JP4986392B2 - Ethylene copolymer, resin composition, foamed molded product and multilayer molded product - Google Patents

Ethylene copolymer, resin composition, foamed molded product and multilayer molded product Download PDF

Info

Publication number
JP4986392B2
JP4986392B2 JP2004313534A JP2004313534A JP4986392B2 JP 4986392 B2 JP4986392 B2 JP 4986392B2 JP 2004313534 A JP2004313534 A JP 2004313534A JP 2004313534 A JP2004313534 A JP 2004313534A JP 4986392 B2 JP4986392 B2 JP 4986392B2
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
pressure
resin composition
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004313534A
Other languages
Japanese (ja)
Other versions
JP2005314641A (en
Inventor
勝大 山田
龍弘 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004313534A priority Critical patent/JP4986392B2/en
Priority to TW094107253A priority patent/TWI370140B/en
Priority to KR1020050023988A priority patent/KR101191685B1/en
Priority to CN2005100625564A priority patent/CN1676537B/en
Publication of JP2005314641A publication Critical patent/JP2005314641A/en
Application granted granted Critical
Publication of JP4986392B2 publication Critical patent/JP4986392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/061Special surface effect
    • B05D5/063Reflective effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means

Description

本発明は、発泡成形用エチレン系共重合体、発泡成形用樹脂組成物、発泡成形体および多層成形体に関するものである。   The present invention relates to an ethylene copolymer for foam molding, a resin composition for foam molding, a foam molded body, and a multilayer molded body.

ポリエチレン系樹脂からなる発泡成形体と、非ポリエチレン系樹脂からなる成形体とを積層してなる多層成形体は、日用雑貨、床材、遮音材、断熱材として広範囲に使用されており、例えば、エチレン−酢酸ビニル共重合体を加圧発泡成形してなる成形体を所望の形状に裁断してなる上部底(ミッドソール)と下部底(アウターソール)を積層してなる靴底、エチレン−酢酸ビニル共重合体を加圧発泡成形してなる成形体を所望の形状に裁断して得られた部材を、再度加圧発泡成形してなる上部底と、スチレン−ブタジエンゴムなどからなる下部底とを積層してなる靴底などが知られている(例えば、特許文献1参照。)   Multi-layer molded products obtained by laminating a foam molded product made of polyethylene resin and a molded product made of non-polyethylene resin are widely used as daily goods, flooring materials, sound insulation materials, heat insulating materials, for example, , A shoe sole formed by laminating an upper bottom (mid sole) and a lower bottom (outer sole) obtained by cutting a molded product obtained by pressure-foaming molding of an ethylene-vinyl acetate copolymer into a desired shape, ethylene- An upper bottom formed by pressure-foaming a member obtained by cutting a molded body obtained by pressure-foaming molding of vinyl acetate copolymer into a desired shape, and a lower bottom made of styrene-butadiene rubber, etc. A shoe sole formed by laminating and the like is known (see, for example, Patent Document 1).

特開平11−151101号公報JP-A-11-151101

しかしながら、エチレン−酢酸ビニル共重合体を加圧発泡成形してなる成形体を所望の形状に裁断してなる上部底と、上部底とは異なる材料(例えばポリ塩化ビニル樹脂など)からなる下部底を積層してなる靴底は、エチレン−酢酸ビニル共重合体からなる発泡層の気泡性状が均一であるため、外観に優れるものの、該発泡層と該異なる材料からなる層との層間接着性において、十分満足のいくものではなかった。
かかる状況のもと、本発明が解決しようとする課題は、加圧発泡成形体を所望の形状に裁断してなる部材からなる発泡層と、該部材とは異なる材料からなる層とを積層してなる多層成形体であって、発泡層と該異なる材料からなる層との層間接着性および発泡層の外観に優れる多層成形体が得られる加圧発泡成形用エチレン系共重合体、該エチレン系共重合体と発泡剤とを含有する樹脂組成物、該樹脂組成物を加圧発泡成形してなる加圧発泡成形体、ならびに、該加圧発泡成形体からなる発泡層とエチレン系共重合体とは異なる材料からなる層とを積層してなる多層成形体を提供することにある。
However, an upper bottom obtained by cutting a molded body obtained by pressure-foaming molding of an ethylene-vinyl acetate copolymer into a desired shape, and a lower bottom made of a material different from the upper bottom (for example, polyvinyl chloride resin). The shoe sole formed by laminating the foamed layer made of an ethylene-vinyl acetate copolymer has a uniform cell property, and thus has an excellent appearance, but in the interlayer adhesion between the foamed layer and the layer made of the different material. It was not satisfactory enough.
Under such circumstances, the problem to be solved by the present invention is to laminate a foam layer made of a member obtained by cutting a pressure-foamed molded article into a desired shape and a layer made of a material different from the member. An ethylene-based copolymer for pressure-foaming molding, which provides a multilayer molded body excellent in interlayer adhesion between the foamed layer and the layer made of the different material and the appearance of the foamed layer, the ethylene-based copolymer RESIN COMPOSITION CONTAINING COPOLYMER AND FLOATING AGENT, PRESSURE FOAM MOLDED BODY FORMED BY PRESSURE FOAM MOLDING OF THE RESIN COMPOSITION, AND FOAM LAYER COMPRISING THE PRESSURE FOAMED MOLDED BODY AND ETHYLENE COPOLYMER An object of the present invention is to provide a multilayer molded body formed by laminating layers made of different materials.

すなわち、本発明の第一は、エチレンに基づく単量体単位と炭素原子数が3〜20のα−オレフィンに基づく単量体単位とを有するエチレン系共重合体であって、メルトフローレートが0.05〜0.8g/10分であり、流動の活性化エネルギーが40kJ/mol以上である加圧発泡成形用エチレン系共重合体に係るものである。
本発明の第二は、上記エチレン系共重合体と発泡剤とを含有する加圧発泡成形用樹脂組成物に係るものである。
本発明の第三は、上記加圧発泡成形用樹脂組成物を加圧発泡成形してなる加圧発泡成形体に係るものである。
本発明の第四は、上記加圧発泡成形体からなる層とエチレン系樹脂以外の材料からなる層とを積層してなる多層成形体に係るものである。
That is, the first of the present invention is an ethylene copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, wherein the melt flow rate is This relates to an ethylene copolymer for pressure foam molding having a flow activation energy of 40 kJ / mol or more at 0.05 to 0.8 g / 10 min.
A second aspect of the present invention relates to a pressure foam molding resin composition containing the ethylene copolymer and a foaming agent.
A third aspect of the present invention relates to a pressure foam molded article obtained by pressure foam molding the above resin composition for pressure foam molding.
A fourth aspect of the present invention relates to a multilayer molded body formed by laminating a layer made of the above-mentioned pressure-foamed molded body and a layer made of a material other than the ethylene-based resin.

本発明により、加圧発泡成形体を所望の形状に裁断してなる部材からなる発泡層と、該部材とは異なる材料からなる層とを積層してなる多層成形体であって、発泡層と該異なる材料からなる層との層間接着性および発泡層の外観に優れる多層成形体が得られる加圧発泡成形用エチレン系共重合体、該エチレン系共重合体と発泡剤とを含有する樹脂組成物、該樹脂組成物を加圧発泡成形してなる加圧発泡成形体、ならびに、該加圧発泡成形体からなる発泡層とエチレン系共重合体とは異なる材料からなる層とを積層してなる多層成形体を提供することができる。   According to the present invention, there is provided a multilayer molded body obtained by laminating a foamed layer made of a member obtained by cutting a pressure-foamed molded body into a desired shape, and a layer made of a material different from the member, An ethylene-based copolymer for pressure-foaming molding that provides a multilayer molded article having excellent interlayer adhesion to the layers made of different materials and the appearance of the foamed layer, and a resin composition containing the ethylene-based copolymer and a foaming agent A foamed product formed by pressurizing and foaming the resin composition, and a foamed layer made of the pressured foamed molded product and a layer made of a material different from the ethylene copolymer A multilayer molded body can be provided.

