JP2012018256A - Method for exposing alignment film for liquid crystal and device for the same - Google Patents

Method for exposing alignment film for liquid crystal and device for the same Download PDF

Info

Publication number
JP2012018256A
JP2012018256A JP2010154794A JP2010154794A JP2012018256A JP 2012018256 A JP2012018256 A JP 2012018256A JP 2010154794 A JP2010154794 A JP 2010154794A JP 2010154794 A JP2010154794 A JP 2010154794A JP 2012018256 A JP2012018256 A JP 2012018256A
Authority
JP
Japan
Prior art keywords
alignment film
substrate
stage
liquid crystal
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010154794A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshitake
康裕 吉武
Fumio Kataoka
文雄 片岡
Ryoji Nemoto
亮二 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010154794A priority Critical patent/JP2012018256A/en
Priority to KR1020110063539A priority patent/KR101346388B1/en
Priority to CN2011101937164A priority patent/CN102314023A/en
Priority to TW100123838A priority patent/TW201202787A/en
Publication of JP2012018256A publication Critical patent/JP2012018256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Abstract

PROBLEM TO BE SOLVED: To solve a practical problem in that a conventional exposure method of irradiating an alignment film with an optical pattern via a mask takes a long exposure time when irradiating the alignment film of a liquid crystal substrate with an optical pattern of fine-pitch linear lines in a single direction gives the alignment film a uniform alignment characteristic (pretilt angle) according to the scanning direction of irradiation.SOLUTION: In a method of exposing an alignment film for liquid crystal by giving exposure light emitted from a light source polarization characteristics, making the light incident to a micro-mirror device having a large number of minute movable mirrors and projecting via a projection optical system a pattern of exposure light reflected in a reflection pattern formed by the minute movable mirrors of the micro-mirror device on a substrate that is mounted on a stage and on whose surface the alignment film is formed, while the substrate is moved continuously in a single direction by moving the stage, the alignment film is exposed to the pattern of exposure light that is moved at a lower speed than the moving speed of the stage.

Description

本発明は、液晶表示素子の製造方法に関し、特に、液晶配向膜に光学的手法により配向特性を付与するための液晶用配向膜露光方法及びその装置に関する。   The present invention relates to a method for producing a liquid crystal display element, and more particularly to a liquid crystal alignment film exposure method and apparatus for imparting alignment characteristics to a liquid crystal alignment film by an optical technique.

液晶表示素子は、大形テレビ、3Dテレビ、パソコンや携帯端末のディスプレイとして、より多くの情報をより高品位に表示するために、高画質化、高精細化が求められている。   A liquid crystal display element is required to have high image quality and high definition in order to display more information with higher quality as a display of a large television, a 3D television, a personal computer, or a mobile terminal.

この液晶表示素子の高画質化、高精細化を実現するには、液晶表示素子を構成する一対の対抗するガラス基板間に封止する液晶材料の分子の並び(配向)をガラス基板上に形成された光学的に透明な電極(透明電極)上で均一にさせる必要がある。   In order to realize high image quality and high definition of this liquid crystal display element, an arrangement (orientation) of molecules of liquid crystal material to be sealed between a pair of opposing glass substrates constituting the liquid crystal display element is formed on the glass substrate. It is necessary to make it uniform on the optically transparent electrode (transparent electrode).

この液晶材料の分子の並び(配向)を均一にさせるために、従来、ガラス基板に形成された透明電極上に配向膜を形成し、この配向膜を布でラビングして配向特性を付与する方法が用いられていた。しかし、この方法では配向膜の一部が剥がれて微細なごみが発生し、素子不良の原因となったり、ガラス基板の表示領域全面に亘って均一な配向特性を付与することが難しく、より高精細な表示素子を形成する上で課題となっていた。   In order to make the alignment (alignment) of the molecules of the liquid crystal material uniform, a method of forming an alignment film on a transparent electrode conventionally formed on a glass substrate and rubbing the alignment film with a cloth to impart alignment characteristics Was used. However, in this method, a part of the alignment film is peeled off and fine dust is generated, which may cause an element defect or it is difficult to provide uniform alignment characteristics over the entire display area of the glass substrate, resulting in higher definition. This is a problem in forming a simple display element.

このラビング方法により配向膜に配向特性を付与する方法に替える手法として、例えば非特許文献1には、配向膜に光を照射して非接触で配向特性を付与する光ラビング方法が提案されている。これは、配向膜材料であるポリマー膜に垂直方向から14μmのピッチで形成された複数の線状の光を照射しながら照射領域を一方向に連続的に移動させることにより、ポリマー膜の表面に液晶配向能を付与させる方法である。照射する光の走査方向に応じて配向特性が変わることが記載されている。また、特許文献1にも同様な光ラビング方法に関して記載されている。   For example, Non-Patent Document 1 proposes an optical rubbing method that imparts alignment characteristics in a non-contact manner by irradiating the alignment film with light as a technique for replacing the alignment film with the alignment film by this rubbing method. . This is because the irradiation region is continuously moved in one direction while irradiating the polymer film, which is an alignment film material, with a plurality of linear light beams formed at a pitch of 14 μm from the vertical direction, to the surface of the polymer film. This is a method of imparting liquid crystal alignment ability. It is described that the orientation characteristics change depending on the scanning direction of the irradiated light. Patent Document 1 also describes a similar optical rubbing method.

また、特許文献2には、液晶表示装置の視野角拡大、表示品位の向上及びコントラストの向上を図るために、対向する2枚のガラス基板のそれぞれにプレチルト方向が異なる2種類の配向領域を形成して互いの配向領域の境界が直交するようにして2枚のガラス基板を貼り合わせることにより、4分割の配向状態を得ることが記載されている。そして、配向膜に対する配向処理の方法として、配向特性を付与しない領域をマスクした状態でラビング法、イオンビーム照射法、光照射法のいずれかで行うことが記載されている。   In Patent Document 2, two types of alignment regions having different pretilt directions are formed on two opposing glass substrates in order to increase the viewing angle of a liquid crystal display device, improve display quality, and improve contrast. In addition, it is described that a two-divided alignment state is obtained by bonding two glass substrates so that the boundaries between the alignment regions are orthogonal to each other. As an alignment treatment method for the alignment film, it is described that the alignment film is subjected to any one of a rubbing method, an ion beam irradiation method, and a light irradiation method in a state where a region to which no alignment characteristic is imparted is masked.

特開2004−145141号公報JP 2004-145141 A 特開平11−352486号公報JP-A-11-352486

木村正行、田中正一他:光配向膜上において安定なプレチルト角を誘起するための新規光配向プロセス:JSR TECHINICAL REVIEW No.111/2004Masayuki Kimura, Shoichi Tanaka et al .: New photo-alignment process for inducing a stable pretilt angle on a photo-alignment film: JSR TECHINICAL REVIEW No. 111/2004

非特許文献1に記載されている方法では、照射した複数の線状の光の走査速度は34μm/secであり、一方、特許文献1に記載されている方法では照射した複数の線状の光の走査速度は100μm/secである。これは、例えば一辺の長さが1mの液晶基板を処理するのに、光を1回走査するのに非特許文献1の方法では7.5時間、特許文献1に記載されている方法では約2.8時間かかってしまい、これを複数の配向特性を付与するために基板上の走査方向を変えて複数回走査することを考えると、実用的な処理速度には遥かに及ばない。     In the method described in Non-Patent Document 1, the scanning speed of the irradiated linear light is 34 μm / sec, whereas in the method described in Patent Document 1, the irradiated linear light is The scanning speed is 100 μm / sec. This is because, for example, when processing a liquid crystal substrate having a side length of 1 m, it takes 7.5 hours in the method of Non-Patent Document 1 to scan light once, and approximately It takes 2.8 hours, and considering the fact that scanning is performed a plurality of times by changing the scanning direction on the substrate in order to give a plurality of alignment characteristics, it is far from the practical processing speed.

また、特許文献2に記載されている方法は、基板の所望部分のみに配向特性を付与するためホトマスクを使う必要があり、特に大型マザー基板使用の製造ラインでは、高額なホトマスクを製品毎に作成する必要があり、製造コストの点で大きな負担となる。また、この方式で製造される液晶パネルは、液晶の上下で90度にねじれた方向で配向を規制する方式であり,上下平行又は逆平向な方向で配向を規制する配向方向付与方式に比べ,応答速度が低下する可能性がある。   In addition, the method described in Patent Document 2 requires the use of a photomask in order to impart alignment characteristics only to a desired portion of the substrate. Particularly in a production line using a large mother substrate, an expensive photomask is created for each product. This is a heavy burden in terms of manufacturing costs. In addition, the liquid crystal panel manufactured by this method is a method in which the alignment is regulated in a direction twisted by 90 degrees above and below the liquid crystal, and is compared to the alignment direction providing method in which the alignment is regulated in a vertical or inversely flat direction. , Response speed may decrease.

本発明の目的は、上記した従来の技術上の課題を解決して、光配向膜を実用的な処理速度で形成することが可能な液晶用配向膜露光方法及びその装置を提供することにある。   An object of the present invention is to provide a liquid crystal alignment film exposure method and apparatus capable of forming a photoalignment film at a practical processing speed by solving the above-described conventional technical problems. .

上記した目的を達成するために、本発明では、液晶用配向膜を露光する露光装置を、表面に配向膜が形成された基板を載置して移動可能なステージ手段と、露光光を発射する光源と、この光源から発射された露光光に偏光特性を付与する偏光特性付与手段と、偏光特性付与手段で偏光特性を付与された露光光の一部を微小な可動ミラーで形成したパターンで反射するパターン形成手段と、このパターン形成手段で反射された露光光のパターンをステージ手段に載置された基板に照射して配向膜を露光する投影光学部と、全体を制御する制御手段とを備えて構成し、制御手段は、ステージ手段とパターン形成手段とを制御して、ステージ手段を一方向に連続的に移動させることにより一方向に連続的に移動している基板上を露光光のパターンがステージ手段の移動速度よりも遅い速度で移動して配向膜を露光するように構成した。   In order to achieve the above object, in the present invention, an exposure apparatus that exposes an alignment film for liquid crystal, a stage unit that can move by placing a substrate having an alignment film formed on the surface, and an exposure light are emitted. A light source, a polarization characteristic imparting means for imparting polarization characteristics to the exposure light emitted from the light source, and a part of the exposure light imparted with the polarization characteristic by the polarization characteristic imparting means reflected by a pattern formed by a minute movable mirror Pattern forming means, a projection optical unit for exposing the alignment film by irradiating the substrate mounted on the stage means with the exposure light pattern reflected by the pattern forming means, and a control means for controlling the whole The control means controls the stage means and the pattern forming means, and moves the stage means continuously in one direction, whereby the pattern of exposure light is continuously moved on the substrate moving in one direction. But And configured to expose the alignment film moves at a slower speed than the moving speed of the stage means.

また、上記した目的を達成するために、本発明では、液晶用配向膜を露光する露光装置を、表面に配向膜が形成された基板を載置して移動可能なステージ手段と、紫外光または紫外光に近い光を露光光として発射する光源と、この光源から発射された露光光に偏光特性を付与する偏光特性付与手段と、微小な可動ミラーを多数備えて偏光特性付与手段で偏光特性を付与された露光光を入射して微小な可動ミラーで形成したパターンで反射することにより微細なピッチの線状の光パターンを形成するパターン形成手段と、このパターン形成手段で形成された微細なピッチの線状の露光光パターンをステージ手段に載置された基板に照射して配向膜を露光する投影光学部とを備えて構成し、パターン形成手段は、ステージ手段に載置されて一方向に連続的に移動している基板上に微細なピッチの線状の露光光パターンをステージ手段の移動速度よりも遅い速さで一方向とは逆の方向に移動して配向膜を露光するように構成した。   In order to achieve the above-described object, in the present invention, an exposure apparatus that exposes the alignment film for liquid crystal includes a stage unit that can move by placing a substrate having an alignment film formed on the surface, and ultraviolet light or A light source that emits light close to ultraviolet light as exposure light, a polarization property imparting means that imparts polarization characteristics to the exposure light emitted from this light source, and a polarization property imparting means that includes a large number of small movable mirrors Pattern forming means for forming a linear light pattern with a fine pitch by reflecting the applied exposure light and reflecting with a pattern formed by a minute movable mirror, and a fine pitch formed by this pattern forming means And a projection optical unit that exposes the alignment film by irradiating the substrate placed on the stage means with a linear exposure light pattern, and the pattern forming means is placed on the stage means in one direction The alignment film is exposed by moving a linear exposure light pattern with a fine pitch on a continuously moving substrate in a direction opposite to one direction at a speed slower than the moving speed of the stage means. Configured.

更に、上記した目的を達成するために、本発明では、光源から発射された露光光に偏光特性を付与して微小な可動ミラーを多数備えたマイクロミラーデバイスに入射させ、マイクロミラーデバイスの微小な可動ミラーにより形成された反射パターンで反射された露光光のパターンを投影光学系を介してステージに載置された表面に配向膜が形成された基板に投影して配向膜を露光する液晶用配向膜を露光する方法において、ステージを一方向に連続的に移動させることにより一方向に連続的に移動している基板上を露光光のパターンがステージの移動速度よりも遅い速度で移動して配向膜を露光するようにした。   Furthermore, in order to achieve the above-described object, in the present invention, the exposure light emitted from the light source is given polarization characteristics and is incident on a micromirror device having a large number of microscopic movable mirrors. Alignment for liquid crystal that exposes the alignment film by projecting the pattern of exposure light reflected by the reflection pattern formed by the movable mirror onto the substrate on which the alignment film is formed on the surface via the projection optical system In the method of exposing the film, the stage of the stage is moved continuously in one direction, and the pattern of the exposure light moves on the substrate that is continuously moving in one direction at a speed slower than the moving speed of the stage. The film was exposed.

このように構成した本発明による液晶用配向膜露光装置により、液晶パネルのサブピクセル内を4つの領域に分割し、個々の領域の配向膜規制方向がTFTとカラーフィルタの上下基板で逆平向、且つ電圧印加による液晶の傾倒方位が基板の縦端面に対して45°、135°、225°、315°または、一軸の正方向及び負方向に対してそれぞれ±22.5°とすることが出来るので、視野角が広く、応答の速い液晶パネルを製造することが出来る。   By using the alignment film exposure apparatus for liquid crystal according to the present invention configured as described above, the subpixel of the liquid crystal panel is divided into four regions, and the alignment film regulation direction of each region is reversely flat between the TFT and the upper and lower substrates of the color filter. In addition, the tilt direction of the liquid crystal due to voltage application can be 45 °, 135 °, 225 °, 315 ° with respect to the vertical end surface of the substrate, or ± 22.5 ° with respect to the uniaxial positive and negative directions, respectively. A liquid crystal panel with a wide viewing angle and quick response can be manufactured.

本発明によれば、従来のラビング方法に替える光配向膜を実用的な処理速度で形成することが可能になり、より高画質で高精細な液晶表示素子を実現することを可能にした。   According to the present invention, it is possible to form a photo-alignment film that replaces the conventional rubbing method at a practical processing speed, and to realize a liquid crystal display element with higher image quality and higher definition.

液晶用配向膜露光装置の全体の構成を示すブロック図である。It is a block diagram which shows the whole structure of the alignment film exposure apparatus for liquid crystals. マイクロミラーデバイスの平面図である。It is a top view of a micromirror device. マイクロミラーデバイスの一素子の動作を説明するマイクロミラーデバイス素子の側面図である。It is a side view of a micromirror device element explaining operation of one element of a micromirror device. 投影光学部とステージ部の構成を示す斜視図である。It is a perspective view which shows the structure of a projection optical part and a stage part. 露光工程においてマイクロミラーデバイスの素子と基板状の露光領域との時間的な変化を模式的に示したマイクロミラーデバイスの素子の平面図である。It is the top view of the element of the micromirror device which showed typically the time change of the element of a micromirror device and a substrate-like exposure field in an exposure process. 線状の露光パターンを形成したマイクロミラーデバイスの正面図である。It is a front view of the micromirror device which formed the linear exposure pattern. 線状の露光パターンがY方向に1ライン分転送された状態を示すマイクロミラーデバイスの正面図である。It is a front view of a micromirror device showing a state where a linear exposure pattern is transferred for one line in the Y direction. 投影光学部の第2の実施形態における構成を示すブロック図である。It is a block diagram which shows the structure in 2nd Embodiment of a projection optical part. 投影光学部の第2の実施形態において基板上の30μm角の2次元領域に微小なスポット光が照射されている状態を示す基板上の30μm角領域の平面図とマイクロミラーデバイスの1列分の平面図である。In the second embodiment of the projection optical unit, a plan view of a 30 μm square region on the substrate showing a state in which a minute spot light is irradiated on a two-dimensional region of 30 μm square on the substrate and one row of micromirror devices It is a top view. 1画素内の配向膜のプレチルト角の分布を示す液晶基板の1画素の正面図である。It is a front view of 1 pixel of the liquid crystal substrate which shows distribution of the pretilt angle of the alignment film in 1 pixel. 液晶基板内の各画素に4方向のプレチルト角を付与した状態を示す液晶基板の正面図である。It is a front view of a liquid crystal substrate which shows the state where the pretilt angle of four directions was given to each pixel in a liquid crystal substrate. 第1の露光工程においてプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。It is the front view of the liquid crystal substrate which showed typically the direction which provides a pretilt angle in the 1st exposure process. 第2の露光工程においてプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。It is the front view of the liquid crystal substrate which showed typically the direction which provides a pretilt angle in the 2nd exposure process. 第3の露光工程においてプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。It is the front view of the liquid crystal substrate which showed typically the direction which provides a pretilt angle in the 3rd exposure process. 第4の露光工程においてプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。It is the front view of the liquid crystal substrate which showed typically the direction which provides a pretilt angle in the 4th exposure process. 1画素内の配向膜のX軸の正及び負の方向に対してそれぞれ±22.5度のプレチルト角の分布を示す液晶基板の1画素の正面図である。FIG. 4 is a front view of one pixel of a liquid crystal substrate showing a pretilt angle distribution of ± 22.5 degrees with respect to the X-axis positive and negative directions of the alignment film in one pixel. 液晶基板内の各画素にX軸方向に対して±22.5度の4方向のプレチルト角を付与した状態を示す液晶基板の正面図である。FIG. 3 is a front view of the liquid crystal substrate showing a state in which pre-tilt angles in four directions of ± 22.5 degrees with respect to the X-axis direction are given to each pixel in the liquid crystal substrate. 第1の露光工程において図10Aの1043の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。FIG. 10B is a front view of the liquid crystal substrate schematically showing a direction in which a pretilt angle corresponding to the direction of 1043 in FIG. 10A is given in the first exposure step. 第2の露光工程において図10Aの1044の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。FIG. 10B is a front view of the liquid crystal substrate schematically showing a direction in which a pretilt angle corresponding to the direction of 1044 in FIG. 10A is given in the second exposure step. 第3の露光工程において図10Aの1042の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。FIG. 10B is a front view of the liquid crystal substrate schematically showing a direction in which a pretilt angle corresponding to the direction of 1042 in FIG. 10A is given in the third exposure step. 第4の露光工程において図10Aの1041の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。FIG. 10B is a front view of a liquid crystal substrate schematically showing a direction in which a pretilt angle corresponding to the direction of 1041 in FIG. 10A is given in a fourth exposure step. 液晶基板のY方向の操作を繰り返して各画素ごとに4方向のプレチルト角を配向膜に形成する為の露光工程の処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process of the exposure process for repeating the operation of the Y direction of a liquid crystal substrate, and forming the pretilt angle of 4 directions for every pixel in an alignment film. 液晶基板のY方向の操作を繰り返して各画素ごとに4方向のプレチルト角を配向膜に形成することをX方向に走査領域を移動させながら繰返す露光工程の処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process of the exposure process which repeats repeating the operation of the Y direction of a liquid crystal substrate, and forming the pretilt angle of 4 directions for every pixel in an alignment film, moving a scanning area | region to a X direction.

以下に、本発明の実施例を、図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本実施例による液晶用配向膜露光装置の全体の構成を示す。液晶用配向膜露光装置は、基板100を載置するステージ部110、基板100の表面に形成された配向膜を露光するための露光光学系120、ステージ部110及び露光光学系120を制御する制御系130、基板表面高さ検出系140を備えて構成されている。   FIG. 1 shows the overall configuration of a liquid crystal alignment film exposure apparatus according to this embodiment. The alignment film exposure apparatus for liquid crystal controls the stage unit 110 on which the substrate 100 is placed, the exposure optical system 120 for exposing the alignment film formed on the surface of the substrate 100, the stage unit 110, and the exposure optical system 120. A system 130 and a substrate surface height detection system 140 are provided.

ステージ部110は、X軸方向に移動可能なXステージ111、X軸方向と直交するY方向に移動可能なYステージ112、X軸及びY軸と直交するZ軸方向(高さ方向)に移動可能なZステージ113、Z軸を中心として回転可能なθステージ114を備えている。基板100は、θステージ114上に保持される。   The stage unit 110 is moved in the X-axis direction that is movable in the X-axis direction, the Y-stage 112 that is movable in the Y-direction orthogonal to the X-axis direction, and the Z-axis direction (height direction) orthogonal to the X-axis and Y-axis. A possible Z stage 113 and a θ stage 114 rotatable about the Z axis are provided. The substrate 100 is held on the θ stage 114.

露光光学系120は、紫外光(UV光)又は紫外領域に近い光を発射する光源121、光源121から発射された光の偏光状態を制御する偏光板122、偏光板122を透過した光の光路を切替えるミラー123、多数の微細な可動ミラーで構成されたマイクロミラーデバイス124、ミラー123で光路を切替えられてマイクロミラーデバイス124に入射しマイクロミラーデバイス124で反射された光を集光して基板1の表面に形成された配向膜を露光する投影光学部125を備えている。   The exposure optical system 120 includes a light source 121 that emits ultraviolet light (UV light) or light close to the ultraviolet region, a polarizing plate 122 that controls the polarization state of light emitted from the light source 121, and an optical path of light that has passed through the polarizing plate 122. , A micromirror device 124 composed of a large number of fine movable mirrors, a light path switched by the mirror 123 and incident on the micromirror device 124, and the light reflected by the micromirror device 124 is condensed to form a substrate The projection optical unit 125 that exposes the alignment film formed on the surface of 1 is provided.

制御系130は、光源121を制御する光源制御部131、マイクロミラーデバイス124を制御するマイクロミラーデバイス制御部132、ステージ部110の各ステージ制御するステージ制御部133及び全体を制御する全体制御部134を備えている。   The control system 130 includes a light source control unit 131 that controls the light source 121, a micromirror device control unit 132 that controls the micromirror device 124, a stage control unit 133 that controls each stage of the stage unit 110, and an overall control unit 134 that controls the whole. It has.

基板表面高さ検出系140は、光源121から発射される光とは異なる波長で基板100の表面に形成された配向膜に影響を及ぼさない波長の光を露光光学系120で基板100の表面の露光光を照射している領域の近傍に斜め方向から照射する高さ検出用光源141と、この高さ検出用光源141から発射されて基板100の表面で反射された光(正反射光)を検出する反射光検出器142とを備えている。露光光学系120で基板100を露光中に、反射光検出器142で基板100からの反射光を検出した信号は全体制御部134に送られて処理され、基板100の表面の高さ情報が得られると共に、この高さ情報に基づいて基板100の表面が所定の高さを維持するように、全体制御部134はステージ制御部133を介してZステージ113を制御する。   The substrate surface height detection system 140 emits light having a wavelength different from the light emitted from the light source 121 and having a wavelength that does not affect the alignment film formed on the surface of the substrate 100 with the exposure optical system 120. A height detection light source 141 that irradiates in the vicinity of a region irradiated with exposure light from an oblique direction, and light (regular reflection light) emitted from the height detection light source 141 and reflected from the surface of the substrate 100. And a reflected light detector 142 for detection. During exposure of the substrate 100 by the exposure optical system 120, a signal obtained by detecting the reflected light from the substrate 100 by the reflected light detector 142 is sent to the overall control unit 134 and processed to obtain height information on the surface of the substrate 100. The overall controller 134 controls the Z stage 113 via the stage controller 133 so that the surface of the substrate 100 maintains a predetermined height based on the height information.

図2Aに、マイクロミラーデバイス124の平面図を示す。マイクロミラーデバイス124は枠部1241の中に微小な可動ミラー1242がアレイ状に配置されており、マイクロミラーデバイス制御部132で制御されてその微小な可動ミラー1242一つ一つが傾きを二つの傾斜角度の間で切替えることができる。即ち、図2Bに示すように、マイクロミラーデバイス制御部132で制御されて可動ミラー1242が実線で示す状態の傾斜角度に維持されているときには(オン)、光源121から発射されてミラー123で光路を折り曲げられて入射した光は、可動ミラー1242で投影光学部125の方向に反射され投影光学部125を透過して基板100に達し、基板100の表面に形成された配向膜を露光する。一方、マイクロミラーデバイス制御部132で制御されて可動ミラー1242が点線で示す状態の傾斜角度に維持されているときには(オフ)、ミラー123で反射されて入射した光は、可動ミラー1242で投影光学部125から外れた方向に反射され、基板100に達せず、基板100の表面に形成された配向膜の露光には寄与しない。   FIG. 2A shows a plan view of the micromirror device 124. In the micromirror device 124, minute movable mirrors 1242 are arranged in an array in a frame part 1241, and each of the minute movable mirrors 1242 is controlled by the micromirror device control unit 132 so that each of the minute movable mirrors 1242 has two inclinations. You can switch between angles. That is, as shown in FIG. 2B, when the movable mirror 1242 is maintained at the tilt angle indicated by the solid line (on) as controlled by the micromirror device control unit 132 (on), the light path is emitted from the light source 121 and the optical path through the mirror 123. The incident light after being bent is reflected in the direction of the projection optical unit 125 by the movable mirror 1242, passes through the projection optical unit 125, reaches the substrate 100, and exposes the alignment film formed on the surface of the substrate 100. On the other hand, when the movable mirror 1242 is maintained at the tilt angle indicated by the dotted line as controlled by the micromirror device controller 132 (off), the incident light reflected by the mirror 123 is projected by the movable mirror 1242. The light is reflected in the direction away from the portion 125, does not reach the substrate 100, and does not contribute to the exposure of the alignment film formed on the surface of the substrate 100.

図2AでX方向に並んだ可動ミラー1242で形成したパターン(各可動ミラー1242のオンとオフとの組合わせ)を所定の時間間隔でY方向に移動させることにより、マイクロミラーデバイス124上で可動ミラー1242のオン・オフの組み合わせによるパターンをY方向に一定の速度で送ることができる。   The pattern formed by the movable mirrors 1242 arranged in the X direction in FIG. 2A (the combination of ON and OFF of each movable mirror 1242) is moved on the micromirror device 124 by moving in the Y direction at predetermined time intervals. A pattern based on a combination of turning on and off the mirror 1242 can be sent in the Y direction at a constant speed.

即ち、図1に示した構成において、光源121から発射されてミラー123で反射されマイクロミラーデバイス124に入射した光のうち、マイクロミラーデバイス制御部132で制御されて図2Bの実線で示したような所定の角度に設定された微小なミラー1242で反射した光だけが投影光学部125に入射して基板100に到達する。   That is, in the configuration shown in FIG. 1, the light emitted from the light source 121, reflected by the mirror 123 and incident on the micromirror device 124 is controlled by the micromirror device controller 132 and shown by the solid line in FIG. 2B. Only the light reflected by the minute mirror 1242 set at a predetermined angle enters the projection optical unit 125 and reaches the substrate 100.

次に、投影光学部125の第1の実施形態について図3と図4を用いて説明する。図3Aは投影光学部125を含むステージ部110の斜視図である。マイクロミラーデバイス124はYステージ112の移動方向に対しθだけ傾斜して設置されている。   Next, a first embodiment of the projection optical unit 125 will be described with reference to FIGS. FIG. 3A is a perspective view of the stage unit 110 including the projection optical unit 125. The micromirror device 124 is installed with an inclination of θ with respect to the moving direction of the Y stage 112.

Y方向に移動する小領域101とこの小領域101上に転写される画素パターンとの関係を、図4を用いて説明する。図4では、説明を簡単にするために、マイクロミラーデバイス124のY方向に一列に並んだ可動ミラー1242−1〜1242−6とY方向(矢印50の方向)に連続的に移動する基板100上でこの可動ミラー1242−1〜1242−6により順次照射される領域111(二点鎖線で表示)との関係の時間的な変化を示す。図4の左側のPtからPtは、Y方向に一定の速度で移動する基板100上の領域111の等間隔な時刻tから時刻tにおける位置を表す。 The relationship between the small area 101 moving in the Y direction and the pixel pattern transferred onto the small area 101 will be described with reference to FIG. In FIG. 4, for ease of explanation, movable mirrors 1242-1 to 1242-6 arranged in a line in the Y direction of the micromirror device 124 and the substrate 100 continuously moving in the Y direction (the direction of the arrow 50). The temporal change in the relationship with the region 111 (indicated by a two-dot chain line) sequentially irradiated by the movable mirrors 1242-1 to 1242-6 is shown above. Pt 1 to Pt 6 on the left side of FIG. 4 represent the positions of the region 111 on the substrate 100 moving at a constant speed in the Y direction from time t 1 to time t 6 at equal intervals.

マイクロミラーデバイス124の一列に並んだ可動ミラー1242−1〜1242−6の各可動ミラー間のピッチをPとし、時刻tから時刻tまでの等間隔な時間における基板100のY方向への送りピッチをPPとする。本実施例では、基板100のY方向への送りピッチPPを各可動ミラー間のピッチPよりも少し大きく設定する。その結果、基板100上の領域111の時刻tから時刻tにおける位置は、マイクロミラーデバイス124の一列に並んだ可動ミラー1242−1〜1242−6の位置と少しずつずれていく。 The pitch between each of the movable mirrors of the movable mirror 1242-1~1242-6 in a row of micro-mirror device 124 is P, the substrate 100 at regular intervals of time from time t 1 to time t 6 in the Y-direction The feed pitch is PP. In this embodiment, the feed pitch PP in the Y direction of the substrate 100 is set slightly larger than the pitch P between the movable mirrors. As a result, the position of the region 111 on the substrate 100 from the time t 1 to the time t 6 is gradually shifted from the positions of the movable mirrors 1242-1 to 1242-6 arranged in a line of the micro mirror device 124.

即ち、各可動ミラー1242−1〜1242−6上の同じ位置にプロットした点1243を時刻tからtにかけてY方向に移動する基板100上の領域111に順次投影したとすると、その状態は図4の右側に示すようになる。その結果、Y方向に一定の速度で移動する基板100上の領域111にマイクロミラーデバイス124のY方向に一列に並んだ可動ミラー1242−1〜1242−6により順次照射される領域は、時刻tからtにかけて徐々に移動していくことになる。したがって、各可動ミラー間のピッチPに対する基板100のY方向への送りピッチPPを適切に設定することにより、基板100上の領域111の露光時間を所望の値に設定することができる。 That is, assuming that sequentially projected to the region 111 on the substrate 100 moves in the Y direction 1243 points plotted in the same position on each of the movable mirrors 1242-1~1242-6 from time t 1 over the t 6, the state As shown on the right side of FIG. As a result, the region 111 on the substrate 100 moving at a constant speed in the Y direction is sequentially irradiated by the movable mirrors 1242-1 to 1242-6 aligned in the Y direction of the micromirror device 124 at time t. so that moves gradually from 1 toward t 6. Therefore, the exposure time of the region 111 on the substrate 100 can be set to a desired value by appropriately setting the feed pitch PP in the Y direction of the substrate 100 with respect to the pitch P between the movable mirrors.

例えば,マイクロミラーデバイス124の転写画素サイズをCとした時,送りピッチPPを21/20Cとすると,転写ピッチTPは1/20Cとなる。従って,ステージ速度Vが2mm/sの時,転写画素のスキャン速度は100μm/sとなる。   For example, when the transfer pixel size of the micromirror device 124 is C, and the feed pitch PP is 21 / 20C, the transfer pitch TP is 1 / 20C. Therefore, when the stage speed V is 2 mm / s, the transfer pixel scan speed is 100 μm / s.

図4に示した点1243を図5A,及びBに示した複数の可動ミラー1242で形成される線状の光パターンに置き換え、基板100の全面に適用することにより、線状の光パターンを走査して基板100の全面を所望の時間で露光することができる。図5A,及びBに示した例では、マイクロミラーデバイス124のXY方向に整列して配置された各可動ミラー1242−1、−2・・・nについて、X方向に1列おきにオンとオフのパターンを並べて、これを図8Aで示した状態から基板100がY方向にPP移動した後に図5Bに示すようにY方向に1列分送ることを順次繰返す。これにより、同じ時間内におけるマイクロミラーデバイス124によるオンとオフのパターンのY方向への送り量と基板100のY方向への移動量との差により線状の繰り返しパターンで基板100の全面を走査する構成を示している。なお、図5A及びBに示した例では、X方向のパターンが一様な状態を示したが、実際には、基板100上の露光する領域に応じて、X方向にもオンとオフの領域が形成される。図5A及びBに示した例では、線状の繰り返しパターンをそれぞれマイクロミラーデバイスのX方向の1ラインの並びごとに形成する例を示したが、2ラインまたは3ラインごとに繰返すパターンであっても良いし、または、オンパターンとオフパターンとの幅を変えてもよい。
図3および図4に示した例では、基板100の送り方向(Y方向)に対して、マイクロミラーデバイス124の一列に並んだ可動ミラー1242−1〜1242−6の並びの方向が角度θ傾いている。これは、マイクロミラーデバイス124の転写画素を転写画素ピッチC以下の位置分解能でアライメントするためである。例えば,θ=1/256rad,転写画素ピッチ10μmの時,転写画素を選択することにより,10/256=0.039μmの位置分解能で転写することができる。
The point 1243 shown in FIG. 4 is replaced with a linear light pattern formed by the plurality of movable mirrors 1242 shown in FIGS. 5A and 5B, and applied to the entire surface of the substrate 100, thereby scanning the linear light pattern. Thus, the entire surface of the substrate 100 can be exposed in a desired time. In the example shown in FIGS. 5A and 5B, the movable mirrors 1242-1, -2,... N arranged in alignment in the XY direction of the micromirror device 124 are turned on and off every other column in the X direction. These patterns are arranged, and after this, the substrate 100 is PP-moved in the Y direction from the state shown in FIG. 8A and then sequentially sent in one row in the Y direction as shown in FIG. 5B. As a result, the entire surface of the substrate 100 is scanned with a linear repetitive pattern by the difference between the feed amount in the Y direction of the on and off patterns by the micromirror device 124 and the amount of movement of the substrate 100 in the Y direction within the same time. The structure to be shown is shown. In the example shown in FIGS. 5A and 5B, the pattern in the X direction is uniform. Actually, however, the ON and OFF areas are also in the X direction according to the exposure area on the substrate 100. Is formed. In the example shown in FIGS. 5A and 5B, an example in which a linear repetitive pattern is formed for each line of one line in the X direction of the micromirror device is shown. Alternatively, the width between the on pattern and the off pattern may be changed.
In the example shown in FIGS. 3 and 4, the direction in which the movable mirrors 1242-1 to 1242-6 arranged in a row in the micromirror device 124 are inclined by an angle θ with respect to the feeding direction (Y direction) of the substrate 100. ing. This is because the transfer pixels of the micromirror device 124 are aligned with a position resolution equal to or less than the transfer pixel pitch C. For example, when θ = 1/256 rad and the transfer pixel pitch is 10 μm, transfer can be performed with a position resolution of 10/256 = 0.039 μm by selecting a transfer pixel.

次に、投影光学部125の第2の実施形態について図6を用いて説明する。投影光学部125は、マイクロミラーデバイス124で反射された光を拡大する拡大レンズ1251、拡大レンズ1251で拡大された光を微小なレンズ1252でそれぞれ集光させるアレイレンズ1253、アレイレンズ1253で集光させた光のスポットを基板100の表面に形成された配向膜上に等倍率で投影させる対物レンズ1254を備えている。   Next, a second embodiment of the projection optical unit 125 will be described with reference to FIG. The projection optical unit 125 condenses the magnifying lens 1251 that magnifies the light reflected by the micromirror device 124, the array lens 1253 that condenses the light magnified by the magnifying lens 1251, and the array lens 1253, respectively. An objective lens 1254 is provided for projecting the spot of light thus produced at an equal magnification onto an alignment film formed on the surface of the substrate 100.

ここで、マイクロミラーデバイス124の可動ミラー1242は10.8μmピッチで2次元に配列されており、拡大レンズ1251の拡大率を2.78倍に設定すると、アレイレンズ1253の個々の微小レンズ1252は30μmピッチで形成すればよい。また、個々の微小レンズ1252のNAを0.07とし、光源121から発射される光の波長を365nmとしたとき、それぞれの微小レンズ1252で集光される光のスポット径は6.4μmとなる。
もし,アレイレンズ1253が無ければ30μmの転写画素サイズとなるが,本構成により6.4μm分解能でのパターン転写が可能になる。マイクロミラーデバイス124で反射された光はアレイレンズ1253で集光されて、6.4μmのスポット光の集合として基板100の表面に形成された配向膜上に照射される。
ここで,マイクロミラーデバイス124の画素1列が30μm角の2次元領域内に転写される様子を図7に示す。図7の左側に示すようにマイクロミラーデバイス124の画素1列が1024画素の場合,マイクロミラーデバイス124の列方向への傾斜角θ2を1/1024rad(縦方向に1024画素分離れたところで横方向に1画素分ずれるような傾き角)とし、マイクロミラーデバイス124が転写する画素のピッチ(基板100上の1画素領域のサイズ)をCとしたとき、基板100の送りピッチPPをC*33/32とすることにより,図7の右側に示すように基板100上の30μm角の1画素分の2次元領域には32*32点が転写される。
Here, the movable mirrors 1242 of the micromirror device 124 are two-dimensionally arranged at a pitch of 10.8 μm. When the magnification ratio of the magnification lens 1251 is set to 2.78 times, the individual microlenses 1252 of the array lens 1253 are What is necessary is just to form with a 30 micrometer pitch. Further, when the NA of each micro lens 1252 is 0.07 and the wavelength of light emitted from the light source 121 is 365 nm, the spot diameter of the light collected by each micro lens 1252 is 6.4 μm. .
If there is no array lens 1253, the transfer pixel size is 30 μm, but this configuration enables pattern transfer with a resolution of 6.4 μm. The light reflected by the micromirror device 124 is collected by the array lens 1253 and irradiated onto the alignment film formed on the surface of the substrate 100 as a set of 6.4 μm spot lights.
Here, FIG. 7 shows a state in which one row of pixels of the micromirror device 124 is transferred into a two-dimensional area of 30 μm square. As shown on the left side of FIG. 7, when one column of the micromirror device 124 is 1024 pixels, the inclination angle θ2 in the column direction of the micromirror device 124 is 1/1024 rad (horizontal direction when 1024 pixels are separated in the vertical direction). And the pitch of pixels transferred by the micromirror device 124 (size of one pixel region on the substrate 100) is C, the feed pitch PP of the substrate 100 is C * 33 / By setting the number to 32, 32 * 32 points are transferred to a two-dimensional area of one pixel of 30 μm square on the substrate 100 as shown on the right side of FIG.

即ち、1画素領域のサイズが30μmのとき、基板100の送りピッチPPを30*33/32=30.9375μmとすれば,光スポットは30μm角の1画素領域の中に基板100の送り方向(図7の上下の方向)に0.9375μmのピッチで30μmの長さに渡って基板100の送り方向に対して角度θの傾きをもって32個のスポットが照射される。33個目に照射される光スポットは、基板100上での光スポットの照射位置が1個目の光スポットの照射領域に対して基板100の送り方向に1画素分ずれるために、1個目の光スポットの照射領域に対して基板100の送り方向に対しては送り方向に対して直角な方向に30*32/1024=0.9375μm離れた箇所に転写される。このような走査が基板100の送り方向に対して直角な方向に0.9375μmピッチで順次繰返されることによりマイクロミラーデバイス124の列方向の1024画素分のスポットが基板100の1画素領域に照射される。   That is, when the size of one pixel region is 30 μm and the feed pitch PP of the substrate 100 is 30 * 33/32 = 30.9375 μm, the light spot is fed in the feed direction of the substrate 100 in one pixel region of 30 μm square ( In the vertical direction of FIG. 7, 32 spots are irradiated with an inclination of an angle θ with respect to the feed direction of the substrate 100 over a length of 30 μm at a pitch of 0.9375 μm. The 33rd light spot is the first light spot because the irradiation position of the light spot on the substrate 100 is shifted by one pixel in the feed direction of the substrate 100 with respect to the irradiation area of the first light spot. With respect to the irradiation area of the light spot, the image is transferred at a position 30 * 32/1024 = 0.9375 μm away from the feeding direction of the substrate 100 in a direction perpendicular to the feeding direction. By repeating such scanning in a direction perpendicular to the feed direction of the substrate 100 at a pitch of 0.9375 μm, a spot of 1024 pixels in the column direction of the micromirror device 124 is irradiated to one pixel region of the substrate 100. The

図7の右側のそれぞれの点がマイクロミラーデバイスの画素に対応しており,各画素のON/OFFにより,2次元領域内で6.4μmスポット光のパターンを描画することができる。送りピッチPPを30*33/32=30.9375μmとすれば,ステージ速度と光スポットスキャン速度の比は30:0.9375であり,ステージ速度3.2mm/sで,光スポットは100μm/sの低速スキャンが実現できる。   Each point on the right side of FIG. 7 corresponds to a pixel of the micromirror device, and a 6.4 μm spot light pattern can be drawn in a two-dimensional region by turning each pixel on and off. If the feed pitch PP is 30 * 33/32 = 30.9375 μm, the ratio of the stage speed to the light spot scan speed is 30: 0.9375, the stage speed is 3.2 mm / s, and the light spot is 100 μm / s. Low-speed scanning can be realized.

次に、図1に示した露光装置を用いて、基板100の表面に形成された配向膜に対して光ラビング処理を行う方法について説明する。   Next, a method for performing an optical rubbing process on the alignment film formed on the surface of the substrate 100 using the exposure apparatus shown in FIG. 1 will be described.

図8A及びBに、基板100上に形成された液晶表示装置の1画素分の領域内において配向膜に配向特性を付与する領域を示す。   FIGS. 8A and 8B show a region for imparting alignment characteristics to the alignment film in the region for one pixel of the liquid crystal display device formed on the substrate 100.

特許文献2には、液晶表示装置を構成する1対のガラス基板の双方の配向膜にそれぞれ180度向きの異なる配向特性を付与してそれらを組合わせることにより4種類の配向状態を形成する方法が記載されているが、本実施例においては、一方のガラス基板に4種類の配向状態を形成し、他方の基板には配向特性を付与する処理を行わない。   Patent Document 2 discloses a method of forming four types of alignment states by giving different alignment characteristics of 180 degrees to both alignment films of a pair of glass substrates constituting a liquid crystal display device and combining them. However, in this embodiment, four kinds of alignment states are formed on one glass substrate, and the treatment for imparting alignment characteristics to the other substrate is not performed.

即ち、本実施例においては、図8Aに示すように、基板100上の1画素分に相当する領域101を1011,1012,1013,1014の4つの小領域に分割し、この分割した各小領域の配向膜にそれぞれ異なる配向特性を付与する(異なるプレチルト角に設定する)。図8A中の矢印1021,1022,1023,1024は、それぞれ配向特性の方向(プレチルト角が付与された方向)を示す。   That is, in this embodiment, as shown in FIG. 8A, an area 101 corresponding to one pixel on the substrate 100 is divided into four small areas 1011, 1012, 1013, and 1014, and each divided small area is divided. Different alignment characteristics are imparted to the alignment films (set to different pretilt angles). Arrows 1021, 1022, 1023, and 1024 in FIG. 8A indicate orientation characteristics directions (directions to which a pretilt angle is given), respectively.

図8Bには、基板100上に1画素分に相当する領域101が多数形成されて状態を模式的に示す。実際の液晶基板には、横方向に1920画素、縦方向に1080画素並んでいる(フルハイビジョン仕様)。   FIG. 8B schematically shows a state in which many regions 101 corresponding to one pixel are formed on the substrate 100. The actual liquid crystal substrate has 1920 pixels in the horizontal direction and 1080 pixels in the vertical direction (full high-definition specification).

次に、図9A乃至Dと図12及び図13のフロー図とを用いて、図8A中の矢印1021,1022,1023,1024で示したような、それぞれ異なる方向に配向特性を付与する方法について説明する。   Next, with reference to FIGS. 9A to 9D and the flowcharts of FIGS. 12 and 13, a method for imparting orientation characteristics in different directions as indicated by arrows 1021, 1022, 1023, and 1024 in FIG. 8A. explain.

配向膜に細かいピッチの線状の光パターンを照射して一方向に走査すると、その走査した方向に応じた一様な配向特性(プレチルト角)が配向膜に付与される。本実施例では、この性質を利用して、先ず、図9Aに示したように基板100上の1画素分に相当する領域101−1の中の小領域1011及び領域101−1に対応する隣接する各画素領域(図9Aの例では101−2〜101−9)の内部の小領域1011に相当する領域に投影光学部125を介して細かいピッチの線状の光パターンを照射しながら走査することにより、基板100の表面に形成された配向膜を露光する。線状の光のパターンを走査することは、Yステージを投影光学部125に対して一定の速度で移動させることにより行う。また、Yステージの移動に伴って、マイクロミラーデバイス制御部132でマイクロミラーデバイス124の個々の可動ミラー1242を制御して、基板100上の1画素分に相当する領域101の中の小領域1011及び領域101に対応する隣接する各画素領域の小領域1011に相当する領域に線状の光パターンを見かけ上Y方向に連続的に移動させながら照射する。   When the alignment film is irradiated with a linear light pattern with a fine pitch and scanned in one direction, uniform alignment characteristics (pretilt angle) according to the scanned direction are imparted to the alignment film. In the present embodiment, by utilizing this property, first, as shown in FIG. 9A, the small area 1011 in the area 101-1 corresponding to one pixel on the substrate 100 and the adjacent area corresponding to the area 101-1. A region corresponding to a small region 1011 inside each pixel region (101-2 to 101-9 in the example of FIG. 9A) is scanned while irradiating a linear light pattern with a fine pitch through the projection optical unit 125. Thus, the alignment film formed on the surface of the substrate 100 is exposed. The scanning of the linear light pattern is performed by moving the Y stage with respect to the projection optical unit 125 at a constant speed. As the Y stage moves, the micromirror device control unit 132 controls the individual movable mirrors 1242 of the micromirror device 124, so that the small area 1011 in the area 101 corresponding to one pixel on the substrate 100. In addition, irradiation is performed while continuously moving the linear light pattern in the Y direction in an area corresponding to the small area 1011 of each adjacent pixel area corresponding to the area 101.

図9A及び図12に戻って説明する。θステージ114に設置した基板100の向きをY方向に対して角度θだけ傾けた状態でステージ駆動手段133でYステージ112を駆動して基板100をY方向へ一定の速度で移動させる(S1201)。このとき、基板100のY方向への移動速度をマイクロミラーデバイス124の各可動ミラー1242のY方向へのパターンの移動速度よりも少し大きめに設定する(マイクロミラーデバイス124のX方向の各可動ミラー1242で形成したパターンをY方向に1列分転送する間に基板100がY方向へ移動する距離がマイクロミラーデバイス124の各可動ミラー1242のY方向への並びの1ピッチ分よりも少し大きくなるようにY軸ステージ112の移動速度とマイクロミラーデバイス124のY方向パターン送り速度とを設定する)。この結果、図9Aで内部に矢印を記入した各微小領域(図8Aの1011に相当する領域:第1の領域)は、マイクロミラーデバイス124で形成した等ピッチの線状の光パターンを照射して走査することにより、基板100の表面に形成された配向膜を各領域において矢印で示した方向に対してプレチルト角を付与することができる。
Yステージ112のY方向への移動を継続してY方向の移動端(終点:図示せず)に達すると(S1202)、Yステージの移動を一旦停止する。次に、Yステージ112を図9Aの場合と反対の方向(逆方向)に図9Aの場合と同様に一定の速度で移動させながら、図8Aの1012に相当する基板100上の各画素の領域(第2の領域)をマイクロミラーデバイス124で形成した線状の繰り返しパターンで露光することにより(S1203)、図9Bに示すように、基板100の表面に形成された配向膜を各領域において図9Aで説明したのと反対の方向に対してプレチルト角を付与することができる。
Yステージ112を逆方向に移動させて移動端(始点:図示せず)に到達すると(S1204)、θステージ114を90度回転させる(S1205)。
Returning to FIG. 9A and FIG. In a state where the orientation of the substrate 100 placed on the θ stage 114 is inclined by an angle θ with respect to the Y direction, the stage driving means 133 drives the Y stage 112 to move the substrate 100 at a constant speed in the Y direction (S1201). . At this time, the moving speed of the substrate 100 in the Y direction is set slightly higher than the moving speed of the pattern in the Y direction of each movable mirror 1242 of the micromirror device 124 (each movable mirror in the X direction of the micromirror device 124). While the pattern formed in 1242 is transferred by one column in the Y direction, the distance that the substrate 100 moves in the Y direction is slightly larger than one pitch of the movable mirrors 1242 arranged in the Y direction of the micromirror device 124. In this manner, the moving speed of the Y-axis stage 112 and the Y-direction pattern feed speed of the micromirror device 124 are set. As a result, each minute region (indicated by 1011 in FIG. 8A: first region) with an arrow in FIG. 9A is irradiated with a linear light pattern of equal pitch formed by the micromirror device 124. By scanning in this manner, a pretilt angle can be given to the alignment film formed on the surface of the substrate 100 in the direction indicated by the arrow in each region.
When the Y stage 112 continues to move in the Y direction and reaches a moving end in the Y direction (end point: not shown) (S1202), the movement of the Y stage is temporarily stopped. Next, the area of each pixel on the substrate 100 corresponding to 1012 in FIG. 8A while moving the Y stage 112 in a direction (reverse direction) opposite to that in FIG. 9A at a constant speed as in FIG. 9A. By exposing the (second region) with a linear repeating pattern formed by the micromirror device 124 (S1203), the alignment film formed on the surface of the substrate 100 is shown in each region as shown in FIG. 9B. A pretilt angle can be given in the direction opposite to that described in 9A.
When the Y stage 112 is moved in the reverse direction to reach the moving end (start point: not shown) (S1204), the θ stage 114 is rotated 90 degrees (S1205).

次に、Yステージ112を図9Aの場合と同じ方向に一定の速度で移動させながら、図8Aの1013に相当する基板100上の各画素の領域(第3の領域)をマイクロミラーデバイス124で形成した線状の繰り返しパターンで露光することにより(S1206)、基板100の表面に形成された配向膜を各領域において図9Cに示すような方向に対してプレチルト角を付与することができる。
Yステージ112がY方向の移動端(終点:図示せず)に達すると(S1207)Yステージの移動を一旦停止する。次に、Yステージ112を図9Cの場合と反対の方向(逆方向)に図5Cの場合と同様に一定の速度で移動させながら、図8Aの1014に相当する基板100上の各画素の領域をマイクロミラーデバイス124で形成した線状の繰り返しパターンで露光することにより(S1208)、図9Dに示すように、基板100の表面に形成された配向膜を各領域において図9Cで説明したのと反対の方向に対してプレチルト角を付与することができる。Yステージ112がY方向の移動端(始点:図示せず)に達すると(S1209)Yステージの移動を停止する。
Next, while moving the Y stage 112 at a constant speed in the same direction as in FIG. 9A, the region (third region) of each pixel on the substrate 100 corresponding to 1013 in FIG. By exposing with the formed linear repeating pattern (S1206), a pretilt angle can be given to the orientation film formed on the surface of the substrate 100 in the direction as shown in FIG. 9C in each region.
When the Y stage 112 reaches the moving end (end point: not shown) in the Y direction (S1207), the movement of the Y stage is temporarily stopped. Next, while moving the Y stage 112 in the opposite direction (reverse direction) to that of FIG. 9C at a constant speed as in the case of FIG. 5C, the area of each pixel on the substrate 100 corresponding to 1014 in FIG. 8A. 9C is exposed in a linear repetitive pattern formed by the micromirror device 124 (S1208), and as shown in FIG. 9D, the alignment film formed on the surface of the substrate 100 is explained in FIG. 9C in each region. A pretilt angle can be given to the opposite direction. When the Y stage 112 reaches a moving end in the Y direction (start point: not shown) (S1209), the movement of the Y stage is stopped.

図9Aに示した状態で基板100のX方向の幅が1回の露光で行うX方向の露光幅よりも大きいときには、図12のフローでS605でθステージ114を90度回転させる前に、Xステージ111を駆動して基板100上の隣の露光領域が投影露光部125の下に位置させ、S601からS604のステップを繰り返し、基板100の全面に亘って各画素の第1の領域と第2の領域とを露光する。そのフローを図13に示す。   In the state shown in FIG. 9A, when the width in the X direction of the substrate 100 is larger than the exposure width in the X direction performed in one exposure, before the θ stage 114 is rotated 90 degrees in S605 in the flow of FIG. The stage 111 is driven so that the adjacent exposure region on the substrate 100 is positioned below the projection exposure unit 125, and steps S601 to S604 are repeated, so that the first region and the second region of each pixel are repeated over the entire surface of the substrate 100. The area is exposed. The flow is shown in FIG.

図10および図11により,プレチルト角の別の実施例に関して説明する。本実施例における装置構成や処理のフローは、実施例1の場合と同様である。   10 and 11, another embodiment of the pretilt angle will be described. The apparatus configuration and processing flow in this embodiment are the same as those in the first embodiment.

図10Aにおいてプレチルト角の付与された方向は,矢印1041,1042,1043,1044であり,例えばX軸の正または負の方向に対して±22.5度方向である。このような角度に設定することにより,視野角に対する視認性を向上させることができる。図10Bが基板100上で±22.5度のプレチルト角の方向を示す。図11A〜11Dはステージ走査によるプレチルト角付与方向である。図11Aは第1の露光工程において図10Aの1043の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図、図11Bは第2の露光工程において図10Aの1044の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図、図11Cは、第3の露光工程において図10Aの1042の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図、図11Dは、第4の露光工程において図10Aの1041の方向に対応するプレチルト角を付与する方向を模式的に示した液晶基板の正面図である。   In FIG. 10A, the directions to which the pretilt angle is given are arrows 1041, 1042, 1043, and 1044, for example, ± 22.5 degrees with respect to the positive or negative direction of the X axis. By setting such an angle, the visibility with respect to the viewing angle can be improved. FIG. 10B shows the direction of the pretilt angle of ± 22.5 degrees on the substrate 100. 11A to 11D show pretilt angle application directions by stage scanning. FIG. 11A is a front view of a liquid crystal substrate schematically showing a direction in which a pretilt angle corresponding to the direction 1043 in FIG. 10A is given in the first exposure step, and FIG. 11B is a front view of 1044 in FIG. 10A in the second exposure step. FIG. 11C is a front view of the liquid crystal substrate schematically showing the direction for giving the pretilt angle corresponding to the direction, and FIG. 11C schematically shows the direction for giving the pretilt angle corresponding to the direction 1042 in FIG. 10A in the third exposure step. FIG. 11D is a front view of the liquid crystal substrate schematically showing the direction in which the pretilt angle corresponding to the direction 1041 in FIG. 10A is applied in the fourth exposure step.

図11Bの状態において,図12のフローのS1205でθステージ114を45度回転させることにより,22.5度方向のプレチルト角を各領域に付与することができる。   In the state of FIG. 11B, by rotating the θ stage 114 by 45 degrees in S1205 of the flow of FIG. 12, a pretilt angle of 22.5 degrees can be given to each region.

このように,ステージ114の回転量により,所望のプレチルト角の方向を設定することができ,製品毎の視野角向上に対応することが可能になる。   Thus, the direction of the desired pretilt angle can be set according to the rotation amount of the stage 114, and it becomes possible to cope with the improvement of the viewing angle for each product.

図13に示したフロー図において、S1301からS1304までは、図12で説明したS1201からS1204までの処理と同じである。S1201からS1204までの処理で初めのX方向に沿った領域について配向膜上の第1の領域と第2の領域との露光が終わるとX方向の走査が完了したかをチェックし(S1305),完了していない場合にはXステージ111を駆動してX方向で次の露光領域を投影露光部125の下に位置させ(S1306)、S1301からS1304までの処理を実行する。これを基板100上のX方向の領域について全て処理が終了するまで繰り返す。   In the flowchart shown in FIG. 13, S1301 to S1304 are the same as the processes from S1201 to S1204 described in FIG. In the processing from S1201 to S1204, when the exposure of the first region and the second region on the alignment film is completed for the first region along the X direction, it is checked whether the scanning in the X direction is completed (S1305). If not completed, the X stage 111 is driven to position the next exposure area below the projection exposure unit 125 in the X direction (S1306), and the processes from S1301 to S1304 are executed. This is repeated until the processing is completed for all regions in the X direction on the substrate 100.

X方向の走査が完了したと判定すると、次にθステージ114を90度回転させて(S1307)、S1308からS1311で、図12で説明したS1206からS1209のステップと同じ処理を行う。S1308からS1311までの処理で初めのX方向に沿った領域について配向膜上の第3の領域と第4の領域との露光が終わると、X方向の走査が完了したかをチェックし(S1312),完了していない場合にはXステージ111を駆動してX方向で次の露光領域を投影露光部125の下に位置させ(S1313)、S1308からS1311までの処理を実行する。これを基板100上のX方向の全領域について各画素の第3の領域と第4の領域との露光が終了するまで繰り返す。X方向の走査が完了したと判定すると全体の処理を終了する。   If it is determined that scanning in the X direction has been completed, the θ stage 114 is then rotated 90 degrees (S1307), and the same processing as in steps S1206 to S1209 described in FIG. 12 is performed in steps S1308 to S1311. When the exposure of the third region and the fourth region on the alignment film is completed for the first region along the X direction in the processing from S1308 to S1311, it is checked whether the scanning in the X direction is completed (S1312). If not completed, the X stage 111 is driven to position the next exposure region below the projection exposure unit 125 in the X direction (S1313), and the processing from S1308 to S1311 is executed. This is repeated until the exposure of the third region and the fourth region of each pixel is completed for all regions in the X direction on the substrate 100. When it is determined that scanning in the X direction is complete, the entire process is terminated.

基板100の表示領域全面に対して上記した処理を行うことにより、各画素の表面に形成された配向膜に対して4つに分割したそれぞれの領域に図9A乃至D に示すようなプレチルト角を付与することができ、その結果、図8Bに示すように、基板100の全面に亘って、1つの画素内の4つの領域にそれぞれ異なる偏光特性を備えた液晶表示素子を得ることができるようになった。   By performing the above-described processing on the entire display region of the substrate 100, a pretilt angle as shown in FIGS. 9A to 9D is applied to each of the regions divided into four with respect to the alignment film formed on the surface of each pixel. As a result, as shown in FIG. 8B, it is possible to obtain liquid crystal display elements having different polarization characteristics in four regions in one pixel over the entire surface of the substrate 100 as shown in FIG. 8B. became.

以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   As mentioned above, although the invention made by the present inventor has been specifically described based on the embodiments, it is needless to say that the present invention is not limited to the above embodiments and can be variously modified without departing from the gist thereof. Yes.

110・・・ステージ部 111・・・Xステージ 112・・・Yステージ 113・・・Zステージ 114・・・θステージ 120・・・露光光学系 121・・・光源 122・・・偏光板 123・・・ミラー 124・・・マイクロミラーデバイス 125・・・投影光学部 130・・・制御部 131・・・光源制御部 132・・・マイクロミラーデバイス制御部 133・・・ステージ制御部 134・・・全体制御部 140・・・基板表面高さ検出系 141・・・高さ検出用光源部 142・・・反射光検出器。 DESCRIPTION OF SYMBOLS 110 ... Stage part 111 ... X stage 112 ... Y stage 113 ... Z stage 114 ... θ stage 120 ... Exposure optical system 121 ... Light source 122 ... Polarizing plate 123 .. Mirror 124 ... Micromirror device 125 ... Projection optical unit 130 ... Control unit 131 ... Light source control unit 132 ... Micromirror device control unit 133 ... Stage control unit 134 ... Overall control unit 140... Substrate surface height detection system 141... Height detection light source unit 142.

Claims (16)

液晶用配向膜を露光する露光装置であって、
表面に配向膜が形成された基板を載置して移動可能なステージ手段と、
露光光を発射する光源と、
該光源から発射された露光光に偏光特性を付与する偏光特性付与手段と、
該偏光特性付与手段で偏光特性を付与された露光光の一部を微小な可動ミラーで形成したパターンで反射するパターン形成手段と、
該パターン形成手段で反射された露光光のパターンを前記ステージ手段に載置された基板に照射して前記配向膜を露光する投影光学部と、
全体を制御する制御手段と
を備え、該制御手段は、前記ステージ手段と前記パターン形成手段とを制御して、前記ステージ手段を一方向に連続的に移動させることにより一方向に連続的に移動している前記基板上を前記露光光のパターンが前記ステージ手段の移動速度よりも遅い速度で移動して前記配向膜を露光することを特徴とする液晶用配向膜露光装置。
An exposure apparatus that exposes an alignment film for liquid crystal,
Stage means capable of moving by placing a substrate having an alignment film formed on the surface;
A light source that emits exposure light;
Polarization property imparting means for imparting polarization property to exposure light emitted from the light source;
Pattern forming means for reflecting a part of the exposure light imparted with polarization characteristics by the polarization characteristic imparting means with a pattern formed by a minute movable mirror;
A projection optical unit that exposes the alignment film by irradiating a substrate mounted on the stage unit with a pattern of exposure light reflected by the pattern forming unit;
A control means for controlling the whole, and the control means controls the stage means and the pattern forming means, and continuously moves in one direction by moving the stage means continuously in one direction. An alignment film exposure apparatus for liquid crystal, wherein the alignment film is exposed by moving a pattern of the exposure light on the substrate at a speed slower than a moving speed of the stage means.
前記制御手段は、前記ステージ手段と前記パターン形成手段とを制御して、前記ステージ手段を一方向に連続的に移動させながら前記基板上の配向膜の第一の領域を前記露光光で露光し、前記ステージ手段を前記一方向と逆の方向に連続的に移動させながら前記基板上の配向膜の前記第一の領域とは異なる第二の領域を前記露光光で露光することを特徴とする請求項1記載の液晶用配向膜露光装置。   The control means controls the stage means and the pattern forming means to expose the first region of the alignment film on the substrate with the exposure light while continuously moving the stage means in one direction. And exposing the second region different from the first region of the alignment film on the substrate with the exposure light while continuously moving the stage means in a direction opposite to the one direction. The alignment film exposure apparatus for liquid crystal according to claim 1. 前記ステージ手段は、直線上を往復移動可能な直線ステージと回転可能なθステージを備えることを特徴とする請求項1記載の液晶用配向膜露光装置。   2. The alignment film exposure apparatus for liquid crystal according to claim 1, wherein the stage means comprises a linear stage capable of reciprocating on a straight line and a rotatable θ stage. 液晶用配向膜を露光する露光装置であって、
表面に配向膜が形成された基板を載置して移動可能なステージ手段と、
紫外光または紫外光に近い光を露光光として発射する光源と、
該光源から発射された露光光に偏光特性を付与する偏光特性付与手段と、
微小な可動ミラーを多数備えて前記偏光特性付与手段で偏光特性を付与された露光光を入射して前記微小な可動ミラーで形成したパターンで反射することにより微細なピッチの線状の光パターンを形成するパターン形成手段と、
該パターン形成手段で形成された微細なピッチの線状の露光光パターンを前記ステージ手段に載置された基板に照射して前記配向膜を露光する投影光学部と、
を備え、前記パターン形成手段は、前記ステージ手段に載置されて一方向に連続的に移動している前記基板上に前記微細なピッチの線状の露光光パターンを前記ステージ手段の移動速度よりも遅い速さで前記一方向とは逆の方向に移動して前記配向膜を露光することを特徴とする液晶用配向膜露光装置。
An exposure apparatus that exposes an alignment film for liquid crystal,
Stage means capable of moving by placing a substrate having an alignment film formed on the surface;
A light source that emits ultraviolet light or light close to ultraviolet light as exposure light;
Polarization property imparting means for imparting polarization property to exposure light emitted from the light source;
By providing a large number of minute movable mirrors and exposing the exposure light imparted with polarization characteristics by the polarization characteristic imparting means and reflecting it with a pattern formed by the minute movable mirrors, a linear light pattern with a fine pitch is formed. Pattern forming means to be formed;
A projection optical unit configured to irradiate the alignment film by irradiating a substrate placed on the stage unit with a fine pitch linear exposure light pattern formed by the pattern forming unit;
The pattern forming means is configured to apply the fine pitch linear exposure light pattern on the substrate that is placed on the stage means and continuously moves in one direction, based on the moving speed of the stage means. An alignment film exposure apparatus for liquid crystal, wherein the alignment film is exposed by moving in a direction opposite to the one direction at a slow speed.
前記ステージ手段を一方向に連続的に移動させながら前記基板上の配向膜の第一の領域を前記露光光で露光し、前記ステージ手段を前記一方向と逆の方向に連続的に移動させながら前記基板上の配向膜の前記第一の領域とは異なる第二の領域を前記露光光で露光することを特徴とする請求項4記載の液晶用配向膜露光装置。   While the stage means is continuously moved in one direction, the first region of the alignment film on the substrate is exposed with the exposure light, and the stage means is continuously moved in a direction opposite to the one direction. 5. The alignment film exposure apparatus for liquid crystal according to claim 4, wherein a second region different from the first region of the alignment film on the substrate is exposed with the exposure light. 前記ステージ手段は、直線上を往復移動可能な直線ステージと回転可能なθステージを備えることを特徴とする請求項4記載の液晶用配向膜露光装置。   5. The alignment film exposure apparatus for liquid crystal according to claim 4, wherein the stage means includes a linear stage capable of reciprocating on a straight line and a rotatable θ stage. 前記マイクロミラーデバイスは前記微小な可動ミラーが二次元状に配置されており、該二次元状に配列された微小な可動ミラーの前記ステージ手段が往復移動する直線の方向の並びが、該直線の方向に対して傾いて設置されていることを特徴とする請求項1乃至6の何れかに記載の液晶用配向膜露光装置。   In the micromirror device, the micro movable mirrors are two-dimensionally arranged, and the arrangement of the linear directions in which the stage means of the micro movable mirrors arranged in two dimensions reciprocally move is The liquid crystal alignment film exposure apparatus according to claim 1, wherein the liquid crystal alignment film exposure apparatus is inclined with respect to a direction. 前記ステージ手段に載置された基板の表面の高さを検出する高さ検出手段を更に備えたことを特徴とする請求項1乃至7の何れかに記載の液晶用配向膜露光装置。   8. The alignment film exposure apparatus for liquid crystal according to claim 1, further comprising height detection means for detecting the height of the surface of the substrate placed on the stage means. 光源から発射された露光光に偏光特性を付与して微小な可動ミラーを多数備えたマイクロミラーデバイスに入射させ、
該マイクロミラーデバイスの微小な可動ミラーにより形成された反射パターンで反射された露光光のパターンを投影光学系を介してステージに載置された表面に配向膜が形成された基板に投影して前記配向膜を露光する
液晶用配向膜を露光する方法であって、
前記ステージを一方向に連続的に移動させることにより一方向に連続的に移動している前記基板上を前記露光光のパターンが前記ステージの移動速度よりも遅い速度で移動して前記配向膜を露光することを特徴とする液晶用配向膜露光方法。
Applying polarization characteristics to the exposure light emitted from the light source and making it incident on a micromirror device equipped with a large number of small movable mirrors,
A pattern of exposure light reflected by a reflection pattern formed by a minute movable mirror of the micromirror device is projected onto a substrate having an alignment film formed on a surface placed on a stage via a projection optical system. A method of exposing an alignment film for liquid crystal that exposes the alignment film,
By moving the stage continuously in one direction, the pattern of the exposure light moves at a speed slower than the moving speed of the stage on the substrate that is continuously moving in one direction. An alignment film exposure method for liquid crystal, comprising exposing.
前記ステージを一方向に連続的に移動させながら前記基板上の配向膜の第一の領域を前記露光光で露光し、前記ステージを前記一方向と逆の方向に連続的に移動させながら前記基板上の配向膜の前記第一の領域とは異なる第二の領域を前記露光光で露光することを特徴とする請求項9記載の液晶用配向膜露光方法。   The first region of the alignment film on the substrate is exposed with the exposure light while continuously moving the stage in one direction, and the substrate is continuously moved in a direction opposite to the one direction. 10. The alignment film exposure method for liquid crystal according to claim 9, wherein a second region different from the first region of the upper alignment film is exposed with the exposure light. 前記基板上の配向膜の前記第一の領域と前記第二の領域とを露光後に、前記基板を任意の角度回転させて前記基板上の第三の領域と第四の領域とを露光することを特徴とする請求項9記載の液晶用配向膜露光方法。   After exposing the first region and the second region of the alignment film on the substrate, the substrate is rotated at an arbitrary angle to expose the third region and the fourth region on the substrate. The alignment film exposure method for liquid crystals according to claim 9. 前記基板上には多数の画素が整列して形成されており、該基板の画素の並びの方向が前記ステージが移動する一方向に対して任意の角度傾くように前記基板を前記ステージに載置することを特徴とする請求項9乃至11の何れかに記載の液晶用配向膜露光方法。   A large number of pixels are formed in alignment on the substrate, and the substrate is placed on the stage so that the alignment direction of the pixels on the substrate is inclined at an arbitrary angle with respect to one direction in which the stage moves. The alignment film exposure method for liquid crystal according to claim 9, wherein the alignment film is exposed to light. 前記基板上の配向膜の前記第一の領域と前記第二の領域とを露光後に、前記基板を90度回転させて前記基板上の第三の領域と第四の領域とを露光することを特徴とする請求項9記載の液晶用配向膜露光方法。   After exposing the first region and the second region of the alignment film on the substrate, the substrate is rotated 90 degrees to expose the third region and the fourth region on the substrate. The alignment film exposure method for liquid crystal according to claim 9, characterized in that: 前記基板上には多数の画素が整列して形成されており、該基板の画素の並びの方向が前記ステージが移動する一方向に対して45度傾くように前記基板を前記ステージに載置することを特徴とする請求項9乃至11の何れかに記載の液晶用配向膜露光方法。   A large number of pixels are formed in alignment on the substrate, and the substrate is placed on the stage so that the alignment direction of the pixels on the substrate is inclined 45 degrees with respect to one direction in which the stage moves. 12. The alignment film exposure method for liquid crystal according to claim 9, wherein the alignment film is exposed to light. 前記マイクロミラーデバイスを構成する微小な可動ミラーは前記ステージを連続して移動させる一方向に対して傾いて二次元状に配列されており、該傾いて配列された微小な可動ミラーで反射された露光パターンで前記ステージに載置した基板の配向膜を露光することを特徴とする請求項9乃至12の何れかに記載の液晶用配向膜露光方法。   The micro movable mirrors constituting the micro mirror device are arranged in a two-dimensional manner inclined with respect to one direction in which the stage is continuously moved, and reflected by the micro movable mirrors arranged in an inclined manner. 13. The alignment film exposure method for liquid crystals according to claim 9, wherein the alignment film on the substrate placed on the stage is exposed with an exposure pattern. 前記基板上の配向膜を露光中に、前記ステージに載置された基板の表面の高さを光学的に検出し、該検出した結果に基づいて前記基板の表面の高さを調整することを特徴とする請求項9乃至12の何れかに記載の液晶用配向膜露光方法。   During the exposure of the alignment film on the substrate, the height of the surface of the substrate placed on the stage is optically detected, and the height of the surface of the substrate is adjusted based on the detected result. The alignment film exposure method for liquid crystal according to any one of claims 9 to 12.
JP2010154794A 2010-07-07 2010-07-07 Method for exposing alignment film for liquid crystal and device for the same Pending JP2012018256A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010154794A JP2012018256A (en) 2010-07-07 2010-07-07 Method for exposing alignment film for liquid crystal and device for the same
KR1020110063539A KR101346388B1 (en) 2010-07-07 2011-06-29 Method and apparatus for exposing a liquid crystal alignment layer
CN2011101937164A CN102314023A (en) 2010-07-07 2011-07-05 Liquid crystal is with alignment films exposure method and device thereof
TW100123838A TW201202787A (en) 2010-07-07 2011-07-06 Exposure method for liquid crystal alignment film and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154794A JP2012018256A (en) 2010-07-07 2010-07-07 Method for exposing alignment film for liquid crystal and device for the same

Publications (1)

Publication Number Publication Date
JP2012018256A true JP2012018256A (en) 2012-01-26

Family

ID=45427312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154794A Pending JP2012018256A (en) 2010-07-07 2010-07-07 Method for exposing alignment film for liquid crystal and device for the same

Country Status (4)

Country Link
JP (1) JP2012018256A (en)
KR (1) KR101346388B1 (en)
CN (1) CN102314023A (en)
TW (1) TW201202787A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132561A1 (en) * 2011-03-25 2012-10-04 株式会社日立ハイテクノロジーズ Method and system for exposing alignment film for liquid crystal, and liquid crystal panel manufactured using system for exposing alignment film for liquid crystal
JP5131886B1 (en) * 2012-04-19 2013-01-30 信越エンジニアリング株式会社 Photo-alignment irradiation device
CN103488057A (en) * 2013-08-15 2014-01-01 京东方科技集团股份有限公司 Self-counterpoint exposure orientation equipment and process method for manufacturing phase difference plate
WO2016082495A1 (en) * 2014-11-28 2016-06-02 京东方科技集团股份有限公司 Method for manufacturing colour light filter, colour light filter and display device
CN112904621A (en) * 2021-01-27 2021-06-04 福州大学 Optical alignment light path system of liquid crystal display three-domain alignment layer
WO2022204130A1 (en) * 2021-03-24 2022-09-29 Applied Materials, Inc. Method to fabricate large scale flat optics lenses

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5922459B2 (en) * 2012-03-26 2016-05-24 株式会社有沢製作所 Production method of retardation plate
JP5953512B2 (en) * 2012-07-05 2016-07-20 株式会社ブイ・テクノロジー Photo-alignment exposure apparatus and photo-alignment exposure method
KR102222005B1 (en) * 2014-01-09 2021-03-04 삼성디스플레이 주식회사 Exposure apparatus and exposure method using the same
JP5958491B2 (en) * 2014-03-31 2016-08-02 ウシオ電機株式会社 Polarized light irradiation device
JP5773095B1 (en) * 2015-02-10 2015-09-02 ウシオ電機株式会社 Light irradiation apparatus and light irradiation method
JP6660144B2 (en) * 2015-10-23 2020-03-04 株式会社ブイ・テクノロジー Light irradiation device
CN105487301B (en) * 2016-02-15 2018-11-23 深圳市华星光电技术有限公司 The production method of vertical light alignment method and liquid crystal display panel
JP6470204B2 (en) * 2016-02-25 2019-02-13 富士フイルム株式会社 Manufacturing method of liquid crystal display panel
JP2019101226A (en) * 2017-12-01 2019-06-24 シャープ株式会社 Polarized light irradiation device, and, method of manufacturing substrate with photosensitive film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235486A (en) * 1994-11-21 1995-09-05 Canon Inc Manufacture of device
JP2003142379A (en) * 2001-11-05 2003-05-16 Hitachi Ltd Method of exposing pattern and device thereof, and method of manufacturing electronic device and the electronic device
JP2006171043A (en) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd Alignment layer, its manufacturing technique, and liquid crystal apparatus
JP2007025596A (en) * 2005-07-21 2007-02-01 Fujifilm Corp Method for manufacturing structure in cell, structure in cell, and display apparatus
JP2007219011A (en) * 2006-02-14 2007-08-30 Hitachi Via Mechanics Ltd Maskless exposure apparatus and exposure method thereof
JP2008191668A (en) * 2007-02-06 2008-08-21 Samsung Electronics Co Ltd Method for forming photoresist pattern, and method for manufacturing display panel
JP2010134483A (en) * 2005-12-02 2010-06-17 Sharp Corp Method of manufacturing liquid crystal display, and exposure device for alignment treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1353217A1 (en) * 2002-03-29 2003-10-15 JSR Corporation Optical alignment method and liquid crystal display element
JP4708287B2 (en) * 2006-08-25 2011-06-22 富士フイルム株式会社 Manufacturing method of optical film, optical film, polarizing plate, transfer material, liquid crystal display device, and polarized ultraviolet exposure device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235486A (en) * 1994-11-21 1995-09-05 Canon Inc Manufacture of device
JP2003142379A (en) * 2001-11-05 2003-05-16 Hitachi Ltd Method of exposing pattern and device thereof, and method of manufacturing electronic device and the electronic device
JP2006171043A (en) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd Alignment layer, its manufacturing technique, and liquid crystal apparatus
JP2007025596A (en) * 2005-07-21 2007-02-01 Fujifilm Corp Method for manufacturing structure in cell, structure in cell, and display apparatus
JP2010134483A (en) * 2005-12-02 2010-06-17 Sharp Corp Method of manufacturing liquid crystal display, and exposure device for alignment treatment
JP2007219011A (en) * 2006-02-14 2007-08-30 Hitachi Via Mechanics Ltd Maskless exposure apparatus and exposure method thereof
JP2008191668A (en) * 2007-02-06 2008-08-21 Samsung Electronics Co Ltd Method for forming photoresist pattern, and method for manufacturing display panel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132561A1 (en) * 2011-03-25 2012-10-04 株式会社日立ハイテクノロジーズ Method and system for exposing alignment film for liquid crystal, and liquid crystal panel manufactured using system for exposing alignment film for liquid crystal
JP5131886B1 (en) * 2012-04-19 2013-01-30 信越エンジニアリング株式会社 Photo-alignment irradiation device
WO2013157114A1 (en) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 Photo-orienting illumination device
KR101462274B1 (en) * 2012-04-19 2014-11-17 가부시키가이샤 에프케이 코우카쿠 겐큐쇼 Light illuminating apparatus for photo-alignment
CN103488057A (en) * 2013-08-15 2014-01-01 京东方科技集团股份有限公司 Self-counterpoint exposure orientation equipment and process method for manufacturing phase difference plate
US9223175B2 (en) 2013-08-15 2015-12-29 Boe Technology Group Co., Ltd. Apparatus for aligning a to-be-aligned display panel by self-alignment exposure and method for fabricating retardation plate
WO2016082495A1 (en) * 2014-11-28 2016-06-02 京东方科技集团股份有限公司 Method for manufacturing colour light filter, colour light filter and display device
US9568820B2 (en) 2014-11-28 2017-02-14 Boe Technology Group Co., Ltd. Method for manufacturing color filter, color filter, and display device
CN112904621A (en) * 2021-01-27 2021-06-04 福州大学 Optical alignment light path system of liquid crystal display three-domain alignment layer
CN112904621B (en) * 2021-01-27 2023-12-29 福州大学 Light alignment light path system of liquid crystal display tri-domain alignment layer
WO2022204130A1 (en) * 2021-03-24 2022-09-29 Applied Materials, Inc. Method to fabricate large scale flat optics lenses

Also Published As

Publication number Publication date
TW201202787A (en) 2012-01-16
KR20120004927A (en) 2012-01-13
CN102314023A (en) 2012-01-11
KR101346388B1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
JP2012018256A (en) Method for exposing alignment film for liquid crystal and device for the same
TWI474088B (en) Production method of liquid crystal display and exposure device for alignment treatment
KR101790824B1 (en) Exposure apparatus
CN112241070B (en) Large-breadth optical polarization pattern generation device and generation method
KR101462272B1 (en) Photo-allignmemt exposure apparatus and photo-allignmemt exposure apparatus method
CN103748489A (en) Method for producing pattern phase difference film, pattern phase difference film, and image display device
TWI521258B (en) Light alignment illumination device
JP2012078697A (en) Alignment layer exposure method for liquid crystal, its device and liquid crystal panel produced by applying the method
JP2012123207A (en) Exposure apparatus and exposure method
CN105690753B (en) 3D printing method and device for improving resolution
WO2012017837A1 (en) Exposure apparatus
WO2012132561A1 (en) Method and system for exposing alignment film for liquid crystal, and liquid crystal panel manufactured using system for exposing alignment film for liquid crystal
CN105739184B (en) Alignment apparatus, alignment system and alignment method
KR20120064020A (en) Light exposure device and light exposure method
CN112946960A (en) Large-breadth randomly-distributed optical orientation device and method based on digital micro-reflector
JP4239640B2 (en) Exposure apparatus and liquid crystal device manufacturing method using the exposure apparatus
JP5430589B2 (en) Exposure apparatus and exposure method
US20130242281A1 (en) Exposure apparatus
JP2006145745A (en) Pattern drawing apparatus and method for drawing pattern
JP2012108245A (en) Pattern correction device
KR20120118822A (en) Exposing method using maskless exposure apparatus and method of fabricating liquid crystal display using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715