant,
Calculating the crosslinking density of the thermoplastic polymer crosslinked foam from the Gc by the following formula.
n = Gc / RT
n: Crosslink density R: Gas constant T: Measurement temperature - 熱可塑性重合体製架橋発泡成形体を製造するために用いられる熱可塑性重合体が、エチレン系重合体である請求項5に記載の熱可塑性重合体製架橋発泡成形体の架橋密度の測定方法。 The method for measuring the crosslinking density of a thermoplastic polymer crosslinked foamed molded product according to claim 5, wherein the thermoplastic polymer used for producing the thermoplastic polymer crosslinked foamed molded product is an ethylene polymer.
- エチレン系重合体が、高圧法低密度ポリエチレンおよび/またはエチレン−α−オレフィン共重合体である請求項6に記載の熱可塑性重合体製架橋発泡成形体の架橋密度の測定方法。 The method for measuring a crosslinking density of a thermoplastic polymer crosslinked foamed molded article according to claim 6, wherein the ethylene polymer is a high-pressure low-density polyethylene and / or an ethylene-α-olefin copolymer.
- 熱可塑性重合体製架橋発泡体が、有機過酸化物により架橋された熱可塑性重合体から形成された発泡体である請求項5に記載の熱可塑性重合体製架橋発泡体の架橋密度の測定方法。 The method for measuring the crosslinking density of a thermoplastic polymer crosslinked foam according to claim 5, wherein the thermoplastic polymer crosslinked foam is a foam formed from a thermoplastic polymer crosslinked with an organic peroxide. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180037887.6A CN103068893B (en) | 2010-08-06 | 2011-08-03 | Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-177151 | 2010-08-06 | ||
JP2010177151 | 2010-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012018140A1 true WO2012018140A1 (en) | 2012-02-09 |
Family
ID=45559632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068210 WO2012018140A1 (en) | 2010-08-06 | 2011-08-03 | Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012052106A (en) |
CN (1) | CN103068893B (en) |
WO (1) | WO2012018140A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112557438A (en) * | 2020-11-11 | 2021-03-26 | 南方电网科学研究院有限责任公司 | Method for detecting storage life of pre-crosslinked material for high-voltage alternating-current cable insulation |
EP3855157A1 (en) * | 2020-01-21 | 2021-07-28 | Samsung Electronics Co., Ltd. | Apparatus and method for measuring in-situ crosslink density and crosslinked product and method of forming the same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9874530B2 (en) * | 2014-09-11 | 2018-01-23 | Sumitomo Rubber Industries, Ltd. | Method of measuring crosslink densities in sulfur-containing polymer composite material |
CN104483235A (en) * | 2014-12-05 | 2015-04-01 | 浙江万马高分子材料有限公司 | Method for detecting crosslinkable vinyl polymer chain structure for high voltage cable |
EP3399210B1 (en) * | 2015-12-28 | 2021-04-14 | ASICS Corporation | Impact-mitigating material, shoe sole member, shoe, and protective sports gear |
JP2018080298A (en) * | 2016-11-18 | 2018-05-24 | 三和化工株式会社 | Method for producing polyolefin foam, and polyolefin foam |
JP6487591B1 (en) * | 2017-09-07 | 2019-03-20 | 旭化成株式会社 | Ultra high molecular weight ethylene polymer powder and molded product using ultra high molecular weight ethylene polymer powder |
KR102384286B1 (en) * | 2018-06-22 | 2022-04-06 | 주식회사 엘지화학 | An assessment method for polypropylene resin, a method for preparing polypropylene non-woven fabric, a polypropylene non-woven fabric |
CN110308061B (en) * | 2019-08-14 | 2020-04-21 | 清华大学 | Method and system for measuring elastic modulus and density of material based on three-dimensional structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03213515A (en) * | 1990-01-18 | 1991-09-18 | Kanebo Ltd | Heat-resistant polyurethane elastic yarn |
JP2007238783A (en) * | 2006-03-09 | 2007-09-20 | Mitsui Chemicals Inc | Foaming body |
JP2010077421A (en) * | 2008-08-29 | 2010-04-08 | Sumitomo Chemical Co Ltd | Resin composition for crosslinking foam molding, crosslinked foam molded article, and method for producing crosslinked foam molded article |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5167742B2 (en) * | 2006-09-29 | 2013-03-21 | 住友化学株式会社 | PRESSURE FOAM MOLDING RESIN COMPOSITION, PRESSURE FOAM MOLDED BODY, PROCESS FOR PRODUCING PRESSURE FOAM MOLDED BODY, FOOTHER MEMBER AND FOOD |
-
2011
- 2011-08-03 WO PCT/JP2011/068210 patent/WO2012018140A1/en active Application Filing
- 2011-08-03 CN CN201180037887.6A patent/CN103068893B/en active Active
- 2011-08-03 JP JP2011169889A patent/JP2012052106A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03213515A (en) * | 1990-01-18 | 1991-09-18 | Kanebo Ltd | Heat-resistant polyurethane elastic yarn |
JP2007238783A (en) * | 2006-03-09 | 2007-09-20 | Mitsui Chemicals Inc | Foaming body |
JP2010077421A (en) * | 2008-08-29 | 2010-04-08 | Sumitomo Chemical Co Ltd | Resin composition for crosslinking foam molding, crosslinked foam molded article, and method for producing crosslinked foam molded article |
Non-Patent Citations (1)
Title |
---|
THE SOCIETY OF POLYMER SCIENCE, NYUMON KOBUNSHI TOKUSEI KAISEKI, 10 June 1984 (1984-06-10), JAPAN, pages 199 - 209 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3855157A1 (en) * | 2020-01-21 | 2021-07-28 | Samsung Electronics Co., Ltd. | Apparatus and method for measuring in-situ crosslink density and crosslinked product and method of forming the same |
US11692920B2 (en) | 2020-01-21 | 2023-07-04 | Samsung Electronics Co., Ltd. | Apparatus and method for measuring in-situ crosslink density and crosslinked product and method of forming the same |
CN112557438A (en) * | 2020-11-11 | 2021-03-26 | 南方电网科学研究院有限责任公司 | Method for detecting storage life of pre-crosslinked material for high-voltage alternating-current cable insulation |
CN112557438B (en) * | 2020-11-11 | 2022-05-20 | 南方电网科学研究院有限责任公司 | Method for detecting storage life of pre-crosslinked material for high-voltage alternating-current cable insulation |
Also Published As
Publication number | Publication date |
---|---|
JP2012052106A (en) | 2012-03-15 |
CN103068893A (en) | 2013-04-24 |
CN103068893B (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012018140A1 (en) | Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam | |
JP5444949B2 (en) | Cross-linked foam molding resin composition, cross-linked foam molded body, and method for producing cross-linked foam molded body | |
CN109476893B (en) | Ethylene/alpha-olefin/diene interpolymer compositions | |
JP2019515816A (en) | Process for preparing a foamed article made of ethylene / α-olefin interpolymer | |
US8039523B2 (en) | Resin composition for press foaming, foam and process for producing the foam | |
WO2008143307A1 (en) | Ethylene polymer composition and film | |
US20130053465A1 (en) | Ethylene/alpha-olefin copolymer for foam production, resin composition for foam production, and method for producing foam | |
JP2012107223A (en) | Ethylenic resin composition, cross-linked foam, member for footwear, and footwear | |
JP4830661B2 (en) | Method for producing foam | |
JP4910364B2 (en) | Resin composition, foamed molded article and multilayer molded article | |
JP5167742B2 (en) | PRESSURE FOAM MOLDING RESIN COMPOSITION, PRESSURE FOAM MOLDED BODY, PROCESS FOR PRODUCING PRESSURE FOAM MOLDED BODY, FOOTHER MEMBER AND FOOD | |
US20060210804A1 (en) | Resin composition, foamed molding and laminate | |
JP2005314638A (en) | Ethylene copolymer, resin composition, foam molded article, and method for producing the same | |
US20020183408A1 (en) | Composition and uses thereof | |
JP4615181B2 (en) | Composition and use thereof | |
US6841583B2 (en) | Composition and uses thereof | |
JP4910363B2 (en) | Resin composition, foamed molded article and multilayer molded article | |
JP2010163603A (en) | Crosslinking foaming resin composition and crosslinked foam body | |
JP2005194400A (en) | Foam, composition for the same foam and its application | |
WO2005075545A1 (en) | PRODUCT OF EXTRUSION FOAM MOLDING OF ETHYLENE-α-OLEFIN COPOLYMER | |
JP4986392B2 (en) | Ethylene copolymer, resin composition, foamed molded product and multilayer molded product | |
EP1391293B1 (en) | Polyethylene alpha olefin copolymer composition and uses thereof | |
KR100520278B1 (en) | Composition and uses thereof | |
JP5215825B2 (en) | Resin composition for foam molding of non-crosslinked mold and method for producing foam molded article of non-crosslinked mold | |
JP2013133420A (en) | Foaming resin composition and method of producing crosslinked foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180037887.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11814762 Country of ref document: EP Kind code of ref document: A1 |