WO2012017837A1 - Exposure apparatus - Google Patents

Exposure apparatus Download PDF

Info

Publication number
WO2012017837A1
WO2012017837A1 PCT/JP2011/066662 JP2011066662W WO2012017837A1 WO 2012017837 A1 WO2012017837 A1 WO 2012017837A1 JP 2011066662 W JP2011066662 W JP 2011066662W WO 2012017837 A1 WO2012017837 A1 WO 2012017837A1
Authority
WO
WIPO (PCT)
Prior art keywords
light modulation
light
spatial light
alignment
exposure apparatus
Prior art date
Application number
PCT/JP2011/066662
Other languages
French (fr)
Japanese (ja)
Inventor
梶山 康一
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2012017837A1 publication Critical patent/WO2012017837A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • a liquid crystal monomer is applied onto a photo-alignment film that has been subjected to an alignment treatment so that the alignment direction is different between the inside and the periphery of the pattern that becomes a latent image, and then non-polarized light with an appropriately selected wavelength is applied. It can be made by irradiating the whole to crosslink the liquid crystal and directing the liquid crystal molecules in the alignment direction of the photo-alignment film.
  • each of the light modulation elements is formed in a substantially rectangular shape in which the cross-sectional shape orthogonal to the optical axis thereof is long in the relative movement direction of the spatial light modulation means and the base material, and the polarization of the polarized light applied to the base material , Further comprising light beam shaping means for limiting the width in the relative movement direction to a constant width.
  • the width of the polarized light applied to the substrate by the light beam shaping unit in the relative movement direction of the spatial light modulation unit and the substrate is limited to a certain width.
  • the size of the exposure pixel can be easily regulated by the light beam shaping means.
  • a laser light source 2 is provided above the stage 1. This laser light source 2 irradiates the photo-alignment film with a polarized laser beam to orient the photo-alignment film in a certain direction.
  • the laser light source 2 is a linearly-polarized laser and a random-polarized laser if used in combination with a polarizing plate. Also good. Alternatively, a circularly polarized laser may be used. In the following description, the case where the laser light source 2 is a linearly polarized laser will be described.
  • each light modulation element 8 is formed in a substantially rectangular shape having a cross-sectional shape orthogonal to the optical axis that is long in a direction intersecting the alignment direction, and also intersects the alignment direction as shown in FIG. It is formed to be inclined by an angle ⁇ with respect to the direction.
  • the light modulation elements 8 are arranged opposite to each other on the stage 1 so that the arrangement direction of the light modulation elements 8 matches the Y-axis direction.
  • the row of light modulation elements 8 positioned on the side is referred to as a second element row 10.
  • Such a spatial light modulator 3 can be formed as follows, for example. That is, as shown in FIG. 3, a strip-shaped electro-optic crystal material 11 having a constant thickness is formed using, for example, a dicing saw, and a groove 12 having a width W 1 and a depth D is formed along the major axis. excising a depth D of the opposite side portions of the parallel electrooptic crystal material 11 in the width W 2 to 12. At this time, the width W 3 of the portion sandwiched between the groove 12 and the cutout portion 13 of the electro-optic crystal material 11 becomes the width in the X-axis direction of the light modulation element 8 later. 4 is set to be larger than the width w of the four openings 25 (see FIG. 5). In addition, the distance between the center lines of the portion sandwiched between the groove 12 and the cut portion 13 is set to be nw (n is a positive integer).
  • a conductive film is formed on the inner surface of the groove 12 and the cut portion 13 by a known film formation technique such as sputtering, vapor deposition, or CVD.
  • a known film formation technique such as sputtering, vapor deposition, or CVD.
  • a plurality of separation grooves 14 having a width W 4 and a depth d (> D) inclined by an angle ⁇ with respect to an axis orthogonal to the major axis of the electro-optic crystal material 11 are formed at a pitch P.
  • the light modulation element assembly 15 in which the first and second element rows 9 and 10 are arranged in parallel is formed. Thereafter, for example, a conductive paste is applied to the bottom of the groove 12.
  • the conductive film formed on the side surface on the groove 12 side of each of the light modulation elements 8 in the first and second element rows 9 and 10 becomes a common electrode (ground electrode 16), and the groove of each light modulation element 8.
  • the conductive film formed on the side surface opposite to 12 serves as the drive electrode 17.
  • the second element array 10 is shifted in the Y-axis direction with respect to the first element array 9, and the portion between the light modulation elements 8 in the first element array 9 is the second element array 9.
  • the dimension of each part is determined so that each light modulation element 8 of the element row 10 can be complemented.
  • the conductive film may be formed as a base film for the electrodes 16 and 17, and a film of a good conductor such as gold or copper may be formed on the conductive film after the light modulation element assembly 15 is processed. .
  • polarized light whose polarization plane is parallel to the Y axis is referred to as 0 ° polarization
  • polarized light whose polarization plane is parallel to the X axis is referred to as 90 ° polarization.
  • the driving of the light modulation element 8 is not limited to the on / off driving, and the rotation angle of the polarization plane may be controlled by changing the voltage during the on driving, but in this embodiment, the on / off driving is performed. The case will be described.
  • Control means 6 is electrically connected to the spatial light modulation means 3 and the moving means 5. This control means 6 controls the rotation angle of the polarization plane of the polarized light to be transmitted by individually driving each light modulation element 8 of the spatial light modulation means 3, and the CAD data storage section 28 as shown in FIG. A bitmap data creation unit 29, a light modulation element driving unit 30, and a moving means driving control unit 31.
  • the moving means drive control unit 31 controls the driving of the moving means 5 so as to move the spatial light modulating means 3 in the direction of arrow A at a predetermined speed, and based on the output of the position sensor provided in the moving means 5.
  • the CAD data storage unit 28 sequentially operates so as to transfer certain CAD data to the bitmap data creation unit 29.

Abstract

The present invention is provided with: a spatial light modulating means (3), which has a plurality of light modulating elements (8) at a fixed arrangement pitch at least in one row, said light modulating elements being composed of an electrooptical crystalline material; a control means (6) that controls, by separately driving the light modulating elements (8), the rotating angle of the polarization plane of the polarization light to be applied to a base material (7), which is disposed to face the spatial light modulating means (3), and which has a photo-alignment film applied on the surface; and a moving means (5), which relatively moves the spatial light modulating means (3) and the base material (7) in the direction that intersects the direction wherein the light modulating elements (8) are arranged. Consequently, alignment of the photo-alignment film, said alignment being in different alignment directions, can be performed at one time, thereby shortening the alignment step.

Description

露光装置Exposure equipment
 本発明は、光配向膜に偏光を照射して配向させる露光装置に関し、詳しくは、光配向膜における配向方向の異なる配向処理を1回の工程で実現可能にして配向処理工程を短縮しようとする露光装置に係るものである。 The present invention relates to an exposure apparatus that aligns a photo-alignment film by irradiating polarized light. Specifically, the present invention is intended to shorten the alignment process step by making it possible to perform alignment processes with different alignment directions in the photo-alignment film in a single process. This relates to an exposure apparatus.
 クレジットカード、有価証券、及び証明書類のような情報記録媒体の偽造を防止する技術として、目視では印刷画像を視認することができず、偏光板を重ねることでパターン状の潜像が見えるようにした認証媒体が知られている(例えば、特許文献1参照)。 As a technology to prevent counterfeiting of information recording media such as credit cards, securities, and certificates, the printed image cannot be seen with the naked eye, but a patterned latent image can be seen by overlapping the polarizing plates. An authentication medium is known (see, for example, Patent Document 1).
 このような認証媒体は、潜像となる模様の内部と周辺とで配向方向が異なるように配向処理された光配向膜上に液晶モノマーを塗布した後、適切に選択された波長の非偏光を全体に照射して液晶を架橋し、液晶分子を光配向膜の配向方向に向けることによって作ることができる。 In such an authentication medium, a liquid crystal monomer is applied onto a photo-alignment film that has been subjected to an alignment treatment so that the alignment direction is different between the inside and the periphery of the pattern that becomes a latent image, and then non-polarized light with an appropriately selected wavelength is applied. It can be made by irradiating the whole to crosslink the liquid crystal and directing the liquid crystal molecules in the alignment direction of the photo-alignment film.
特表2002-530687号公報JP 2002-530687 A
 しかし、このような従来の配向処理は、潜像と同じパターンを形成したポジ型フォトマスクを介して偏光面が一定方向に向いた偏光を光配向膜に照射して露光した後、上記模様の明暗が反転して形成されたネガ型フォトマスクを介して偏光面が上記偏光と異なる偏光を上記光配向膜に照射して露光するものであった。 However, such conventional alignment treatment is performed by irradiating the photo-alignment film with polarized light whose polarization plane is directed in a certain direction through a positive photomask having the same pattern as the latent image, and then exposing the pattern. The photo-alignment film was exposed by irradiating polarized light having a polarization plane different from the polarized light through a negative photomask formed by reversing light and dark.
 したがって、偏光方向を変えた露光パターニングが必要であるため、ポジ型フォトマスクによる露光とネガ型フォトマスクによる露光の2回の露光を行わなければならいこと、及び上記2回の露光における露光パターンの重ね合わせ精度を高精度に確保しなければならないこと等により、配向処理が複雑になるという問題があった。それ故、配向処理工程を短縮することができなかった。 Accordingly, since exposure patterning with different polarization directions is necessary, exposure with a positive photomask and exposure with a negative photomask must be performed twice, and the exposure pattern in the above two exposures There is a problem that the alignment process becomes complicated due to the fact that the overlay accuracy must be ensured with high accuracy. Therefore, the alignment process step could not be shortened.
 そこで、本発明は、このような問題点に対処し、光配向膜における配向方向の異なる配向処理を1回の工程で実現可能にして配向処理工程を短縮しようとする露光装置を提供することを目的とする。 Therefore, the present invention addresses such problems and provides an exposure apparatus that can achieve alignment processing with different alignment directions in a photo-alignment film in a single process so as to shorten the alignment processing process. Objective.
 上記目的を達成するために、本発明による露光装置は、電気光学結晶材料から成る複数の光変調素子を一定の配列ピッチで少なくとも一列に並べて有する空間光変調手段と、前記各光変調素子を個別に駆動して、前記空間光変調手段に対向して配置され表面に光配向膜を塗布した基材上に照射する偏光の偏光面の回転角度を制御する制御手段と、前記空間光変調手段及び前記基材を前記光変調素子の並び方向と交差する方向に相対移動させる移動手段と、を備えたものである。 In order to achieve the above object, an exposure apparatus according to the present invention comprises a spatial light modulator having a plurality of light modulation elements made of an electro-optic crystal material arranged at least in a line at a constant arrangement pitch, and the light modulation elements individually. And a control means for controlling the rotation angle of the polarization plane of the polarized light irradiated on the substrate disposed opposite to the spatial light modulation means and coated with a photo-alignment film on the surface, the spatial light modulation means, Moving means for relatively moving the base material in a direction intersecting with the arrangement direction of the light modulation elements.
 このような構成により、移動手段で電気光学結晶材料から成る複数の光変調素子を一定の配列ピッチで少なくとも一列に並べて有する空間光変調手段と、該空間光変調手段に対向して配置され表面に光配向膜を塗布した基材とを上記光変調素子の並び方向と交差する方向に相対移動させながら、制御手段で各光変調素子を個別に駆動して基材に照射する偏光の偏光面の回転角度を制御して光配向膜を露光する。 With such a configuration, the spatial light modulator having a plurality of light modulation elements made of an electro-optic crystal material arranged in a fixed arrangement pitch in at least one line by the moving means, and the spatial light modulator arranged opposite to the spatial light modulation means on the surface While relatively moving the base material coated with the photo-alignment film in the direction intersecting with the arrangement direction of the light modulation elements, the polarization plane of polarized light irradiated to the base material by individually driving each light modulation element by the control means The photo-alignment film is exposed by controlling the rotation angle.
 また、前記各光変調素子は、前記空間光変調手段及び基材の前記相対移動方向に一定距離だけ離隔して互い違いに二列に並べて設けられている。これにより、空間光変調手段及び基材の相対移動方向に一定距離だけ離隔して互い違いに二列に並べて設けられた複数の光変調素子で光配向膜を露光する。 The light modulation elements are alternately arranged in two rows at a certain distance in the relative movement direction of the spatial light modulation means and the base material. As a result, the photo-alignment film is exposed with a plurality of light modulation elements provided in two rows alternately spaced apart by a certain distance in the relative movement direction of the spatial light modulation means and the substrate.
 さらに、前記各光変調素子を、その光軸に直交する横断面形状が前記空間光変調手段及び基材の前記相対移動方向に長い略長方形状に形成すると共に、前記基材に照射する偏光の、前記相対移動方向の幅を一定幅に制限する光ビーム整形手段をさらに備えたものである。これにより、光ビーム整形手段で基材に照射する偏光の、上記空間光変調手段及び基材の相対移動方向の幅を一定幅に制限する。 Further, each of the light modulation elements is formed in a substantially rectangular shape in which the cross-sectional shape orthogonal to the optical axis thereof is long in the relative movement direction of the spatial light modulation means and the base material, and the polarization of the polarized light applied to the base material , Further comprising light beam shaping means for limiting the width in the relative movement direction to a constant width. Thereby, the width of the polarized light applied to the substrate by the light beam shaping unit in the relative movement direction of the spatial light modulation unit and the substrate is limited to a certain width.
 そして、前記光ビーム整形手段は、前記光変調素子の並び方向に長い細長状の開口を形成した遮光マスクである。これにより、光変調素子の並び方向に長い細長状の開口を形成した遮光マスクで基材に照射する偏光の、上記空間光変調手段及び基材の相対移動方向の幅を一定幅に制限する。 The light beam shaping means is a light shielding mask in which a long and narrow opening is formed in the arrangement direction of the light modulation elements. Thereby, the width of the relative movement direction of the spatial light modulation means and the base material is limited to a certain width for the polarized light irradiated to the base material with the light-shielding mask in which elongated openings are formed in the arrangement direction of the light modulation elements.
 請求項1に係る発明によれば、光配向膜における配向方向の異なる配向処理を1回の工程で行なうことができる。したがって、配向処理工程を短縮することができる。また、電気光学結晶材料から成る光変調素子の駆動電圧を制御することにより、光配向膜に照射する偏光の偏光面の回転角度を任意に制御することができる。したがって、配向方向の異なる複数の配向パターンを1回の配向処理工程で形成することができ、複数の潜像を記録した認証媒体を容易に作ることができる。 According to the first aspect of the invention, the alignment treatment with different alignment directions in the photo-alignment film can be performed in one step. Accordingly, the alignment process step can be shortened. In addition, by controlling the driving voltage of the light modulation element made of an electro-optic crystal material, the rotation angle of the polarization plane of the polarized light applied to the photo-alignment film can be arbitrarily controlled. Therefore, a plurality of alignment patterns having different alignment directions can be formed in one alignment processing step, and an authentication medium on which a plurality of latent images are recorded can be easily made.
 また、請求項2に係る発明によれば、先行して形成された複数の露光ピクセル間の未露光部分を補完して露光することができ、緻密な配向パターンを形成することができる。したがって、複雑な形状の潜像も容易に形成することができる。 Further, according to the invention according to claim 2, it is possible to perform exposure by complementing unexposed portions between a plurality of previously formed exposure pixels, thereby forming a dense alignment pattern. Therefore, a latent image having a complicated shape can be easily formed.
 さらに、請求項3に係る発明によれば、光ビーム整形手段により露光ピクセルの大きさを容易に規制することができる。 Furthermore, according to the invention of claim 3, the size of the exposure pixel can be easily regulated by the light beam shaping means.
 そして、請求項4に係る発明によれば、光ビーム整形手段をフォトリソグラフィ技術を利用して作ることができ、露光ピクセルの大きさを高精度に規制することができる。 And according to the invention concerning Claim 4, a light beam shaping means can be made using a photolithographic technique, and the magnitude | size of an exposure pixel can be regulated with high precision.
本発明による露光装置の実施形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of the exposure apparatus by this invention. 上記露光装置に使用する空間光変調手段の要部拡大平面図である。It is a principal part enlarged plan view of the spatial light modulation means used for the said exposure apparatus. 上記空間光変調手段の光変調素子組立体の要部を示す三面図であり、(a)は平面図、(b)は右側面図、(c)は(a)のO-O線断面図である。3A and 3B are three views showing the main part of the light modulation element assembly of the spatial light modulation means, wherein FIG. 3A is a plan view, FIG. 3B is a right side view, and FIG. It is. 上記空間光変調手段の動作を示す説明図であり、(a)はオフ状態を示し、(b)はオン状態を示している。It is explanatory drawing which shows operation | movement of the said spatial light modulation means, (a) shows an OFF state, (b) has shown the ON state. 上記露光装置に使用する光ビーム整形手段の遮光マスクを示す平面図である。It is a top view which shows the light-shielding mask of the light beam shaping means used for the said exposure apparatus. 上記露光装置に使用する制御手段の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control means used for the said exposure apparatus. 潜像の一例を示す平面図である。It is a top view which shows an example of a latent image. 上記空間光変調手段の底面図であり、各光変調素子を透過した偏光の偏光面の一状態を示す。It is a bottom view of the said spatial light modulation means, and shows one state of the polarization plane of the polarized light that has passed through each light modulation element. 先行して形成された複数の露光ピクセル間の未露光部分が補完して露光される様子を示す説明図である。It is explanatory drawing which shows a mode that the unexposed part between several exposure pixels formed in advance is complemented and exposed. 本発明の露光装置を使用して行った光配向膜の配向処理後の状態を示す説明図である。It is explanatory drawing which shows the state after the alignment process of the photo-alignment film | membrane performed using the exposure apparatus of this invention. 潜像を記録した認証媒体を示す説明図であり、(a)は直接目視の例であり、(b)は偏光板を重ねて見た例である。It is explanatory drawing which shows the authentication medium which recorded the latent image, (a) is an example of direct visual observation, (b) is the example which looked at the polarizing plate.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による露光装置の実施形態を示す概略構成図である。この露光装置は、電気光学結晶材料から成る複数の光変調素子により光配向膜を塗布した基材に偏光を照射して光配向膜を露光するもので、ステージ1と、レーザ光源2と、空間光変調手段3と、光ビーム整形手段4と、移動手段5と、制御手段6とを備えて構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic block diagram showing an embodiment of an exposure apparatus according to the present invention. This exposure apparatus irradiates polarized light onto a substrate on which a photo-alignment film is applied by a plurality of light modulation elements made of an electro-optic crystal material to expose the photo-alignment film, and includes a stage 1, a laser light source 2, a space The optical modulation unit 3 includes a light beam shaping unit 4, a moving unit 5, and a control unit 6.
 上記ステージ1は、上面1aに光配向膜を塗布した基材7を位置決めして載置し、例えば吸着して保持するものである。 The stage 1 positions and mounts the base material 7 coated with the photo-alignment film on the upper surface 1a, for example, adsorbs and holds it.
 上記ステージ1の上方には、レーザ光源2が設けられている。このレーザ光源2は、光配向膜に偏光レーザ光を照射して光配向膜を一定方向に配向させるもので、例えば直線偏光レーザであり、偏光板と組合せて使用するならランダム偏光レーザであってもよい。又は、円偏光レーザであってもよい。以下の説明においては、レーザ光源2が直線偏光レーザの場合について説明する。 A laser light source 2 is provided above the stage 1. This laser light source 2 irradiates the photo-alignment film with a polarized laser beam to orient the photo-alignment film in a certain direction. For example, the laser light source 2 is a linearly-polarized laser and a random-polarized laser if used in combination with a polarizing plate. Also good. Alternatively, a circularly polarized laser may be used. In the following description, the case where the laser light source 2 is a linearly polarized laser will be described.
 上記ステージ1とレーザ光源2との間には、空間光変調手段3が配設されている。この空間光変調手段3は、透過光により所定のパターンを生成して基材7上に照射するもので、図2に示すように偏光の偏光面を回転制御する例えばLiNbO3等の電気光学結晶材料11から成る複数の光変調素子8をステージ1の上面1aに平行なXY平面内に配列ピッチP(図3参照)で互い違いに二列に並べて設けたものであり、図1に示すように、後述の移動手段5によって上記ステージ1の上面1aに平行にX軸方向にて矢印A方向に移動するようになっている。この場合、各光変調素子8は、その光軸に直交する横断面形状がその並び方向と交差する方向に長い略長方形状に形成されると共に、図3に示すようにその並び方向と交差する方向に対して角度θだけ傾けて形成されている。そして、各光変調素子8の並び方向がY軸方向に合致するようにしてステージ1上に対向配置されている。なお、上記二列の光変調素子8のうち、図2に示す矢印A方向に向かって前側に位置する一列の光変調素子8を第1の素子列9といい、矢印A方向に向かって後側に位置する一列の光変調素子8を第2の素子列10という。 Spatial light modulation means 3 is disposed between the stage 1 and the laser light source 2. This spatial light modulation means 3 generates a predetermined pattern with transmitted light and irradiates the substrate 7 with an electro-optic crystal such as LiNbO 3 that rotates the polarization plane of polarized light as shown in FIG. A plurality of light modulation elements 8 made of a material 11 are arranged in two rows alternately at an arrangement pitch P (see FIG. 3) in an XY plane parallel to the upper surface 1a of the stage 1, as shown in FIG. The moving means 5 to be described later moves in the direction of arrow A in the X-axis direction in parallel with the upper surface 1a of the stage 1. In this case, each light modulation element 8 is formed in a substantially rectangular shape having a cross-sectional shape orthogonal to the optical axis that is long in a direction intersecting the alignment direction, and also intersects the alignment direction as shown in FIG. It is formed to be inclined by an angle θ with respect to the direction. The light modulation elements 8 are arranged opposite to each other on the stage 1 so that the arrangement direction of the light modulation elements 8 matches the Y-axis direction. Of the two rows of light modulation elements 8, one row of light modulation elements 8 located on the front side in the direction of arrow A shown in FIG. The row of light modulation elements 8 positioned on the side is referred to as a second element row 10.
 このような空間光変調手段3は、例えば、次のようにして形成することができる。即ち、図3に示すように、一定厚みの短冊状の電気光学結晶材料11を例えばダイシングソーを使用し、長軸に沿って幅W、深さDの溝12を形成すると共に、該溝12に平行な電気光学結晶材料11の対辺部分を幅Wで深さDだけ切除する。このとき、電気光学結晶材料11の上記溝12及び切除部13に挟まれた部分の幅Wは、後に光変調素子8のX軸方向の幅となるものであり、後述の光ビーム整形手段4の開口25の幅w(図5参照)よりも大きくなるように設定されている。また、上記溝12及び切除部13に挟まれた部分の中心線間距離は、nw(nは正の整数)となるように設定されている。 Such a spatial light modulator 3 can be formed as follows, for example. That is, as shown in FIG. 3, a strip-shaped electro-optic crystal material 11 having a constant thickness is formed using, for example, a dicing saw, and a groove 12 having a width W 1 and a depth D is formed along the major axis. excising a depth D of the opposite side portions of the parallel electrooptic crystal material 11 in the width W 2 to 12. At this time, the width W 3 of the portion sandwiched between the groove 12 and the cutout portion 13 of the electro-optic crystal material 11 becomes the width in the X-axis direction of the light modulation element 8 later. 4 is set to be larger than the width w of the four openings 25 (see FIG. 5). In addition, the distance between the center lines of the portion sandwiched between the groove 12 and the cut portion 13 is set to be nw (n is a positive integer).
 次に、上記溝12及び切除部13の内側面にスパッタリング、蒸着、又はCVD等の公知の成膜技術により導電膜を形成する。続いて、例えばダイシングソーを使用して電気光学結晶材料11の長軸に直交する軸に対して角度θだけ傾いた幅W、深さd(>D)の複数の分離溝14をピッチPで形成し、第1及び第2の素子列9,10が平行に並んだ光変調素子組立体15を形成する。その後、上記溝12の底部に例えば導電ペーストを塗布する。これにより、第1及び第2の素子列9,10の各光変調素子8の溝12側の側面に形成された導電膜が共通電極(接地電極16)となり、各光変調素子8の上記溝12と反対側側面に形成された導電膜が駆動電極17となる。なお、本実施形態においては、第1の素子列9に対して第2の素子列10がY軸方向にずれて、第1の素子列9の各光変調素子8間の部分を第2の素子列10の各光変調素子8が補完し得るように各部の寸法が決定されている。また、上記導電膜は、各電極16,17の下地膜として形成し、光変調素子組立体15の加工後に上記導電膜上に金又は銅等の良導電体の膜をメッキ形成してもよい。 Next, a conductive film is formed on the inner surface of the groove 12 and the cut portion 13 by a known film formation technique such as sputtering, vapor deposition, or CVD. Subsequently, for example, using a dicing saw, a plurality of separation grooves 14 having a width W 4 and a depth d (> D) inclined by an angle θ with respect to an axis orthogonal to the major axis of the electro-optic crystal material 11 are formed at a pitch P. The light modulation element assembly 15 in which the first and second element rows 9 and 10 are arranged in parallel is formed. Thereafter, for example, a conductive paste is applied to the bottom of the groove 12. As a result, the conductive film formed on the side surface on the groove 12 side of each of the light modulation elements 8 in the first and second element rows 9 and 10 becomes a common electrode (ground electrode 16), and the groove of each light modulation element 8. The conductive film formed on the side surface opposite to 12 serves as the drive electrode 17. In the present embodiment, the second element array 10 is shifted in the Y-axis direction with respect to the first element array 9, and the portion between the light modulation elements 8 in the first element array 9 is the second element array 9. The dimension of each part is determined so that each light modulation element 8 of the element row 10 can be complemented. The conductive film may be formed as a base film for the electrodes 16 and 17, and a film of a good conductor such as gold or copper may be formed on the conductive film after the light modulation element assembly 15 is processed. .
 さらに、図2に示すように、光変調素子組立体15の光射出側の面15a(図3参照)にて各光変調素子8の形成領域に対応して開口部18を形成し、該開口部18の長軸に平行な両端縁部に沿って複数の電極端子部19が形成され、短軸に平行な縁部近傍に接地電極端子部20が形成された配線基板21上に光変調素子組立体15をその光射出側の面15aの上記領域を上記開口部18に合わせて取り付け、配線基板21の電極端子部19と各光変調素子8の駆動電極17、及び配線基板21の接地電極端子部20と光変調素子8の接地電極16とを金等の導電性ワイヤ22によるワイヤボンディング等により電気的に接続することにより空間光変調手段3が完成する。 Further, as shown in FIG. 2, an opening 18 is formed on the light emitting side surface 15a (see FIG. 3) of the light modulation element assembly 15 so as to correspond to the formation region of each light modulation element 8. A plurality of electrode terminal portions 19 are formed along both edge portions parallel to the long axis of the portion 18, and a light modulation element is formed on the wiring substrate 21 in which the ground electrode terminal portion 20 is formed in the vicinity of the edge portion parallel to the short axis. The assembly 15 is attached so that the region of the light emitting side surface 15a is aligned with the opening 18, the electrode terminal portion 19 of the wiring substrate 21, the drive electrode 17 of each light modulation element 8, and the ground electrode of the wiring substrate 21. The spatial light modulating means 3 is completed by electrically connecting the terminal portion 20 and the ground electrode 16 of the light modulation element 8 by wire bonding using a conductive wire 22 such as gold.
 このように構成された空間光変調手段3は、次のように動作する。即ち、図4に示すように、レーザ光源2から放射された直線偏光、例えば0°偏光のレーザ光は、光変調素子8の入射端面8aに入射する。この場合、同図(a)に示すように、光変調素子8の駆動電極17に対して電圧が印加されていないときには、光変調素子8はオフとなり、該光変調素子8内を通過するレーザ光の偏光面は、回転されない。したがって、光変調素子8の射出端面8bから射出するレーザ光は、0°偏光のままである。 The spatial light modulation means 3 configured in this way operates as follows. That is, as shown in FIG. 4, linearly polarized light emitted from the laser light source 2, for example, 0 ° -polarized laser light, enters the incident end face 8 a of the light modulation element 8. In this case, as shown in FIG. 5A, when no voltage is applied to the drive electrode 17 of the light modulation element 8, the light modulation element 8 is turned off and the laser that passes through the light modulation element 8 is used. The polarization plane of light is not rotated. Therefore, the laser beam emitted from the emission end face 8b of the light modulation element 8 remains 0 ° polarized.
 一方、図4(b)に示すように、光変調素子8の駆動電極17に適切な電圧を印加すると、光変調素子8がオン駆動され、該光変調素子8内を通過するレーザ光の偏光面が90°回転される。したがって、光変調素子8の射出端面8bから射出するレーザ光は、偏光面が90°回転された90°偏光となる。このように、各光変調素子8の駆動をオン・オフ制御することにより、空間光変調手段3を射出するレーザ光を0°偏光と90°偏光とに切り換えることができる。なお、ここでは、偏光面がY軸に平行な偏光を0°偏光といい、偏光面がX軸に平行な偏光を90°偏光という。 On the other hand, as shown in FIG. 4B, when an appropriate voltage is applied to the drive electrode 17 of the light modulation element 8, the light modulation element 8 is turned on and the polarization of the laser light passing through the light modulation element 8 is polarized. The surface is rotated 90 °. Accordingly, the laser light emitted from the emission end face 8b of the light modulation element 8 becomes 90 ° polarized light with the polarization plane rotated by 90 °. In this way, by controlling on / off of the drive of each light modulation element 8, the laser light emitted from the spatial light modulation means 3 can be switched between 0 ° polarization and 90 ° polarization. Here, polarized light whose polarization plane is parallel to the Y axis is referred to as 0 ° polarization, and polarized light whose polarization plane is parallel to the X axis is referred to as 90 ° polarization.
 なお、光変調素子8の駆動は、オン・オフ駆動に限られず、オン駆動時の電圧を変えて偏光面の回転角度を制御してもよいが、本実施形態においては、オン・オフ駆動の場合について説明する。 The driving of the light modulation element 8 is not limited to the on / off driving, and the rotation angle of the polarization plane may be controlled by changing the voltage during the on driving, but in this embodiment, the on / off driving is performed. The case will be described.
 上記空間光変調手段3の射出側端面に近接対向して光ビーム整形手段4が設けられている。この光ビーム整形手段4は、空間光変調手段3の各光変調素子8から射出するレーザ光のX軸方向(矢印A方向)の幅を一定幅に制限するもので、図5に示すように透明基板23の表面に被着した遮光膜24にY軸方向に長い、幅がwの細長状の開口25を形成した遮光マスクである。この場合、開口25は、第1及び第2の素子列9,10の長手中心軸に長手中心軸を一致させた状態で二つが平行に形成されており、その短軸方向の幅w(<W)が露光ピクセルのX軸方向の幅を規制するようになっている。又は、光ビーム整形手段4は、遮光板にスリットを形成したものであってもよい。 A light beam shaping means 4 is provided in close proximity to the exit side end face of the spatial light modulation means 3. This light beam shaping means 4 limits the width in the X-axis direction (arrow A direction) of the laser light emitted from each light modulation element 8 of the spatial light modulation means 3 to a constant width, as shown in FIG. This is a light-shielding mask in which a long and narrow opening 25 having a width w is formed in the light-shielding film 24 deposited on the surface of the transparent substrate 23. In this case, the opening 25 is formed in parallel with the longitudinal central axis of the first and second element rows 9 and 10 being coincident with the longitudinal central axis, and the width w (< W 3 ) regulates the width of the exposed pixel in the X-axis direction. Alternatively, the light beam shaping means 4 may be one in which a slit is formed in a light shielding plate.
 なお、図1において、符号26は、レーザ光源2から放射されたレーザ光のビーム径を拡大すると共に横断面内の強度分布を均一化し、且つ平行光にするカップリング光学系である。
 そして、上記レーザ光源2、カップリング光学系26、空間光変調手段3及び光ビーム整形手段4を含んで露光光学系27を構成している。
In FIG. 1, reference numeral 26 denotes a coupling optical system that enlarges the beam diameter of the laser light emitted from the laser light source 2, equalizes the intensity distribution in the cross section, and makes it parallel light.
The exposure optical system 27 includes the laser light source 2, the coupling optical system 26, the spatial light modulation means 3, and the light beam shaping means 4.
 上記露光光学系27を移動可能に移動手段5が設けられている。この移動手段5は、露光光学系27を図1に示す矢印A方向に一定速度で移動させるためのものであり、例えばXステージとボールネジとモータとを組合せて構成されている。そして、位置センサーを備えて、X軸方向の位置情報を後述の制御手段6に出力するようになっている。 A moving means 5 is provided so that the exposure optical system 27 can be moved. The moving means 5 is for moving the exposure optical system 27 in the direction of arrow A shown in FIG. 1 at a constant speed, and is configured by combining, for example, an X stage, a ball screw, and a motor. A position sensor is provided to output position information in the X-axis direction to the control means 6 described later.
 上記空間光変調手段3及び移動手段5には、制御手段6が電気的に接続されている。この制御手段6は、空間光変調手段3の各光変調素子8を個別に駆動して透過する偏光の偏光面の回転角度を制御するものであり、図6に示すようにCADデータ記憶部28と、ビットマップデータ作成部29と、光変調素子駆動部30と、移動手段駆動制御部31とを備えている。 Control means 6 is electrically connected to the spatial light modulation means 3 and the moving means 5. This control means 6 controls the rotation angle of the polarization plane of the polarized light to be transmitted by individually driving each light modulation element 8 of the spatial light modulation means 3, and the CAD data storage section 28 as shown in FIG. A bitmap data creation unit 29, a light modulation element driving unit 30, and a moving means driving control unit 31.
 ここで、CADデータ記憶部28は、基材7上に形成しようとする例えば図7に示すような潜像32のCADデータを記憶するもので、メモリ又はCD-ROM等である。また、ビットマップデータ作成部29は、空間光変調手段3(露光光学系27)の移動に同期して上記CADデータ記憶部28から一定時間間隔で潜像32のCADデータを読み出し、移動中の空間光変調手段3のX位置に対応したビットマップデータ(各光変調素子8の駆動データ)を作成するものである。さらに、光変調素子駆動部30は、ビットマップデータ作成部29から入力したビットマップデータに基づいて各光変調素子8を駆動するものである。そして、移動手段駆動制御部31は、空間光変調手段3を所定速度で矢印A方向に移動するように移動手段5の駆動を制御すると共に、移動手段5に備えた位置センサーの出力に基づいて、空間光変調手段3が距離wだけ移動する度にCADデータ記憶部28から順次一定のCADデータをビットマップデータ作成部29に転送させるように動作する。 Here, the CAD data storage unit 28 stores, for example, CAD data of the latent image 32 as shown in FIG. 7 to be formed on the substrate 7, and is a memory or a CD-ROM. The bitmap data creation unit 29 reads out the CAD data of the latent image 32 from the CAD data storage unit 28 at regular time intervals in synchronization with the movement of the spatial light modulator 3 (exposure optical system 27). Bitmap data corresponding to the X position of the spatial light modulation means 3 (drive data for each light modulation element 8) is created. Further, the light modulation element driving unit 30 drives each light modulation element 8 based on the bitmap data input from the bitmap data creation unit 29. The moving means drive control unit 31 controls the driving of the moving means 5 so as to move the spatial light modulating means 3 in the direction of arrow A at a predetermined speed, and based on the output of the position sensor provided in the moving means 5. Each time the spatial light modulator 3 moves by the distance w, the CAD data storage unit 28 sequentially operates so as to transfer certain CAD data to the bitmap data creation unit 29.
 次に、このように構成された露光装置の動作について説明する。
 先ず、基材7をステージ1上に位置決めして載置する。次に、レーザ光源2が点灯された後、移動手段5が移動手段駆動制御部31によって制御されて駆動し、空間光変調手段3(露光光学系27)を図1において矢印A方向に移動を開始する。同時に移動手段5から空間光変調手段3のX位置情報が移動手段駆動制御部31に送られる。
Next, the operation of the exposure apparatus configured as described above will be described.
First, the base material 7 is positioned and placed on the stage 1. Next, after the laser light source 2 is turned on, the moving unit 5 is controlled and driven by the moving unit drive control unit 31, and the spatial light modulation unit 3 (exposure optical system 27) is moved in the direction of arrow A in FIG. Start. At the same time, the X position information of the spatial light modulator 3 is sent from the moving unit 5 to the moving unit drive control unit 31.
 移動手段駆動制御部31は、移動手段5から入力した空間光変調手段3のX位置情報に基づいて該位置に対応するCADデータをCADデータ記憶部28からビットマップデータ作成部29に転送させる。 The moving means drive control unit 31 transfers CAD data corresponding to the position from the CAD data storage unit 28 to the bitmap data creation unit 29 based on the X position information of the spatial light modulation means 3 input from the moving means 5.
 ビットマップデータ作成部29においては、入力したCADデータに基づいて空間光変調手段3の各光変調素子8を駆動するためのビットマップデータ(駆動データ)を作成して光変調素子駆動部30に出力する。 The bitmap data creation unit 29 creates bitmap data (drive data) for driving each light modulation element 8 of the spatial light modulation means 3 based on the input CAD data, and supplies it to the light modulation element drive unit 30. Output.
 光変調素子駆動部30においては、入力した上記ビットマップデータを一時的に記憶すると共に該ビットマップデータに基づいて各光変調素子8をオン・オフ駆動する。ここで、レーザ光源2から放射される直線偏光のレーザ光が、例えば0°偏光の場合、オフ駆動された光変調素子8内を通過するレーザ光は、偏光面の回転が起こらず、そのまま0°偏光(図8に示すY軸に平行な矢印)として射出する。一方、オン駆動された光変調素子8内を通過するレーザ光は、偏光面が90°回転されて90°偏光(図8に示すX軸に平行な矢印)となって射出する。 The light modulation element driving unit 30 temporarily stores the input bitmap data and drives each light modulation element 8 on and off based on the bitmap data. Here, when the linearly polarized laser light emitted from the laser light source 2 is, for example, 0 ° -polarized light, the laser light passing through the off-modulated light modulation element 8 does not rotate its polarization plane and remains 0 Ejected as polarized light (an arrow parallel to the Y axis shown in FIG. 8). On the other hand, the laser light passing through the light modulation element 8 that is turned on is emitted as 90 ° polarized light (an arrow parallel to the X axis shown in FIG. 8) with the polarization plane rotated by 90 °.
 各光変調素子8を射出した直線偏光のレーザ光は、光ビーム整形手段4によって一定の大きさの光ビームに整形されて基材7上に到達し、基材7上の光配向膜を露光する。これにより、光配向膜は、0°偏光によって照射された露光ピクセル内がY軸方向に配向され、90°偏光によって照射された露光ピクセル内がX軸方向に配向される。 The linearly polarized laser light emitted from each light modulation element 8 is shaped into a light beam of a certain size by the light beam shaping means 4 and reaches the base material 7 to expose the photo-alignment film on the base material 7. To do. As a result, the photo-alignment film is oriented in the Y-axis direction within the exposed pixel irradiated with 0 ° polarized light, and is oriented in the X-axis direction within the exposed pixel irradiated with 90 ° polarized light.
 以後、ビットマップデータ作成部29では、空間光変調手段3が距離wだけ移動する度に、空間光変調手段3のX位置に対応したCADデータをCADデータ記憶部28から読出し、対応するビットマップデータを作成する。そして、このビットマップデータに基づいて光変調素子駆動部30により空間光変調手段3の第1の素子列9の各光変調素子8を駆動する。これにより、第1の素子列9の各光変調素子8に対応した光配向膜上の部分が露光され、各光変調素子8の駆動状態に応じて一定方向に配向される。 Thereafter, every time the spatial light modulator 3 moves by the distance w, the bitmap data creating unit 29 reads out the CAD data corresponding to the X position of the spatial light modulator 3 from the CAD data storage unit 28 and corresponding bitmap. Create data. Based on this bitmap data, the light modulation element driving unit 30 drives each light modulation element 8 in the first element row 9 of the spatial light modulation means 3. As a result, a portion on the optical alignment film corresponding to each light modulation element 8 in the first element array 9 is exposed and oriented in a certain direction according to the driving state of each light modulation element 8.
 一方、第2の素子列10は、光変調素子駆動部30に一時的に記憶されているn回前に転送された第1の素子列9を駆動するビットマップデータに基づいて駆動される。これにより、第1の素子列9によりn回前に露光された位置が第2の素子列10により露光される。この場合、第2の素子列10は、その各光変調素子8が第1の素子列9の各光変調素子8間の部分を補完し得るように形成されているので、図9に示すように、第1の素子列9による各露光ピクセル33間の未露光部分を第2の素子列10による露光ピクセル33で補完することが可能となる。 On the other hand, the second element row 10 is driven based on the bitmap data for driving the first element row 9 transferred n times before, which is temporarily stored in the light modulation element driving unit 30. As a result, the position exposed n times before by the first element array 9 is exposed by the second element array 10. In this case, the second element array 10 is formed so that each light modulation element 8 can complement a portion between each light modulation element 8 of the first element array 9, and therefore, as shown in FIG. 9. In addition, the unexposed portion between the exposed pixels 33 by the first element row 9 can be complemented by the exposed pixels 33 by the second element row 10.
 このようにして、空間光変調手段3を矢印A方向に移動しながら、一定の時間間隔で作成されたビットマップデータに基づいて各光変調素子8をオン・オフ駆動して光配向膜を露光することにより、図10に示すように、光配向膜34は潜像32に対応したパターン内部が90°偏光によってX軸方向に配向され、パターン外部が0°偏光によってY軸方向に配向される。 In this way, while moving the spatial light modulation means 3 in the direction of arrow A, each light modulation element 8 is driven on and off based on the bitmap data created at regular time intervals to expose the photo-alignment film. Thus, as shown in FIG. 10, the photo-alignment film 34 is oriented in the X-axis direction by 90 ° polarization and the outside of the pattern is oriented in the Y-axis direction by 0 ° polarization, corresponding to the latent image 32. .
 上述のようにして露光された光配向膜34は、適切に設定された温度で熱処理されて配向が定着される。その後、上記光配向膜34上に液晶モノマーを塗布した後、紫外線を照射して液晶を硬化することにより、液晶が架橋して液晶分子が光配向膜34の配向に倣って並ぶ。こうして、潜像32を記録した認証媒体35が得られる(図11参照)。 The photo-alignment film 34 exposed as described above is heat-treated at an appropriately set temperature to fix the alignment. Then, after applying a liquid crystal monomer on the photo-alignment film 34 and irradiating ultraviolet rays to cure the liquid crystal, the liquid crystal is cross-linked and the liquid crystal molecules are aligned following the orientation of the photo-alignment film 34. In this way, the authentication medium 35 on which the latent image 32 is recorded is obtained (see FIG. 11).
 このような潜像32は、図11(a)に示すように直接目視では見ることができず、同図(b)に示すように偏光板36を重ねることによって見えるようになる。 Such a latent image 32 cannot be directly visually observed as shown in FIG. 11 (a) but can be seen by overlapping the polarizing plates 36 as shown in FIG. 11 (b).
 なお、上記実施形態においては、空間光変調手段3が第1及び第2の素子列9,10を有する場合について説明したが、本発明はこれに限られず、第1の素子列9だけであってもよい。 In the above embodiment, the case where the spatial light modulator 3 has the first and second element rows 9 and 10 has been described. However, the present invention is not limited to this, and only the first element row 9 is provided. May be.
 また、上記実施形態においては、光ビーム整形手段4を空間光変調手段3の射出側端面に近接対向して設けた場合について説明したが、本発明はこれに限られず、光ビーム整形手段4は、空間光変調手段3の入射側端面に近接対向して設けてもよい。 In the above embodiment, the case where the light beam shaping unit 4 is provided close to and opposed to the emission side end surface of the spatial light modulation unit 3 has been described. However, the present invention is not limited to this, and the light beam shaping unit 4 Alternatively, the spatial light modulator 3 may be provided in close proximity to the incident side end face.
 さらに、上記実施形態においては、光ビーム整形手段4が光を透過する開口25を有する遮光マスクである場合について説明したが、本発明はこれに限られず、光ビーム整形手段4は、入射光を直交二軸の一軸方向(X軸方向)にのみ絞って線状の光ビームを生成するシリンドリカルレンズを含んで構成したものであってもよい。 Furthermore, in the above embodiment, the case where the light beam shaping unit 4 is a light shielding mask having an opening 25 that transmits light has been described. However, the present invention is not limited to this, and the light beam shaping unit 4 transmits incident light. It may be configured to include a cylindrical lens that generates a linear light beam by focusing only in one axis direction (X axis direction) of two orthogonal axes.
 さらにまた、上記実施形態においては、空間光変調手段3側を移動する場合について説明したが、本発明はこれに限られず、ステージ1側を移動してもよく、又はその両方を互いに反対方向に移動させてもよい。 Furthermore, in the above embodiment, the case of moving on the spatial light modulation means 3 side has been described. However, the present invention is not limited to this, and the stage 1 side may be moved, or both of them may be moved in opposite directions. It may be moved.
 そして、以上の説明においては、認証媒体35の潜像32を形成する場合について述べたが、本発明はこれに限られず、同一の基材上に塗布された光配向膜34に配向方向の異なる配向パターンを形成しようとするものであれば、例えば液晶表示用基板の配向処理や3D用偏光フィルタの配向処理にも適用することができる。この場合、光ビーム整形手段4をX軸方向に移動可能に形成すれば、空間光変調手段3の各光変調素子8がX軸方向に対して角度θだけ傾けて設けられているので、各光変調素子8によって露光される位置をY軸方向にずらすことができる。したがって、このずらし量を制御することにより、露光位置を調整することができ、露光位置精度を向上することができる。 In the above description, the case where the latent image 32 of the authentication medium 35 is formed has been described. However, the present invention is not limited to this, and the alignment direction of the photo-alignment film 34 applied on the same substrate is different. As long as it is intended to form an alignment pattern, it can also be applied to, for example, alignment processing of a liquid crystal display substrate or alignment processing of a 3D polarizing filter. In this case, if the light beam shaping means 4 is formed so as to be movable in the X-axis direction, each light modulation element 8 of the spatial light modulation means 3 is provided inclined by an angle θ with respect to the X-axis direction. The position exposed by the light modulation element 8 can be shifted in the Y-axis direction. Therefore, by controlling the shift amount, the exposure position can be adjusted, and the exposure position accuracy can be improved.
 3…空間光変調手段
 4…光ビーム整形手段
 5…移動手段
 7…基材
 8…光変調素子
 9…第1の素子列
 10…第2の素子列
 11…電気光学結晶材料
 25…開口
 34…光配向膜
DESCRIPTION OF SYMBOLS 3 ... Spatial light modulation means 4 ... Light beam shaping means 5 ... Moving means 7 ... Base material 8 ... Light modulation element 9 ... 1st element row | line | column 10 ... 2nd element row | line | column 11 ... Electro-optic crystal material 25 ... Opening 34 ... Photo-alignment film

Claims (4)

  1.  電気光学結晶材料から成る複数の光変調素子を一定の配列ピッチで少なくとも一列に並べて有する空間光変調手段と、
     前記各光変調素子を個別に駆動して、前記空間光変調手段に対向して配置され表面に光配向膜を塗布した基材上に照射する偏光の偏光面の回転角度を制御する制御手段と、
     前記空間光変調手段及び前記基材を前記光変調素子の並び方向と交差する方向に相対移動させる移動手段と、
    を備えたことを特徴とする露光装置。
    Spatial light modulation means having a plurality of light modulation elements made of an electro-optic crystal material arranged at least in a line at a constant arrangement pitch;
    Control means for individually driving each of the light modulation elements to control the rotation angle of the polarization plane of the polarized light irradiated on the substrate disposed opposite to the spatial light modulation means and coated with a photo-alignment film on the surface; ,
    Moving means for relatively moving the spatial light modulation means and the base material in a direction intersecting with the arrangement direction of the light modulation elements;
    An exposure apparatus comprising:
  2.  前記各光変調素子は、前記空間光変調手段及び基材の前記相対移動方向に一定距離だけ離隔して互い違いに二列に並べて設けられたことを特徴とする請求項1記載の露光装置。 2. An exposure apparatus according to claim 1, wherein each of the light modulation elements is provided in two rows alternately spaced apart by a fixed distance in the relative movement direction of the spatial light modulation means and the substrate.
  3.  前記各光変調素子を、その光軸に直交する横断面形状が前記空間光変調手段及び基材の前記相対移動方向に長い略長方形状に形成すると共に、前記基材に照射する偏光の、前記相対移動方向の幅を一定幅に制限する光ビーム整形手段をさらに備えたことを特徴とする請求項1又は2記載の露光装置。 Each of the light modulation elements is formed in a substantially rectangular shape having a cross-sectional shape orthogonal to the optical axis thereof long in the relative movement direction of the spatial light modulation means and the base material, and the polarized light irradiating the base material, 3. An exposure apparatus according to claim 1, further comprising light beam shaping means for limiting the width in the relative movement direction to a constant width.
  4.  前記光ビーム整形手段は、前記光変調素子の並び方向に長い細長状の開口を形成した遮光マスクであることを特徴とする請求項3記載の露光装置。 4. The exposure apparatus according to claim 3, wherein the light beam shaping means is a light shielding mask having an elongated opening formed in a direction in which the light modulation elements are arranged.
PCT/JP2011/066662 2010-08-03 2011-07-22 Exposure apparatus WO2012017837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-174201 2010-08-03
JP2010174201A JP5458391B2 (en) 2010-08-03 2010-08-03 Exposure equipment

Publications (1)

Publication Number Publication Date
WO2012017837A1 true WO2012017837A1 (en) 2012-02-09

Family

ID=45559343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066662 WO2012017837A1 (en) 2010-08-03 2011-07-22 Exposure apparatus

Country Status (3)

Country Link
JP (1) JP5458391B2 (en)
TW (1) TW201207576A (en)
WO (1) WO2012017837A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973285A (en) * 2014-05-27 2014-08-06 唐名姣 Optically-controlled optical shutter and integrated circuit thereof
CN106324912A (en) * 2016-11-04 2017-01-11 武汉华星光电技术有限公司 Linear polarization ultraviolet lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037099B2 (en) * 2012-02-29 2016-11-30 株式会社ブイ・テクノロジー Polarization exposure equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277025A (en) * 1989-03-08 1990-11-13 Hercules Inc Method of molecular alignment in liquid crystal cell
JPH0484119A (en) * 1990-07-27 1992-03-17 Ookurashiyou Insatsu Kyokucho Multidimensional image display body and multidimensional image display method
JP2002530687A (en) * 1998-11-13 2002-09-17 ロリク アーゲー Optical components
JP2002298378A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Method for optical recording and optical recorder
JP2002350858A (en) * 2001-05-28 2002-12-04 Sony Corp Light orientation device
JP2010091906A (en) * 2008-10-10 2010-04-22 Seiko Epson Corp Method for manufacturing electro-optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277025A (en) * 1989-03-08 1990-11-13 Hercules Inc Method of molecular alignment in liquid crystal cell
JPH0484119A (en) * 1990-07-27 1992-03-17 Ookurashiyou Insatsu Kyokucho Multidimensional image display body and multidimensional image display method
JP2002530687A (en) * 1998-11-13 2002-09-17 ロリク アーゲー Optical components
JP2002298378A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Method for optical recording and optical recorder
JP2002350858A (en) * 2001-05-28 2002-12-04 Sony Corp Light orientation device
JP2010091906A (en) * 2008-10-10 2010-04-22 Seiko Epson Corp Method for manufacturing electro-optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973285A (en) * 2014-05-27 2014-08-06 唐名姣 Optically-controlled optical shutter and integrated circuit thereof
CN106324912A (en) * 2016-11-04 2017-01-11 武汉华星光电技术有限公司 Linear polarization ultraviolet lamp
CN106324912B (en) * 2016-11-04 2019-11-05 武汉华星光电技术有限公司 Linear polarization ultraviolet lamp

Also Published As

Publication number Publication date
TW201207576A (en) 2012-02-16
JP2012032730A (en) 2012-02-16
JP5458391B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5341941B2 (en) Alignment processing method and alignment processing apparatus
TWI519867B (en) Method and apparatus for alignment processing
TWI762965B (en) pattern drawing device
JP2012018256A (en) Method for exposing alignment film for liquid crystal and device for the same
JP4446280B2 (en) Method and system for controlling radiation beam characteristics for microlithographic processing
JP5756813B2 (en) Substrate exposure method
JP2000122302A (en) Proximity exposure method for irradiating diagonally with light
JP5458391B2 (en) Exposure equipment
TWI651566B (en) Optical modulator and exposure head
JP4764197B2 (en) Manufacturing method of substrate for liquid crystal display
JP5953512B2 (en) Photo-alignment exposure apparatus and photo-alignment exposure method
WO2012046541A1 (en) Exposure apparatus
CN105739184B (en) Alignment apparatus, alignment system and alignment method
WO2010098371A1 (en) Exposure apparatus
JP2008065000A (en) Exposure method and apparatus
JP4239640B2 (en) Exposure apparatus and liquid crystal device manufacturing method using the exposure apparatus
JP5747303B2 (en) Exposure equipment
KR20230050979A (en) Digital exposing device having liquid shutter array and method for exposing using the same
KR100685145B1 (en) Apparatus for repairing colorfilter
JP2014142494A (en) Spatial light modulator, spatial light modulation method, pattern drawing device, pattern drawing method, and manufacturing method for spatial light modulator
KR101648542B1 (en) Laser exposure method and product
JP2013046353A (en) Manufacturing method and manufacturing device of imaging apparatus
JP2021032978A (en) Drawing method and drawing device
JP2011027824A (en) Exposure method and exposure device
KR20120061535A (en) Method of fabricating patterned retarder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814467

Country of ref document: EP

Kind code of ref document: A1