JPH03213515A - Heat-resistant polyurethane elastic yarn - Google Patents

Heat-resistant polyurethane elastic yarn

Info

Publication number
JPH03213515A
JPH03213515A JP704390A JP704390A JPH03213515A JP H03213515 A JPH03213515 A JP H03213515A JP 704390 A JP704390 A JP 704390A JP 704390 A JP704390 A JP 704390A JP H03213515 A JPH03213515 A JP H03213515A
Authority
JP
Japan
Prior art keywords
yarn
component
polyurethane
polyurethane elastic
polyisocyanate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP704390A
Other languages
Japanese (ja)
Other versions
JP2773943B2 (en
Inventor
Yasuo Muramoto
村元 康男
Sei Yoshimoto
吉本 聖
Yoshiaki Morishige
森重 吉明
Shozo Fujimoto
藤本 正三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2007043A priority Critical patent/JP2773943B2/en
Publication of JPH03213515A publication Critical patent/JPH03213515A/en
Application granted granted Critical
Publication of JP2773943B2 publication Critical patent/JP2773943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject yarn which is yarn crosslinked by reaction of a thermoplastic polyurethane with a polyisocyanate compound, having specific physical properties, excellent in heat resistance due to a moderate crosslinking density and producible by an industrially advantageous melt spinning method. CONSTITUTION:The objective yarn which is polyurethane elastic yarn, crosslinked by reaction of (A) a thermoplastic polyurethane with (B) a polyisocyanate compound and containing >=2wt.% undissolved part present in dissolving the yarn in dimethyl sulfoxide containing a monoamine compound added thereto. The aforementioned yarn is preferably obtained by melt mixing the component (B) with an elastomer of the component (A) in melt spinning and spinning the resultant mixture. A polyisocyanate prepared by reacting an NCO component such as tolylene diisocyanate with a polyol component such as polyether diol and having 2.03-2.8 number of NCO groups and 800-5000 molecular weight is preferred as the component (B).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はポリウレタン弾性糸に関するものであり、詳し
くは溶融紡糸法により得られる耐熱性のすぐれたポリウ
レタン弾性糸に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a polyurethane elastic yarn, and more particularly to a polyurethane elastic yarn with excellent heat resistance obtained by a melt spinning method.

〈従来の技術〉 ポリウレタン弾性糸いわゆるスパンデックス0の耐熱性
は、その製造方法例えば乾式、湿式、溶融紡糸法により
大きく影響をうけることが知られている。このうち、乾
、湿式紡糸により得られる糸は、ハードセグメントのド
メインが強固な水素結合をつくり得るように鎖延長剤と
してジアミンが用いられ、結果として糸の耐熱性を向上
させている。一方溶融紡糸法により得られる糸は、熱可
塑性ポリウレタンを一度溶融するため強固なハードセグ
メントが生成されず、高温下からの回復性、抵抗力等の
耐熱性は大巾に上記2紡糸法による糸に比べて劣ってい
る。
<Prior Art> It is known that the heat resistance of polyurethane elastic yarn, so-called spandex 0, is greatly affected by its manufacturing method, such as dry, wet, or melt spinning. Among these, in the yarns obtained by dry and wet spinning, diamine is used as a chain extender so that the hard segment domains can form strong hydrogen bonds, and as a result, the heat resistance of the yarns is improved. On the other hand, in the yarn obtained by the melt spinning method, strong hard segments are not generated because the thermoplastic polyurethane is melted once, and the heat resistance such as recovery ability and resistance from high temperatures is significantly lower than that of the yarn obtained by the above two spinning methods. is inferior to.