本発明の加圧発泡成形用エチレン系共重合体は、エチレンに基づく単量体単位と炭素原子数が3〜20のα−オレフィンに基づく単量体単位とを有するエチレン系共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−デセンなどがあげられ、好ましくは、1−ブテン、1−ヘキセンである。   The ethylene-based copolymer for pressure foam molding of the present invention is an ethylene-based copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms. . Examples of the α-olefin include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and 1-decene, and preferably 1-butene and 1-hexene.

本発明のエチレン系共重合体としては、エチレン−1−ブテン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−デセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体などをあげることができ、強度の観点から、好ましくは、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体であり、より好ましくは、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ヘキセン共重合体である。   Examples of the ethylene copolymer of the present invention include an ethylene-1-butene copolymer, an ethylene-4-methyl-1-pentene copolymer, an ethylene-1-hexene copolymer, and an ethylene-1-octene copolymer. Ethylene-1-decene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, ethylene-1-butene-1-hexene copolymer, ethylene-1-butene-1-octene copolymer From the viewpoint of strength, an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, and an ethylene-1-butene-1-hexene copolymer are preferable. More preferred are ethylene-1-butene-1-hexene copolymers and ethylene-1-hexene copolymers.

本発明のエチレン系共重合体は、該共重合体中の全単量体単位の含有量を100重量%として、エチレンに基づく単量体単位を50重量%以上含有することが好ましい。   The ethylene-based copolymer of the present invention preferably contains 50% by weight or more of monomer units based on ethylene, with the content of all monomer units in the copolymer being 100% by weight.

本発明のエチレン系共重合体のメルトフローレート(MFR)は、0.05〜0.8g/10分である。該MFRが小さすぎると発泡倍率が低下することがあり、好ましくは0.1g/10分以上である。また、該MFRが大きすぎると層間接着性が低下することがあり、好ましくは、0.6g/10分以下である。なお、該MFRは、JIS K7210−1995に従い、温度190℃および荷重21.18Nの条件でA法により測定される。   The melt flow rate (MFR) of the ethylene-based copolymer of the present invention is 0.05 to 0.8 g / 10 min. If the MFR is too small, the expansion ratio may decrease, and is preferably 0.1 g / 10 min or more. Moreover, when this MFR is too large, interlayer adhesiveness may fall, Preferably it is 0.6 g / 10min or less. The MFR is measured by the A method according to JIS K7210-1995 under conditions of a temperature of 190 ° C. and a load of 21.18N.

本発明のエチレン系共重合体は、流動の活性化エネルギー(Ea)が40kJ/mol以上である共重合体である。従来知られたエチレン−α−オレフィン共重合体のEaは40kJ/molよりも低く、該共重合体からなる加圧発泡成形体は、気泡性状が不均一になり、外観に劣ることがある。気泡性状を高める観点から、Eaとしては、好ましくは50kJ/mol以上であり、より好ましくは55kJ/mol以上である。また、該Eaは、加圧発泡成形体の表面をより滑らかにする観点から、好ましくは100kJ/mol以下であり、より好ましくは90kJ/mol以下である。   The ethylene-based copolymer of the present invention is a copolymer having a flow activation energy (Ea) of 40 kJ / mol or more. The Ea of a conventionally known ethylene-α-olefin copolymer is lower than 40 kJ / mol, and the pressure-foamed molded product made of the copolymer has a non-uniform cell shape and may have a poor appearance. From the viewpoint of enhancing the bubble property, Ea is preferably 50 kJ / mol or more, and more preferably 55 kJ / mol or more. The Ea is preferably 100 kJ / mol or less, and more preferably 90 kJ / mol or less, from the viewpoint of making the surface of the pressure foam molded article smoother.

流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位:Pa・sec)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
The flow activation energy (Ea) is a master curve showing the dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. on the angular frequency (unit: rad / sec) based on the temperature-time superposition principle. Is a numerical value calculated by the Arrhenius equation from the shift factor (a T ) at the time of creating the value, and is a value obtained by the following method. That is, the melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (the unit of melt complex viscosity is Pa · sec. The unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), The shift factor (a T ) at each temperature (T) obtained when superposed on the melt complex viscosity-angular frequency curve of the coalescence is obtained, and each temperature (T) and the shift factor at each temperature ( T ) are obtained. From (a T ), a first-order approximate expression (formula (I) below) of [ln (a T )] and [1 / (T + 273.16)] is calculated by the method of least squares. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = m (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor Ea: Activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4.
The shift factor (a T ) is obtained by moving the logarithmic curve of the melt complex viscosity-angular frequency at each temperature (T) in the log (Y) = − log (X) axis direction (however, the Y axis Is the complex viscosity of the melt, and the X axis is the angular frequency.), And the amount of movement when superposed on the melt complex viscosity-angular frequency curve at 190 ° C., in the superposition, melting at each temperature (T) The logarithmic curve of complex viscosity-angular frequency shifts the angular frequency by a T times and the melt complex viscosity by 1 / a T times for each curve. Moreover, the correlation coefficient when calculating | requiring (I) Formula by the least squares method from the value of four points | pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.

溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。   The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec. The measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.

本発明のエチレン系共重合体の密度は、加圧発泡成形体のカットなど二次加工性を高める観点から、好ましくは890kg/m3以上であり、より好ましくは900kg/m3以上であり、更に好ましくは905kg/m3以上である。また、加圧発泡成形体の柔軟性を高める観点から、該密度は、好ましくは930kg/m3以下であり、より好ましくは925kg/m3以下である。なお、該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に記載の水中置換法により測定される。 The density of the ethylene-based copolymer of the present invention is preferably 890 kg / m 3 or more, more preferably 900 kg / m 3 or more, from the viewpoint of enhancing secondary processability such as cutting of a pressure-foamed molded article. More preferably, it is 905 kg / m 3 or more. Further, from the viewpoint of increasing the flexibility of the pressure foam molded article, the density is preferably 930 kg / m 3 or less, more preferably 925 kg / m 3 or less. The density is measured by an underwater substitution method described in JIS K7112-1980 after annealing described in JIS K6760-1995.

本発明のエチレン系共重合体の製造方法としては、下記助触媒担体(A)、架橋型ビスインデニルジルコニウム錯体(B)および有機アルミニウム化合物(C)を接触させて得られる触媒の存在下、エチレンと炭素原子数3〜20のα−オレフィンとを共重合する方法があげられる。   As the method for producing an ethylene-based copolymer of the present invention, in the presence of a catalyst obtained by contacting the following promoter support (A), the crosslinked bisindenyl zirconium complex (B) and the organoaluminum compound (C), Examples thereof include a method of copolymerizing ethylene and an α-olefin having 3 to 20 carbon atoms.

上記の助触媒担体(A)は、(a)ジエチル亜鉛、(b)フッ素化フェノール、(c)水、(d)シリカおよび(e)トリメチルジシラザン(((CH33Si)2NH)を接触させて得られる担体である。 The above promoter support (A) comprises (a) diethylzinc, (b) fluorinated phenol, (c) water, (d) silica and (e) trimethyldisilazane (((CH 3 ) 3 Si) 2 NH ).

上記(a)、(b)、(c)各成分の使用量は特に制限はないが、各成分の使用量のモル比率を成分(a):成分(b):成分(c)=1:y:zとすると、yおよびzが下記の式を満足することが好ましい。
|2−y−2z|≦1
上記の式におけるyとして、好ましくは0.01〜1.99の数であり、より好ましくは0.10〜1.80の数であり、さらに好ましくは0.20〜1.50の数であり、最も好ましくは0.30〜1.00の数である。
The amount of each component (a), (b), (c) used is not particularly limited, but the molar ratio of the amount of each component used is the component (a): component (b): component (c) = 1: When y: z, y and z preferably satisfy the following formula.
| 2-y-2z | ≦ 1
Y in the above formula is preferably a number of 0.01 to 1.99, more preferably a number of 0.10 to 1.80, and still more preferably a number of 0.20 to 1.50. Most preferably, the number is 0.30 to 1.00.

また、成分(a)に対して使用する成分(d)の量としては、成分(a)と成分(d)との接触により得られる粒子に含まれる亜鉛原子のモル数が、該粒子1gあたり0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。成分(d)に対して使用する成分(e)の量としては、成分(d)1gあたり成分(e)0.1mmol以上となる量であることが好ましく、0.5〜20mmolとなる量であることがより好ましい。   The amount of component (d) used relative to component (a) is such that the number of moles of zinc atoms contained in the particles obtained by contacting component (a) and component (d) is 1 g of the particles. The amount is preferably 0.1 mmol or more, and more preferably 0.5 to 20 mmol. The amount of the component (e) to be used with respect to the component (d) is preferably an amount that makes the component (e) 0.1 mmol or more per 1 g of the component (d), and an amount that becomes 0.5 to 20 mmol. More preferably.

架橋型ビスインデニルジルコニウム錯体(B)として、好ましくはラセミ−エチレンビス(1−インデニル)ジルコニウムジクロライド、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシドである。   The cross-linked bisindenyl zirconium complex (B) is preferably racemic-ethylenebis (1-indenyl) zirconium dichloride or racemic-ethylenebis (1-indenyl) zirconium diphenoxide.

また、有機アルミニウム化合物(C)として、好ましくはトリイソブチルアルミニウム、トリノルマルオクチルアルミニウムである。   The organoaluminum compound (C) is preferably triisobutylaluminum or trinormaloctylaluminum.

架橋型ビスインデニルジルコニウム錯体(B)の使用量は、助触媒担体(A)1gあたり、好ましくは5×10-6〜5×10-4molである。また有機アルミニウム化合物(C)の使用量として、好ましくは、架橋型ビスインデニルジルコニウム錯体(B)のジルコニウム原子1モルあたり、有機アルミニウム化合物(C)のアルミニウム原子が1〜2000モルとなる量である。 The amount of the bridged bisindenyl zirconium complex (B) used is preferably 5 × 10 −6 to 5 × 10 −4 mol per 1 g of the promoter support (A). The amount of the organoaluminum compound (C) used is preferably such that the aluminum atom of the organoaluminum compound (C) is 1 to 2000 moles per mole of zirconium atoms in the cross-linked bisindenyl zirconium complex (B). is there.

重合方法として、好ましくは、エチレン系共重合体の粒子の形成を伴う連続重合方法であり、例えば、連続気相重合、連続スラリー重合、連続バルク重合であり、好ましくは、連続気相重合である。気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に攪拌翼が設置されていてもよい。   The polymerization method is preferably a continuous polymerization method involving the formation of ethylene copolymer particles, for example, continuous gas phase polymerization, continuous slurry polymerization, continuous bulk polymerization, and preferably continuous gas phase polymerization. . The gas phase polymerization reaction apparatus is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion. A stirring blade may be installed in the reaction vessel.

本発明のエチレン系重合体の製造に用いられるメタロセン系オレフィン重合用触媒の各成分を反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。触媒の各成分は個別に供給してもよく、任意の成分を任意の順序にあらかじめ接触させて供給してもよい。
また、本重合を実施する前に、予備重合を実施し、予備重合された予備重合触媒成分を本重合の触媒成分または触媒として使用することが好ましい。
As a method of supplying each component of the metallocene olefin polymerization catalyst used in the production of the ethylene polymer of the present invention to the reaction vessel, usually, using an inert gas such as nitrogen or argon, hydrogen, ethylene or the like, A method of supplying in a state free from moisture and a method of supplying each component in a solution or slurry after dissolving or diluting each component in a solvent are used. Each component of the catalyst may be supplied individually, or arbitrary components may be supplied in contact in advance in an arbitrary order.
Moreover, it is preferable to carry out prepolymerization before carrying out the main polymerization and to use the prepolymerized prepolymerized catalyst component as a catalyst component or catalyst for the main polymerization.

重合温度としては、通常、エチレン系共重合体が溶融する温度未満であり、好ましくは0〜150℃であり、より好ましくは30〜100℃である。
また、共重合体の溶融流動性を調節する目的で、水素を分子量調節剤として添加してもよい。そして、混合ガス中に不活性ガスを共存させてもよい。
The polymerization temperature is usually below the temperature at which the ethylene copolymer melts, preferably 0 to 150 ° C, more preferably 30 to 100 ° C.
Further, hydrogen may be added as a molecular weight regulator for the purpose of regulating the melt fluidity of the copolymer. An inert gas may coexist in the mixed gas.

本発明のエチレン系共重合体は、加圧発泡成形体の製造に用いられる。該共重合体を用いる加圧発泡成形体の製造方法としては、例えば、該エチレン系共重合体と発泡剤とを、発泡剤が分解しない温度で、ミキシングロール、ニーダー、押出機等によって溶融混合して得られた組成物を、射出成型機等によって金型に充填し、加圧(保圧)・加熱状態で発泡させ、次いで冷却して加圧発泡成形体を取り出す方法、該溶融混合して得られた組成物を、金型に入れ、加圧プレス機等により加圧(保圧)・加熱状態で発泡させ、次いで冷却して加圧発泡成形体を取り出す方法などがあげられる。   The ethylene-based copolymer of the present invention is used for the production of a pressure foam molded article. As a method for producing a pressure-foamed molded article using the copolymer, for example, the ethylene copolymer and the foaming agent are melt-mixed by a mixing roll, a kneader, an extruder, or the like at a temperature at which the foaming agent is not decomposed. The composition thus obtained is filled into a mold by an injection molding machine or the like, foamed in a pressurized (holding pressure) / heated state, then cooled, and the pressurized foamed molded product is taken out, and then melt mixed. Examples thereof include a method in which the composition obtained in this manner is placed in a mold and foamed in a pressurized (holding) / heated state with a pressure press or the like, and then cooled to take out the pressurized foamed molded article.

本発明で使用し得る発泡剤としては、当該共重合体の溶融温度以上の分解温度を有する熱分解型発泡剤をあげることができる。例えば、アゾジカルボンアミド、アゾジカルボン酸バリウム、アゾビスブチルニトリル、ニトロジグァニジン、N,N−ジニトロソペンタメチレンテトラミン、N,N’−ジメチル−N,N’−ジニトロソテレフタルアミド、P−トルエンスルホニルヒドラジド、P,P’−オキシビス(ベンゼンスルホニルヒドラジド)アゾビスイソブチロニトリル、P,P’−オキシビスベンゼンスルホニルセミカルバジッド、5−フェニルテトラゾール、トリヒドラジノトリアジン、ヒドラゾジカルボンアミド等をあげることができ、これは1種類あるいは2種類以上を組み合わせて用いられる。これらの中でもアゾジカルボンアミドまたは炭酸水素ナトリウムが好ましい。また、発泡剤の配合割合は、エチレン系共重合体100重量部に対し、通常、1〜50重量部、好ましくは1〜15重量部である。   Examples of the foaming agent that can be used in the present invention include a thermally decomposable foaming agent having a decomposition temperature equal to or higher than the melting temperature of the copolymer. For example, azodicarbonamide, barium azodicarboxylate, azobisbutylnitrile, nitrodiguanidine, N, N-dinitrosopentamethylenetetramine, N, N′-dimethyl-N, N′-dinitrosotephthalamide, P— Toluenesulfonyl hydrazide, P, P′-oxybis (benzenesulfonylhydrazide) azobisisobutyronitrile, P, P′-oxybisbenzenesulfonyl semicarbazide, 5-phenyltetrazole, trihydrazinotriazine, hydrazodicarbonamide, etc. Which can be used singly or in combination of two or more. Among these, azodicarbonamide or sodium hydrogen carbonate is preferable. The blending ratio of the foaming agent is usually 1 to 50 parts by weight, preferably 1 to 15 parts by weight with respect to 100 parts by weight of the ethylene copolymer.

上記の溶融混合して得られた組成物には、必要に応じて、発泡助剤を配合してもよい。該発泡助剤としては、尿素を主成分とした化合物;酸化亜鉛、酸化鉛等の金属酸化物;サリチル酸、ステアリン酸等などの高級脂肪酸;該高級脂肪酸の金属化合物などがあげられる。発泡助剤の使用量は、発泡剤と発泡助剤との合計を100重量%として、好ましくは0.1〜30重量%であり、より好ましくは1〜20重量%である。   You may mix | blend a foaming adjuvant with the composition obtained by said melt-mixing as needed. Examples of the foaming aid include compounds mainly composed of urea; metal oxides such as zinc oxide and lead oxide; higher fatty acids such as salicylic acid and stearic acid; and metal compounds of the higher fatty acids. The amount of the foaming aid used is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight, with the total of the foaming agent and the foaming aid being 100% by weight.

また、上記の溶融混合して得られた組成物には、必要に応じて、架橋剤を配合し、該架橋剤を配合した組成物を加熱架橋発泡して架橋加圧発泡成形体としてもよい。該架橋剤としては、当該共重合体の流動開始温度以上の分解温度を有する有機過酸化物が好適に用いられ、例えば、ジクミルパーオキサイド、1,1−ジターシャリーブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキシン、α,α−ジターシャリーブチルパーオキシイソプロピルベンゼン、ターシャリーブチルパーオキシケトン、ターシャリーブチルパーオキシベンゾエートなどをあげることができる。なお、本発明の加圧発泡成形体を靴底や靴底部材に用いる場合、加圧発泡成形体を架橋加圧発泡成形体とすることが好ましい。   Further, the composition obtained by the above melt mixing may be blended with a crosslinking agent as necessary, and the composition blended with the crosslinking agent may be heat-crosslinked and foamed to form a crosslinked pressure-foamed molded article. . As the crosslinking agent, an organic peroxide having a decomposition temperature equal to or higher than the flow start temperature of the copolymer is preferably used. For example, dicumyl peroxide, 1,1-ditertiary butyl peroxy-3,3 , 5-trimethylcyclohexane, 2,5-dimethyl-2,5-ditertiary butyl peroxyhexane, 2,5-dimethyl-2,5-ditertiary butyl peroxyhexine, α, α-ditertiary butyl peroxy Examples thereof include isopropylbenzene, tertiary butyl peroxyketone, and tertiary butyl peroxybenzoate. In addition, when using the pressure foaming molding of this invention for a shoe sole or a shoe sole member, it is preferable to make a pressure foaming molding into a bridge | crosslinking pressure foaming molding.

更には、上記の溶融混合して得られた組成物には、必要に応じて、架橋助剤、耐熱安定剤、耐候剤、滑剤、帯電防止剤、充填材や顔料(酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化ケイ素等の金属酸化物;炭酸マグネシウム、炭酸カルシウム等の炭酸塩;パルプ等の繊維物質など)などの各種添加剤を配合してもよく、必要に応じて、高圧法低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ酢酸ビニル、ポリブテン等の樹脂・ゴム成分を配合してもよい。   Furthermore, in the composition obtained by the above melt mixing, if necessary, a crosslinking aid, a heat stabilizer, a weathering agent, a lubricant, an antistatic agent, a filler or a pigment (zinc oxide, titanium oxide, Various additives such as metal oxides such as calcium oxide, magnesium oxide, and silicon oxide; carbonates such as magnesium carbonate and calcium carbonate; fiber materials such as pulp) may be blended. Resin / rubber components such as low density polyethylene, high density polyethylene, polypropylene, polyvinyl acetate, and polybutene may be blended.

本発明の多層積層体は、本発明のエチレン系共重合体を加圧発泡成形してなる発泡層と、エチレン系樹脂以外の材料からなる層とを積層してなる多層積層体である。該エチレン系樹脂以外の材料としては、塩化ビニル樹脂材料、スチレン系共重合体ゴム材料、オレフィン系共重合体ゴム材料(エチレン系共重合体ゴム材料、プロピレン系共重合体ゴム材料など)、天然皮革材料、人工皮革材料、布材料などがあげられ、これらの材料は、少なくとも1種の材料が用いられる。   The multilayer laminate of the present invention is a multilayer laminate obtained by laminating a foam layer formed by pressure foam molding of the ethylene copolymer of the present invention and a layer made of a material other than an ethylene resin. Materials other than the ethylene resin include vinyl chloride resin material, styrene copolymer rubber material, olefin copolymer rubber material (ethylene copolymer rubber material, propylene copolymer rubber material, etc.), natural A leather material, an artificial leather material, a cloth material, and the like can be mentioned, and at least one kind of material is used as these materials.

本発明の多層積層体の製造方法としては、例えば、本発明のエチレン系共重合体を加圧発泡成形してなる加圧発泡成形体を、上述した方法で成形した後、所望の形状に裁断して加圧発泡成形体からなる部材を作成し、次いで、該部材と、別途成形した非エチレン系樹脂材料からなる成形体とを、熱貼合あるいは化学接着剤などによる貼合する方法などがあげられる。該化学接着剤としては公知のものが使用できる。その中でも特にウレタン系化学接着剤やクロロプレン系化学接着剤などが好ましい。またこれら化学接着剤による貼合の際に、プライマーと呼ばれる上塗り剤を事前に塗布してもよい。   As a method for producing the multilayer laminate of the present invention, for example, a pressure-foamed molded body obtained by pressure-foaming molding of the ethylene-based copolymer of the present invention is molded by the above-described method, and then cut into a desired shape. Then, a member made of a pressure-foamed molded body is prepared, and then the member and a molded body made of a non-ethylene resin material that is separately molded are bonded together by heat bonding or chemical adhesive, etc. can give. Known chemical adhesives can be used. Of these, urethane chemical adhesives and chloroprene chemical adhesives are particularly preferable. Moreover, you may apply | coat the top coat called a primer beforehand in the case of bonding by these chemical adhesives.

本発明の加圧発泡成形体は、靴底や靴底部材に好適に用いられ、靴底部材としては、上部底(ミッドソール)として好適に用いられる。該上部底は、非エチレン系樹脂材料からなる下部底(アウターソール)と積層することにより、靴底や靴底部材として用いられる。また、本発明の多層成形体は、靴底以外に、断熱材、緩衝材などの建築資材などにも用いられる。   The pressure foam molded article of the present invention is suitably used for a shoe sole or a shoe sole member, and is suitably used as an upper sole (midsole) as a shoe sole member. The upper bottom is used as a shoe sole or a shoe sole member by being laminated with a lower bottom (outer sole) made of a non-ethylene resin material. In addition to the shoe sole, the multilayer molded body of the present invention is also used for building materials such as a heat insulating material and a cushioning material.

以下、実施例および比較例によって、本発明をより詳細に説明する。
[I]物性測定方法
(1)メルトフローレート(MFR)
JIS K7210−1995に従い、温度190℃、荷重21.18Nでの条件でA法により測定した。
(2)密度
JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980に記載の水中置換法により測定した。
(3)流動の活性化エネルギー(Ea)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での動的粘度−角周波数曲線を測定し、次に、得られた動的粘度−角速度曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、流動の活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素下
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples.
[I] Physical property measurement method (1) Melt flow rate (MFR)
According to JIS K7210-1995, it measured by A method on the conditions with a temperature of 190 degreeC and a load of 21.18N.
(2) Density After performing the annealing described in JIS K6760-1995, the density was measured by the underwater substitution method described in JIS K7112-1980.
(3) Flow activation energy (Ea)
Using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), dynamic viscosity-angular frequency curves at 130 ° C, 150 ° C, 170 ° C and 190 ° C were measured under the following measurement conditions. From the obtained dynamic viscosity-angular velocity curve, Rheometrics R. The activation energy (Ea) of the flow was determined using 4.4.4.
<Measurement conditions>
Geometry: Parallel plate Plate diameter: 25mm
Plate spacing: 1.5-2mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec Measurement atmosphere: Under nitrogen

(4)層間接着性
発泡成形体から縦10cm×横2mm×厚み1cmの試験片を切り出し、縦10cm×横2mm面の長手方向の端3cm部分に、プライマー(ノーテープ工業株式会社製「PE−120」)を塗布し、30分乾燥後、接着剤(同社製「9640」)を塗布し、塩化ビニル樹脂製シート(接着剤(同社製「2400」)を塗布したもの)を貼合・圧着させ、次に50℃で10分間乾燥することにより、発泡層と塩化ビニル樹脂層とを有する多層積層体を得た。該多層積層体の発泡層と塩化ビニル樹脂層とを、180度剥離試験機(TENSILON社製UTM−1−2500)を用いて、50mm/分の剥離速度で剥離することにより、発泡層と塩化ビニル樹脂層の接着強度を測定した。接着強度は、以下のとおり判定した。
○:接着強度が、15N/20mm巾以上である。
△:接着強度が、12N/20mm巾以上、15N/20mm巾未満である。
×:接着強度が、12N/20mm巾未満である。
(5)多層成形体の外観
多層発泡体の発泡層の外観を目視にて以下の通り評価した。
○:気泡形状が均一である。
△:気泡形状がやや不均一である。
×:気泡形状が不均一である。
(4) Interlaminar Adhesion A test piece of 10 cm long × 2 mm wide × 1 cm thick was cut out from the foamed molded article, and a primer (“PE-120” manufactured by No-Tape Kogyo Co., Ltd.) was placed on the 3 cm end in the longitudinal direction of the 10 cm long × 2 mm wide surface. ”), And after drying for 30 minutes, an adhesive (“ 9640 ”manufactured by the company) is applied, and a vinyl chloride resin sheet (applied with an adhesive (“ 2400 ”manufactured by the company)) is bonded and pressed. Then, the laminate was dried at 50 ° C. for 10 minutes to obtain a multilayer laminate having a foam layer and a vinyl chloride resin layer. By peeling the foamed layer and the vinyl chloride resin layer of the multilayer laminate at a peeling rate of 50 mm / min using a 180 degree peel tester (UTM-1-2500 manufactured by TENSILON), the foamed layer and the chloride layer are peeled off. The adhesive strength of the vinyl resin layer was measured. The adhesive strength was determined as follows.
○: Adhesive strength is 15 N / 20 mm width or more.
Δ: Adhesive strength is 12 N / 20 mm width or more and less than 15 N / 20 mm width.
X: Adhesive strength is less than 12N / 20mm width.
(5) Appearance of multilayer molded body The appearance of the foamed layer of the multilayer foam was visually evaluated as follows.
○: The bubble shape is uniform.
Δ: The bubble shape is slightly non-uniform.
X: The bubble shape is non-uniform.

実施例1
(1)助触媒担体の調製
特開2003−171415号公報の実施例10(1)および(2)の成分(A)と同様にして固体生成物(以下、助触媒担体(A1)と称する)を調製した。
Example 1
(1) Preparation of promoter support Solid product (hereinafter referred to as promoter support (A1)) in the same manner as component (A) in Example 10 (1) and (2) of JP-A No. 2003-171415 Was prepared.

(2)予備重合
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、上記助触媒担体(A1)0.6kgと、ブタン80リットル、1−ブテン0.03kg、常温常圧の水素として11リットルを仕込んだ後、オートクレーブを40℃まで昇温した。さらにエチレンをオートクレーブ内のガス相圧力で0.2MPa分だけ仕込み、系内が安定した後、トリイソブチルアルミニウム210mmol、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド70mmolを投入して重合を開始した。45℃へ昇温するとともに、エチレンと水素を連続で供給しながら、49℃で合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(A1)1g当り14gのエチレン−1−ブテン共重合体が予備重合された予備重合触媒成分を得た。
(2) Preliminary polymerization In an autoclave with a stirrer having an internal volume of 210 liters, which was previously purged with nitrogen, 0.6 kg of the above promoter support (A1), 80 liters of butane, 0.03 kg of 1-butene, and 11 hydrogen as normal temperature and normal pressure After charging the liter, the autoclave was heated to 40 ° C. Further, ethylene was charged by 0.2 MPa for the gas phase pressure in the autoclave, and after the system was stabilized, 210 mmol of triisobutylaluminum and 70 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide were added to initiate polymerization. . While raising the temperature to 45 ° C. and continuously supplying ethylene and hydrogen, preliminary polymerization was carried out at 49 ° C. for a total of 4 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged, and the remaining solid was vacuum-dried at room temperature, whereby 14 g of ethylene-1-butene copolymer was prepolymerized per 1 g of the promoter support (A1). A prepolymerized catalyst component was obtained.

(3)連続気相重合
上記の予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ヘキセンの共重合を実施した。重合条件は、温度75℃、全圧2MPa、エチレンに対する水素モル比は0.31%、エチレンに対する1−ヘキセンモル比は1.2%で、重合中はガス組成を一定に維持するためにエチレン、1−ヘキセン、水素を連続的に供給した。さらに、流動床の総パウダー重量を80kgに維持し、平均重合時間4hrとなるように、上記予備重合触媒成分と、トリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合により、22kg/hrの生産効率でエチレン−1−ヘキセン共重合体(以下、PE(1)と称する。)のパウダーを得た。
(3) Continuous gas phase polymerization Using the above prepolymerization catalyst component, ethylene and 1-hexene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus. The polymerization conditions were a temperature of 75 ° C., a total pressure of 2 MPa, a hydrogen molar ratio to ethylene of 0.31%, a 1-hexene molar ratio to ethylene of 1.2%, ethylene to maintain a constant gas composition during the polymerization, 1-hexene and hydrogen were continuously supplied. Furthermore, the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 4 hours. By polymerization, a powder of an ethylene-1-hexene copolymer (hereinafter referred to as PE (1)) was obtained with a production efficiency of 22 kg / hr.

(4)エチレン−1−ヘキセン共重合体パウダーの造粒
上記で得たPE(1)のパウダーを、神戸製鋼所社製LCM50押出機を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜215℃の条件で造粒することにより、PE(1)のペレットを得た。PE(1)のMFRは0.1g/10分、密度は909kg/m3、流動の活性化エネルギーは70.5kJ/molであった。
(4) Granulation of ethylene-1-hexene copolymer powder Using the LCM50 extruder manufactured by Kobe Steel, the PE (1) powder obtained above was fed at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, Pelletizing PE (1) was obtained by granulation under conditions of a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 215 ° C. PE (1) had an MFR of 0.1 g / 10 min, a density of 909 kg / m 3 , and a flow activation energy of 70.5 kJ / mol.

(5)発泡成形
PE(1)100重量部と、重質炭酸カルシウム50重量部と、ステアリン酸1重量部と、酸化亜鉛0.9重量部と、化学発泡剤(三協化成株式会社製「セルマイクCE」)6.4重量部と、ジクミルパーオキサイド1.2重量部とを、ロール混練機を用いて、ロール温度120℃、5分間混錬を行い、樹脂組成物を得た。該樹脂組成物を10cm×10cm×1cmの金型に充填し、温度150℃、時間10分間、圧力1MPaの条件で加圧発泡させることにより発泡成形体を得た。得られた発泡成形体の物性評価結果を表1に示す。
(5) Foam molding PE (1) 100 parts by weight, heavy calcium carbonate 50 parts by weight, stearic acid 1 part by weight, zinc oxide 0.9 part by weight, chemical foaming agent (manufactured by Sankyo Kasei Co., Ltd. Cel weight CE ”)) and 6.4 parts by weight of dicumyl peroxide were kneaded using a roll kneader at a roll temperature of 120 ° C. for 5 minutes to obtain a resin composition. The resin composition was filled in a 10 cm × 10 cm × 1 cm mold and foamed under pressure under the conditions of a temperature of 150 ° C., a time of 10 minutes, and a pressure of 1 MPa to obtain a foamed molded article. Table 1 shows the physical property evaluation results of the obtained foamed molded article.

実施例2
(1)助触媒担体の調製
特開2003−171415号公報の実施例10(1)および(2)の成分(A)と同様にして固体生成物(以下、助触媒担体(A2)と称する。)を調製した。
Example 2
(1) Preparation of promoter support In the same manner as component (A) in Example 10 (1) and (2) of JP-A No. 2003-171415, it is referred to as a solid product (hereinafter referred to as promoter support (A2)). ) Was prepared.

(2)予備重合
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、上記助触媒担体(A2)0.7kgと、ブタン80リットル、1−ブテン0.02kg、常温常圧の水素として11リットルを仕込んだ後、オートクレーブを40℃まで昇温した。さらにエチレンをオートクレーブ内のガス相圧力で0.2MPa分だけ仕込み、系内が安定した後、トリイソブチルアルミニウム315mmol、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド105mmolを投入して重合を開始した。47℃へ昇温するとともに、エチレンと水素を連続で供給しながら、50℃で合計4時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(A2)1g当り13gのエチレン−1−ブテン共重合体が予備重合された予備重合触媒成分を得た。
(2) Prepolymerization Into an autoclave with a stirrer having an internal volume of 210 liters that has been previously purged with nitrogen, 0.7 kg of the above promoter support (A2), 80 liters of butane, 0.02 kg of 1-butene, and 11 hydrogen as normal temperature and pressure. After charging the liter, the autoclave was heated to 40 ° C. Further, ethylene was charged for 0.2 MPa at the gas phase pressure in the autoclave, and after the system was stabilized, 315 mmol of triisobutylaluminum and 105 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide were added to initiate polymerization. . While raising the temperature to 47 ° C. and supplying ethylene and hydrogen continuously, prepolymerization was carried out at 50 ° C. for a total of 4 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged, and the remaining solid was vacuum-dried at room temperature, so that 13 g of ethylene-1-butene copolymer was prepolymerized per 1 g of the promoter support (A2). A prepolymerized catalyst component was obtained.

(3)連続気相重合
上記の予備重合触媒成分を用い、連続式流動床気相重合装置でエチレンと1−ブテンの共重合を実施した。重合条件は、温度75℃、全圧2MPa、エチレンに対する水素モル比は0.6%、エチレンに対する1−ブテンモル比は7.5%で、重合中はガス組成を一定に維持するためにエチレン、1−ブテン、水素を連続的に供給した。さらに、流動床の総パウダー重量を80kgに維持し、平均重合時間4hrとなるように、上記予備重合触媒成分と、トリイソブチルアルミニウムとを一定の割合で連続的に供給した。重合により、22kg/hrの生産効率でエチレン−1−ブテン共重合体(以下、PE(2)と称する。)のパウダーを得た。
(3) Continuous gas phase polymerization Using the above prepolymerization catalyst component, ethylene and 1-butene were copolymerized in a continuous fluidized bed gas phase polymerization apparatus. The polymerization conditions were a temperature of 75 ° C., a total pressure of 2 MPa, a hydrogen molar ratio to ethylene of 0.6%, a 1-butene molar ratio to ethylene of 7.5%, ethylene to maintain a constant gas composition during the polymerization, 1-butene and hydrogen were continuously supplied. Furthermore, the pre-polymerization catalyst component and triisobutylaluminum were continuously supplied at a constant ratio so that the total powder weight of the fluidized bed was maintained at 80 kg and the average polymerization time was 4 hours. By polymerization, a powder of ethylene-1-butene copolymer (hereinafter referred to as PE (2)) was obtained with a production efficiency of 22 kg / hr.

(4)エチレン−1−ブテン共重合体パウダーの造粒
上記で得たPE(2)のパウダーを、神戸製鋼所社製LCM50押出機を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜215℃の条件で造粒することにより、PE(2)のペレットを得た。PE(2)のMFRは0.3g/10分、密度は902kg/m3、流動の活性化エネルギーは67.4kJ/molであった。
(4) Granulation of ethylene-1-butene copolymer powder Using the LCM50 extruder manufactured by Kobe Steel, the PE (2) powder obtained above was fed at a feed rate of 50 kg / hr, a screw rotation speed of 450 rpm, By pelletizing under the conditions of a gate opening degree of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 215 ° C., PE (2) pellets were obtained. PE (2) had an MFR of 0.3 g / 10 min, a density of 902 kg / m 3 , and a flow activation energy of 67.4 kJ / mol.

(5)発泡成形
PE(1)に代えて、PE(2)を用いた以外は、実施例1に従って発泡成形を行った。得られた発泡成形体の物性評価結果を表1に示す。
(5) Foam molding Foam molding was performed according to Example 1 except that PE (2) was used instead of PE (1). Table 1 shows the physical property evaluation results of the obtained foamed molded article.

比較例1
PE(1)に代えて、市販のエチレン−酢酸ビニル共重合体(住友化学工業株式会社製 エバテートH2020[MFR=1.3g/10分、密度=936kg/m3、流動の活性化エネルギー=63.2kJ/mol];以下、EVAと称する。)を用い、ジクミルパーオキサイドを1.0重量部とした以外は、実施例1に従って発泡成形を行った。得られた発泡成形体の物性評価結果を表1に示す。
Comparative Example 1
Instead of PE (1), a commercially available ethylene-vinyl acetate copolymer (Evatate H2020 manufactured by Sumitomo Chemical Co., Ltd. [MFR = 1.3 g / 10 min, density = 936 kg / m 3 , flow activation energy = 63 0.2 kJ / mol]; hereinafter referred to as EVA), and foam molding was performed according to Example 1 except that 1.0 part by weight of dicumyl peroxide was used. Table 1 shows the physical property evaluation results of the obtained foamed molded article.

比較例2
PE(1)に代えて、市販の高圧ラジカル重合法低密度ポリエチレン(住友化学工業株式会社製 スミカセン G201[MFR=2g/10分、密度=919kg/m3、流動の活性化エネルギー=66.0kJ/mol];以下、LDと称する。)を用いた以外は、実施例1に従って発泡成形を行った。得られた発泡成形体の物性評価結果を表2に示す。
Comparative Example 2
Instead of PE (1), commercially available high-pressure radical polymerization method low-density polyethylene (Sumitomo Chemical Co., Ltd. Sumikasen G201 [MFR = 2 g / 10 min, density = 919 kg / m 3 , flow activation energy = 66.0 kJ / Mol]; hereinafter referred to as LD), foam molding was performed according to Example 1. Table 2 shows the physical property evaluation results of the obtained foamed molded article.

比較例3
PE(1)に代えて、市販のエチレン−1−ヘキセン共重合体(住友化学工業株式会社製 スミカセンE FV401[MFR=4g/10分、密度=905kg/m3、流動の活性化エネルギー=33.2kJ/mol];以下、LLと称する。)を用いた以外は、実施例1に従って発泡成形を行ったが、破泡により発泡成形体に割れが生じた。
Comparative Example 3
Instead of PE (1), a commercially available ethylene-1-hexene copolymer (Sumikasen E FV401 manufactured by Sumitomo Chemical Co., Ltd. [MFR = 4 g / 10 min, density = 905 kg / m 3 , flow activation energy = 33) .2 kJ / mol]; hereinafter referred to as LL), foam molding was performed according to Example 1, but cracking occurred in the foamed molded product due to foam breakage.

比較例4
(1)助触媒担体の調製
特開2003−171415号公報の実施例10(1)および(2)に記載の成分(A)の合成と同様な方法で、固体生成物(以下、助触媒担体(A3)と称する。)を得た。
Comparative Example 4
(1) Preparation of promoter support In the same manner as the synthesis of component (A) described in Example 10 (1) and (2) of JP-A No. 2003-171415, a solid product (hereinafter referred to as promoter support) (Referred to as (A3)).

(2)予備重合
予め窒素置換した内容積210リットルの撹拌機付きオートクレーブに、上記助触媒担体(A3)0.7kgと、ブタン100リットル、1−ブテン0.02kg、常温常圧の水素として12リットルを仕込んだ後、オートクレーブを42℃まで昇温した。さらにエチレンをオートクレーブ内のガス相圧力で0.1MPa分だけ仕込み、系内が安定した後、トリイソブチルアルミニウム225mmol、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド75mmolを投入して重合を開始した。50℃へ昇温するとともに、エチレンと水素を連続で供給しながら、50℃で合計6時間の予備重合を実施した。重合終了後、エチレン、ブタン、水素ガスなどをパージして残った固体を室温にて真空乾燥し、上記助触媒担体(A3)1g当り13gのエチレン−1−ブテン共重合体が予備重合された予備重合触媒成分を得た。
(2) Prepolymerization Into an autoclave with a stirrer having an internal volume of 210 liters, which was previously purged with nitrogen, 0.7 kg of the above promoter support (A3), 100 liters of butane, 0.02 kg of 1-butene, 12 hydrogen as normal temperature and normal pressure After charging the liter, the autoclave was heated to 42 ° C. Further, ethylene was charged by 0.1 MPa as the gas phase pressure in the autoclave, and after the system was stabilized, 225 mmol of triisobutylaluminum and 75 mmol of racemic-ethylenebis (1-indenyl) zirconium diphenoxide were added to initiate polymerization. . While raising the temperature to 50 ° C. and continuously supplying ethylene and hydrogen, preliminary polymerization was carried out at 50 ° C. for a total of 6 hours. After the polymerization was completed, ethylene, butane, hydrogen gas and the like were purged, and the remaining solid was vacuum-dried at room temperature, so that 13 g of ethylene-1-butene copolymer was prepolymerized per 1 g of the promoter support (A3). A prepolymerized catalyst component was obtained.

(3)連続気相重合
連続式流動床気相重合装置を用いて、重合温度は85℃、重合圧力は2MPaとし、上記予備重合触媒成分、トリイソブチルアルミニウム、エチレン、1−ブテン、1−ヘキセンおよび水素を反応器内に連続的に供給して、反応ガス中のエチレンに対する水素のモル比を1.53%、エチレンに対する1−ブテン、1−ヘキセンのモル比をそれぞれ2.5%、0.3%、平均重合時間5hrの条件として、エチレンと1−ブテンと1−ヘキセンの共重合を実施した。重合により、エチレン−1−ブテン−1−ヘキセン共重合体(以下、PE(3)と称する。)のパウダーを得た。
(3) Continuous gas phase polymerization Using a continuous fluidized bed gas phase polymerization apparatus, the polymerization temperature is 85 ° C., the polymerization pressure is 2 MPa, the pre-polymerization catalyst component, triisobutylaluminum, ethylene, 1-butene, 1-hexene. And hydrogen are continuously fed into the reactor, the molar ratio of hydrogen to ethylene in the reaction gas is 1.53%, and the molar ratios of 1-butene and 1-hexene to ethylene are 2.5% and 0%, respectively. The copolymerization of ethylene, 1-butene and 1-hexene was carried out under the conditions of 0.3% and an average polymerization time of 5 hours. By polymerization, a powder of an ethylene-1-butene-1-hexene copolymer (hereinafter referred to as PE (3)) was obtained.

(4)エチレン−1−ブテン−1−ヘキセン共重合体パウダーの造粒
上記で得たPE(3)のパウダーを、神戸製鋼所社製LCM50押出機を用いて、フィード速度50kg/hr、スクリュー回転数450rpm、ゲート開度50%、サクション圧力0.1MPa、樹脂温度200〜215℃の条件で造粒することにより、PE(3)のペレットを得た。PE(3)のMFRは1.3g/10分、密度は923kg/m3、流動の活性化エネルギーは71.0kJ/molであった。
(4) Granulation of ethylene-1-butene-1-hexene copolymer powder Using the LCM50 extruder manufactured by Kobe Steel, the powder of PE (3) obtained above was fed at a feed rate of 50 kg / hr, screw Granulation was performed under the conditions of a rotation speed of 450 rpm, a gate opening of 50%, a suction pressure of 0.1 MPa, and a resin temperature of 200 to 215 ° C., thereby obtaining PE (3) pellets. PE (3) had an MFR of 1.3 g / 10 min, a density of 923 kg / m 3 , and a flow activation energy of 71.0 kJ / mol.

(5)発泡成形
PE(1)に代えて、PE(3)を用いた以外は、実施例1に従って発泡成形を行った。得られた発泡成形体の物性評価結果を表2に示す。
(5) Foam molding Foam molding was performed according to Example 1 except that PE (3) was used instead of PE (1). Table 2 shows the physical property evaluation results of the obtained foamed molded article.

Figure 0004986392
Figure 0004986392

Figure 0004986392
Figure 0004986392

Claims (7)

エチレンに基づく単量体単位と炭素原子数が3〜20のα−オレフィンに基づく単量体単位とを有するエチレン系共重合体であって、メルトフローレートが0.05〜0.8g/10分であり、流動の活性化エネルギーが40〜90kJ/molであるエチレン系共重合体と発泡剤とを含有する樹脂組成物。 An ethylene copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, and having a melt flow rate of 0.05 to 0.8 g / 10 A resin composition comprising an ethylene copolymer having a flow activation energy of 40 to 90 kJ / mol and a foaming agent. エチレン系共重合体100重量部あたり、発泡剤を1〜50重量部含有する請求項1に記載の樹脂組成物。  The resin composition according to claim 1, comprising 1 to 50 parts by weight of a foaming agent per 100 parts by weight of the ethylene copolymer. 請求項1または2に記載の樹脂組成物を加圧発泡成形してなる加圧発泡成形体。  A pressure foam molded article obtained by pressure foam molding of the resin composition according to claim 1. 請求項3記載の加圧発泡成形体からなる靴底。  A shoe sole comprising the pressure-foamed molded article according to claim 3. 請求項3に記載の加圧発泡成形体からなる発泡層と、エチレン系樹脂以外の材料からなる層とを積層してなる多層積層体。  The multilayer laminated body formed by laminating | stacking the foaming layer which consists of a pressurization foaming molding of Claim 3, and the layer which consists of materials other than ethylene-type resin. エチレン系樹脂以外の材料からなる層が、塩化ビニル樹脂材料、スチレン系共重合体ゴム材料、オレフィン系共重合体ゴム材料、天然皮革材料、人工皮革材料、および布材料からなる群から選ばれる少なくとも1種の材料を含有する層である請求項5に記載の積層体。  The layer made of a material other than ethylene-based resin is at least selected from the group consisting of vinyl chloride resin material, styrene-based copolymer rubber material, olefin-based copolymer rubber material, natural leather material, artificial leather material, and cloth material The laminate according to claim 5, which is a layer containing one kind of material. 請求項5また6に記載の多層積層体からなる靴底。  A shoe sole comprising the multilayer laminate according to claim 5 or 6.
JP2004313534A 2004-03-31 2004-10-28 Ethylene copolymer, resin composition, foamed molded product and multilayer molded product Expired - Fee Related JP4986392B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004313534A JP4986392B2 (en) 2004-03-31 2004-10-28 Ethylene copolymer, resin composition, foamed molded product and multilayer molded product
TW094107253A TWI370140B (en) 2004-03-31 2005-03-10 Ethylene copolymers, a composition of the ethylene copolymers, a foamed articles and a multilayer laminate
KR1020050023988A KR101191685B1 (en) 2004-03-31 2005-03-23 Ethylene copolymers, a composition of the ethylene copolymers, a foamed articles and a multilayer laminate
CN2005100625564A CN1676537B (en) 2004-03-31 2005-03-29 Ethene copolymer, resin composition, foaming formed body and multi-layer formed body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004104348 2004-03-31
JP2004104348 2004-03-31
JP2004313534A JP4986392B2 (en) 2004-03-31 2004-10-28 Ethylene copolymer, resin composition, foamed molded product and multilayer molded product

Publications (2)

Publication Number Publication Date
JP2005314641A JP2005314641A (en) 2005-11-10
JP4986392B2 true JP4986392B2 (en) 2012-07-25

Family

ID=35049300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313534A Expired - Fee Related JP4986392B2 (en) 2004-03-31 2004-10-28 Ethylene copolymer, resin composition, foamed molded product and multilayer molded product

Country Status (4)

Country Link
JP (1) JP4986392B2 (en)
KR (1) KR101191685B1 (en)
CN (1) CN1676537B (en)
TW (1) TWI370140B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131848B (en) 2008-08-29 2013-02-06 住友化学株式会社 Resin composition for cross-linked foam molding, cross-linked foam molded article, and method for production of cross-linked foam molded article
US20120123006A1 (en) * 2009-05-29 2012-05-17 Sumitomo Chemical Company, Limited Resin composition for crosslinking/foam molding, crosslinked molded foam, member for footwear, and footwear
JP2011132402A (en) * 2009-12-25 2011-07-07 Sumitomo Chemical Co Ltd ETHYLENE-alpha-OLEFIN COPOLYMER FOR FOAMING, RESIN COMPOSITION FOR FOAMING, AND FOAM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344015B2 (en) * 1993-08-23 2002-11-11 住友化学工業株式会社 Ethylene-α-olefin copolymer and molded article molded from the copolymer
KR100456392B1 (en) * 2001-02-01 2004-11-10 미쓰이 가가쿠 가부시키가이샤 Elastomeric composition for preparing olefinic elastomer crosslinked foam and use thereof

Also Published As

Publication number Publication date
KR101191685B1 (en) 2012-10-16
CN1676537B (en) 2012-03-21
TWI370140B (en) 2012-08-11
JP2005314641A (en) 2005-11-10
KR20060044614A (en) 2006-05-16
TW200607818A (en) 2006-03-01
CN1676537A (en) 2005-10-05

Similar Documents

Publication Publication Date Title
US8344037B2 (en) Resin composition for cross-linked foam molding, cross-linked foam molded article, and method for production of cross-linked foam molded article
KR101144689B1 (en) Ethylene copolymer, resin composition thereof, foamed article and a method of producing the foamed article
JP6804549B2 (en) Process for preparing foamed articles made from ethylene / α-olefin interpolymers
JP2012052106A (en) Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam
JP2005255988A (en) ETHYLENE-alpha-OLEFIN COPOLYMER FOR EXTRUSIVE EXPANSION MOLDING AND EXTRUSIVE EXPANSION MOLDED PRODUCT
JP4910364B2 (en) Resin composition, foamed molded article and multilayer molded article
US20080081845A1 (en) Resin composition for press foaming, foam and process for producing the foam
US20060210804A1 (en) Resin composition, foamed molding and laminate
JP4910363B2 (en) Resin composition, foamed molded article and multilayer molded article
KR101191685B1 (en) Ethylene copolymers, a composition of the ethylene copolymers, a foamed articles and a multilayer laminate
JP4830661B2 (en) Method for producing foam
JP2012107223A (en) Ethylenic resin composition, cross-linked foam, member for footwear, and footwear
JP5167742B2 (en) PRESSURE FOAM MOLDING RESIN COMPOSITION, PRESSURE FOAM MOLDED BODY, PROCESS FOR PRODUCING PRESSURE FOAM MOLDED BODY, FOOTHER MEMBER AND FOOD
JP5309903B2 (en) Extruded foam molding resin composition and extruded foam molding
JP4615181B2 (en) Composition and use thereof
WO2005075545A1 (en) PRODUCT OF EXTRUSION FOAM MOLDING OF ETHYLENE-α-OLEFIN COPOLYMER
WO2012057347A1 (en) Resin composition, cross-linked foam, member for footwear, and footwear
KR101199282B1 (en) Resin composition, foamed article and laminated article
JP2005194400A (en) Foam, composition for the same foam and its application
EP1391293B1 (en) Polyethylene alpha olefin copolymer composition and uses thereof
JP2009215394A (en) Extrusion foaming molding resin composition, extrusion foaming molded body, and its manufacturing method
JP4739308B2 (en) Laminate and its use
JP2013133421A (en) Extruded foam
JP2000281828A (en) Powdery polymer composition for blow holding
JP2010144024A (en) Resin composition for crosslinking and foaming and crosslinked foamed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees