WO2012017818A1 - 通信装置および通信システム - Google Patents

通信装置および通信システム Download PDF

Info

Publication number
WO2012017818A1
WO2012017818A1 PCT/JP2011/066329 JP2011066329W WO2012017818A1 WO 2012017818 A1 WO2012017818 A1 WO 2012017818A1 JP 2011066329 W JP2011066329 W JP 2011066329W WO 2012017818 A1 WO2012017818 A1 WO 2012017818A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
signal
received signal
remainder
unit
Prior art date
Application number
PCT/JP2011/066329
Other languages
English (en)
French (fr)
Inventor
小野寺毅
中野博史
留場宏道
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012527657A priority Critical patent/JP5789607B2/ja
Publication of WO2012017818A1 publication Critical patent/WO2012017818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems

Definitions

  • the present invention relates to a communication system and a communication apparatus that transmit and receive signals while suppressing interference in advance by signal processing.
  • MIMO Multiple-Input Multiple-Output
  • a system has been proposed in which the number of transmission antennas included in a base station apparatus (transmission apparatus) is significantly larger than the number of reception antennas included in a terminal apparatus (reception apparatus).
  • a multi-user MIMO Multi-User MIMO
  • Multi-User MIMO that multiplexes data sequences addressed to a plurality of terminal devices (users) in order to further improve the system throughput by effectively using the transmission antenna of the base station device.
  • Non-Patent Document 1 CSI (Channel State Information) that is channel state information from each transmitting antenna of the base station device to each receiving antenna of each terminal device, it does not put a heavy load on the terminal device.
  • CSI Channel State Information
  • linear precoding beamforming
  • the transmission power is reduced in the signal space in order to subtract the interference signal component obtained from the CSI from the transmission signal in advance and suppress the transmission power that increases after the interference subtraction.
  • nonlinear precoding in which a transmission signal is precoded by nonlinear processing that encodes a signal after interference subtraction at a signal point.
  • Tomlinson-Harashima precoding As one of the nonlinear precodings, Tomlinson-Harashima precoding (Tomlinson-Harashima precoding) that can suppress an increase in transmission power by performing a modulo operation on a signal in both transmitting and receiving apparatuses.
  • Precoding THP
  • Non-Patent Document 2 Non-Patent Document 3, Non-Patent Document 4
  • the terminal device on the receiving side also performs a remainder calculation similar to transmission on the received signal.
  • Non-Patent Document 5 A method in which the same processing as linear precoding is performed on a terminal without applying a residue calculation, and a non-linear precoding by THP is applied only to a terminal having a large MUI and a large transmission power suppression effect by the residue operation. Has been proposed (Non-Patent Document 5).
  • Non-Patent Document 6 in consideration that the signal point arrangement at the time of modulation in the base station apparatus is repeated with a modulo width, it is repeated with a received signal point (with noise added) and a modulo width.
  • a method of calculating a log likelihood ratio (Log Likelihood Ratio: LLR) of a demodulated bit from the Euclidean distance from each candidate signal point (demodulation processing by soft decision) is described.
  • a communication device that receives a signal transmitted with interference suppressed by THP (nonlinear precoding) needs to perform a remainder operation similar to that on the transmission side.
  • Non-Patent Document 5 two types of interference suppression methods are used, such as when the transmission apparatus performs interference suppression by combining linear precoding and THP simultaneously.
  • the receiving device terminal device
  • the transmission apparatus receives linear precoding for a reception apparatus (terminal apparatus) that receives a signal transmitted with interference suppression, and the signal received by the reception apparatus is not subjected to a residue calculation.
  • THP mainder operation is performed
  • An object of the present invention is to allow a receiving apparatus to determine whether or not there is a remainder operation without notification from the transmitting apparatus.
  • a receiving apparatus that receives a signal that selectively or simultaneously used interference suppression by linear precoding and interference suppression by nonlinear precoding, and performs a remainder operation on a received signal.
  • a receiving apparatus characterized by performing a remainder operation on a received signal when the determination result is a result of performing a remainder operation.
  • the presence or absence of remainder calculation can be determined on the receiving device side without notification from the transmitting device.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or used simultaneously, and a reception quality estimated from a received signal, A remainder calculation determination unit that determines whether or not to perform a remainder calculation on the received signal based on the distribution of the received signal measured from the received signal, and when the determination result is a remainder calculation. And a residue calculation unit that performs a residue calculation on the received signal.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or simultaneously used, and estimates reception quality of a received signal
  • a propagation path estimator a signal distribution estimator for estimating a distribution of received signal points when it is assumed that no remainder calculation is performed at the time of transmission based on the estimation result of the reception quality, and a signal point of the received signal
  • a signal distribution measurement unit that measures the distribution
  • a remainder calculation determination that compares the estimation result of the reception signal point distribution with the measurement result of the reception signal point distribution and determines whether or not to perform a remainder calculation on the reception signal
  • a residue calculation unit that performs a residue calculation on a received signal when the determination result is a residue calculation.
  • the remainder calculation determination unit determines that the remainder calculation is not performed when the degree of coincidence between the estimation result of the reception signal point distribution and the distribution shape of the measurement result of the reception signal point distribution is high, and when the degree of coincidence is low It is determined that a remainder operation is performed.
  • the remainder calculation determination unit is a ratio that is distributed outside the modulo width in the estimation result of the reception signal point distribution, and a ratio that is distributed outside the modulo width in the measurement result of the reception signal point distribution. Are substantially equal, it is determined that the remainder calculation is not performed, and when the ratio in the measurement result of the received signal point distribution is larger, it is determined that the remainder calculation is performed.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or simultaneously used, and estimates reception quality of a received signal
  • a propagation path estimator a signal variance estimator that estimates the variance of the distribution of received signal points when it is assumed that no residue calculation is performed at the time of transmission based on the estimation result of the reception quality, and Whether the signal variance measurement unit for measuring the variance of the signal point distribution compares the estimation result of the variance of the received signal point distribution with the measurement result of the variance of the received signal point distribution, and performs a remainder operation on the received signal
  • a remainder calculation determination unit that determines whether or not, and a remainder calculation unit that performs a residue calculation on a received signal when the determination result is a residue calculation. It is a communication apparatus.
  • the remainder calculation determining unit determines that the remainder calculation is not performed when the estimation result of the variance of the received signal point distribution and the measurement result of the variance of the received signal point distribution are substantially equal, and the variance of the received signal point distribution If the measurement result is larger, it is determined that the remainder calculation is performed.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or simultaneously used, and estimates reception quality of a received signal
  • the propagation path estimation unit and one or more subcarriers or frequency channels with good reception quality estimation results are selected, and the signal points of the received data symbols on the selected subcarriers or frequency channels are outside the modulo width.
  • the remainder calculation determination unit determines that the remainder calculation is not performed, and when the determination result is a residue calculation, And a remainder calculation unit that performs a remainder calculation on the received signal.
  • the present invention is a transmission apparatus that transmits a signal by suppressing interference in a reception apparatus in advance by nonlinear precoding, and an interference component subtraction unit that subtracts an interference component from a modulation symbol, and the interference component is subtracted
  • a remainder computation unit that performs a remainder operation on a modulation symbol
  • a vector addition unit that adds an additional vector having a component that is an integral multiple of the modulo width of the remainder operation to a part of the symbols of the remainder operation result.
  • It is a transmitter characterized by comprising. The positions of the partial symbols to which the additional vector is added are preferably determined in advance.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by non-linear precoding are selectively used or used at the same time. If the signal point of the selected received data symbol is located outside the modulo width, it is determined that the remainder operation is performed, and if the signal point is located inside the modulo width, the remainder operation is performed.
  • a reception device comprising: a remainder calculation determination unit that determines not to perform; and a residue calculation unit that performs a residue calculation on a received signal when the determination result is a residue calculation. is there.
  • the present invention is also a communication system in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or used simultaneously, and interference in a receiving apparatus is suppressed in advance by signal processing. Performs a remainder operation on the received signal based on the transmitting device to transmit, the receiving unit that receives the transmitted signal, the reception quality estimated from the received signal, and the distribution of the received signal measured from the received signal.
  • a receiving device having a determination unit that determines whether or not and a residue calculation unit that performs a residue calculation on a received signal when the determination result is a residue calculation. is there.
  • the present invention is a reception apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or simultaneously used, and performs a remainder operation from the received signal.
  • the received signal is demodulated in consideration of signal point repetition by the remainder calculation when the determination result is a remainder calculation.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or used simultaneously, and a reception quality estimated from a received signal, A remainder calculation determination unit that determines whether or not to perform a remainder calculation on the received signal based on the distribution of the received signal measured from the received signal, and when the determination result is a remainder calculation. And a demodulator that performs likelihood calculation in consideration of repetition of signal points by residue calculation from the received signal.
  • the present invention is a receiving apparatus that receives a signal in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or simultaneously used, and estimates reception quality of a received signal
  • the propagation path estimation unit and one or more subcarriers or frequency channels with good reception quality estimation results are selected, and the signal points of the received data symbols on the selected subcarriers or frequency channels are outside the modulo width.
  • the remainder calculation determination unit determines that the remainder calculation is not performed, and when the determination result is a residue calculation
  • a demodulator that performs likelihood calculation in consideration of repetition of signal points by residue calculation from the received signal. It is.
  • a communication method in which interference suppression by linear precoding and interference suppression by nonlinear precoding are selectively used or simultaneously used, and estimate reception quality of a received signal.
  • a propagation path estimation step a signal distribution estimation step for estimating a distribution of received signal points when it is assumed that no residue calculation is performed at the time of transmission based on the estimation result of the reception quality, and a signal point of the received signal
  • a signal distribution measurement step for measuring a distribution, and a residue calculation determination for comparing whether the reception signal point distribution estimation result and the reception signal point distribution measurement result are compared, and determining whether or not to perform a residue calculation on the reception signal
  • a residue operation step for performing a residue operation on the received signal when the determination result is a residue operation.
  • the present invention may be a program for causing a computer to execute the communication method described above, or a computer-readable recording medium for recording the program.
  • the presence / absence of a remainder calculation is notified without notification from the transmission device. Can be determined.
  • FIG. 1 shows the example of schematic structure of the communication system in the 1st Embodiment of this invention. It is a block diagram which shows the structure of the base station apparatus in the 1st Embodiment of this invention. It is a block diagram which shows the example of 1 structure of the multiuser MIMO signal generation part 203a in the case of using linear precoding. It is a block diagram which shows the example of 1 structure of the multiuser MIMO signal generation part 203b in the case of using nonlinear precoding. It is a block diagram which shows the example of 1 structure of the multiuser MIMO signal generation part 203c in the case of using combining linear precoding and nonlinear precoding. It is a block diagram which shows the structure of the terminal device 600 in this Embodiment.
  • FIG. 6 It is a block diagram which shows the structure of the terminal device 600b in this Embodiment.
  • the horizontal axis represents the in-phase component I-axis and the vertical axis represents the quadrature component Q-axis, showing the QPSK signal point arrangement diagram.
  • required probability density distribution of the signal amplitude about the received signal point in SNR infinity in the case where a remainder calculation is not performed in a base station apparatus (linear precoding) paying attention to an I axis (or Q axis).
  • the base station device transmits multi-user MIMO transmission to four terminal devices from the first terminal device (receiving device) to the fourth terminal device
  • MUI inter-user interference
  • THP non-linear precoding
  • FIG. 1 is a diagram illustrating a schematic configuration example of a communication system according to the present embodiment.
  • base station apparatus 100 communicates with a plurality of terminal apparatuses (for example, first to fourth terminal apparatuses 101 to 104).
  • the communication system performs multi-user MIMO transmission in which transmission data addressed to a plurality of terminal apparatuses is spatially multiplexed and simultaneously communicated in the same frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2 is a functional block diagram showing a configuration example of the base station apparatus 100 in the present embodiment.
  • the wireless reception unit 209 receives signals transmitted from the first terminal device 101, the second terminal device 102, the third terminal device 103, and the fourth terminal device 104 through the antenna unit 208 (208a to 208d). .
  • the CSI acquisition unit 210 acquires CSI, which is channel state information transmitted from each terminal apparatus 101 to 104, from the received signal.
  • the first to fourth encoding units 201a, 201b, 201c, and 201d are respectively input with the data series addressed to the first to fourth terminal apparatuses 101 to 104, and perform error correction encoding on each. Do.
  • the first to fourth modulation units 202a, 202b, 202c, and 202d respectively modulate the data sequences addressed to the first to fourth terminal apparatuses 101 to 104 that have been subjected to error correction coding, and each of the first to fourth modulation units 202a, 202b, 202c, and 202d To modulation symbols for each subcarrier addressed to the fourth terminal apparatuses 101 to 104 are output.
  • Multi-user MIMO signal generation section 203 receives each modulation symbol addressed to first to fourth terminal apparatuses 101 to 104, and inputs each modulation based on the CSI of each terminal apparatus acquired by CSI acquisition section 210. Signal processing is performed on the symbols, and multi-user MIMO symbols are generated for each of the antennas 208a to 208d of the antenna unit 208 used for transmission. Details of the multi-user MIMO signal generation unit 203 will be described later.
  • the first to fourth pilot multiplexing sections 204a, 204b, 204c, and 204d multiplex pilot signals transmitted from the antennas 208a to 208d of the antenna section 208 into multiuser MIMO symbols transmitted from the antennas 208a to 208d, respectively.
  • the pilot signals are preferably multiplexed so that the pilot signals transmitted from the respective antennas of the base station apparatus can be received in the terminal apparatuses 101 to 104 in such a way that they can be individually identified. Alternatively, it may be multiplexed by frequency division such as division by subcarriers, or may be multiplexed by code division.
  • the first to fourth IFFT units 205a, 205b, 205c and 205d each perform fast inverse Fourier transform (Inverse Fast Fourier Transform: IFFT) or the like on the multi-user MIMO signal for each antenna on which the pilot signal is multiplexed. Frequency-time conversion is performed to convert the signal into a time domain signal.
  • IFFT Inverse Fast Fourier Transform
  • the first to fourth GI insertion units 206a, 206b, 206c, and 206d each insert a guard interval (GI) into the time domain signal for each antenna.
  • GI guard interval
  • the first to fourth wireless transmission units 207a, 207b, 207c, and 207d transmit the signals with the GI inserted through the respective antennas 208a to 208d of the antenna unit 208.
  • the control unit 211 controls each of the above units and causes each process to be executed.
  • FIG. 3 is a functional block diagram showing a configuration example of the multiuser MIMO signal generation unit 203a when linear precoding is used.
  • the multiuser MIMO signal generation unit 203 a includes a filter calculation unit 301 and a linear filter unit 302.
  • a multi-user MIMO signal is generated by linear precoding, particularly Zero-Forcing precoding.
  • the filter calculation unit 301 uses a CSI of each terminal device acquired by the CSI acquisition unit 210 shown in FIG. 2 as a channel having a complex channel gain between each antenna of the base station device 100 and the antenna of each terminal device as an element.
  • the linear filter unit 302 receives the modulation symbols addressed to the first to fourth terminal apparatuses 101 to 104 as inputs, multiplies the linear filter W calculated by the filter calculation unit 301 for each subcarrier, Multi-user MIMO symbols to be transmitted are output from antennas 208a to 208d, respectively.
  • the filter calculation unit 301 calculates and uses an inverse matrix as a linear filter.
  • the MUI is not completely canceled at the time of reception, but the signal-to-interference and noise power ratio (SINR) can be maximized, so that reception characteristics are improved.
  • SINR signal-to-interference and noise power ratio
  • FIG. 4 is a functional block diagram showing a configuration example of the multiuser MIMO signal generation unit 203b when nonlinear precoding is used.
  • a multi-user MIMO signal is generated by nonlinear precoding, particularly Tomlinson-Harashima precoding (THP).
  • TTP Tomlinson-Harashima precoding
  • QR decomposition section (interference matrix calculation section) 404 uses the complex propagation path between each antenna of base station apparatus 100 and the antenna of each terminal apparatus from CSI of each terminal apparatus acquired by CSI acquisition section 210 shown in FIG.
  • a channel matrix H having a gain as an element is generated for each subcarrier
  • QR decomposition is performed on the Hermite conjugate H H of the channel matrix H to decompose it into a unitary matrix Q and an upper triangular matrix R, and further an upper triangular matrix R Hermite conjugate R H (which becomes a lower triangular matrix) is obtained
  • an interference matrix B (diagR H ) ⁇ 1 R H ⁇ I representing the gain of the MUI between the terminal apparatuses is obtained and output to the interference component calculation unit 403b.
  • the unitary matrix Q is output to the linear filter unit 405.
  • diagX is a matrix having only the diagonal component of the matrix X
  • I represents a unit matrix.
  • the first residue calculation unit 402a performs residue calculation on the modulation symbol addressed to the first terminal apparatus 101 generated by the first modulation unit 202a. In addition, since there is no MUI for the modulation symbol addressed to the first terminal apparatus 101, the interference component subtraction unit is omitted. Furthermore, the remainder calculation unit 402a can be omitted.
  • the interference component calculation unit 403b Based on the interference matrix B obtained by the QR decomposition unit 404, the interference component calculation unit 403b generates a subtraction result of the modulation symbol of each subcarrier addressed to the first terminal apparatus 101 for each subaddress addressed to the second terminal apparatus 102.
  • the interference component given to the modulation symbol of the carrier is calculated.
  • the element in the second row and the first column of the interference matrix B represents the complex gain of interference exerted by the modulation symbol addressed to the first terminal apparatus 101 on the modulation symbol addressed to the second terminal apparatus 102.
  • the interference component can be calculated by multiplying the remainder calculation result of the modulation symbol addressed to the first terminal apparatus 101.
  • the first interference component subtraction unit 401b uses the modulation symbol for the second terminal apparatus 102 calculated by the interference component calculation unit 403b from the modulation symbol for the second terminal apparatus 102 generated by the second modulation unit 202b. Is subtracted for each subcarrier.
  • the second remainder calculation unit 402b performs a remainder calculation on the modulation symbol addressed to the second terminal apparatus 102 from which the interference component has been subtracted, using a modulo width predetermined by the modulation scheme.
  • the interference component calculation unit 403b determines that the remainder calculation result of the modulation symbol of each subcarrier addressed to the first terminal apparatus 101 and the remainder calculation result of the modulation symbol of each subcarrier addressed to the second terminal apparatus 102 are the third terminal.
  • the interference component given to the modulation symbol of each subcarrier addressed to apparatus 103 is calculated.
  • the element in the 3rd row and the 1st column of the interference matrix B represents the complex gain of interference exerted by the modulation symbol addressed to the first terminal apparatus 101 on the modulation symbol addressed to the third terminal apparatus 103, and 3 of the interference matrix B
  • the elements in the second column represent the complex gains of interference that the modulation symbols addressed to the second terminal apparatus 102 have on the modulation symbols addressed to the third terminal apparatus 103, and each of these elements represents the first terminal apparatus 101.
  • the interference component can be calculated by multiplying the remainder calculation result of the modulation symbol addressed to the remainder calculation result of the modulation symbol addressed to the second terminal apparatus 102.
  • the second interference component subtraction unit 401c uses the modulation symbol for the third terminal apparatus 103 calculated by the interference component calculation unit 403b from the modulation symbol for the third terminal apparatus 103 generated by the third modulation unit 202c. Is subtracted for each subcarrier.
  • 3rd remainder calculating part 402c performs remainder calculation using the modulo width predetermined by the modulation system with respect to the modulation symbol addressed to the 3rd terminal device 103 by which the interference component was subtracted.
  • the interference component calculation unit 403b is configured to generate a remainder calculation result of the modulation symbol of each subcarrier addressed to the first terminal apparatus 101, a remainder calculation result of the modulation symbol of each subcarrier addressed to the second terminal apparatus 102, and the third terminal.
  • the remainder calculation result of the modulation symbol of each subcarrier addressed to apparatus 103 calculates an interference component given to the modulation symbol of each subcarrier addressed to fourth terminal apparatus 104.
  • the element in the 4th row and the 1st column of the interference matrix B represents the complex gain of interference that the modulation symbol addressed to the first terminal apparatus 101 has on the modulation symbol addressed to the fourth terminal apparatus 104
  • 4 of the interference matrix B The element in the second row represents the complex gain of interference that the modulation symbol addressed to the second terminal apparatus 102 has on the modulation symbol addressed to the fourth terminal apparatus 104
  • the element in the fourth row and third column of the interference matrix B represents the first element.
  • 3 represents the complex gain of interference exerted on the modulation symbol addressed to the fourth terminal apparatus 104 by the modulation symbol addressed to the third terminal apparatus 103, and the remainder calculation result of the modulation symbol addressed to the first terminal apparatus 101 is included in these elements, respectively.
  • the interference component can be calculated by multiplying the remainder calculation result of the modulation symbol addressed to the third terminal apparatus 103.
  • the third interference component subtraction unit 401d modulates the modulation symbol addressed to the fourth terminal apparatus 104 calculated by the interference component calculation unit 403b from the modulation symbol addressed to the fourth terminal apparatus 104 generated by the fourth modulation unit 202d. Is subtracted for each subcarrier.
  • the fourth remainder calculation unit 402d performs a remainder calculation on the modulation symbol addressed to the fourth terminal apparatus 104, from which the interference component has been subtracted, using a modulo width predetermined by the modulation scheme.
  • the linear filter unit 405 generates a remainder calculation result of the modulation symbol addressed to the first terminal device 101 output from the first residue calculation unit 402a and the modulation addressed to the second terminal device 102 output from the second residue calculation unit 402b.
  • the symbol residue calculation result, the modulation symbol residue calculation result for the third terminal device 103 output by the third residue calculation unit 402c, and the fourth terminal device 104 output by the fourth residue calculation unit 402d As a result, the unitary matrix Q calculated by the QR decomposition unit 404 is multiplied for each subcarrier as a linear filter, and multi-user MIMO symbols to be transmitted from the respective antennas of the antenna unit 208 are output. .
  • a method using QR decomposition of a channel matrix is described as an example of a method for realizing THP.
  • the present invention is not limited to this, and a method of V-BLAST (Vertical Bell Laboratories Layered Space Time) is used.
  • V-BLAST Very Bell Laboratories Layered Space Time
  • a method described in Non-Patent Document 4 or the like that performs sub-optimization of rearrangement of terminal devices in THP may be used.
  • FIG. 5 is a functional block diagram illustrating a configuration example of the multiuser MIMO signal generation unit 203c when linear precoding and nonlinear precoding are used in combination.
  • linear precoding that uses THP as non-linear precoding and performs no remainder operation on the first terminal apparatus 101 and the second terminal apparatus 102, and the third terminal apparatus 103 and the fourth terminal
  • THP time division multiple access
  • FIG. 5 An example in which the device 104 is combined with THP that performs remainder calculation is shown.
  • the unitary matrix Q is output to the linear filter unit 405.
  • the interference component calculation unit 403c converts the modulation symbol of each subcarrier addressed to the first terminal apparatus 101 into the modulation symbol of each subcarrier addressed to the second terminal apparatus 102.
  • the interference component given to is calculated.
  • the element in the second row and the first column of the interference matrix B represents the complex gain of interference exerted by the modulation symbol addressed to the first terminal apparatus 101 on the modulation symbol addressed to the second terminal apparatus 102.
  • the interference component can be calculated by multiplying the modulation symbol addressed to the first terminal apparatus 101.
  • the first interference component subtraction unit 401b uses the modulation symbol for the second terminal apparatus 102 calculated by the interference component calculation unit 403c from the modulation symbol for the second terminal apparatus 102 generated by the second modulation unit 202b. Is subtracted for each subcarrier.
  • the interference component calculation unit 403c is configured so that the modulation symbol of each subcarrier addressed to the first terminal apparatus 101 and the modulation symbol of each subcarrier addressed to the second terminal apparatus 102 correspond to each subcarrier addressed to the third terminal apparatus 103.
  • the interference component given to the modulation symbol is calculated.
  • the element in the 3rd row and the 1st column of the interference matrix B represents the complex gain of interference exerted by the modulation symbol addressed to the first terminal apparatus 101 on the modulation symbol addressed to the third terminal apparatus 103, and 3 of the interference matrix B
  • the elements in the second column represent the complex gains of interference that the modulation symbols addressed to the second terminal apparatus 102 have on the modulation symbols addressed to the third terminal apparatus 103, and each of these elements represents the first terminal apparatus 101.
  • the interference component can be calculated by multiplying the modulation symbol addressed to the modulation symbol addressed to the second terminal apparatus 102.
  • the second interference component subtraction unit 401c uses the modulation symbol addressed to the third terminal device 103 generated by the third modulation unit 202c and the modulation symbol addressed to the third terminal device 103 calculated by the interference component calculation unit 403c. Is subtracted for each subcarrier.
  • 3rd remainder calculating part 402c performs remainder calculation using the modulo width predetermined by the modulation system with respect to the modulation symbol addressed to the 3rd terminal device 103 by which the interference component was subtracted.
  • the interference component calculation unit 403c includes a modulation symbol for each subcarrier addressed to the first terminal apparatus 101, a modulation symbol for each subcarrier addressed to the second terminal apparatus 102, and each subcarrier addressed to the third terminal apparatus 103. An interference component given to the modulation symbol of each subcarrier addressed to the fourth terminal apparatus 104 by the remainder calculation result of the modulation symbol is calculated.
  • the element in the 4th row and the 1st column of the interference matrix B represents the complex gain of interference that the modulation symbol addressed to the first terminal apparatus 101 has on the modulation symbol addressed to the fourth terminal apparatus 104
  • 4 of the interference matrix B The element in the second row represents the complex gain of interference that the modulation symbol addressed to the second terminal apparatus 102 has on the modulation symbol addressed to the fourth terminal apparatus 104
  • the element in the fourth row and third column of the interference matrix B represents the first element.
  • 3 represents the complex gain of interference exerted on the modulation symbol addressed to the fourth terminal apparatus 104 by the modulation symbol addressed to the third terminal apparatus 103.
  • These elements include the modulation symbol addressed to the first terminal apparatus 101, the second The interference component can be calculated by multiplying the remainder calculation result of the modulation symbol addressed to the terminal apparatus 102 and the modulation symbol addressed to the third terminal apparatus 103.
  • the third interference component subtraction unit 401d modulates the modulation symbol addressed to the fourth terminal apparatus 104 calculated by the interference component calculation unit 403c from the modulation symbol addressed to the fourth terminal apparatus 104 generated by the fourth modulation unit 202d. Is subtracted for each subcarrier.
  • the fourth remainder calculation unit 402d performs a remainder calculation on the modulation symbol addressed to the fourth terminal apparatus 104, from which the interference component has been subtracted, using a modulo width predetermined by the modulation scheme.
  • the linear filter unit 405 subtracts the modulation symbol generated by the first modulation unit 202a and addressed to the first terminal device 101 and the interference component output by the first interference component subtraction unit 401b.
  • the modulation symbol addressed to, the remainder calculation result of the modulation symbol addressed to the third terminal device 103 output by the third residue calculation unit 402c, and the address of the fourth terminal device 104 output by the fourth residue calculation unit 402d The modulation symbol remainder calculation result is input, the unitary matrix Q calculated by the QR decomposition unit 404 is multiplied for each subcarrier as a linear filter, and multi-user MIMO symbols to be transmitted from each antenna of the antenna unit 208 are output.
  • each terminal apparatus receives the multiuser MIMO symbol, interference (MUI) due to signals other than the terminal apparatus itself is caused by linear precoding for the first terminal apparatus 101 and the second terminal apparatus 102.
  • the third terminal apparatus 103 and the fourth terminal apparatus 104 are canceled by the THP and only a signal addressed to the own terminal apparatus is received.
  • FIG. 6A is a functional block diagram showing a configuration example of the terminal device 600 in the present embodiment.
  • the radio reception unit 601 receives a signal from the base station apparatus 100 through the antenna unit 615.
  • GI removal unit 602 removes the guard interval (GI) from the received signal.
  • the FFT unit 603 performs time-frequency conversion on the received signal from which the GI has been removed by Fast Fourier Transform (FFT) or the like, and converts it into a modulation symbol for each subcarrier.
  • FFT Fast Fourier Transform
  • Pilot separation section 604 separates the modulation symbols into received data symbols and pilot signal symbols, and inputs the received data symbols to propagation path compensation section 605 and pilot signal symbols to propagation path estimation section 609. .
  • Propagation path estimation section 609 based on the separated symbols of the pilot signal, the propagation path state (complex propagation path gain) between each antenna of base station apparatus 100 and antenna 615 of terminal apparatus 600, and reception quality For example, estimate the received signal-to-noise power ratio (received SNR) or noise power.
  • the propagation path compensation unit 605 performs propagation path compensation (equalization) on the received data symbols based on the estimation result of the propagation path state in the propagation path estimation unit 609.
  • the signal distribution estimation unit 610 Based on the estimation result of the reception quality (reception SNR or noise power) in the propagation path estimation unit 609, the signal distribution estimation unit 610 assumes that the base station apparatus has not performed a remainder calculation (linear precoding). The received signal point distribution is calculated, and the signal point distribution estimation result is output.
  • the signal distribution measurement unit 611 measures the signal point distribution of the reception data symbol that has been subjected to propagation path compensation, and outputs the signal point distribution measurement result.
  • the residue calculation determination unit 612 compares the signal point distribution estimation result and the signal point distribution measurement result, determines whether or not to perform the residue calculation, and outputs the determination result. Detailed processing in the signal distribution estimation unit 610, the signal distribution measurement unit 611, and the remainder calculation determination unit 612 will be described later.
  • the demodulator 607 demodulates each received data symbol output from the remainder calculator 606.
  • Decoding section 608 performs error correction decoding processing on the demodulated sequence to generate and output a received data sequence.
  • the CSI generation unit 613 generates CSI that is channel state information based on the estimated propagation path state.
  • Radio transmitting section 614 transmits CSI generated by CSI generating section 613 to base station apparatus 100 through antenna section 615.
  • the control unit 616 controls each of the above units, and executes each process.
  • FIG. 7 is a diagram showing a QPSK signal point arrangement with the horizontal axis representing the in-phase component I axis and the vertical axis representing the quadrature component Q axis.
  • reception SNR
  • the received signal point arrangement is a form in which the QPSK signal point arrangement is repeated with a modulo width as shown in FIG. .
  • the probability of distribution at the four points at the center portion divided by the modulo width and the signal points outside the center point is determined by the size of the MUI in multiuser MIMO.
  • ⁇ (x) is a Dirac delta function.
  • noise is actually added to the received signal.
  • the added noise is Gaussian noise
  • the normal distribution of noise (Gaussian distribution) is superimposed on the two signal point distributions in FIG. If noise power (variance) and sigma n 2, the noise variance sigma n 2/2 next to the I-axis (or the Q-axis), the signal amplitude of the probability density function f (x) is as shown in (2) Become.
  • erf (x) is an error function
  • the received signal power excluding noise
  • Is obtained by ⁇ n 2 1 / ⁇ .
  • the residue calculation is not performed in the base station apparatus using the equation (2) (linear precoding).
  • the signal amplitude distribution of the received signal in the case of coding) is estimated.
  • this estimation result is referred to as an estimated distribution.
  • the one-dot chain line in FIG. 10 indicates the modulo width of the remainder calculation, and the portion exceeding the modulo width in the probability density distribution is indicated by diagonal lines.
  • the signal distribution measurement unit 611 measures the signal amplitude distribution using a plurality of received data symbols that have undergone propagation path compensation.
  • this measurement result is referred to as a measurement distribution.
  • the one-dot chain line in FIG. 11 indicates the modulo width of the remainder calculation as in FIG.
  • the alternate long and short dash line in FIG. 12 also indicates the modulo width of the remainder calculation.
  • the estimated distribution of FIG. 10 and the shape of the measurement distribution of FIG. 11 or FIG. 12 are compared, and if the degree of coincidence between the two is high, the remainder calculation is not performed and the degree of coincidence is low ( If the range is wide), it is determined that the remainder calculation is performed.
  • FIG. 11 is closer to FIG. 11 than FIG.
  • the degree of coincidence for example, the shape of the measurement distribution is approximated by a polynomial, the correlation coefficient between the approximation result and the estimated distribution is calculated, and when the correlation is high (close to a preset threshold value close to 1) When the degree is high and the correlation is low (less than a preset threshold value), the degree of coincidence is low, or when the integration result of the absolute value of the difference between the estimated distribution and the measured distribution is small (close to a preset threshold value close to 0) Less than), the degree of coincidence is high, and when it is large (above a preset threshold), the degree of coincidence is low.
  • the preset threshold value for example, maximizes the probability of correctly determining whether or not to perform a residue operation (whether or not the residue operation has been performed) and minimizes the probability of erroneous determination.
  • a method of determining by computer simulation or the like is preferable.
  • the ratios of the estimated distribution and the measured distribution that are distributed outside the modulo width are obtained and compared. If so, the remainder calculation is not performed, and if the measurement distribution is larger, it is determined that the remainder calculation is performed.
  • the ratio (probability) p distributed outside the modulo width of the estimated distribution in the above example is expressed by Equation (4) using the cumulative distribution function F (x) of Equation (3).
  • the ratio distributed outside the modulo width of the measurement distribution can be obtained from the total number of received data symbols and the ratio of the number distributed outside the modulo width.
  • the determination of whether the above-mentioned ratio is about the same or the measurement distribution is larger is, for example, the probability of correctly determining whether or not to perform a residue calculation (whether or not a residue calculation has been performed on the transmission side). It is preferable to determine the threshold value by computer simulation or the like so as to minimize the probability of maximizing and erroneous determination, and determining by comparing the difference between the two ratios with the threshold value.
  • the error is not included in the propagation path estimation result, the above ratio will not be smaller in the measurement distribution, but if the measurement distribution is smaller (more than the same level), the remainder calculation is performed. It is preferable to perform a process such as determining not to perform or re-executing a more accurate propagation path estimation.
  • the demodulation unit 607 performs demodulation (The example in which the residue calculation is performed on the reception data symbol that has been subjected to propagation path compensation in the residue calculation unit 606 before the reception signal point determination) has been described.
  • FIG. 6B shows a configuration example of a terminal device according to another embodiment of the present invention.
  • the terminal device 600b in FIG. 6B does not include the remainder calculation unit 606.
  • the demodulation unit 607b determines that the residue calculation determination unit 612 performs the residue calculation
  • the received signal point arrangement (candidate signal point arrangement) in the absence of noise has a modulo width as shown in FIG.
  • demodulation is performed from the Euclidean distance between the received signal point (with noise added) and each candidate signal point repeated with a modulo width.
  • a log likelihood ratio (Log ⁇ Likelihood Ratio: LLR) of a bit is calculated (demodulation processing by soft decision).
  • the LLR is input to the decoding unit 608 to perform error correction decoding.
  • the calculation of the LLR in the demodulator 607b can be performed by, for example, a known method described in Equation (15) to Equation (20) of Non-Patent Document 6. That is, it can be calculated using an algorithm that calculates the LLR using the Euclidean distance between the received signal point and the candidate signal point close to the received signal point among the candidate signal points repeated with a modulo width.
  • the configuration as shown in FIG. 6B can be similarly applied to the terminal devices of the following embodiments.
  • the terminal apparatus when a base station apparatus that performs multi-user MIMO using linear precoding and a base station apparatus that performs multi-user MIMO using THP are mixed, or when the base station apparatus uses multi-user MIMO and THP based on linear precoding.
  • the terminal apparatus When the base station apparatus performs both of the multiuser MIMO and the base station apparatus performs multiuser MIMO by combining linear precoding and THP at the same time, the terminal apparatus notifies the base station apparatus by control information or the like.
  • the multi-user MIMO signal for the terminal device is linear precoding (no residue calculation is performed) or THP (residue calculation is performed) based on the distribution of the received signal Whether or not there is a remainder operation in the reception process It is possible to detect the reception data properly switched.
  • the base station apparatus when the base station apparatus supports both interference suppression by linear precoding and interference suppression by THP, or as in Non-Patent Document 5, the base station apparatus performs interference suppression by simultaneously combining linear precoding and THP.
  • the terminal device the terminal device (user)
  • OFDM OFDM
  • the base station apparatus performs multiuser MIMO transmission from the first terminal apparatus to the four terminal apparatuses of the fourth terminal apparatus, and linearizes the MUI generated between the streams destined for each terminal apparatus.
  • a communication system that performs transmission by suppressing in advance by precoding or nonlinear precoding (THP) will be described as an example.
  • THP nonlinear precoding
  • the structure of the base station apparatus in this Embodiment is the same as 1st Embodiment (FIG. 2).
  • FIG. 13 is a functional block diagram showing a configuration example of the terminal device 1300 in the present embodiment.
  • the terminal device 1300 in FIG. 13 is partially different in configuration and operation from the terminal device 600 in FIG. 6A (or FIG. 6B).
  • the terminal device 1300 a description will be given of portions that are different from the operation of the terminal device 600 in FIG.
  • the signal variance estimation unit 1310 is based on the assumption that no residue calculation is performed in the base station apparatus (linear precoding). The variance of the distribution of received signal points is calculated, and the signal point variance estimation result is output.
  • the signal dispersion measuring unit 1311 measures the dispersion of the signal point distribution of the received data symbol subjected to propagation path compensation, and outputs a signal point dispersion measurement result.
  • the remainder calculation determination unit 1312 compares the signal point variance estimation result with the signal point variance measurement result, determines whether or not to perform the residue calculation, and outputs the determination result.
  • the signal variance estimation unit 1310 receives a signal of a reception signal when no residue calculation is performed in the base station apparatus (linear precoding) Estimate the variance of the amplitude distribution.
  • the variance of the noise (the noise power) and sigma n 2
  • the variance of the noise of the I-axis (or the Q axis) is ⁇ n 2/2.
  • the variance ⁇ rxe 2 of the distribution of the received signal actually added with noise can be estimated from the equation (5).
  • estimated variance this estimation result is referred to as estimated variance.
  • this measurement result is referred to as measurement dispersion.
  • the remainder calculation determination unit 1312 compares the estimated variance in the signal variance estimation unit 1310 with the measurement variance in the signal variance measurement unit 1311 and determines whether or not the remainder calculation unit 606 performs the residue calculation. Specifically, when the estimated variance is equal to the measured variance (within a certain error range), the remainder calculation is not performed, and when the measured variance is larger than the estimated variance (greater than a predetermined ratio), the remainder calculation is performed. Is determined.
  • the determination of whether the above variance is equal or the measurement variance is larger is, for example, maximizing the probability of correctly determining whether or not to perform a residue operation (whether or not a residue operation has been performed on the transmission side).
  • a method of determining a threshold value by computer simulation or the like so as to minimize the probability of determination and determining by comparing a difference between two variances with the threshold value is preferable. If there is no error in the propagation path estimation result, the measurement variance will not be smaller, but if the measurement variance is smaller (more than the same level), the remainder calculation is not performed. It is preferable to perform processing such as determination or re-execution of more accurate propagation path estimation.
  • a base station apparatus that performs multi-user MIMO using linear precoding and a base station apparatus that performs multi-user MIMO using THP are mixed, or the base station apparatus uses linear precoding.
  • the terminal apparatus Whether the multi-user MIMO signal for the terminal device is linear precoding (no residue calculation is performed) or THP (residue calculation is performed) without receiving notification by control information from It is possible to make a decision based on the distribution of the signal distribution. It can detect the received data properly or deactivates modulo operation in the process to become.
  • the base station apparatus when the base station apparatus supports both interference suppression by linear precoding and interference suppression by THP, or as in Non-Patent Document 5, the base station apparatus performs interference suppression by simultaneously combining linear precoding and THP.
  • the terminal device the terminal device (user)
  • OFDM OFDM
  • the base station apparatus performs multi-user MIMO transmission from the first terminal apparatus to the four terminal apparatuses of the fourth terminal apparatus, and linearly pre-creates the MUI generated between streams destined for each terminal apparatus.
  • a communication system in which transmission is suppressed in advance by coding or nonlinear precoding (THP) will be described as an example.
  • FIG. 14 is a block diagram illustrating a configuration example of the terminal device 1400 in the present embodiment.
  • terminal device 600 of FIG. 6A differs from the terminal device 600 of FIG. 6A (or FIG. 6B) in part in configuration and operation.
  • the remainder calculation determination unit 1412 selects one or a plurality of subcarriers (or frequency channels) with good reception quality (high channel gain or reception SNR) from the reception quality estimation result by the channel estimation unit 609, and A received data symbol subjected to propagation path compensation in the selected subcarrier is extracted, and the in-phase component (I axis) and / or quadrature component (Q axis) of the signal point of the received data symbol is outside the modulo width ( It is determined that the remainder calculation is performed when it is located outside the area surrounded by the broken line in the center in FIG. 8, and it is determined that the remainder calculation is not performed when neither the I-axis component nor the Q-axis component exceeds the modulo width. To do.
  • the above determination is performed by selecting a (time) symbol having a good reception state from the propagation path estimation result.
  • the terminal apparatus when a base station apparatus that performs multi-user MIMO using linear precoding and a base station apparatus that performs multi-user MIMO using THP are mixed, or when the base station apparatus uses multi-user MIMO and THP based on linear precoding.
  • the terminal apparatus notifies the base station apparatus by control information or the like. None, whether or not the multi-user MIMO signal for the terminal apparatus is linear precoding (no residue calculation is performed) or THP (residue calculation is performed). That is, the noise power is relatively small and Te becomes possible to determine on the basis of the signal point position of low received data symbols probability exceeding modulo width, we are possible to detect the reception data properly or deactivates modulo operation in the receiving process.
  • the base station apparatus when the base station apparatus supports both interference suppression by linear precoding and interference suppression by THP, or as in Non-Patent Document 5, the base station apparatus performs interference suppression by simultaneously combining linear precoding and THP.
  • the terminal device (user)
  • control information is not necessary.
  • the base station apparatus performs multi-user MIMO transmission from the first terminal apparatus to the four terminal apparatuses of the fourth terminal apparatus, and inter-user interference (A communication system in which MUI) is previously suppressed by linear precoding or non-linear precoding (THP) and transmitted will be described as an example.
  • the configuration of the base station apparatus in the present embodiment is the same as that in FIG. 2, but the detailed configuration of the multiuser MIMO signal generation unit 203 is different.
  • FIG. 15 is a block diagram illustrating a configuration example of a multiuser MIMO signal generation unit in the present embodiment when linear precoding and nonlinear precoding are used in combination.
  • THP is used as nonlinear precoding
  • linear precoding is performed in which no remainder operation is performed on the first terminal apparatus 101 and the second terminal apparatus 102, and the third terminal apparatus 103 and the fourth terminal.
  • An example in which the device 104 is combined with THP that performs remainder calculation is shown.
  • the multi-user MIMO signal generation unit 203d in FIG. 15 is partially different in configuration and operation from the multi-user MIMO signal generation unit 203c in FIG. Add additional vectors to it. This addition of the additional vector is performed so that when the remainder calculation is performed in the base station apparatus, the symbols are surely distributed outside the modulo width when received by the terminal apparatus.
  • Processing regarding the modulation symbol addressed to the first terminal apparatus 101 and the modulation symbol addressed to the second terminal apparatus 102 is the same as that of the multiuser MIMO signal generation unit 203c of FIG.
  • the third vector adder 1501c applies the I-axis or the partial symbol to the partial calculation result of the modulation symbol of each subcarrier addressed to the third terminal apparatus 103 output from the third remainder calculator 402c.
  • An additional vector having a length that is an integral multiple of the modulo width is added to the Q-axis component or both components.
  • the interference vector calculation section 403d receives the third vector addition section 1501c instead of the remainder calculation result of the modulation symbol of each subcarrier addressed to the third terminal apparatus output from the third remainder calculation section 402c. The result of adding the additional vector is input.
  • the interference component calculation unit 403d includes a modulation symbol for each subcarrier addressed to the first terminal apparatus 101, a modulation symbol for each subcarrier addressed to the second terminal apparatus 102, and each subcarrier addressed to the third terminal apparatus 103.
  • the interference component given to the modulation symbol of each subcarrier addressed to the fourth terminal apparatus 104 by the symbol obtained by adding the additional vector to the modulation symbol remainder calculation result is calculated.
  • the element in the 4th row and the 1st column of the interference matrix B represents the complex gain of interference that the modulation symbol addressed to the first terminal apparatus 101 has on the modulation symbol addressed to the fourth terminal apparatus 104
  • 4 of the interference matrix B The element in the second row represents the complex gain of interference that the modulation symbol addressed to the second terminal apparatus 102 has on the modulation symbol addressed to the fourth terminal apparatus 104
  • the element in the fourth row and third column of the interference matrix B represents the first element.
  • 3 represents the complex gain of interference exerted on the modulation symbol addressed to the fourth terminal apparatus 104 by the modulation symbol addressed to the third terminal apparatus 103.
  • These elements include the modulation symbol addressed to the first terminal apparatus 101, the second An interference component can be calculated by multiplying the remainder calculation result of the modulation symbol addressed to the terminal apparatus 102 and the modulation symbol addressed to the third terminal apparatus 103 by the symbol obtained by adding the additional vector.
  • the third interference component subtraction unit 401d modulates the modulation symbol addressed to the fourth terminal device 104 calculated by the interference component calculation unit 403d from the modulation symbol addressed to the fourth terminal device 104 generated by the fourth modulation unit 202d. Is subtracted for each subcarrier.
  • the fourth remainder calculation unit 402d performs a remainder calculation on the modulation symbol addressed to the fourth terminal apparatus 104, from which the interference component has been subtracted, using a modulo width predetermined by the modulation scheme.
  • the fourth vector adder 1501d applies the I-axis or the partial symbol to the partial calculation result of the modulation symbol of each subcarrier addressed to the fourth terminal apparatus 104 output from the fourth remainder calculator 402d.
  • An additional vector having a length that is an integral multiple of the modulo width is added to the Q-axis component or both components.
  • the position (subcarrier, OFDM symbol) of the part of the symbols to which the additional vector is added is determined in advance by the system, the present invention is not limited to this.
  • the linear filter unit 405 subtracts the modulation symbol generated by the first modulation unit 202a and addressed to the first terminal device 101 and the interference component output by the first interference component subtraction unit 401b.
  • a symbol obtained by adding an additional vector to the remainder calculation result of the modulation symbol addressed to the terminal device 104 is input, and the unitary matrix Q calculated by the QR decomposition unit 404 is multiplied for each subcarrier as a linear filter.
  • a multi-user MIMO symbol to be transmitted from each antenna is output.
  • FIG. 16 shows a conceptual diagram of addition vector addition in the third vector addition unit 1501c and the fourth vector addition unit 1501d.
  • the case of QPSK will be described as an example.
  • the modulation symbol addressed to the third terminal apparatus 103 or the modulation symbol addressed to the fourth terminal apparatus 104 output from the third modulation section 202c or the fourth modulation section 202d is a signal indicated by A in FIG.
  • the result obtained by subtracting the interference component in the second interference component subtraction unit 401c or the third interference component subtraction unit 401d is point B, the remainder in the third remainder computation unit 402c or the fourth remainder computation unit 402d.
  • the result of the calculation is point C (the perturbation vector from point B to point C is added by the remainder calculation).
  • the result of the remainder calculation is distributed in a region painted with diagonal lines in FIG. 16 for all symbols.
  • the I-axis and / or Q-axis components of the partial symbols of the remainder calculation result each have a length that is an integral multiple of the modulo width.
  • Add additional vectors The example of FIG. 16 shows a case where an additional vector ( ⁇ , 0) having a length of 1 times the modulo width ⁇ is added only to the in-phase component, and is added to the remainder calculation result at the C point. The vector is added to output point D.
  • FIG. 17 shows an example of received signal point arrangement (when there is no noise) in a terminal device whose MUI has been canceled by THP.
  • the additional vector addition in the third vector addition unit 1501c and the fourth vector addition unit 1501d described above has a modulo width when the symbol is received by the terminal device when the remainder calculation is performed in the base station device. This is done so that it is distributed outside.
  • the point B and the point C are different (the size of the perturbation vector is 0).
  • the received signal point at the terminal device is located outside the modulo width (in the absence of noise) even if the additional vector is not added. In such a case, it is not always necessary to add the additional vector. Absent.
  • adding an additional vector if the perturbation vector added as a result of the remainder operation is v, an additional vector different from the opposite vector ⁇ v is added, so that the received signal point has a modulo width. It can be located outside.
  • the point B and the point C are the same (the size of the perturbation vector is the same).
  • the received signal point at the terminal device is located inside the modulo width (when there is no noise), so that the received signal point at the terminal device is outside the modulo width by adding an additional vector.
  • the direction of the additional vector may be any direction.
  • the size of the additional vector be the minimum necessary (such as a length of about 1 time the modulo width on the I-axis and / or the Q-axis). If the noise power is large and the received SNR is low, add a larger additional vector (such as a length more than twice the modulo width to the I-axis and / or the Q-axis) to facilitate internal / external modulo width determination. You may do it. In addition, the transmission power may be readjusted after adding the additional vector.
  • the configuration of the terminal device in the present embodiment may be any of the configuration of the terminal device 600 in FIG. 6A (or FIG. 6B), the terminal device 1300 in FIG. 13, or the terminal device 1400 in FIG.
  • a remainder calculation determining unit 1412 having a detailed operation different from that of the third embodiment will be described.
  • Residue calculation determining section 1412 in the present embodiment selects a received data symbol whose position (subcarrier, OFDM symbol) has been previously determined by the system, and the I-axis or Q of the signal point of the selected received data symbol If the axis or both components are located outside the modulo width, it is determined that the remainder calculation is performed, and if neither the I-axis component nor the Q-axis component exceeds the modulo width, the remainder calculation is not performed. judge.
  • the received data symbols located outside the modulo width of the I-axis or Q-axis component or both of the components are a majority, it is determined that the remainder calculation is performed, and if it is less than the majority, it is determined that the remainder calculation is not performed. It is preferable to do this.
  • the symbol added with the additional vector is added in the terminal apparatus.
  • the signal is received at the signal point position shifted by the vector and located outside the modulo width. For this reason, if the presence or absence of the remainder calculation is determined based on the symbol, the determination can be made with higher accuracy.
  • a communication system that transmits and receives data while suppressing MUI in multiuser MIMO using linear precoding and THP has been described.
  • the scope of the present invention is not limited to this.
  • a communication system that suppresses inter-symbol interference using linear precoding and THP a communication system that suppresses inter-cell interference using linear precoding and THP, and the like.
  • the present invention can be similarly applied to wired and wireless communication systems to be suppressed.
  • the program that operates in the communication apparatus according to the present invention may be a program that controls a CPU (Central Processing Unit) or the like (a program that causes a computer to function) so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • part or all of the communication devices (base station device and terminal device) in the above-described embodiment may be realized as an LSI that is typically an integrated circuit. Each functional block of the communication device may be individually chipped, or part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the present invention can be used for communication devices.
  • DESCRIPTION OF SYMBOLS 100 Base station apparatus, 101-104 ... 1st-4th terminal device, 201 ... Encoding part, 202 ... Modulation part, 203 ... Multiuser MIMO signal generation part, 204 ... Pilot multiplexing part, 205 ... IFFT part 207 206 GI insertion unit 207 Radio transmission unit 208 Antenna unit 209 Radio reception unit 210 CSI acquisition unit 301 Filter calculation unit 302 Linear filter unit 401 Interference subtraction unit 402 Residue calculation unit, 403b ... interference component calculation unit, 404 ... QR decomposition unit, 600 ... terminal device, 601 ... radio reception unit, 602 ... GI removal unit, 603 ... FFT unit, 604 ...
  • pilot separation unit 605 ... propagation compensation 606: Remainder calculation unit, 607 ... Demodulation unit, 608 ... Decoding unit, 609 ... Propagation path estimation unit, 610 ... Signal distribution estimation unit, 613 ... CSI generation unit, 6 4 ... wireless transmission unit, 615 ... antenna unit, 616 ... control unit, 1310 ... signal variance estimation unit, 1311 ... signal variance measuring unit, 1312 ... remainder operation determination unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

受信装置において、受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合にのみ、受信信号に対して剰余演算を行う剰余演算部とを有する。これにより送信装置からの通知なしに剰余演算の有無を受信装置が判定することができる通信装置を提供することが可能になる。

Description

通信装置および通信システム
 本発明は、干渉を信号処理によって予め抑圧して送受信する通信システム、および通信装置に関する。
 送受信に複数のアンテナを使用し、同じ周波数帯域で複数の異なるデータ系列(データストリーム)を空間的に多重して同時通信するMIMO(Multiple-Input Multiple-Output:多入力多出力)伝送技術が、無線LANやセルラシステムなどで実用化されている。
 また、次世代のセルラシステム等において、基地局装置(送信装置)の備える送信アンテナ数が端末装置(受信装置)の備える受信アンテナ数に比べて大幅に多くなるシステムが提案されている。このようなシステムにおいて、基地局装置の送信アンテナを有効に活用してさらにシステムスループットを向上させるために、複数の端末装置(ユーザ)宛のデータ系列をMIMO多重するマルチユーザMIMO(Multi-User MIMO)が提案されている。
 しかしながら、マルチユーザMIMOにおいて多重された信号を受信する複数の端末装置の間では、他の端末が受信した信号を知ることはできないため、そのままでは各ユーザ宛のストリーム間で生じるユーザ間干渉(Multi-User Interference:MUI)により大幅に特性が劣化してしまう。
 ここで、基地局装置の各送信アンテナから各端末装置の各受信アンテナまでのチャネル状態情報であるCSI(Channel State Information)を基地局装置が知っていれば、端末装置に大きな負荷を掛けることなく端末装置における受信時にMUIを抑圧できる送信信号を生成することができる、幾つかの方法が提案されている(非特許文献1)。
 例えば、端末装置における受信時にMUIが抑圧された状態で受信できるように、基地局装置において送信信号にプリコーディングを施してから送信する方法がある。
 その例として、CSIより求めた各送信アンテナと各端末装置の各受信アンテナとの間の複素伝搬路利得を要素に持つチャネル行列Hから、その逆行列H-1(または擬似逆行列H=H(HH-1:上付き添え字のHはエルミート共役を表す)を重み行列(線形フィルタ)Wとして用いて送信信号に重み付け(W=H-1を送信信号に乗算)するZero-forcing(ZF)プリコーディングや、最小平均二乗誤差(Minimum Mean Square Error:MMSE)規範で求めた重み行列(線形フィルタ)W=H(HH+αI)-1(Iは単位行列、αは正規化係数を表す)で送信信号を重み付けするMMSEプリコーディングなどの、線形処理によって送信信号をプリコーディングする線形プリコーディング(ビームフォーミング)がある。
 また、他の例として、CSIより求めた干渉信号成分を送信信号から予め減算し、干渉減算後に増加してしまう送信電力を抑圧するために、信号空間の中で送信電力が低減されるような信号点に干渉減算後の信号を符号化する非線形処理によって送信信号をプリコーディングする、非線形プリコーディングがある。
 この非線形プリコーディングの1つとして、送受信装置双方で信号に対して剰余(Modulo、モジュロ)演算を施すことによって、送信電力の増加を抑圧することが可能なトムリンソン-ハラシマ・プリコーディング(Tomlinson-Harashima Precoding:THP)が提案されている(非特許文献2、非特許文献3、非特許文献4)。このとき、受信側である端末装置においても、受信信号に対して送信と同様の剰余演算を施す。
 さらに、THPにおける剰余演算がもたらす、低い信号対雑音電力比(Signal to Noise power Ratio:SNR)におけるModulo-Lossと呼ばれる特性劣化を考慮して、MUIが小さく、剰余演算による送信電力抑圧効果の小さい端末については剰余演算を適用せずに線形プリコーディングと同様の処理を施し、MUIが大きく、剰余演算による送信電力抑圧効果が大きい端末についてのみ剰余演算を適用してTHPによる非線形プリコーディングを行う方式が提案されている(非特許文献5)。
 また、非特許文献6には、モジュロ幅で基地局装置における変調時の信号点配置が繰り返された形となることを考慮して、(雑音の加わった)受信信号点と、モジュロ幅で繰り返された各候補信号点とのユークリッド距離から、復調ビットの対数尤度比(Log Likelihood Ratio:LLR)を算出する方法(軟判定による復調処理)が記載されている。
Spencer他、「An Introduction to the Multi-User MIMO Downlink」、IEEE Communication Magazine、Vol.42、Issue10、p.60-67、2004年10月 Harashima他、「Matched-Transmission Technique for Channels With IntersymbolInterference」、IEEE Transaction on Communications、Vol.COM-20、No.4、p.774-780、1972年8月 J.Liu他、「Improved Tomlinson-Harashima Precoding for the Downlink of Multiple Antenna Multi-User Systems」、Proc. IEEE Wireless and Communications and Networking Conference、p.466-472、2005年3月 M.Joham他、「MMSE Approaches to Multiuser Spatio-Temporal Tomlinson-Harashima Precoding」、Proc. 5th Int. ITG Conf. on Source and Channel Coding、p.387-394、2004年1月 中野他、「送信方法を適応的に制御するダウンリンクMU-MIMO THPに関する提案」、信学技報、RCS2009-293、2010年3月 Kazuki Takeda他、「Single-Carrier HARQ Using Joint THP and FDE」、Proc. 2007 IEEE 66th Vehicular Technology Conference (VTC-2007 Fall)、p.1188-1192、2007年9月
 THP(非線形プリコーディング)によって干渉抑圧されて送信された信号を受信する通信装置では、線形プリコーディングの場合と異なり、受信信号に対して送信側と同様の剰余演算を施す必要がある。
 このため、通信システムにおいて、線形プリコーディングによる干渉抑圧を行う送信装置(基地局装置)と、THPによる干渉抑圧を行う送信装置が混在する場合や、送信装置が線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の2種類の両方に対応する場合、さらに非特許文献5のように送信装置が線形プリコーディングとTHPとを同時に組み合わせて干渉抑圧を行う場合などのように、2種類の干渉抑圧方式が混在して併用される場合、受信装置(端末装置)では干渉抑圧方式に応じて剰余演算を行うか否かを切り替える必要がある。このため送信装置は、干渉抑圧されて送信された信号を受信する受信装置(端末装置)に対して、当該受信装置で受信される信号が、線形プリコーディングである(剰余演算を行っていない)のか、THPである(剰余演算を行っている)のかを制御情報等で通知する必要があった。
 本発明は、送信装置からの通知なしに剰余演算の有無を受信装置が判定することを目的とする。
 本発明の一観点によれば、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号から剰余演算を行うか否かを判定し、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行うことを特徴とする受信装置が提供される。
 これにより、送信装置からの通知なしに、剰余演算の有無を受信装置側で決めることができる。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を有することを特徴とする受信装置である。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号の受信品質を推定する伝搬路推定部と、前記受信品質の推定結果に基づいて、送信時において剰余演算が施されていないと仮定した場合の受信信号点の分布を推定する信号分布推定部と、受信信号の信号点分布を測定する信号分布測定部と、前記受信信号点分布の推定結果と前記受信信号点分布の測定結果とを比較し、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を備えることを特徴とする受信装置である。
 前記剰余演算判定部は、前記受信信号点分布の推定結果と前記受信信号点分布の測定結果の分布形状の一致度が高い場合は剰余演算を行わないと判定し、前記一致度が低い場合は剰余演算を行うと判定する。
 また、前記剰余演算判定部は、前記受信信号点分布の推定結果においてモジュロ幅の外側に分布している割合と、前記受信信号点分布の測定結果においてモジュロ幅の外側に分布している割合とが略等しい場合は剰余演算を行わないと判定し、前記受信信号点分布の測定結果における割合の方が大きい場合は剰余演算を行うと判定する。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号の受信品質を推定する伝搬路推定部と、前記受信品質の推定結果に基づいて、送信時において剰余演算が施されていないと仮定した場合の受信信号点の分布の分散を推定する信号分散推定部と、受信信号の信号点分布の分散を測定する信号分散測定部と、前記受信信号点分布の分散の推定結果と前記受信信号点分布の分散の測定結果とを比較し、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を備えることを特徴とする受信装置である。
 前記剰余演算判定部は、前記受信信号点分布の分散の推定結果と前記受信信号点分布の分散の測定結果とが略等しい場合は剰余演算を行わないと判定し、前記受信信号点分布の分散の測定結果の方が大きい場合は剰余演算を行うと判定する。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号の受信品質を推定する伝搬路推定部と、前記受信品質の推定結果が良好なサブキャリアまたは周波数チャネルを1つまたは複数選択し、前記選択したサブキャリアまたは周波数チャネルにおける受信データシンボルの信号点が、モジュロ幅の外側に位置する場合は剰余演算を行うと判定し、モジュロ幅の内側に位置する場合は剰余演算を行わないと判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を備えることを特徴とする受信装置である。
 また、本発明は、受信装置における干渉を非線形プリコーディングによって予め抑圧して信号を送信する送信装置であって、変調シンボルから干渉成分を減算する干渉成分減算部と、前記干渉成分が減算された変調シンボルに対して剰余演算を施す剰余演算部と、前記剰余演算結果の一部のシンボルに対して、剰余演算のモジュロ幅の整数倍の成分を持つ付加ベクトルを加算するベクトル加算部と、を備えることを特徴とする送信装置である。付加ベクトルを加算する前記一部のシンボルは、予めその位置が定められていることが好ましい。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信データシンボルのうち、予め定められた一部のシンボルを選択し、前記選択した受信データシンボルの信号点が、モジュロ幅の外側に位置する場合は剰余演算を行うと判定し、モジュロ幅の内側に位置する場合は剰余演算を行わないと判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を備えることを特徴とする受信装置である。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用される、あるいは同時に使用される通信システムであって、受信装置における干渉を信号処理によって予め抑圧して送信する送信装置と、前記送信された信号を受信する受信部と、受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を有する受信装置と、からなる通信システムである。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号から剰余演算を行うか否かを判定し、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算による信号点の繰り返しを考慮した復調を行うことを特徴とする受信装置である。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号から剰余演算による信号点の繰り返しを考慮した尤度算出を行う復調部とを有することを特徴とする受信装置である。
 また、本発明は、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、受信信号の受信品質を推定する伝搬路推定部と、前記受信品質の推定結果が良好なサブキャリアまたは周波数チャネルを1つまたは複数選択し、前記選択したサブキャリアまたは周波数チャネルにおける受信データシンボルの信号点が、モジュロ幅の外側に位置する場合は剰余演算を行うと判定し、モジュロ幅の内側に位置する場合は剰余演算を行わないと判定する剰余演算判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号から剰余演算による信号点の繰り返しを考慮した尤度算出を行う復調部とを備えることを特徴とする受信装置である。
 本発明の他の観点によれば、線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用される、あるいは同時に使用される通信方法であって、受信信号の受信品質を推定する伝搬路推定ステップと、前記受信品質の推定結果に基づいて、送信時において剰余演算が施されていないと仮定した場合の受信信号点の分布を推定する信号分布推定ステップと、受信信号の信号点分布を測定する信号分布測定ステップと、前記受信信号点分布の推定結果と前記受信信号点分布の測定結果とを比較し、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定ステップと、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算ステップと、を備えることを特徴とする通信方法が提供される。
 また、本発明は、上記に記載の通信方法をコンピュータに実行させるためのプログラムであっても良く、該プログラムを記録するコンピュータ読み取り可能な記録媒体であっても良い。
 本明細書は本願の優先権の基礎である日本国特許出願2010-173869号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧が選択的に使用される、あるいは同時に使用されるような通信システムにおいて、送信装置からの通知なしに剰余演算の有無を受信装置が判定することが可能となる。
本発明の第1の実施の形態における通信システムの概略構成例を示す図である。 本発明の第1の実施の形態における基地局装置の構成を示すブロック図である。 線形プリコーディングを用いる場合のマルチユーザMIMO信号生成部203aの一構成例を示すブロック図である。 非線形プリコーディングを用いる場合のマルチユーザMIMO信号生成部203bの一構成例を示すブロック図である。 線形プリコーディングと非線形プリコーディングを組み合わせて用いる場合のマルチユーザMIMO信号生成部203cの一構成例を示すブロック図である。 本実施の形態における端末装置600の構成を示すブロック図である。 本実施の形態における端末装置600bの構成を示すブロック図である。 横軸に同相(In-phase)成分のI軸を、縦軸に直交(Quadrature)成分のQ軸を取り、QPSKの信号点配置図を示したものである。 基地局装置において剰余演算が施された(THP)場合の、受信信号点配置を示す図である。 基地局装置において剰余演算が施されない(線形プリコーディング)場合の、SNR=∞における受信信号点について、I軸(またはQ軸)に着目して信号振幅の確率密度分布を求めたグラフである。 SNR=3dBにおいて、受信信号電力を1に正規化した場合の受信信号の信号振幅の確率密度分布を(2)式を用いて推定した結果のグラフである。 基地局装置において剰余演算が施されなかった(線形プリコーディング)場合の、受信SNR=3dB時の信号振幅の分布(度数分布、ヒストグラム)を計算機シミュレーションによって求めた一例である。 基地局装置において剰余演算が施された(THP)場合の、受信SNR=3dB時の信号振幅の分布(ヒストグラム)を計算機シミュレーションによって求めた一例である。 本発明の第2の実施の形態における端末装置の構成を示すブロック図である。 本発明の第3の実施の形態における端末装置の構成を示すブロック図である。 線形プリコーディングと非線形プリコーディングを組み合わせて用いる場合の、第4の実施の形態におけるマルチユーザMIMO信号生成部203dの一構成例を示すブロック図である。 第3のベクトル加算部および第4のベクトル加算部における付加ベクトル加算の概念図である。 THPによってMUIをキャンセルされた端末装置における(雑音がない場合の)受信信号点配置の例を示す図である。
 以下において、本発明の実施の形態による通信技術について、図面を参照しながら説明を行う。
(第1の実施の形態)
 本実施の形態による通信技術について、基地局装置(送信装置)が、第1の端末装置(受信装置)から第4の端末装置までの4つの端末装置に対してマルチユーザMIMO伝送を行い、各端末装置宛のストリーム間で生じるユーザ間干渉(MUI)を線形プリコーディングまたは非線形プリコーディング(THP)によって予め抑圧して送信する通信システムを例として説明する。
 図1は、本実施の形態における通信システムの概略構成例を示す図である。図1に示すように、本実施の形態における通信システムでは、基地局装置100が複数の端末装置(例えば、第1から第4までの端末装置101~104)と通信し、基地局装置100から複数の端末装置101~104への下りリンクの伝送において、同じ周波数帯域で複数の端末装置宛の送信データを空間的に多重して同時通信するマルチユーザMIMO伝送を行う通信システムである。
 また、伝送方式として直交周波数分割多重(Orthogonal Frequency Division Multiplexing:OFDM)を用いた通信システムを例として説明するが、これに限られるものではない。
 図2は、本実施の形態における基地局装置100の一構成例を示す機能ブロック図である。無線受信部209は、アンテナ部208(208a~208d)を通じて第1の端末装置101、第2の端末装置102、第3の端末装置103および第4の端末装置104から送信された信号を受信する。CSI取得部210は、受信した信号から、各端末装置101~104がそれぞれ送信したチャネル状態情報であるCSIを取得する。
 第1から第4までの符号化部201a、201b、201cおよび201dには、それぞれ第1から第4までの端末装置101~104宛のデータ系列が入力され、それぞれに対して誤り訂正符号化を行う。
 第1から第4までの変調部202a、202b、202cおよび202dは、それぞれ誤り訂正符号化された第1から第4の端末装置101~104宛のデータ系列に対して変調を施し、それぞれ第1から第4の端末装置101~104宛のサブキャリア毎の変調シンボルを出力する。
 マルチユーザMIMO信号生成部203は、第1から第4の端末装置101~104宛の各変調シンボルが入力され、CSI取得部210で取得した各端末装置のCSIに基づいて、入力された各変調シンボルに対して信号処理を施し、送信に使用するアンテナ部208のアンテナ208a~208d毎のマルチユーザMIMOシンボルを生成する。なお、マルチユーザMIMO信号生成部203の詳細については後述する。
 第1から第4までのパイロット多重部204a、204b、204cおよび204dは、アンテナ部208の各アンテナ208a~208dから送信するパイロット信号を、各アンテナ208a~208dから送信するマルチユーザMIMOシンボルにそれぞれ多重する。尚、パイロット信号の多重は、各端末装置101~104において基地局装置の各アンテナから送信されたパイロット信号がそれぞれ識別できる形で受信されるように多重されることが好ましく、例えば時分割で多重しても良いし、サブキャリアで分割するような周波数分割で多重しても良いし、符号分割によって多重しても良い。
 第1から第4までのIFFT部205a、205b、205cおよび205dは、パイロット信号が多重されたアンテナ毎のマルチユーザMIMO信号に対して、それぞれ高速逆フーリエ変換(Inverse Fast Fourier Transform:IFFT)などの周波数時間変換を施し、時間領域の信号へ変換する。
 第1から第4までのGI挿入部206a、206b、206cおよび206dは、アンテナ毎の時間領域信号にそれぞれガード期間(Guard Interval:GI)を挿入する。
 第1から第4までの無線送信部207a、207b、207cおよび207dは、GIの挿入された信号をアンテナ部208のそれぞれのアンテナ208a~208dを通じて送信する。
 制御部211は、上記各部を制御し、それぞれの処理を実行させる。
 図3は、線形プリコーディングを用いる場合のマルチユーザMIMO信号生成部203aの一構成例を示す機能ブロック図である。マルチユーザMIMO信号生成部203aは、フィルタ算出部301と、線形フィルタ部302と、を有する。図3の例では、線形プリコーディング、特にZero-ForcingプリコーディングによってマルチユーザMIMO信号を生成する。
 フィルタ算出部301は、図2に示すCSI取得部210で取得した各端末装置のCSIから、基地局装置100の各アンテナと各端末装置のアンテナとの間の複素伝搬路利得を要素に持つチャネル行列Hをサブキャリア毎に生成し、その逆行列H-1(または擬似逆行列H=H(HH-1)を線形フィルタである重み行列Wとして算出する。
 線形フィルタ部302は、第1から第4の端末装置101~104宛の変調シンボルを入力として、それぞれのサブキャリア毎にフィルタ算出部301で算出した線形フィルタWを乗算し、アンテナ部208の各アンテナ208a~208dからそれぞれ送信すべきマルチユーザMIMOシンボルを出力する。
 これにより、上記マルチユーザMIMOシンボルを各端末装置が受信した場合、自端末装置以外への信号による干渉(MUI)は線形プリコーディングによってキャンセルされて自端末装置宛の信号のみが受信される。
 なお、上記マルチユーザMIMO信号生成部203aでは、フィルタ算出部301において線形フィルタとして逆行列を算出して用いる例について説明したが、これに限られるものではなく、MMSE規範で求めた重み行列W=H(HH+αI)-1(Iは単位行列、αは正規化係数を表す。)を線形フィルタとして用いても良い。この場合、受信時にMUIは完全にはキャンセルされないが、信号対干渉および雑音電力比(Signal to Interference and Noise power Ratio:SINR)を最大化できるため、受信特性が向上する。
 図4は、非線形プリコーディングを用いる場合のマルチユーザMIMO信号生成部203bの一構成例を示す機能ブロック図である。図4の例では、非線形プリコーディング、特にトムリンソン-ハラシマ・プリコーディング(THP)によってマルチユーザMIMO信号を生成する。
 QR分解部(干渉行列算出部)404は、図2に示すCSI取得部210で取得した各端末装置のCSIから、基地局装置100の各アンテナと各端末装置のアンテナとの間の複素伝搬路利得を要素に持つチャネル行列Hをサブキャリア毎に生成し、そのチャネル行列Hのエルミート共役HにQR分解を施して、ユニタリ行列Qと上三角行列Rとに分解し、さらに上三角行列Rのエルミート共役R(下三角行列となる)を求め、各端末装置間のMUIの利得を表す干渉行列B=(diagR-1-Iを求めて干渉成分算出部403bへ出力し、ユニタリ行列Qを線形フィルタ部405へ出力する。なお、diagXは行列Xの対角成分のみの行列であり、Iは単位行列を表す。
 第1の剰余演算部402aは、第1の変調部202aで生成された第1の端末装置101宛の変調シンボルに対して剰余演算を施す。なお、第1の端末装置101宛の変調シンボルに対してはMUIが存在しないため、干渉成分減算部は省略している。さらに剰余演算部402aも省略可能である。
 干渉成分算出部403bは、QR分解部404で求めた干渉行列Bに基づいて、第1の端末装置101宛の各サブキャリアの変調シンボルの剰余演算結果が第2の端末装置102宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの2行1列目の要素が第1の端末装置101宛の変調シンボルが第2の端末装置102宛の変調シンボルへ及ぼす干渉の複素利得を表しており、この要素に第1の端末装置101宛の変調シンボルの剰余演算結果を乗じることによって干渉成分を算出できる。
 第1の干渉成分減算部401bは、第2の変調部202bで生成された第2の端末装置102宛の変調シンボルから、干渉成分算出部403bで算出した第2の端末装置102宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 第2の剰余演算部402bは、干渉成分が減算された第2の端末装置102宛の変調シンボルに対して、変調方式によって予め定められたモジュロ幅を用いて剰余演算を施す。
 干渉成分算出部403bは、第1の端末装置101宛の各サブキャリアの変調シンボルの剰余演算結果および第2の端末装置102宛の各サブキャリアの変調シンボルの剰余演算結果が、第3の端末装置103宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの3行1列目の要素が第1の端末装置101宛の変調シンボルが第3の端末装置103宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの3行2列目の要素が第2の端末装置102宛の変調シンボルが第3の端末装置103宛の変調シンボルへ及ぼす干渉の複素利得を表しており、これらの要素にそれぞれ第1の端末装置101宛の変調シンボルの剰余演算結果および第2の端末装置102宛の変調シンボルの剰余演算結果を乗じることによって干渉成分を算出できる。
 第2の干渉成分減算部401cは、第3の変調部202cで生成された第3の端末装置103宛の変調シンボルから、干渉成分算出部403bで算出した第3の端末装置103宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 第3の剰余演算部402cは、干渉成分が減算された第3の端末装置103宛の変調シンボルに対して、変調方式によって予め定められたモジュロ幅を用いて剰余演算を施す。
 干渉成分算出部403bは、第1の端末装置101宛の各サブキャリアの変調シンボルの剰余演算結果、第2の端末装置102宛の各サブキャリアの変調シンボルの剰余演算結果、および第3の端末装置103宛の各サブキャリアの変調シンボルの剰余演算結果が、第4の端末装置104宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの4行1列目の要素が第1の端末装置101宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの4行2列目の要素が第2の端末装置102宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの4行3列目の要素が第3の端末装置103宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表しており、これらの要素にそれぞれ第1の端末装置101宛の変調シンボルの剰余演算結果から第3の端末装置103宛の変調シンボルの剰余演算結果を乗じることによって干渉成分を算出できる。
 第3の干渉成分減算部401dは、第4の変調部202dで生成された第4の端末装置104宛の変調シンボルから、干渉成分算出部403bで算出した第4の端末装置104宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 第4の剰余演算部402dは、干渉成分が減算された第4の端末装置104宛の変調シンボルに対して、変調方式によって予め定められたモジュロ幅を用いて剰余演算を施す。
 線形フィルタ部405は、第1の剰余演算部402aが出力した第1の端末装置101宛の変調シンボルの剰余演算結果、第2の剰余演算部402bが出力した第2の端末装置102宛の変調シンボルの剰余演算結果、第3の剰余演算部402cが出力した第3の端末装置103宛の変調シンボルの剰余演算結果、および、第4の剰余演算部402dが出力した第4の端末装置104宛の変調シンボルの剰余演算結果を入力として、QR分解部404で算出したユニタリ行列Qを線形フィルタとしてサブキャリア毎に乗算し、アンテナ部208の各アンテナからそれぞれ送信すべきマルチユーザMIMOシンボルを出力する。
 これにより、上記マルチユーザMIMOシンボルを各端末装置が受信した場合、自端末装置以外への信号による干渉(MUI)はTHPによってキャンセルされて自端末装置宛の信号のみが受信される。
 尚、本実施の形態では、THPを実現する方法としてチャネル行列のQR分解を用いる方法を例として説明したが、これに限られるものではなく、V-BLAST(Vertical Bell Laboratories Layered Space Time)の手法を用いてTHPにおける端末装置の並べ替えを準最適化するような上記非特許文献4に記載されている方法などを用いても良い。
 図5は、線形プリコーディングと非線形プリコーディングとを組み合わせて用いる場合のマルチユーザMIMO信号生成部203cの一構成例を示す機能ブロック図である。図5では、非線形プリコーディングとしてTHPを用い、第1の端末装置101と第2の端末装置102に対しては剰余演算を行わない線形プリコーディングと、第3の端末装置103と第4の端末装置104に対しては剰余演算を行うTHPとを組み合わせた場合の例を示す。
 QR分解部(干渉行列算出部)404は、図4の場合と同様に、CSI取得部210で取得した各端末装置のCSIから、基地局装置100の各アンテナと各端末装置のアンテナとの間の複素伝搬路利得を要素に持つチャネル行列Hをサブキャリア毎に生成し、そのチャネル行列Hのエルミート共役HにQR分解を施して、ユニタリ行列Qと上三角行列Rとに分解し、さらに上三角行列Rのエルミート共役R(下三角行列となる)を求め、各端末装置間のMUIの利得を表す干渉行列B=(diagR-1-Iを求めて干渉成分算出部403cへ出力し、ユニタリ行列Qを線形フィルタ部405へ出力する。
 干渉成分算出部403cは、QR分解部404で求めた干渉行列Bに基づいて、第1の端末装置101宛の各サブキャリアの変調シンボルが第2の端末装置102宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの2行1列目の要素が第1の端末装置101宛の変調シンボルが第2の端末装置102宛の変調シンボルへ及ぼす干渉の複素利得を表しており、この要素に第1の端末装置101宛の変調シンボルを乗じることによって干渉成分を算出できる。
 第1の干渉成分減算部401bは、第2の変調部202bで生成された第2の端末装置102宛の変調シンボルから、干渉成分算出部403cで算出した第2の端末装置102宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 干渉成分算出部403cは、第1の端末装置101宛の各サブキャリアの変調シンボルおよび第2の端末装置102宛の各サブキャリアの変調シンボルが、第3の端末装置103宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの3行1列目の要素が第1の端末装置101宛の変調シンボルが第3の端末装置103宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの3行2列目の要素が第2の端末装置102宛の変調シンボルが第3の端末装置103宛の変調シンボルへ及ぼす干渉の複素利得を表しており、これらの要素にそれぞれ第1の端末装置101宛の変調シンボルおよび第2の端末装置102宛の変調シンボルを乗じることによって干渉成分を算出できる。
 第2の干渉成分減算部401cは、第3の変調部202cで生成された第3の端末装置103宛の変調シンボルから、干渉成分算出部403cで算出した第3の端末装置103宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 第3の剰余演算部402cは、干渉成分が減算された第3の端末装置103宛の変調シンボルに対して、変調方式によって予め定められたモジュロ幅を用いて剰余演算を施す。
 干渉成分算出部403cは、第1の端末装置101宛の各サブキャリアの変調シンボル、第2の端末装置102宛の各サブキャリアの変調シンボル、および第3の端末装置103宛の各サブキャリアの変調シンボルの剰余演算結果が、第4の端末装置104宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの4行1列目の要素が第1の端末装置101宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの4行2列目の要素が第2の端末装置102宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの4行3列目の要素が第3の端末装置103宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表しており、これらの要素にそれぞれ第1の端末装置101宛の変調シンボル、第2の端末装置102宛の変調シンボルおよび第3の端末装置103宛の変調シンボルの剰余演算結果を乗じることによって干渉成分を算出できる。
 第3の干渉成分減算部401dは、第4の変調部202dで生成された第4の端末装置104宛の変調シンボルから、干渉成分算出部403cで算出した第4の端末装置104宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 第4の剰余演算部402dは、干渉成分が減算された第4の端末装置104宛の変調シンボルに対して、変調方式によって予め定められたモジュロ幅を用いて剰余演算を施す。
 線形フィルタ部405は、第1の変調部202aで生成された第1の端末装置101宛の変調シンボル、第1の干渉成分減算部401bが出力した干渉成分が減算された第2の端末装置102宛の変調シンボル、第3の剰余演算部402cが出力した第3の端末装置103宛の変調シンボルの剰余演算結果、および、第4の剰余演算部402dが出力した第4の端末装置104宛の変調シンボルの剰余演算結果を入力として、QR分解部404で算出したユニタリ行列Qを線形フィルタとしてサブキャリア毎に乗算し、アンテナ部208の各アンテナからそれぞれ送信すべきマルチユーザMIMOシンボルを出力する。
 これにより、上記マルチユーザMIMOシンボルを各端末装置が受信した場合、自端末装置以外への信号による干渉(MUI)は、第1の端末装置101と第2の端末装置102については線形プリコーディングによって、第3の端末装置103と第4の端末装置104についてはTHPによってキャンセルされて自端末装置宛の信号のみが受信される。
 図6Aは、本実施の形態における端末装置600の一構成例を示す機能ブロック図である。
 無線受信部601は、アンテナ部615を通じて基地局装置100からの信号を受信する。
 GI除去部602は、受信した信号からガードインターバル(GI)を取り除く。
 FFT部603は、GIが除去された受信信号を高速フーリエ変換(Fast Fourier Transform:FFT)などによって時間周波数変換し、サブキャリア毎の変調シンボルに変換する。
 パイロット分離部604は、変調シンボルを受信データのシンボルとパイロット信号のシンボルとに分離し、受信データのシンボルを伝搬路補償部605に、パイロット信号のシンボルを伝搬路推定部609に、それぞれ入力する。
 伝搬路推定部609は、分離されたパイロット信号のシンボルに基づいて、基地局装置100の各アンテナと、端末装置600のアンテナ615との間の伝搬路状態(複素伝搬路利得)と、受信品質、例えば受信信号対雑音電力比(受信SNR)または雑音電力を推定する。
 伝搬路補償部605は、伝搬路推定部609における伝搬路状態の推定結果に基づいて受信データシンボルに対して伝搬路補償(等化)を行う。
 信号分布推定部610は、伝搬路推定部609における受信品質(受信SNRまたは雑音電力)の推定結果に基づいて、基地局装置において剰余演算が施されていない(線形プリコーディング)と仮定した場合の受信信号点の分布を算出し、信号点分布推定結果を出力する。
 信号分布測定部611は、伝搬路補償された受信データシンボルの信号点分布を測定し、信号点分布測定結果を出力する。
 剰余演算判定部612は、信号点分布推定結果と信号点分布測定結果とを比較し、剰余演算を行うか否かを判定し、判定結果を出力する。なお、信号分布推定部610、信号分布測定部611および剰余演算判定部612における詳細な処理については後述する。
 剰余演算部606は、伝搬路補償された受信データシンボルが入力され、剰余演算判定部612から剰余演算を行うという判定結果が入力された場合、伝搬路補償された受信データシンボルに対して変調方式によって予め定められた剰余演算の幅(モジュロ幅)を用いて剰余演算を施し、剰余演算を行わないという判定結果が入力された場合、伝搬路補償された受信データシンボルをそのまま出力する。
 復調部607は、剰余演算部606が出力した各受信データシンボルに対して復調を施す。
 復号化部608は、復調された系列に対して誤り訂正復号処理を行い、受信データ系列を生成し出力する。
 CSI生成部613は、推定した伝搬路状態に基づいて、チャネル状態情報であるCSIを生成する。
 無線送信部614は、アンテナ部615を通じて、CSI生成部613が生成したCSIを基地局装置100へ送信する。
 制御部616は、上記各部を制御し、それぞれの処理を実行させる。
 次に、信号分布推定部610、信号分布測定部611および剰余演算判定部612における、剰余演算を行うか否かを判定する処理について説明する。なお、以下では四位相偏移変調(Quadrature Phase Shift Keying:QPSK)時を例にして説明する。
 図7は、横軸に同相(In-phase)成分のI軸を、縦軸に直交(Quadrature)成分のQ軸を取り、QPSKの信号点配置図を示した図である。
 図7は、信号電力が1となるようにI軸およびQ軸の振幅を決定した場合の例であり、QPSKの4つの信号点はそれぞれ(I,Q)=(1/21/2,1/21/2)、(-1/21/2,1/21/2)、(-1/21/2,-1/21/2)、(1/21/2,-1/21/2)に位置する。
 また、このときのTHPにおける剰余演算のモジュロ幅τは、τ=2×21/2とする。
 ここで、端末装置の受信時において雑音がない場合(受信SNR=∞)を仮定し、伝搬路補償も完璧であったとし、受信信号電力を1に正規化すると、基地局装置において剰余演算が施されない(線形プリコーディング)場合の受信信号点配置は図7と同様となる。
 また、上記の仮定において、基地局装置において剰余演算が施された(THP)場合は、受信信号点配置は図8に示すような、モジュロ幅でQPSKの信号点配置が繰り返された形となる。尚、このとき、モジュロ幅で区切られた中央部分の4点およびその外側の信号点に分布する確率は、マルチユーザMIMOにおけるMUIの大きさによって決まる。
 図9は、基地局装置において剰余演算が施されない(線形プリコーディング)場合の、SNR=∞における受信信号点について、I軸(またはQ軸)に着目して信号振幅の確率密度分布を求めたグラフである。このとき、信号振幅の確率密度関数f(x)は、
Figure JPOXMLDOC01-appb-M000001
となる。ここでδ(x)はディラックのデルタ関数である。
 しかしながら、実際には受信信号には雑音が加わる。ここで、加わる雑音はガウス雑音であると仮定すると、図9の2箇所の信号点分布に雑音の正規分布(ガウス分布)が重畳される形となる。雑音の電力(分散)をσ とすると、I軸(またはQ軸)の雑音の分散はσ /2となり、信号振幅の確率密度関数f(x)は(2)式のようになる。
Figure JPOXMLDOC01-appb-M000002
 また、このとき、信号振幅の累積分布関数F(x)は(3)式のようになる。
Figure JPOXMLDOC01-appb-M000003
 ここで、erf(x)は誤差関数である。
 なお、伝搬路推定部609においてSNR=γ(真値)と推定されたとすると、伝搬路補償部605において(雑音を除いた)受信信号電力が1に正規化された場合、雑音電力(分散)はσ =1/γで求められる。
 信号分布推定部610では、伝搬路推定部609が推定した受信品質(受信SNRまたは雑音電力)に基づいて、(2)式を用いて、基地局装置において剰余演算が施されなかった(線形プリコーディング)場合の受信信号の信号振幅の分布を推定する。以下、この推定結果を推定分布と記す。
 図10は、SNR=3dBにおいて、受信信号電力を1に正規化した場合の受信信号の信号振幅の確率密度分布を(2)式を用いて推定した結果のグラフである。
 図10の一点鎖線は剰余演算のモジュロ幅を示しており、確率密度分布のうちモジュロ幅を超える部分を斜線で示している。
 信号分布測定部611では、伝搬路補償された複数の受信データシンボルを用いて、その信号振幅の分布を測定する。以下、この測定結果を測定分布と記す。
 図11は、基地局装置において剰余演算が施されなかった(線形プリコーディング)場合の、受信SNR=3dB時の信号振幅の分布(度数分布、ヒストグラム)を計算機シミュレーションによって求めた測定分布の一例である。図11の一点鎖線は図10と同様に剰余演算のモジュロ幅を示している。
 さらに、図12は、基地局装置において剰余演算が施された(THP)場合の、受信SNR=3dB時の信号振幅の分布(度数分布、ヒストグラム)を計算機シミュレーションによって求めた測定分布の一例である。図12の一点鎖線も同様に剰余演算のモジュロ幅を示している。
 図6Aの剰余演算判定部612では、信号分布推定部610における推定分布と、信号分布測定部611における測定分布とを比較して、剰余演算部606において剰余演算を行うか否かを判定する。
 一例としては、図10の推定分布と図11または図12の測定分布の形状を比較し、両者の一致度が高ければ剰余演算は行わず、一致度が低い(測定分布の方が扁平で分布範囲が広い)場合は剰余演算を行うと判定する。
 この例では、図10と近いのは、図12よりも図11の方であることがわかる。
 一致度の評価としては、例えば、測定分布の形状を多項式近似し、その近似結果と推定分布との相関係数を算出し、相関が高い場合(1に近い、予め設定した閾値以上)は一致度が高く、相関が低い場合(予め設定した閾値未満)は一致度が低いとする方法や、推定分布と測定分布の差の絶対値の積分結果が小さい場合(0に近い、予め設定した閾値未満)は一致度が高く、大きい場合(予め設定した閾値以上)は一致度が低いとする方法などがある。なお、上記予め設定する閾値は、例えば、剰余演算を行うか否か(送信側で剰余演算を行っていたか否か)を正しく判定できる確率を最大化し、誤って判定してしまう確率を最小化するように、計算機シミュレーション等によって決定するなどの方法が好ましい。
 また、他の例としては、推定分布と測定分布それぞれのモジュロ幅の外側(図10、図11および図12の一点鎖線の外側)に分布している割合を求めて比較し、両者が同程度であれば剰余演算は行わず、測定分布の方が大きければ剰余演算を行うと判定する。ここで、上記の例において推定分布のモジュロ幅の外側に分布する割合(確率)pは、(3)式の累積分布関数F(x)を用いて(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
 測定分布のモジュロ幅の外側に分布する割合は、複数の受信データシンボルの総個数とモジュロ幅の外側に分布している個数の割合から求めることができる。なお、上記の割合が同程度であるか測定分布の方が大きいかの判定は、例えば、剰余演算を行うか否か(送信側で剰余演算を行っていたか否か)を正しく判定できる確率を最大化し、誤って判定してしまう確率を最小化するように、計算機シミュレーション等によって閾値を決定し、2つの割合の差と閾値との比較によって判定するなどの方法が好ましい。伝搬路推定結果に誤差が含まれなければ、上記割合が測定分布の方が小さくなることはないが、もし測定分布の方が(同程度と言えない程度以上に)小さい場合は、剰余演算を行わないと判定するか、もしくはより精度の高い伝搬路推定を再実行するなどの処理を行うことが好ましい。
 なお、サブキャリア毎に線形プリコーディング(剰余演算なし)とTHP(剰余演算あり)を選択して用いるような場合、上記信号分布の推定および測定はサブキャリア毎に処理を行う。
 上記ではQPSKの場合について説明したが、その他の変調方式の場合においても同様に、推定分布と測定分布との比較によって剰余演算を行うか否かの判定が可能である。
 また、本実施の形態では、受信側の端末装置は、剰余演算判定部612において剰余演算を行う(基地局装置において剰余演算が行われた)と判定された場合に、復調部607における復調(受信信号点の判定)の前に剰余演算部606において伝搬路補償された受信データシンボルに対して剰余演算を行う例について説明した。
 本発明のその他の実施の形態の端末装置の構成例を図6Bに示す。図6Bの端末装置600bでは、図6Aの端末装置600とは異なり、剰余演算部606は備えていない。復調部607bは、剰余演算判定部612において剰余演算を行うと判定された場合には、雑音がない場合の受信信号点配置(候補信号点配置)が図8に示すような、モジュロ幅で基地局装置における変調時の信号点配置が繰り返された形となることを考慮して、(雑音の加わった)受信信号点と、モジュロ幅で繰り返された各候補信号点とのユークリッド距離から、復調ビットの対数尤度比(Log Likelihood Ratio:LLR)を算出する(軟判定による復調処理)。
 そのLLRを復号化部608に入力して、誤り訂正復号を行う。ここで、復調部607bにおけるLLRの算出は、例えば、上記非特許文献6の式(15)から式(20)までに記載された公知な方法によって算出することができる。すなわち、受信信号点と、モジュロ幅で繰り返された各候補信号点のうち受信信号点に近接する候補信号点とのユークリッド距離を用いてLLRを算出するアルゴリズムを用いて算出することができる。
 なお、図6Bに示すような構成は以降の各実施の形態の端末装置においても同様に適用できる。
 本実施の形態によれば、線形プリコーディングによるマルチユーザMIMOを行う基地局装置とTHPによるマルチユーザMIMOを行う基地局装置が混在する場合や、基地局装置が線形プリコーディングによるマルチユーザMIMOとTHPによるマルチユーザMIMOの両方に対応する場合、さらには基地局装置が線形プリコーディングとTHPとを同時に組み合わせてマルチユーザMIMOを行う場合などにおいて、端末装置は、基地局装置からの制御情報等による通知なしに、自端末装置に対するマルチユーザMIMO信号が、線形プリコーディングである(剰余演算を行っていない)のか、THPである(剰余演算を行っている)のかを、受信信号の分布に基づいて判定することが可能となり、受信処理における剰余演算の有無を適切に切り替えて受信データを検出することが可能となる。
 特に、基地局装置が線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の両方に対応する場合や、非特許文献5のように基地局装置が線形プリコーディングとTHPとを同時に組み合わせて干渉抑圧を行う場合などでは、基地局装置と端末装置との間の瞬時の伝搬路状態、干渉の状態、さらにマルチユーザMIMOにおいては空間多重する端末装置の組み合わせなどによって、送信(フレーム)毎、端末装置(ユーザ)毎に、さらにOFDMではサブキャリア毎に、線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の切り替えが行われる可能性があり、切り替え情報を1ビットで通知したとしても、制御情報量は1送信毎に(受信装置数)×(サブキャリア数)ビット必要となるが、本実施の形態によれば制御情報は不要となる。
(第2の実施の形態)
 次に、本発明の第2の実施の形態による通信技術について説明する。本実施の形態においても、基地局装置が、第1の端末装置から第4の端末装置の4つの端末装置に対してマルチユーザMIMO伝送を行い、各端末装置宛のストリーム間で生じるMUIを線形プリコーディングまたは非線形プリコーディング(THP)によって予め抑圧して送信する通信システムを例として説明する。なお、本実施の形態における基地局装置の構成は、第1の実施の形態と同じである(図2)。
 図13は、本実施の形態における端末装置1300の一構成例を示す機能ブロック図である。
 図13の端末装置1300は、図6A(図6Bでも良い。)の端末装置600と一部の構成、動作が異なる。以下、端末装置1300において、図6Aの端末装置600と動作の異なる部分について説明を行い、同じ動作を行う部分には同じ符号を付して説明を省略する。
 信号分散推定部1310は、伝搬路推定部609における受信品質(受信SNRまたは雑音電力)の推定結果に基づいて、基地局装置において剰余演算が施されていない(線形プリコーディング)と仮定した場合の受信信号点の分布の分散を算出し、信号点分散推定結果を出力する。
 信号分散測定部1311は、伝搬路補償された受信データシンボルの信号点の分布の分散を測定し、信号点分散測定結果を出力する。
 剰余演算判定部1312は、信号点分散推定結果と信号点分散測定結果とを比較し、剰余演算を行うか否かを判定し、判定結果を出力する。
 次に、信号分散推定部1310、信号分散測定部1311および剰余演算判定部1312における、剰余演算を行うか否かを判定する処理について説明する。尚、以下では第1の実施の形態と同様にQPSK時を例にして説明する。
 信号分散推定部1310では、伝搬路推定部609が推定した受信品質(受信SNRまたは雑音電力)に基づいて、基地局装置において剰余演算が施されなかった(線形プリコーディング)場合の受信信号の信号振幅の分布の分散を推定する。
 このとき、端末装置の受信時において雑音がない場合(受信SNR=∞)を仮定し、伝搬路補償も完璧であったとし、受信信号電力(すなわち受信信号の分散σ )を1に正規化すると、受信信号点のI軸(またはQ軸)の信号振幅の分布は図9のようになり、I軸(またはQ軸)の受信信号の分散はσ /2=0.5となる。
 また、雑音の分散(雑音電力)をσ とすると、I軸(またはQ軸)の雑音の分散はσ /2となる。
 信号点の生起確率と雑音の生起確率は独立であるため、実際に雑音の加わった受信信号の分布の分散σrxe は(5)式から推定できる。
Figure JPOXMLDOC01-appb-M000005
 以下、この推定結果を推定分散と記す。
 信号分散測定部1311では、伝搬路補償された複数の受信データシンボルを用いて、その信号振幅の分散σrxs を測定する。具体的にはN個の受信データシンボルのI軸(またはQ軸)の振幅x(i=1~N)から、(6)式で求める。
Figure JPOXMLDOC01-appb-M000006
 ここで、xavgはx(i=1~N)の平均値である。以下、この測定結果を測定分散と記す。
 剰余演算判定部1312では、信号分散推定部1310における推定分散と、信号分散測定部1311における測定分散とを比較して、剰余演算部606において剰余演算を行うか否かを判定する。具体的には、推定分散と測定分散が(ある誤差の範囲内で)等しい場合は剰余演算を行わず、測定分散が推定分散よりも(予め定めた割合以上に)大きい場合は剰余演算を行うと判定する。
 すなわち、推定分散と測定分散との比較において、等しいと判定する場合には、誤差を考慮する必要がある。ある誤差の範囲内で等しいと判定されれば、剰余演算は行わない。当該誤差を越えて大きい場合には、剰余演算を行う。
 上記の分散が等しいか測定分散の方が大きいかの判定は、例えば、剰余演算を行うか否か(送信側で剰余演算を行っていたか否か)を正しく判定できる確率を最大化し、誤って判定してしまう確率を最小化するように、計算機シミュレーション等によってある閾値を決定し、2つの分散の差と閾値との比較によって判定するなどの方法が好ましい。伝搬路推定結果に誤差が含まれなければ、測定分散の方が小さくなることはないが、もし測定分散の方が(同程度と言えない程度以上に)小さい場合は、剰余演算を行わないと判定するか、もしくはより精度の高い伝搬路推定を再実行するなどの処理を行うことが好ましい。
 なお、サブキャリア毎に線形プリコーディング(剰余演算なし)とTHP(剰余演算あり)を選択して用いるような場合、上記信号分布の分散の推定および測定はサブキャリア毎に処理を行う。
 尚、上記ではQPSKの場合について説明したが、その他の変調方式の場合においても同様に、推定分散と測定分散との比較によって剰余演算を行うか否かの判定が可能である。
 以上に説明したように、本実施の形態によれば、線形プリコーディングによるマルチユーザMIMOを行う基地局装置とTHPによるマルチユーザMIMOを行う基地局装置が混在する場合や、基地局装置が線形プリコーディングによるマルチユーザMIMOとTHPによるマルチユーザMIMOの両方に対応する場合、さらには基地局装置が線形プリコーディングとTHPとを同時に組み合わせてマルチユーザMIMOを行う場合などにおいて、端末装置は、基地局装置からの制御情報等による通知なしに、自端末装置に対するマルチユーザMIMO信号が、線形プリコーディングである(剰余演算を行っていない)のか、THPである(剰余演算を行っている)のかを、受信信号の分布の分散に基づいて判定することが可能となり、受信処理における剰余演算の有無を適切に切り替えて受信データを検出することが可能となる。
 特に、基地局装置が線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の両方に対応する場合や、非特許文献5のように基地局装置が線形プリコーディングとTHPとを同時に組み合わせて干渉抑圧を行う場合などでは、基地局装置と端末装置との間の瞬時の伝搬路状態、干渉の状態、さらにマルチユーザMIMOにおいては空間多重する端末装置の組み合わせなどによって、送信(フレーム)毎、端末装置(ユーザ)毎に、さらにOFDMではサブキャリア毎に、線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の切り替えが行われる可能性があり、切り替え情報を1ビットで通知したとしても、制御情報量は1送信毎に(受信装置数)×(サブキャリア数)ビット必要となるが、本実施の形態によれば制御情報は不要となる。
(第3の実施の形態)
 本実施の形態では、基地局装置が、第1の端末装置から第4の端末装置の4つの端末装置に対してマルチユーザMIMO伝送を行い、各端末装置宛のストリーム間で生じるMUIを線形プリコーディングまたは非線形プリコーディング(THP)によって予め抑圧して送信する通信システムを例として説明する。
 本実施の形態における基地局装置の構成は、第1の実施の形態と同じである(図2)。図14は、本実施の形態における端末装置1400の一構成例を示すブロック図である。
 図14の端末装置1400は、図6A(図6Bでも良い。)の端末装置600と一部の構成、動作が異なる。
 以下、図6Aの端末装置600と動作の異なる部分について説明を行い、同じ動作を行う部分には同じ符号を付して説明を省略する。
 剰余演算判定部1412は、伝搬路推定部609による受信品質の推定結果から、受信品質の良好な(伝搬路利得あるいは受信SNRが高い)サブキャリア(または周波数チャネル)を1つまたは複数選択し、選択したサブキャリアにおける伝搬路補償された受信データシンボルを抽出し、当該受信データシンボルの信号点の同相成分(I軸)または直交成分(Q軸)またはその両方が、モジュロ幅を超えた外側(図8における中央部破線で囲んだ領域の外側)に位置する場合に剰余演算を行うと判定し、I軸およびQ軸の成分のどちらもモジュロ幅を超えない場合に剰余演算を行わないと判定する。なお、上記において受信データシンボルを複数選択した場合は、それらのうちのいずれか1つでもモジュロ幅を超えている場合に剰余演算を行うと判定する。また、OFDMではなくシングルキャリア伝送システムの場合においては、伝搬路推定結果から、受信状態の良好な(時間)シンボルを選択して、上記判定を行う。
 本実施の形態によれば、線形プリコーディングによるマルチユーザMIMOを行う基地局装置とTHPによるマルチユーザMIMOを行う基地局装置が混在する場合や、基地局装置が線形プリコーディングによるマルチユーザMIMOとTHPによるマルチユーザMIMOの両方に対応する場合、さらには基地局装置が線形プリコーディングとTHPとを同時に組み合わせてマルチユーザMIMOを行う場合などにおいて、端末装置は、基地局装置からの制御情報等による通知なしに、自端末装置に対するマルチユーザMIMO信号が、線形プリコーディングである(剰余演算を行っていない)のか、THPである(剰余演算を行っている)のかを、受信状態の良好な受信データシンボル、すなわち、相対的に雑音電力が小さく、雑音によってモジュロ幅を超える確率の低い受信データシンボルの信号点位置に基づいて判定することが可能となり、受信処理における剰余演算の有無を適切に切り替えて受信データを検出することが可能となる。
 特に、基地局装置が線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の両方に対応する場合や、非特許文献5のように基地局装置が線形プリコーディングとTHPとを同時に組み合わせて干渉抑圧を行う場合などでは、基地局装置と端末装置との間の瞬時の伝搬路状態、干渉の状態、さらにマルチユーザMIMOにおいては空間多重する端末装置の組み合わせなどによって、送信(フレーム)毎、端末装置(ユーザ)毎に、線形プリコーディングによる干渉抑圧とTHPによる干渉抑圧の切り替えが行われる可能性があり、切り替え情報を1ビットで通知したとしても、制御情報量は1送信毎に(受信装置数)ビット必要となるが、本実施の形態によれば制御情報は不要となる。
(第4の実施の形態)
 本実施の形態では、基地局装置が、第1の端末装置から第4の端末装置の4つの端末装置に対してマルチユーザMIMO伝送を行い、各端末装置宛のストリーム間で生じるユーザ間干渉(MUI)を線形プリコーディングまたは非線形プリコーディング(THP)によって予め抑圧して送信する通信システムを例として説明する。
 本実施の形態における基地局装置の構成は、図2と同様であるが、マルチユーザMIMO信号生成部203の詳細構成が異なる。
 図15は、線形プリコーディングと非線形プリコーディングを組み合わせて用いる場合の、本実施の形態におけるマルチユーザMIMO信号生成部の一構成例を示すブロック図である。図15では、非線形プリコーディングとしてTHPを用い、第1の端末装置101と第2の端末装置102に対しては剰余演算を行わない線形プリコーディングと、第3の端末装置103と第4の端末装置104に対しては剰余演算を行うTHPとを組み合わせた場合の例を示す。
 図15のマルチユーザMIMO信号生成部203dは、図5のマルチユーザMIMO信号生成部203cと一部の構成、動作が異なり、剰余演算を行うTHPの場合に、一部のシンボルの剰余演算結果に対して付加ベクトルを加算する。この付加ベクトルの加算は、基地局装置において剰余演算を行った場合に、当該シンボルが端末装置で受信される際に確実にモジュロ幅の外側に分布するように行うものである。
 以下、図5のマルチユーザMIMO信号生成部203cと動作の異なる部分について説明を行い、同じ動作を行う部分には同じ符号を付して説明を省略する。
 第1の端末装置101宛の変調シンボル、第2の端末装置102宛の変調シンボルに関する処理は図5のマルチユーザMIMO信号生成部203cと同様である。
 第3のベクトル加算部1501cは、第3の剰余演算部402cから出力された第3の端末装置103宛の各サブキャリアの変調シンボルの剰余演算結果の一部のシンボルに対して、I軸またはQ軸またはその両方の成分にそれぞれモジュロ幅の整数倍の長さを持つ付加ベクトルを加算する。なお付加ベクトルを加算する上記一部のシンボルは、予めその位置(サブキャリア、OFDMシンボル)をシステムで取り決めておくのが好ましいが、これに限られるものではない。また、干渉成分算出部403dへは、第3の剰余演算部402cから出力された第3の端末装置宛の各サブキャリアの変調シンボルの剰余演算結果に代えて、第3のベクトル加算部1501cで付加ベクトルが加算された結果が入力される。
 干渉成分算出部403dは、第1の端末装置101宛の各サブキャリアの変調シンボル、第2の端末装置102宛の各サブキャリアの変調シンボル、および第3の端末装置103宛の各サブキャリアの変調シンボルの剰余演算結果に付加ベクトルが加算されたシンボルが、第4の端末装置104宛の各サブキャリアの変調シンボルに与える干渉成分を算出する。ここで、干渉行列Bの4行1列目の要素が第1の端末装置101宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの4行2列目の要素が第2の端末装置102宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表し、干渉行列Bの4行3列目の要素が第3の端末装置103宛の変調シンボルが第4の端末装置104宛の変調シンボルへ及ぼす干渉の複素利得を表しており、これらの要素にそれぞれ第1の端末装置101宛の変調シンボル、第2の端末装置102宛の変調シンボルおよび第3の端末装置103宛の変調シンボルの剰余演算結果に付加ベクトルが加算されたシンボルを乗じることによって干渉成分を算出できる。
 第3の干渉成分減算部401dは、第4の変調部202dで生成された第4の端末装置104宛の変調シンボルから、干渉成分算出部403dで算出した第4の端末装置104宛の変調シンボルに対する干渉成分をサブキャリア毎に減算する。
 第4の剰余演算部402dは、干渉成分が減算された第4の端末装置104宛の変調シンボルに対して、変調方式によって予め定められたモジュロ幅を用いて剰余演算を施す。
 第4のベクトル加算部1501dは、第4の剰余演算部402dから出力された第4の端末装置104宛の各サブキャリアの変調シンボルの剰余演算結果の一部のシンボルに対して、I軸またはQ軸またはその両方の成分にそれぞれモジュロ幅の整数倍の長さを持つ付加ベクトルを加算する。なお付加ベクトルを加算する上記一部のシンボルは、予めその位置(サブキャリア、OFDMシンボル)をシステムで取り決めておくのが好ましいが、これに限られるものではない。
 線形フィルタ部405は、第1の変調部202aで生成された第1の端末装置101宛の変調シンボル、第1の干渉成分減算部401bが出力した干渉成分が減算された第2の端末装置102宛の変調シンボル、第3のベクトル加算部1501cが出力した第3の端末装置103宛の変調シンボルの剰余演算結果に付加ベクトルが加算されたシンボル、および第4のベクトル加算部1501dが出力した第4の端末装置104宛の変調シンボルの剰余演算結果に付加ベクトルが加算されたシンボルを入力として、QR分解部404で算出したユニタリ行列Qを線形フィルタとしてサブキャリア毎に乗算し、アンテナ部208の各アンテナからそれぞれ送信すべきマルチユーザMIMOシンボルを出力する。
 図16に、第3のベクトル加算部1501cおよび第4のベクトル加算部1501dにおける付加ベクトル加算の概念図を示す。以下、QPSK時を例として説明する。
 第3の変調部202cまたは第4の変調部202dから出力された、第3の端末装置103宛の変調シンボルまたは第4の端末装置104宛の変調シンボルが、図16のAで示された信号点であったとする。第2の干渉成分減算部401cまたは第3の干渉成分減算部401dにおいて干渉成分を減算された結果がB点となったとすると、第3の剰余演算部402cまたは第4の剰余演算部402dにおける剰余演算の結果はC点となる(剰余演算によってB点からC点への摂動ベクトルが加算された形となる)。ここで、剰余演算の結果は、全てのシンボルについて図16の斜線で塗られた領域に分布する。第3のベクトル加算部1501cおよび第4のベクトル加算部1501dでは、この剰余演算結果の一部のシンボルについて、I軸またはQ軸またはその両方の成分にそれぞれモジュロ幅の整数倍の長さを持つ付加ベクトルを加算する。図16の例では、同相成分のみにモジュロ幅τの1倍の長さを持つ付加ベクトル(-τ,0)を加算する場合を示しており、C点にあった剰余演算結果に対して付加ベクトルを加算してD点が出力される。
 図17に、THPによってMUIをキャンセルされた端末装置における(雑音がない場合の)受信信号点配置の例を示す。
 基地局装置における送信時の剰余演算によって、端末装置における受信時には図17に示すようにモジュロ幅毎に信号点が繰り返された形で受信される。図16において付加ベクトルを加算されたD点は、干渉成分がキャンセルされて、送信時の元の変調シンボルの信号点Aに送信時の剰余演算による摂動ベクトルと付加ベクトルが加算されたE点として受信される。
 上記の、第3のベクトル加算部1501cおよび第4のベクトル加算部1501dにおける付加ベクトル加算は、基地局装置において剰余演算を行った場合に、当該シンボルが端末装置で受信される際にモジュロ幅の外側に分布するようにするために行うものである。
 このため、第3の剰余演算部402cまたは第4の剰余演算部402dにおける剰余演算によって信号点が移動した場合、つまり図16の例においてB点とC点が異なる(摂動ベクトルの大きさが0でない)場合は、付加ベクトルを加算しなくても端末装置における受信信号点は(雑音がない場合には)モジュロ幅の外側に位置するため、このような場合は必ずしも付加ベクトルを加算する必要はない。付加ベクトルを加算する場合は、剰余演算の結果として加算された摂動ベクトルをvとすると、その反対向きのベクトル-vとは異なるような付加ベクトルを加算することにより、受信信号点がモジュロ幅の外側に位置するようにできる。
 また、第3の剰余演算部402cまたは第4の剰余演算部402dにおける剰余演算によって信号点が移動しなかった場合、つまり図16の例においてB点とC点が同じ(摂動ベクトルの大きさが0である)場合は、端末装置における受信信号点は(雑音がない場合には)モジュロ幅の内側に位置するため、付加ベクトルを加算することによって端末装置における受信信号点をモジュロ幅の外側に位置するようにできる。この際の付加ベクトルの向きは、どの向きでも良い。
 なお、付加ベクトルの加算によって送信電力が増加するため、付加ベクトルの大きさは必要最小限(I軸またはQ軸またはその両方にモジュロ幅の1倍程度の長さなど)とすることが好ましいが、雑音電力が大きく受信SNRが低い場合などはモジュロ幅の内外の判定を容易にするためにより大きな付加ベクトル(I軸またはQ軸またはその両方にモジュロ幅の2倍以上の長さなど)を加算しても良い。また、付加ベクトルの加算後に送信電力の再調整を行っても良い。
 本実施の形態における端末装置の構成は、図6A(図6Bでも良い。)の端末装置600、図13の端末装置1300または図14の端末装置1400のいずれの構成でも良い。ここでは図14の端末装置1400を例として、第3の実施の形態と詳細動作の異なる剰余演算判定部1412について説明する。
 本実施の形態における剰余演算判定部1412は、システムで予め位置(サブキャリア、OFDMシンボル)を取り決めるなどしておいた受信データシンボルを選択し、選択した受信データシンボルの信号点のI軸またはQ軸またはその両方の成分が、モジュロ幅を超えた外側に位置する場合に剰余演算を行うと判定し、I軸およびQ軸のどちらの成分もモジュロ幅を超えない場合に剰余演算を行わないと判定する。また、システムで予め位置を取り決めるなどしておいた受信データシンボルが複数存在する場合は、雑音によって受信信号点が変動してしまうことを考慮して、それら複数の受信データシンボルのうち、信号点のI軸またはQ軸またはその両方の成分が、モジュロ幅を超えた外側に位置する受信データシンボルが過半数であれば剰余演算を行うと判定し、過半数に満たなければ剰余演算を行わないと判定するのが好ましい。
 なお、基地局装置で加算した付加ベクトルは、剰余演算部606の剰余演算によって自動的に取り除かれるため、端末装置において減算等の処理を行う必要はない。
 このように、基地局装置において、剰余演算を行うTHPの場合に一部のシンボルの剰余演算結果に対して付加ベクトルを加算することによって、付加ベクトルが加算されたシンボルについては、端末装置において付加ベクトル分だけシフトした信号点位置で受信され、モジュロ幅の外側に位置する。このため、当該シンボルに基づいて剰余演算の有無を判定すれば、より精度良く判定することが可能となる。
 なお、上記各実施の形態では、線形プリコーディングとTHPを用いてマルチユーザMIMOにおけるMUIを抑圧して送受信する通信システムについて説明を行ったが、本発明の適用範囲はこれに限られるものではなく、例えば、線形プリコーディングとTHPを用いてシンボル間干渉を抑圧する通信システム、線形プリコーディングとTHPを用いてセル間干渉を抑圧する通信システムなどの、線形プリコーディングとTHPを用いて干渉成分を抑圧する有線および無線の通信システムに同様に適用可能である。
 本発明による通信装置で動作するプログラムは、本発明に関わる上記実施の形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 また、図6A・図6B等の各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。また、上述した実施の形態における通信装置(基地局装置および端末装置)の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。通信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施の形態を図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等された発明も含まれる。
 本発明は通信装置に利用可能である。
100…基地局装置、101~104…第1~第4までの端末装置、201…符号化部、202…変調部、203…マルチユーザMIMO信号生成部、204…パイロット多重部、205…IFFT部、206…GI挿入部、207…無線送信部、208…アンテナ部、209…無線受信部、210…CSI取得部、301…フィルタ算出部、302…線形フィルタ部、401…干渉減算部、402…剰余演算部、403b…干渉成分算出部、404…QR分解部、600…端末装置、601…無線受信部、602…GI除去部、603…FFT部、604…パイロット分離部、605…伝搬路補償部、606…剰余演算部、607…復調部、608…復号化部、609…伝搬路推定部、610…信号分布推定部、613…CSI生成部、614…無線送信部、615…アンテナ部、616…制御部、1310…信号分散推定部、1311…信号分散測定部、1312…剰余演算判定部。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (17)

  1.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号から剰余演算を行うか否かを判定し、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行うことを特徴とする受信装置。
  2.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と
    を有することを特徴とする受信装置。
  3.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号の受信品質を推定する伝搬路推定部と、
     前記受信品質の推定結果に基づいて、送信時において剰余演算が施されていないと仮定した場合の受信信号点の分布を推定する信号分布推定部と、
     受信信号の信号点分布を測定する信号分布測定部と、
     前記受信信号点分布の推定結果と前記受信信号点分布の測定結果とを比較し、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と
    を備えることを特徴とする受信装置。
  4.  前記剰余演算判定部は、
     前記受信信号点分布の推定結果と前記受信信号点分布の測定結果の分布形状の一致度が高い場合は剰余演算を行わないと判定し、
     前記一致度が低い場合は剰余演算を行うと判定することを特徴とする請求項3に記載の受信装置。
  5.  前記剰余演算判定部は、
     前記受信信号点分布の推定結果においてモジュロ幅の外側に分布している割合と、前記受信信号点分布の測定結果においてモジュロ幅の外側に分布している割合とが略等しい場合は剰余演算を行わないと判定し、
     前記受信信号点分布の測定結果における割合の方が大きい場合は剰余演算を行うと判定することを特徴とする請求項3に記載の受信装置。
  6.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号の受信品質を推定する伝搬路推定部と、
     前記受信品質の推定結果に基づいて、送信時において剰余演算が施されていないと仮定した場合の受信信号点の分布の分散を推定する信号分散推定部と、
     受信信号の信号点分布の分散を測定する信号分散測定部と、
     前記受信信号点分布の分散の推定結果と前記受信信号点分布の分散の測定結果とを比較し、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と
    を備えることを特徴とする受信装置。
  7.  前記剰余演算判定部は、
     前記受信信号点分布の分散の推定結果と前記受信信号点分布の分散の測定結果とが略等しい場合は剰余演算を行わないと判定し、
     前記受信信号点分布の分散の測定結果の方が大きい場合は剰余演算を行うと判定することを特徴とする請求項6に記載の受信装置。
  8.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号の受信品質を推定する伝搬路推定部と、
     前記受信品質の推定結果が良好なサブキャリアまたは周波数チャネルを1つまたは複数選択し、前記選択したサブキャリアまたは周波数チャネルにおける受信データシンボルの信号点が、モジュロ幅の外側に位置する場合は剰余演算を行うと判定し、モジュロ幅の内側に位置する場合は剰余演算を行わないと判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と
    を備えることを特徴とする受信装置。
  9.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号から剰余演算を行うか否かを判定し、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算による信号点の繰り返しを考慮した復調を行うことを特徴とする受信装置。
  10.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号から剰余演算による信号点の繰り返しを考慮した尤度算出を行う復調部と
    を有することを特徴とする受信装置。
  11.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信信号の受信品質を推定する伝搬路推定部と、
     前記受信品質の推定結果が良好なサブキャリアまたは周波数チャネルを1つまたは複数選択し、前記選択したサブキャリアまたは周波数チャネルにおける受信データシンボルの信号点が、モジュロ幅の外側に位置する場合は剰余演算を行うと判定し、モジュロ幅の内側に位置する場合は剰余演算を行わないと判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号から剰余演算による信号点の繰り返しを考慮した尤度算出を行う復調部と
    を備えることを特徴とする受信装置。
  12.  受信装置における干渉を非線形プリコーディングによって予め抑圧して信号を送信する送信装置であって、
     変調シンボルから干渉成分を減算する干渉成分減算部と、
     前記干渉成分が減算された変調シンボルに対して剰余演算を施す剰余演算部と、
     前記剰余演算結果の一部のシンボルに対して、剰余演算のモジュロ幅の整数倍の成分を持つ付加ベクトルを加算するベクトル加算部と
    を備えることを特徴とする送信装置。
  13.  付加ベクトルを加算する前記一部のシンボルは、予めその位置が定められていることを特徴とする請求項12に記載の送信装置。
  14.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用された、あるいは同時に使用された信号を受信する受信装置であって、
     受信データシンボルのうち、予め定められた一部のシンボルを選択し、前記選択した受信データシンボルの信号点が、モジュロ幅の外側に位置する場合は剰余演算を行うと判定し、モジュロ幅の内側に位置する場合は剰余演算を行わないと判定する剰余演算判定部と、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と
    を備えることを特徴とする受信装置。
  15.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用される、あるいは同時に使用される通信システムであって、
     受信装置における干渉を信号処理によって予め抑圧して送信する送信装置と、
     前記送信された信号を受信する受信部と、受信信号から推定した受信品質と、受信信号から測定した受信信号の分布とに基づいて、受信信号に対して剰余演算を行うか否かを判定する判定部と、前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算部と、を有する受信装置と
    からなる通信システム。
  16.  線形プリコーディングによる干渉抑圧と非線形プリコーディングによる干渉抑圧が選択的に使用される、あるいは同時に使用される通信方法であって、
     受信信号の受信品質を推定する伝搬路推定ステップと、
     前記受信品質の推定結果に基づいて、送信時において剰余演算が施されていないと仮定した場合の受信信号点の分布を推定する信号分布推定ステップと、
     受信信号の信号点分布を測定する信号分布測定ステップと、
     前記受信信号点分布の推定結果と前記受信信号点分布の測定結果とを比較し、受信信号に対して剰余演算を行うか否かを判定する剰余演算判定ステップと、
     前記判定結果が剰余演算を行うものであった場合に、受信信号に対して剰余演算を行う剰余演算ステップと
    を備えることを特徴とする通信方法。
  17.  請求項16に記載の通信方法をコンピュータに実行させるためのプログラム。
PCT/JP2011/066329 2010-08-02 2011-07-19 通信装置および通信システム WO2012017818A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012527657A JP5789607B2 (ja) 2010-08-02 2011-07-19 通信装置および通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-173869 2010-08-02
JP2010173869 2010-08-02

Publications (1)

Publication Number Publication Date
WO2012017818A1 true WO2012017818A1 (ja) 2012-02-09

Family

ID=45559324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066329 WO2012017818A1 (ja) 2010-08-02 2011-07-19 通信装置および通信システム

Country Status (2)

Country Link
JP (1) JP5789607B2 (ja)
WO (1) WO2012017818A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187612A (ja) * 2012-03-06 2013-09-19 Sharp Corp プリコーディング装置、無線送信装置、無線受信装置、無線通信システムおよび集積回路
JP2013253881A (ja) * 2012-06-07 2013-12-19 Fujitsu Semiconductor Ltd パターン検査方法及びパターン検査装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023379A1 (en) * 2007-08-13 2009-02-19 Freescale Semiconductor Inc. Techniques for reducing precoding overhead in a multiple-input multiple-output wireless communication system
JP2011146995A (ja) * 2010-01-15 2011-07-28 Sharp Corp 通信システム、通信装置、通信方法およびそのプロセッサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124751C1 (de) * 2001-05-21 2003-04-17 Infineon Technologies Ag Digitales Vorkodierungsfilter für ein Sendefilter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023379A1 (en) * 2007-08-13 2009-02-19 Freescale Semiconductor Inc. Techniques for reducing precoding overhead in a multiple-input multiple-output wireless communication system
JP2011146995A (ja) * 2010-01-15 2011-07-28 Sharp Corp 通信システム、通信装置、通信方法およびそのプロセッサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROKI MORI ET AL.: "An Error Reduction Method of Modulo Operation for a MIMO Broadcast Channel Using Tomlinson-Harashima Precoding in Low SNR Region", NEN PROCEEDINGS OF THE SOCIETY CONFERENCE OF IEICE 1, 2 September 2008 (2008-09-02), pages BS-1 - 1 *
HIROSHI NAKANO ET AL.: "Adaptive THP Scheme Control for Downlink MU-MIMO Systems", IEICE TECHNICAL REPORT, vol. 109, no. 440, 24 February 2010 (2010-02-24), pages 203 - 208 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187612A (ja) * 2012-03-06 2013-09-19 Sharp Corp プリコーディング装置、無線送信装置、無線受信装置、無線通信システムおよび集積回路
JP2013253881A (ja) * 2012-06-07 2013-12-19 Fujitsu Semiconductor Ltd パターン検査方法及びパターン検査装置

Also Published As

Publication number Publication date
JPWO2012017818A1 (ja) 2013-10-03
JP5789607B2 (ja) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2012060237A1 (ja) 無線送信装置、無線受信装置、無線通信システム、制御プログラムおよび集積回路
EP1802000B1 (en) Apparatus and method for cancelling interference from neighbor cells in broadband communication system
US9281880B2 (en) Wireless transmission device and wireless reception device
CN103685101B (zh) 具有多层干扰抵消的接收器
KR101331651B1 (ko) 다중 사용자 조인트 송수신 빔포밍을 용이하게 하는 방법 및 장치
US7656936B2 (en) Method and system for interference reduction in a wireless communication network using a joint detector
US20120307706A1 (en) Transmission device, reception device, wireless communication system, transmission control method, reception control method, and processor
US8811215B2 (en) Apparatus and method for detecting signal in spatial multiplexing system
JP6719085B2 (ja) 端末及び通信方法
WO2010150313A1 (ja) 通信装置
US20090296863A1 (en) Interference Estimator
US8976881B2 (en) Wireless receiving apparatus and program
JP5859913B2 (ja) 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
US9025708B1 (en) Method and apparatus for detecting a desired signal in the presence of an interfering signal
WO2011152308A1 (ja) 受信装置、送信装置及びそれらを用いた無線通信システム
JP5909060B2 (ja) 無線送信装置、無線受信装置、プログラム、集積回路および無線通信システム
US8750399B2 (en) Radio terminal and demodulation method
JP5789607B2 (ja) 通信装置および通信システム
JP5859786B2 (ja) 無線送信装置、無線受信装置、無線通信システム、プログラムおよび集積回路
JP5543265B2 (ja) 基地局装置、端末装置および無線通信システム
JP2013126144A (ja) 送信装置、受信装置および通信システム
Liu et al. SVD aided joint transmitter and receiver design for the uplink of multiuser detection assisted MIMO systems
Davydov et al. Blind maximum likelihood interference cancellation for lte-advanced systems
KR20100124136A (ko) 데이터 수신 방법 및 장치
KR20110022259A (ko) 다중 사용자 mimo 시스템에서 벡터 섭동 기반의 송신 다이버시티를 이용하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527657

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814448

Country of ref document: EP

Kind code of ref document: A1