この耐熱性の1つの目安として温度−伸びのクリープ曲
線を考えてみると、耐熱性のない糸は低い温度でクリー
プする、即ち伸び量が急激に増大するし、耐熱性のある
糸では高い温度領域までクリープしない。このクリープ
挙動に着目するならば、熱可塑性ポリウレタンをそのま
ま溶融紡糸した糸は、第1図の■の如きクリープ挙動を
するが、系内にビユレット、アロファネート等の架橋結
合を積極的に導入した糸では、その架橋密度の大小によ
り、図中■、■の如き挙動を示し、熱に対する抵抗力が
増してくる。しかし、図中IV、VVI■のように挙動
する耐熱性ある糸は未だないのが実情である。
If we consider the temperature-elongation creep curve as a measure of heat resistance, yarns with no heat resistance creep at low temperatures, that is, the amount of elongation increases rapidly, and yarns with heat resistance creep at high temperatures. Does not creep into the area. If we focus on this creep behavior, a yarn made by melt-spinning thermoplastic polyurethane as it is will exhibit creep behavior as shown in ■ in Figure 1, but a yarn made by actively introducing cross-linking such as billet or allophanate into the system Depending on the size of the crosslinking density, the material exhibits the behavior shown in (■) and (■) in the figure, and its resistance to heat increases. However, the reality is that there is still no heat-resistant yarn that behaves as indicated by IV and VVI■ in the figure.

〈発明が解決しよ・うとする課題〉 従って、本発明は溶融紡糸法で、好適な架橋密度をもつ
従来にない耐熱性あるウレタン弾性糸を提供するにある
<Problems to be Solved by the Invention> Therefore, the present invention is to provide an unprecedented heat-resistant urethane elastic yarn having a suitable crosslinking density using a melt spinning method.

く課題を解決するための手段〉 即ち、本発明のポリウレタン弾性糸は、熱可塑性ポリウ
レタンとポリイソシアネート化合物との反応により架橋
された糸において、モノアミン化合物を添加したジメチ
ルスルホキシド中で溶解した時、2重量%以上の不溶解
部分があることを特徴とする。
Means for Solving the Problems> That is, the polyurethane elastic yarn of the present invention is a yarn crosslinked by the reaction of thermoplastic polyurethane and a polyisocyanate compound, and when dissolved in dimethyl sulfoxide to which a monoamine compound has been added, 2 It is characterized by having an undissolved portion of at least % by weight.

溶融紡糸法により得られたポリウレタン弾性糸において
、耐熱性をもたせる重要な因子である架橋密度は、よく
知られているように化学的及び物理的方法により決定さ
れる。まず、化学的測定方法としては、ジャーナル オ
ブ ポリマー ザイエンス:ボリマー レターズ エデ
イジョン、第17巻、 175〜180頁(1979年
)  (J、 Polymer Sci、: Poly
mer Letters Edition、 Vol、
 IL 175180 (1979))に記載されたア
ミン分解による横巾らの方法があげられる。即ち、プロ
ピルアミン、ブチルアミン、ヘキシルアミン、アニリン
等のモノアミンを含むジメチルスルホキシド中で架橋結
合を切断し、過剰のモノアミンを酸で逆滴定する方法で
ある。我々は、簡便な方法として」−記、モノアミンの
うちブチルアミンを添加したジメチルスルホキシド中で
室温下24時間後の不溶解部分の− 重量を測定することにした。n−ブチルアミン濃度とし
ては充分に室温下で架橋結合を切断するために1150
  Nを用いた。更に、架橋密度の物理的測定方法とし
ては、ヤング率からの値IR,NMRあるいは加熱下の
応力緩和、クリープといった方法も考えられるが、我々
は温度−伸びのクリープ測定に着目した。このクリープ
量即ち、伸び量を非接触で測定する装置並びに方法を既
に我々は特願平1−27103号として出願している。
The crosslinking density, which is an important factor in imparting heat resistance to polyurethane elastic yarns obtained by melt spinning, is determined by chemical and physical methods, as is well known. First, as a chemical measurement method, see Journal of Polymer Science: Polymer Letters Edition, Vol. 17, pp. 175-180 (1979) (J, Polymer Sci,: Polymer Sci.
mer Letters Edition, Vol.
The method of Yokotoba et al. by amine decomposition described in IL 175180 (1979)) is mentioned. That is, the method involves cleaving crosslinks in dimethyl sulfoxide containing monoamines such as propylamine, butylamine, hexylamine, aniline, etc., and then back titrating excess monoamines with acid. As a simple method, we decided to measure the weight of the insoluble portion of the monoamine after 24 hours at room temperature in dimethyl sulfoxide to which butylamine was added. The n-butylamine concentration was 1150 to sufficiently cleave crosslinks at room temperature.
N was used. Further, as a physical method for measuring the crosslink density, methods such as IR, NMR, stress relaxation under heating, and creep based on Young's modulus can be considered, but we focused on temperature-elongation creep measurement. We have already filed an application for an apparatus and method for non-contact measurement of the amount of creep, that is, the amount of elongation, in Japanese Patent Application No. 1-27103.

この装置並びに方法で、種々の架橋密度の糸を試作し、
測定した。勿論、このクリープ測定条件により糸の耐熱
性は変化する。即ち、試料への荷重は通常I mg /
 dが用いられるが、このように軽い荷重の場合には実
際の加工工程では実情に合わないことが多い。これは、
実際の加工工程では、糸には常に外力が加わっているこ
とが多いからと考えられる。又、昇温速度についても実
際の加工工程では、特に温熱セット等を考えてみると例
えば10℃/分といった遅い条件で用いられるケースは
あまりない。そこで鋭意検討した結果我々は12.5m
g/dの5− 荷重、昇温速度70℃/分の、条件を用いることにした
Using this device and method, we prototyped yarns with various crosslinking densities,
It was measured. Of course, the heat resistance of the yarn changes depending on the creep measurement conditions. That is, the load on the sample is usually I mg/
d is used, but in the case of such a light load, it often does not suit the actual situation in the actual machining process. this is,
This is thought to be because in the actual processing process, external forces are often applied to the yarn. Also, regarding the temperature increase rate, in actual processing steps, especially when considering heating settings, there are not many cases in which a slow temperature increase rate of 10° C./min is used, for example. After careful consideration, we decided on 12.5m.
It was decided to use the conditions of a 5-g/d load and a temperature increase rate of 70° C./min.

以上の化学的、物理的架橋密度の測定から詳細に検討し
た結果、工業的に有利で且つ好適な耐熱性を与えるには
、次の要件が必須であることが判明した。即ち、 (1)モノアミン化合物を添加したジメチルスルホキシ
ド中で熔解した時、2重量%以上の不溶解部分があるこ
とを必須とする。又、別の観点からすれば、 (2)温度(T)、伸び率(ε)(ε−ΔL/LO:Δ
I、−伸び量、L、−原長)のクリープ曲線において、
80’Cから170’Cの領域でつε/、JTがO又は
/及び負の値である部分をもつか、又は (3)温度(T)、伸び率(ε)のクリープ曲線におい
て、110’Cから160℃の領域でDε1つT〉0、
且つ伸び率(ε)の変化量(Δε)が3%以下であるか
、 (4)゛温度(T)、伸び率(ε)のクリープ曲線にお
いて、室温から190℃の領域で伸び率(ε)の値が負
である部分をもつことを必須とする。
As a result of detailed study based on the above chemical and physical crosslink density measurements, it was found that the following requirements are essential in order to provide industrially advantageous and suitable heat resistance. That is, (1) When dissolved in dimethyl sulfoxide to which a monoamine compound is added, it is essential that there is an insoluble portion of 2% by weight or more. Also, from another point of view, (2) Temperature (T), elongation rate (ε) (ε-ΔL/LO:Δ
In the creep curve of I, - elongation, L, - original length,
In the region from 80'C to 170'C, there is a part where ε/, JT is O or/and a negative value, or (3) in the creep curve of temperature (T) and elongation rate (ε), 110 'Dε1 T〉0 in the area from 'C to 160℃,
In addition, the amount of change (Δε) in the elongation rate (ε) is 3% or less, or (4) In the creep curve of temperature (T) and elongation rate (ε), the elongation rate (ε) in the region from room temperature to 190℃ ) must have a negative part.

以上のような好適な架橋密度をもつ糸の製造法としては
例えば、溶融紡糸時にポリイソシアネート化合物を熱可
塑性ポリウレタン弾性体に溶融混合し、紡糸する方法を
好適に用いることができる。
As a method for producing a yarn having a suitable crosslinking density as described above, for example, a method of melt-mixing a polyisocyanate compound with a thermoplastic polyurethane elastomer during melt spinning and spinning the mixture can be suitably used.

用いられるポリイソシアネート化合物としては、分子内
に2個以上のイソシアネート基を有する化合物であり、
更に好ましくはイソシアネート基の官能度が2から3の
プレポリマーが好適である。
The polyisocyanate compound used is a compound having two or more isocyanate groups in the molecule,
More preferably, a prepolymer having an isocyanate group functionality of 2 to 3 is suitable.

即ち、ポリイソシアネート化合物を構成するイソシアネ
ート成分としては、p、p’ −ジフェニルメタンジイ
ソシアネート(MDI)、トリレンジイソシアネート(
TDI)、ヘキサ°メチレンジイソシアネート等の2官
能系イソシアネートあるいはこれらのジイソシアネート
と低分子量ポリオール、例えばトリメチロールプロパン
、ヘキサントリオール等との付加物(3官能以上のイソ
シアネート)あるいはジイソシアネートと上記3官能以
上の系のイソシアネートとの混合物、あるいはクルード
MDI、クルードTDI等があげられる。
That is, as the isocyanate component constituting the polyisocyanate compound, p,p'-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (
TDI), bifunctional isocyanates such as hexamethylene diisocyanate, or adducts of these diisocyanates with low molecular weight polyols such as trimethylolpropane, hexanetriol, etc. (tri- or higher-functional isocyanates), or diisocyanates and the above-mentioned tri- or higher-functional systems. isocyanate, crude MDI, crude TDI, etc.

他方、ポリオール成分としては、ポリエチレングリコー
ル、ポリプロピレングリコール、ポリテトラメチレング
リコール、プロピレンオキシド又は(及び)エチレンオ
キシドおよび(又は)ブチレンオキシドを付加したポリ
エーテルジオール又はトリオール類があげられる。更に
ポリカプロラクトンジオール、ポリカーボネートジオー
ル、ポリブチレンアジペートとかのポリエステル系のジ
オール類、又はε−カプロラクトンのラクトンをトリオ
ール、テトロール、ベントール、ヘキソールおよびグラ
イコールとの混合物あるいは上記ポリオールに重付加し
たポリカプロラクトンポリオール類があげられる。
On the other hand, examples of the polyol component include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, propylene oxide, and/or polyether diols or triols to which ethylene oxide and/or butylene oxide are added. Furthermore, polyester diols such as polycaprolactone diol, polycarbonate diol, and polybutylene adipate, or mixtures of ε-caprolactone lactone with triol, tetrol, bentol, hexol, and glycol, or polycaprolactone polyols obtained by polyaddition to the above polyols. can be given.

更に、他の例として、縮合系ポリエステルポリオール例
えばエチレングリコール、プロピレングリコール、ジエ
チレングリコール、ブチレングリコール等の低分子量ジ
オールと、トリメチロールプロパン、ヘキサントリオー
ル、グリセリン等のトリオールとコハク酸、マレイン酸
、アジピン酸の二塩基酸との重縮合反応物があげられる
Further, as another example, condensed polyester polyols such as low molecular weight diols such as ethylene glycol, propylene glycol, diethylene glycol, and butylene glycol, triols such as trimethylolpropane, hexanetriol, and glycerin, and succinic acid, maleic acid, and adipic acid. Examples include polycondensation reaction products with dibasic acids.

以上の如く、本発明に用いられるポリイソシアネート化
合物とは、イソシアネート成分とポリオール成分とから
なる反応物であり、該化合物の1分子中に含まれるイソ
シアネート基の数が2〜3好ましくは2.03〜2.8
となるよう合成されたものである。
As mentioned above, the polyisocyanate compound used in the present invention is a reaction product consisting of an isocyanate component and a polyol component, and the number of isocyanate groups contained in one molecule of the compound is 2 to 3, preferably 2.03. ~2.8
It was synthesized so that

この官能基数が小さすぎると複合糸の耐熱性が低下する
し、逆に大きすぎると粘度が高くなり取扱い上不便とな
るので好ましくない。また、ポリイソシアネート化合物
の分子量としては、400以上、特に800〜5000
が好ましい。又、該ポリイソシアネート化合物のイソシ
アネート基含量NCO%としては3〜20%の範囲が好
ましい。このポリイソシアネート化合物の添加量は使用
するポリイソシアネート化合物のNCO基含有量および
種類により異なるものであるが、熱可塑性ポリウレタン
弾性体に対して5〜40重量%の範囲が好適であり、特
に好ましくは10〜30重景%である。
If the number of functional groups is too small, the heat resistance of the composite yarn will decrease, and if it is too large, the viscosity will increase, making handling difficult, which is not preferable. In addition, the molecular weight of the polyisocyanate compound is 400 or more, especially 800 to 5000.
is preferred. Further, the isocyanate group content NCO% of the polyisocyanate compound is preferably in the range of 3 to 20%. The amount of the polyisocyanate compound added varies depending on the NCO group content and type of the polyisocyanate compound used, but is preferably in the range of 5 to 40% by weight, particularly preferably The ratio is 10 to 30%.

一方の熱可塑性ポリウレタン弾性体とは、分子中に主と
してウレタン結合をもつ広義のポリウレタンをいい、ハ
ードセグメント量としてはショア硬度の測定規格JIS
K6801による硬度Aで約60〜90の範囲が好まし
い。この硬度が高くなりすぎると、熱に対する抵抗性は
上昇するが、室温下あるいは加熱下からの回復性が著る
しく損なわれ、いわゆるスパンデックス■として機能し
なくなるので好ましくない。又、逆に低すぎる場合は紡
糸が不安定となり易い。熱可塑性で上述の硬さをもつも
のであれば、線状ポリウレタンでも一部架橋結合を有す
るウレタンでも使用可能である。
On the other hand, thermoplastic polyurethane elastomer refers to polyurethane in a broad sense that mainly has urethane bonds in its molecules, and the amount of hard segments is determined according to the Shore hardness measurement standard JIS.
A hardness A according to K6801 is preferably in the range of about 60 to 90. If the hardness becomes too high, the resistance to heat will increase, but the recovery properties from room temperature or heating will be significantly impaired, and the material will no longer function as so-called spandex (2), which is not preferable. On the other hand, if it is too low, spinning tends to become unstable. As long as it is thermoplastic and has the above-mentioned hardness, linear polyurethane or urethane partially crosslinked can be used.

〈実施例〉 以下、本発明を実施例により説明するが、本発明はこの
実施例によって拘束されるものではない。
<Examples> The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 脱水した水酸基価57.3のポリカプロラクトンジオー
ル1021.5部と、1,4−ブタンジオール90.2
部とをジャケット付のニーグーに仕込み、攪拌しながら
充分に溶解した後85℃の温度に保ち、これにp、p’
−ジフェニルメタンジイソシアネート0 388.4部を加えて反応させた。得られた反応物を、
ニーダ−から取出し、これを押出機によりペレット状に
成形した。この成型体ば、25℃でジメチルホルムアミ
ド中の相対粘度が2.19であった。
Example 1 1021.5 parts of dehydrated polycaprolactone diol with a hydroxyl value of 57.3 and 90.2 parts of 1,4-butanediol
P and p' were charged in a jacketed Nigu, and after sufficiently dissolving with stirring, the temperature was kept at 85°C, and p, p'
-388.4 parts of diphenylmethane diisocyanate 0 was added and reacted. The obtained reaction product is
The mixture was taken out from the kneader and molded into pellets using an extruder. This molded product had a relative viscosity of 2.19 in dimethylformamide at 25°C.

この成型体の硬度は80であった。同様の組成、方法を
用いて硬度90、相対粘度2.25のポリマーを得た。
The hardness of this molded body was 80. A polymer having a hardness of 90 and a relative viscosity of 2.25 was obtained using the same composition and method.

第1表に示したポリイソシアネート化合物を供給装置に
て溶融した上記ポリウレタン中に注入混合し、直径0.
5mmのノズルに導き紡糸して、紡速600m/分の速
度で40dのフィラメントを得た。
The polyisocyanate compounds shown in Table 1 were injected and mixed into the above melted polyurethane using a feeding device, and the polyisocyanate compounds shown in Table 1 were injected and mixed into the melted polyurethane.
The filament was guided through a 5 mm nozzle and spun to obtain a 40 d filament at a spinning speed of 600 m/min.

結果を第2表に示した。The results are shown in Table 2.

■ なお、この表中190℃回復率とは、30%伸長した試
料糸を190℃の乾熱で1分間熱処理した時の回復率で
あり、次式で計算される値である。
(2) In this table, the 190°C recovery rate is the recovery rate when a sample yarn stretched by 30% is heat treated with dry heat at 190°C for 1 minute, and is a value calculated using the following formula.

Lo :試料糸長(mm) L :試料長し。を30%伸長した長さ(1,3L、m
m) 1、′:試料糸を緊張乾熱処理した後、室温下でリラッ
クスさせた時の糸長さ(mm)架橋度とは、1150 
 N  nブチルアミン−ジメチルスルホキシド中に試
料系を室温下、24時間浸漬した後の試料不溶解物重量
(m)を上記溶液に浸漬する前の試料重量(mo )で
割った値である。即ち、 架橋度(%) =    X 100 (%)O で求められる。
Lo: Sample thread length (mm) L: Sample length. The length obtained by elongating by 30% (1.3L, m
m) 1,': Thread length (mm) when the sample thread is relaxed at room temperature after tension dry heat treatment; degree of crosslinking is 1150
It is the value obtained by dividing the weight of undissolved matter (m) of the sample after immersing the sample system in N n butylamine-dimethyl sulfoxide at room temperature for 24 hours by the weight of the sample before immersing in the solution (mo). That is, it is determined by: Degree of crosslinking (%) = X 100 (%)O.

第2表より、クリープ曲線の図番1.  II、  I
(比較例1−1.1−2.1−4)の如き糸は架橋度も
小さく又、190℃回復率も非常に小さい値しか示さな
いことがわかる。一方、本発明糸はポリイソシアネート
化合物の添加量が多くなるにつれて架橋度が増加するこ
と、又、架橋度が比較例に比し非常に高く従って、耐熱
性も大きくなっていることがわかる。
From Table 2, figure number 1 of the creep curve. II, I
It can be seen that yarns such as (Comparative Example 1-1.1-2.1-4) have a small degree of crosslinking and a very small recovery rate at 190°C. On the other hand, it can be seen that the degree of crosslinking of the yarn of the present invention increases as the amount of polyisocyanate compound added increases, and that the degree of crosslinking is much higher than that of the comparative example, and therefore, the heat resistance is also increased.

〈発明の効果〉 本発明により得られる糸は、溶融紡糸法によるため、他
の紡糸方法(例えば、乾式紡糸法)に比し工業的製造法
として極めて有利である。更に、耐熱性にも優れている
ため種々の用途、例えば、ソックス、水着、ファンデー
ション等特に耐熱性が要求される分野に適用することが
できる。
<Effects of the Invention> Since the yarn obtained by the present invention is produced by the melt spinning method, it is extremely advantageous as an industrial manufacturing method compared to other spinning methods (for example, dry spinning method). Furthermore, since it has excellent heat resistance, it can be applied to various uses, such as socks, swimwear, foundations, and other fields where heat resistance is particularly required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種ポリウレタン系弾性糸の温度伸びのクリ
ープ曲線であり、図中I〜■は従来公知、■〜■は本発
明の耐熱ポリウレタン弾性糸のものである。
FIG. 1 shows creep curves of temperature elongation of various polyurethane elastic yarns, where I to ■ are conventionally known ones, and ■ to ■ are those of the heat-resistant polyurethane elastic yarns of the present invention.

Claims (1)

【特許請求の範囲】 1、熱可塑性ポリウレタンとポリイソシアネート化合物
との反応により架橋された糸において、モノアミン化合
物を添加したジメチルスルホキシド中で溶解した時、2
重量%以上の不溶解部分があることを特徴とするポリウ
レタン弾性糸。 2、温度(T)、伸び率(ε)のクリープ曲線において
、80℃から170℃の領域に∂ε/∂Tが0又は/及
び負の値である部分をもつことを特徴とするポリウレタ
ン弾性糸。3、温度(T)、伸び率(ε)のクリープ曲
線において、110℃から160℃の領域で∂ε/∂T
>0、且つ伸び率(ε)の変化量(Δε)が3%以下で
あることを特徴とするポリウレタン弾性糸。 4、温度(T)、伸び率(ε)のクリープ曲線において
、室温から190℃の領域で伸び率(ε)の値が負であ
る部分をもつことを特徴とするポリウレタン弾性糸。
[Claims] 1. In a yarn crosslinked by the reaction of a thermoplastic polyurethane and a polyisocyanate compound, when dissolved in dimethyl sulfoxide to which a monoamine compound has been added, 2.
A polyurethane elastic yarn characterized by having an insoluble portion of at least % by weight. 2. Polyurethane elasticity characterized by having a portion where ∂ε/∂T is 0 or/and a negative value in the region from 80°C to 170°C in the creep curve of temperature (T) and elongation rate (ε) thread. 3. In the creep curve of temperature (T) and elongation rate (ε), ∂ε/∂T in the region from 110℃ to 160℃
>0, and the amount of change (Δε) in elongation rate (ε) is 3% or less. 4. A polyurethane elastic yarn characterized in that, in a creep curve of temperature (T) and elongation rate (ε), there is a portion where the elongation rate (ε) value is negative in the region from room temperature to 190°C.
JP2007043A 1990-01-18 1990-01-18 Heat resistant polyurethane elastic yarn Expired - Fee Related JP2773943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043A JP2773943B2 (en) 1990-01-18 1990-01-18 Heat resistant polyurethane elastic yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043A JP2773943B2 (en) 1990-01-18 1990-01-18 Heat resistant polyurethane elastic yarn

Publications (2)

Publication Number Publication Date
JPH03213515A true JPH03213515A (en) 1991-09-18
JP2773943B2 JP2773943B2 (en) 1998-07-09

Family

ID=11655025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043A Expired - Fee Related JP2773943B2 (en) 1990-01-18 1990-01-18 Heat resistant polyurethane elastic yarn

Country Status (1)

Country Link
JP (1) JP2773943B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038364A1 (en) * 1997-02-27 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Continuous molded article of polyurethaneurea and production method thereof
WO2012018140A1 (en) * 2010-08-06 2012-02-09 住友化学株式会社 Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam
JP2016503466A (en) * 2012-11-16 2016-02-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Composite fiber, method for producing and using the same, and woven fabric containing the same
EP3399210A4 (en) * 2015-12-28 2019-10-16 ASICS Corporation Impact-mitigating material, shoe sole member, shoe, and protective sports gear

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112409A (en) * 1980-12-27 1982-07-13 Kanebo Synthetic Fibers Ltd Production of polyurethane elastic yarn
JPS5926520A (en) * 1982-08-06 1984-02-10 Daicel Chem Ind Ltd Preparation of urethane elastic yarn having improved elastic recovery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112409A (en) * 1980-12-27 1982-07-13 Kanebo Synthetic Fibers Ltd Production of polyurethane elastic yarn
JPS5926520A (en) * 1982-08-06 1984-02-10 Daicel Chem Ind Ltd Preparation of urethane elastic yarn having improved elastic recovery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038364A1 (en) * 1997-02-27 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Continuous molded article of polyurethaneurea and production method thereof
US6245876B1 (en) 1997-02-27 2001-06-12 Asahi Kasei Kogyo Kabushiki Kaisha Continuous molded article for polyurethaneurea and production method thereof
CN1102182C (en) * 1997-02-27 2003-02-26 旭化成株式会社 Continuous molded article of polyurethaneurea and production method thereof
WO2012018140A1 (en) * 2010-08-06 2012-02-09 住友化学株式会社 Method for measuring crosslinking density of molded article of crosslinked thermoplastic polymer foam and molded article of crosslinked foam
JP2016503466A (en) * 2012-11-16 2016-02-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Composite fiber, method for producing and using the same, and woven fabric containing the same
EP3399210A4 (en) * 2015-12-28 2019-10-16 ASICS Corporation Impact-mitigating material, shoe sole member, shoe, and protective sports gear
US10681959B2 (en) 2015-12-28 2020-06-16 Asics Corporation Shock absorbing material, shoe sole member, shoe, and protective equipment for sports

Also Published As

Publication number Publication date
JP2773943B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
WO2007122124A1 (en) Segmented polyurethane elastomers with high elongation at tear
DE1278687B (en) Process for the production of highly elastic threads or fibers from isocyanate polyaddition products
DE4428458A1 (en) Cycloaliphatic thermoplastic polyurethane elastomers
EP0544912A1 (en) Elastic polyurethane fiber
JPH03213515A (en) Heat-resistant polyurethane elastic yarn
US3494894A (en) Process for producing elastic fibers from polyurethan polymers having a crosslinked structure
US3481905A (en) Polyurethane spinning solutions containing ethylene diamine and 1-amino-3-aminomethyl - 3,5,5 - trimethyl cyclohexane
TW499450B (en) Polyurethaneureas, polyurethaneurea fibre and preparation thereof
US3536803A (en) Process for treating elastomeric fibers
US3198863A (en) Process of curing urethane threads utilizing slow and fast curing agents
JPH07165868A (en) Preparation of polyurethane resin
JPH04214413A (en) Conjugate elastic yarn
KR100555269B1 (en) Polyurethane Fiber Containing Polyvinylidene Fluoride
JP2002348730A (en) Polyurethane elastic fiber for sanitary product
JPS62280214A (en) Polyurethane resin composition
US3542736A (en) Polyurethane fibers derived from 1,4-diethylbenzene-beta,beta&#39;-diisocyanate
US3663677A (en) Process for treating elastomeric fibers
JP4600798B2 (en) Sanitary polyurethane elastic fiber and method for producing the same
JPH0116248B2 (en)
JPH1077323A (en) Polyurethane urea polymer solution and production of elastic formed product therefrom
KR20020088430A (en) Polyurethane and elastic fiber obtained therefrom
DE69619964T9 (en) LOW TEMPERATURE METHOD FOR THE PRODUCTION OF POLYURETHANE SURFACES AND PRODUCTS MANUFACTURED THEREFROM
US3331887A (en) Novel polyurethane elastic filaments and yarns and process for producing the same
JP2720424B2 (en) Sericin-containing biodegradable urethane foam and method for producing the same
JPH11131324A (en) Polyurethane elastic fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees