WO2012017669A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012017669A1
WO2012017669A1 PCT/JP2011/004440 JP2011004440W WO2012017669A1 WO 2012017669 A1 WO2012017669 A1 WO 2012017669A1 JP 2011004440 W JP2011004440 W JP 2011004440W WO 2012017669 A1 WO2012017669 A1 WO 2012017669A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
oriented electrical
coating
electrical steel
Prior art date
Application number
PCT/JP2011/004440
Other languages
English (en)
French (fr)
Inventor
之啓 新垣
槇石 規子
渡邉 誠
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180038888.2A priority Critical patent/CN103069034B/zh
Priority to BR112013002913-7A priority patent/BR112013002913B1/pt
Priority to EP11814304.9A priority patent/EP2602341B1/en
Priority to KR1020137003141A priority patent/KR101423008B1/ko
Priority to US13/814,054 priority patent/US20130228251A1/en
Priority to MX2013001217A priority patent/MX353179B/es
Publication of WO2012017669A1 publication Critical patent/WO2012017669A1/ja
Priority to US15/019,201 priority patent/US20160163436A1/en
Priority to US15/019,171 priority patent/US20160180991A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet having excellent iron loss characteristics, which is used for iron core materials such as transformers.
  • the grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
  • it is important to highly align secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet.
  • control of crystal orientation and reduction of impurities are limited in view of the manufacturing cost.
  • a technique for reducing the iron loss by introducing non-uniformity (strain) to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain has been developed.
  • Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width.
  • Patent Document 2 a technique for controlling the magnetic domain width by irradiating a steel sheet with a plasma flame is proposed and put into practical use.
  • a grain-oriented electrical steel sheet is generally produced by producing secondary recrystallization by using precipitates called inhibitors such as MnS, MnSe, and AlN.
  • the grain-oriented electrical steel sheet that has undergone this production has an undercoat called forsterite on the surface of the steel sheet, and the forsterite film (a film mainly composed of Mg 2 SiO 4 ) has further insulating properties. Often forms a tensioned film.
  • the insulating tension film formed on the forsterite film is useful for reducing iron loss, and has a great effect on the material subjected to the above-mentioned magnetic domain subdivision.
  • Patent Document 3 the property of the forsterite film is improved by using magnesia, in which the expected value of the activity distribution is controlled within a specific standard deviation, as an annealing separator during finish annealing. It has been shown that it is possible to produce grain-oriented electrical steel sheets having different coating properties.
  • magnesia having a specific activity distribution described above when magnesia having a specific activity distribution described above is used as an annealing separator, that is, when magnesia having a specific activity distribution is used as a material for forsterite coating, the formation rate of forsterite is different from the conventional one.
  • the time when the inhibitor element (S, Se, Al, etc.) is concentrated on the steel sheet surface coincides with the time when the forsterite is formed.
  • Patent Document 3 includes magnesia low active ingredients, medium active ingredients and high active ingredients. By controlling these to the appropriate activity distribution ⁇ (A) and standard deviation ⁇ (A), magnetic properties are obtained. And the formation of a strong film are shown to be compatible. It has also been shown that the decomposition of the inhibitor is suppressed when alkaline earth metal ions such as Ca, Sr, and Ba are contained. It is known that the inhibitor component is concentrated in the steel plate surface after being decomposed in the steel. Magnesia having different activities also have different timings at which film formation starts.
  • the interface between the forsterite and the steel sheet and / or the forsterite as shown in the secondary electron image in the vicinity of the steel sheet coating interface observed from the cross section in the direction perpendicular to the rolling direction of the product plate having the insulating coating on the forsterite film In some cases, the specific element as described above is concentrated in the coating.
  • the low active component, medium active component, and high active component of magnesia contribute to the concentration of alkaline earth metal on the surface, the concentration of Mg, and the concentration of Ti, respectively. It is shown.
  • the relationship with the inhibitor component is not clear, but when magnesia having these activity distributions ⁇ (A) is used, the concentration of the component may be promoted.
  • the thermal expansion coefficient differs between the area where specific elements aggregate and concentrate and the surrounding forsterite coating. In some cases, there were defects in the film, or adhesion was lost. Furthermore, the tension applied to the steel sheet is not uniform due to the insulating coating formed on the forsterite coating, and a sufficient iron loss reduction effect may not be obtained.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet having a low iron loss, which has been subjected to a magnetic domain refinement process that eliminates the above-described causes of iron loss deterioration.
  • FIG. 2 shows a two-dimensional mapping image of the element Se with an observation field of 100 ⁇ m square by EPMA and a measurement pitch of every 0.5 ⁇ m.
  • the portion observed in the form of dots in FIG. 2 is the Se concentration portion.
  • This concentrated part may be dissolved in the entire forsterite depending on its component, but the cross-section at the high strength part with a difference of 5 ⁇ or more with respect to the variation of the background strength ( ⁇ ).
  • a thickened portion as shown in FIG. 1 was confirmed. Therefore, a portion having a difference of 5 ⁇ or more and a high strength with respect to the variation ( ⁇ ) of the background strength in the measurement on the steel plate surface is defined as a concentrated portion, and the existence ratio is defined as an observation visual field of 10,000 ⁇ m 2. It was evaluated by the occupation area ratio.
  • the inventors have intensively studied the cause of the increase in the iron loss value, and the irradiation of such a plasma flame gives local strain to the steel sheet to cause magnetic domain fragmentation, while a specific forsterite It has been found that the influence of the film damage is large when the film structure, that is, when the area ratio is 2% or more. Therefore, as a result of investigating a method that does not give heat to the forsterite film while giving sufficient thermal strain to the steel for these materials, magnetic domain fragmentation by electron beam irradiation is extremely suitable. In particular, the inventors have found that electron beam irradiation is suitable in which the irradiation beam diameter is reduced and the scanning speed and acceleration voltage are increased, and the present invention has been completed. That is, the gist configuration of the present invention is as follows.
  • a grain-oriented electrical steel sheet obtained by subjecting a grain-oriented electrical steel sheet having a surface area of 2% or more per 10000 ⁇ m 2 to magnetic domain refinement by electron beam irradiation.
  • a grain-oriented electrical steel sheet obtained by subjecting a grain-oriented electrical steel sheet having a surface area of 2% or more per 10000 ⁇ m 2 to magnetic domain refinement by electron beam irradiation.
  • a grain-oriented electrical steel sheet obtained by subjecting a grain-oriented electrical steel sheet having a surface area of 5% or more per 10000 ⁇ m 2 to magnetic domain refinement by electron beam irradiation.
  • a method for producing a grain-oriented electrical steel sheet wherein the grain-oriented electrical steel sheet having a surface of 10000 ⁇ m 2 of 2% or more is irradiated with an electron beam to subdivide the magnetic domains of the grain-oriented electrical steel sheet.
  • Electron beams are irradiated to grain-oriented electrical steel sheets with a surface of 10000 ⁇ m 2 at 2% or more at a diameter of 0.05 mm or more and 0.5 mm or less, a scanning speed of 1.0 m / s or more, and an acceleration voltage of 30 kV or more. And the manufacturing method of the grain-oriented electrical steel sheet which subdivides the magnetic domain of this grain-oriented electrical steel sheet.
  • the present invention also has a forsterite coating on the surface of the steel plate, and at least one of the coating and the interface between the coating and the steel plate has a Se concentration portion, a S concentration portion, and an Al concentration portion.
  • concentration ratio of the concentrated portion per area of the steel sheet surface of 10,000 ⁇ m 2 is 2% or more in the case of the Se concentrated portion, 2% or more in the case of the S concentrated portion, and
  • the grain-oriented electrical steel sheet is obtained by subjecting a grain-oriented electrical steel sheet that is 5% or more to magnetic domain refinement by electron beam irradiation.
  • the present invention further has a forsterite coating on the surface of the steel sheet, and at least one of the coating and the interface between the coating and the steel sheet has a Se-concentrated portion, a S-concentrated portion, and an Al-concentrated portion.
  • the concentration ratio of the concentrated portion per area of the steel sheet surface of 10,000 ⁇ m 2 is 2% or more in the case of the Se concentrated portion, 2% or more in the case of the S concentrated portion, and
  • the grain-oriented electrical steel sheet is irradiated with an electron beam to a grain-oriented electrical steel sheet that is 5% or more to subdivide the magnetic domain.
  • it is preferable to irradiate the electron beam under conditions of an electron beam diameter of 0.05 mm to 0.5 mm, an electron beam scanning speed of 1.0 m / second or more, and an acceleration voltage of 30 kV or more.
  • the grain-oriented electrical steel sheet having a concentrated portion in at least one of the forsterite coating on the steel sheet surface and the interface between the coating and the steel sheet is subjected to a magnetic domain subdivision treatment by electron beam irradiation.
  • the magnetic domain refinement effect is exhibited without being canceled by the damage of the forsterite film, and extremely low iron loss characteristics can be obtained.
  • the present invention it is extremely important to perform magnetic domain subdivision by irradiating an electron beam on a grain-oriented electrical steel sheet having a concentrated portion in at least one of the forsterite film and the interface between the film and the steel sheet. . That is, since the irradiated portion of the laser is heated to a high temperature, the outermost insulating film and forsterite film are most affected by heat. Similarly, since the plasma flame is directly heated by a flame generated by plasma at a temperature of 10000 ° C. or higher, the outermost insulating coating or forsterite coating is affected. In these methods, it is necessary to give thermal strain by heat transfer from the steel sheet surface to the inside of the steel sheet in order to subdivide the magnetic domain. Therefore, in order to form the thermal strain necessary to obtain a sufficient iron loss reduction effect inside the steel plate, the coating on the outermost side of the steel plate requires a larger heat input, so the effect on the coating is large. It will be a thing.
  • irradiation with an electron beam generates heat by driving electrons into the steel plate.
  • the injected electrons have a thermal effect on the film, but have a strong permeability to the film and the steel sheet, and therefore can directly affect the steel sheet.
  • the electron beam irradiation has a great difference that it is possible to exert a thermal influence on the steel sheet while suppressing the thermal influence on the coating.
  • the thermal sensitivity of the coating is large as in the present invention, that is, in the interface between the steel plate and the forsterite coating or in the forsterite coating, a concentrated portion of a specific element having a thermal expansion coefficient different from that of the forsterite coating is generated. In some cases, the thermal influence can be suppressed.
  • an electron beam (beam diameter 0.2 mm, scanning speed is about 3 m / s, acceleration voltage 30 kV) is applied to the rolling direction of the steel sheet on a 0.23 mm-thick grain-oriented electrical steel sheet having a concentrated portion of Se or S.
  • the magnetic domain was subdivided by applying thermal strain to the wire in the direction perpendicular to the magnetic field, the iron loss after the magnetic domain subdivision was investigated.
  • the relationship between the iron loss and the occupied area ratio of the concentrated portion of Se and S as shown in FIG. 4, even if the occupied area ratio of the concentrated portion is 2% or more, low iron loss It can be seen that That is, under the same processing conditions as the experiment whose results are shown in FIG. 3, the magnetic domain subdivision processing is changed from plasma flame irradiation to electron beam irradiation, so that the occupied area ratio of the concentrated portion is 2% or more. It can be seen that even low iron loss is maintained.
  • the occupied area ratio of the concentrated portion of Se or S exceeds 50%, the effect of applying tension to the steel sheet as a forsterite film becomes non-uniform, so it is preferable to limit it to 50% or less.
  • the content in the steel slab needs to be 0.03% by mass or less.
  • the electron beam used for magnetic domain subdivision has a large irradiation area and a long irradiation time, so that the thermal effect on the coating increases. Further, when the acceleration voltage is low, transmission of the implanted electron beam stays in the vicinity of the surface layer, so that the thermal effect on the coating tends to increase.
  • an investigation was made on better conditions for passing through the forsterite film and imparting thermal strain to the steel sheet itself.
  • the electron beam diameter was set to 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 0.9 mm, and 1.0 mm. In the present invention, the diameter means the diameter unless otherwise specified. At that time, the scanning speed of the electron beam was fixed at 2 m / second and the acceleration voltage was fixed at 50 kV.
  • the scanning speed was set to 0.1 m / second, 0.5 m / second, 1.0 m / second, 2.0 m / second, and 3.0 m / second based on the electron beam diameter of 0.3 mm and the acceleration voltage of 50 kV. .
  • the acceleration voltage was 10 kV, 20 kV, 30 kV, 50 kV, and 100 kV.
  • the electron beam diameter was 0.3 mm and the scanning speed was 2 m / sec. As a result, it was found that an electron beam diameter of 0.5 mm or less, a scanning speed of 1.0 m / second or more, and an acceleration voltage of 30 kV or more are suitable for improving iron loss.
  • the irradiation direction is a direction crossing the rolling direction, preferably 60 ° to 90 ° with respect to the rolling direction, and an interval of about 3 to 15 mm is applied in the rolling direction, and 0.005 to 10 mA is applied. It is effective to use a current to form dots or lines.
  • the grain-oriented electrical steel sheet according to the present invention may be a conventionally known grain-oriented electrical steel sheet.
  • an electromagnetic steel material containing Si: 2.0 to 8.0% by mass may be used.
  • Si: 2.0-8.0% by mass Si is an element effective for increasing the electrical resistance of steel and improving iron loss, and its content of 2.0% by mass or more is particularly effective for reducing iron loss.
  • the Si content is preferably in the range of 2.0 to 8.0% by mass. Note that the higher the degree of integration of crystal grains in the ⁇ 100> direction, the greater the effect of reducing iron loss due to magnetic domain fragmentation. Therefore, the magnetic flux density B 8 serving as an index of the degree of integration is preferably 1.90 T or more.
  • the following component can be contained as a starting component.
  • C 0.08 mass% or less
  • C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, the burden of reducing C to 50 massppm or less where no magnetic aging occurs during the manufacturing process increases. Therefore, the content is preferably 0.08% by mass or less.
  • the lower limit since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.
  • Mn 0.005 to 1.0 mass%
  • Mn is an element advantageous for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor. On the other hand, if it is 1.0 mass% or less, the magnetic flux density of a product board will become especially favorable. Therefore, the Mn content is preferably in the range of 0.005 to 1.0% by mass.
  • Al and N are used when an AlN inhibitor is used, and Mn is used when an MnS / MnSe inhibitor is used.
  • An appropriate amount of Se and / or S may be contained.
  • both inhibitors may be used in combination.
  • the preferred contents of Al, N, S and Se are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
  • Ni 0.03-1.50% by mass
  • Sn 0.01-1.50% by mass
  • Sb 0.005-1.50% by mass
  • Cu 0.03-3.0% by mass
  • P 0.03-0.50% by mass
  • Mo 0.005-0.10% by mass
  • Nb At least one Ni selected from 0.0005 to 0.0100% by mass and Cr: 0.03 to 1.50% by mass is an element useful for further improving the hot rolled sheet structure and further improving the magnetic properties.
  • the content is less than 0.03% by mass, the effect of improving the magnetic properties is small.
  • the content is 1.5% by mass or less, the stability of secondary recrystallization is increased, and the magnetic properties are further improved. Therefore, the Ni content is preferably in the range of 0.03 to 1.5% by mass.
  • Sn, Sb, Cu, P, Mo, Nb, and Cr are elements that are useful for further improving the magnetic properties. However, if all of these elements do not satisfy the lower limit of each component, the effect of improving the magnetic properties is small. On the other hand, when the amount is less than or equal to the upper limit amount of each component described above, the secondary recrystallized grains develop best. For this reason, it is preferable to make it contain in said range, respectively.
  • the balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.
  • the steel slab having the component composition described above is a grain-oriented electrical steel sheet in which a tensile insulating coating is formed after secondary recrystallization annealing through a process generally following that of grain-oriented electrical steel sheets. That is, hot rolling is performed after slab heating, and the final sheet thickness is obtained by one or two cold rolling sandwiching intermediate annealing, followed by decarburization and primary recrystallization annealing, followed by annealing with magnesia as a main component. A separating agent is applied and a final finish annealing including a secondary recrystallization process and a purification process is performed.
  • magnesia is the main component, in the range that does not inhibit the formation of the forsterite film that is the object of the present invention, it may contain a known annealing separator component and property improving component other than magnesia. means.
  • magnesia used as the annealing separator magnesia having an activity distribution with an expected value ⁇ (A) of 3.4 to 3.7 and a standard deviation ⁇ (A) of 2.0 to 2.6 can be positively used.
  • the expected value ⁇ (A) and the standard deviation ⁇ (A) can be obtained as follows.
  • the method described in paragraphs [0017] to [0023] of Patent Document 3 described above can be applied.
  • magnesia when such magnesia is used as an annealing separator, specific elements such as Se, S, and Al may be concentrated in the forsterite. This is because the forsterite film formation partially progresses at the temperature at which the inhibitor decomposes and concentrates on the steel sheet surface, and the cause is that the concentration proceeds selectively in the unformed part. Conceivable.
  • the present invention proposes a problem newly found in the technique of using magnesia with the expected activity distribution value controlled as an annealing separator proposed in Patent Document 3 described above, that is, Se, S, Al. It is particularly effective in solving the problem that the magnetic domain refinement effect decreases due to concentration. Therefore, it is preferable to apply the technique disclosed in Patent Document 3 for the annealing separator.
  • improvement of the grain-oriented electrical steel sheet and its manufacturing method involves enrichment of Se, S and / or Al in the forsterite film and / or the interface between the film and the steel sheet.
  • the present invention is effective.
  • the forsterite film formation timing coincides with the concentration of the inhibitor component on the steel sheet surface due to the change in atmosphere control during the final annealing, and the formation of the forsterite film When it does not occur uniformly, there is a possibility that a film including the above-described concentration is formed. Therefore, the present invention can be applied to such a case.
  • the final finish annealed steel plate obtained by the above method may be baked by applying a tension insulating coating made of, for example, colloidal silica and phosphate (magnesium phosphate or aluminum phosphate).
  • a tension insulating coating made of, for example, colloidal silica and phosphate (magnesium phosphate or aluminum phosphate).
  • an electron beam whose beam diameter at the irradiation position is converged to 0.05 to 1 mm is 60 to 90 ° with respect to the rolling direction of the steel plate, preferably in the width direction (rolling direction).
  • the thermal strain is introduced in the form of a line or dot.
  • the upper and lower limits of the electron beam diameter are 0.05 mm to 1.0 mm, more preferably 0.5 mm or less, and good characteristics can be obtained. That is, if the beam diameter is small, the effect of dividing the magnetic domain and subdividing the magnetic domain is reduced, so the beam diameter is set to 0.05 mm or more. On the other hand, when the beam diameter is large, the strain introduction range becomes large.
  • the thickness is preferably 0.5 mm or less, it is possible to suppress the deterioration of the history loss and obtain the maximum effect of improving the iron loss.
  • the scanning speed is 1.0 m / s or more, the influence on the coating can be suppressed. There is no particular upper limit.
  • high energy current, voltage
  • the acceleration voltage is an acceleration voltage of 30 kV or more, it becomes possible to directly apply thermal strain to the steel sheet through the coating.
  • the upper limit is not particularly defined, but when irradiating with an excessively high voltage, the spread of strain in the depth direction becomes large and the strain depth is difficult to control within a suitable range, so the acceleration voltage may be 300 kV or less. desirable. It is preferable that the output of the electron beam is about 10 to 2000 W, the output per unit length is adjusted to be about 1 to 50 J / m, and the linear irradiation is performed at an interval of about 1 to 20 mm.
  • the depth of strain applied to the steel sheet by electron beam irradiation is preferably about 5 to 30 ⁇ m. Needless to say, the above description does not preclude the application of other electron beam irradiation conditions.
  • a grain oriented electrical steel sheet containing Si: 3% by mass as a steel slab and manufactured using any of MnSe, MnS, and AlN as an inhibitor element and having a final thickness of 0.23 mm was prepared.
  • the expected value ⁇ (A) is 3.4 to 3.7 and the standard deviation ⁇ (A) is 2.0 to 2.6.
  • An annealing separator containing MgO having a degree distribution as a main component was applied, and final annealing including a secondary recrystallization process and a purification process was performed at a maximum temperature of 1200 ° C. and a soaking time of 10 hours.
  • An insulating coating made of 60% colloidal silica and aluminum phosphate was applied to the obtained electrical steel sheet having a forsterite coating (one side: 5 g / mm 2 ) and baked at 800 ° C.
  • Test pieces were cut out from the coil width central portion for various materials, the B 8 pieces were measured, any of the test pieces were also selected ones of 1.92T ⁇ 0.001T. Moreover, the occupation area ratio of the concentrated part of each element was calculated
  • the magnetic domain was subdivided using two magnetic domain subdivision methods, ie, a plasma flame and an electron beam at right angles to the rolling direction, and the iron loss after the magnetic domain subdivision was measured.
  • the irradiation beam diameter was set at two levels of 0.3 mm and 1 mm
  • the scanning speed was set at two levels of 2 m / sec and 0.5 m / sec
  • the acceleration voltage was set at two levels of 20 kV and 100 kV.
  • Table 1 From the table, it can be seen that low iron loss can be obtained without deterioration of characteristics under the conditions (Invention Examples A and B) irradiated with an electron beam. It can also be seen that even better characteristics can be obtained by irradiating the electron beam in the condition range of Invention Example A.
  • a grain-oriented electrical steel sheet containing Si: 3% by mass as a steel slab and manufactured using both MnSe and AlN as inhibitor elements and having a final sheet thickness of 0.27 mm was prepared.
  • the cold rolled sheet rolled to the final sheet thickness is decarburized and subjected to primary recrystallization annealing, and then the main component is MgO having an activity distribution defined in the above-mentioned Patent Document 3.
  • final finish annealing (maximum temperature 1200 ° C, soaking time 10 hours) is performed on the coil with a 15 ⁇ m interlayer spacing in the coiled steel sheet. It was.
  • An insulating coating composed of 60% colloidal silica and aluminum phosphate was applied to the obtained electrical steel sheet having a forsterite coating, and baked at 800 ° C.
  • Test pieces were cut out from the coil width central portion for various materials, to measure the B 8 of the specimen, any of the test pieces were also selected ones of 1.91T ⁇ 0.001T. Moreover, when the occupation area ratio of Se was calculated
  • the obtained test piece was subjected to plasma flame irradiation at right angles to the rolling direction to subdivide the magnetic domain. Next, magnetic domain subdivision was performed on another test piece using an electron beam. In all cases, irradiation was performed at intervals of 5 mm. The iron loss after each magnetic domain subdivision was measured.
  • the electron beam irradiation conditions are summarized in Table 2 together with the characteristics and parameters measured for each. It can be seen that good characteristics can be obtained by irradiating an electron beam (Invention Examples C and D), and that even better iron loss can be obtained under appropriate electron beam irradiation conditions (Invention Example C). .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 鉄損劣化要因を排除した磁区細分化処理が施された、低鉄損の方向性電磁鋼板を提供する。 鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施す。

Description

方向性電磁鋼板およびその製造方法
 本発明は、トランスなどの鉄心材料に用いる、鉄損特性に優れた方向性電磁鋼板に関するものである。
 方向性電磁鋼板は、主にトランスの鉄心として利用され、その磁化特性が優れていること、特に鉄損が低いことが求められている。そのためには、鋼板中の二次再結晶粒を、(110)[001]方位(いわゆるゴス方位)に高度に揃えることや、製品鋼板中の不純物を低減することが重要である。しかしながら、結晶方位の制御や、不純物を低減することは、製造コストとの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性(歪)を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
 例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、特許文献2では鋼板にプラズマ炎を照射することにより磁区幅を制御する技術が提案され、実用化されている。
 ところで、方向性電磁鋼板は、MnS、MnSeやAlN等のインヒビターと呼ばれる析出物を利用することによって、二次再結晶を生じさせて製造を行うのが通例である。この製造を経た方向性電磁鋼板では、鋼板表面にフォルステライトと称される下地被膜を有しており、このフォルステライト被膜(MgSiOを主体とする被膜)上に、さらに絶縁性を有した張力被膜を形成することが多い。フォルステライト被膜上に形成される絶縁性の張力被膜は鉄損低減に有用であり、上記した磁区細分化を施した材料に対しても大きな効果を有している。
 この被膜特性について、特許文献3では、活性度分布の期待値を特定の標準偏差内に制御したマグネシアを仕上げ焼鈍時の焼鈍分離剤として利用することにより、フォルステライト被膜の性状が改善され、優れた被膜特性を有する方向性電磁鋼板を製造することが可能であることが示されている。
特公昭57-2252号公報 特開昭62-96617号公報 特開2004-353054号公報
 我々は、以下の課題を発見した。すなわち、上記した特定の活性度分布を有するマグネシアを焼鈍分離剤として用いた場合、すなわち特定の活性度分布を有するマグネシアをフォルステライト被膜の素材とした場合、従来とはフォルステライトの形成速度が異なり、鋼板の成分や二次再結晶のための焼鈍条件によっては、インヒビター元素(S,SeやAl等)が鋼板表面に濃化する時期とフォルステライトの形成時期とが一致してしまう。
 すなわち、特許文献3には、マグネシアの低活性成分、中活性成分および高活性成分があり、これらを適正な活性度分布μ(A)および標準偏差σ(A)に制御することによって、磁気特性と強固な被膜の形成が両立されることが示されている。また、Ca、Sr、Baなどのアルカリ土類金属イオンが含まれていると、インヒビターの分解が抑制されることが示されている。
 インヒビター成分は鋼中で分解された後、鋼板表面に濃化する現象が知られている。活性度の異なるマグネシアは被膜形成の開始するタイミングも異なる。その結果、特許文献3に示される条件に従って活性度分布を調整した、マグネシアを利用し、かつアルカリ土類金属イオンが同時に存在した場合、インヒビターの分解温度の上昇が生じると共に、低活性度マグネシアを中心にフォルステライト被膜の形成の進んだ場所が発生するため、フォルステライト被膜の未形成部分にインヒビター成分が濃化する。すると、図1にフォルステライト被膜上に絶縁コーティングを有する製品板の圧延直角方向断面から観察した鋼板被膜界面近傍の二次電子像を示すように、フォルステライトと鋼板との界面および/またはフォルステライト被膜中に、前記のような特定元素が濃化する場合があった。
 加えて、特許文献3では、マグネシアの低活性成分、中活性成分および高活性成分がそれぞれアルカリ土類金属の表面への濃化、Mgの濃化、Tiの濃化に寄与していることが示されている。ここに、インヒビター成分との関係については明確ではないが、これらの活性度分布μ(A)を有するマグネシアを利用した場合、成分の濃化を助長する可能性もあり得る。
 こうした鋼板に対して、プラズマ炎やレーザーといった熱歪みを利用した磁区細分化を施すと、特定の元素が凝集し濃化した部分と周囲のフォルステライト被膜では熱膨張率が異なるため、フォルステライト被膜に欠損が生じたり、密着性が失われたりする場合があった。さらには、フォルステライト被膜上に形成された絶縁被膜により鋼板に付与される張力が不均一となり、十分な鉄損低減効果を得られない場合があった。
 そこで、本発明の目的は、上記した鉄損劣化要因を排除した磁区細分化処理が施された、低鉄損の方向性電磁鋼板を提供することにある。
 発明者らは、まず、上述した特許文献3に記載される、特定の活性度分布を有するマグネシアを利用した場合に生じる元素濃化部の定量方法を検討した。その結果、EPMA(Electron Probe Micro Analyzer)を用いて、鋼板表面を加速電圧:10~20kVの条件でスキャニングすることにより、濃化部の定量化に成功した。すなわち、図2にEPMAによる観察視野100μm四方、測定ピッチを0.5μmごととした元素Seの2次元マッピング像を示す。図2にて点状に観察される部分がSe濃化部である。この濃化部は、その成分によってはフォルステライト全体に固溶している場合もあるが、バックグラウンド強度のバラつき(σ)に対して、5σ以上の違いを持って強度が高い部分での断面観察を行うと、図1に示したような濃化部が確認された。したがって、鋼板表面での測定で、バックグラウンド強度のバラつき(σ)に対して、5σ以上の違いを有し、かつ強度が高い部分を濃化部と定義し、その存在割合を観察視野10000μmの占有面積率で評価した。
 次に、実験1としてSeあるいはSの濃化部を有する、0.23mm厚の方向性電磁鋼板に対して、プラズマ炎(ノズル径0.15mm、プラズマ発生に用いるガスはAr、電圧30V、電流7A、ノズルの走査速度200mm/s)を鋼板の圧延方向と直交する向きの線状に間隔5mmで照射する、熱歪みを与えて磁区細分化した際に、磁区細分化による鉄損低減効果が減じられる濃化部存在割合の閾値に関して調査を行った。この結果を、鉄損とSeおよびSの濃化部の上記占有面積率との関係として、図3に示すように、濃化部の占有面積率が2%以上となると、得られる鉄損値が若干上昇することを知見した。また、Alの濃化部についても、同様の調査を行ったところ、濃化部の占有面積率が5%以上となると、得られる鉄損値が若干上昇することが判明した。
 さらに、発明者らは、鉄損値が上昇する要因について鋭意検討したところ、このようなプラズマ炎の照射は鋼板に局所的な歪を与えて磁区細分化を生じさせる一方で、特定のフォルステライト被膜の構成、すなわち占有面積率が2%以上の濃化部を有する場合には、被膜損傷の影響が大きいことが明らかとなった。そこで、これらの素材について、地鉄に対しては十分な熱歪みを与えつつ、フォルステライト被膜に対して熱を与えない方法を検討した結果、電子ビーム照射による磁区細分化が極めて適していること、特に、照射ビーム径を絞りかつ走査速度や加速電圧を高めた、電子ビーム照射が適していることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨構成は次のとおりである。
(1)鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
(2)鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Sの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
(3)鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Alの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり5%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
(4)鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に対し、電子ビームを照射して該方向性電磁鋼板の磁区を細分化する方向性電磁鋼板の製造方法。
(5)鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に対し、電子ビームを、径:0.05mm以上0.5mm以下、走査速度:1.0m/s以上および加速電圧:30kV以上の条件にて照射して該方向性電磁鋼板の磁区を細分化する方向性電磁鋼板の製造方法。
 本発明はまた、鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部、Sの濃化部、Alの濃化部の少なくともいずれかを有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり、Seの濃化部の場合は2%以上、Sの濃化部の場合は2%以上および、Alの濃化部の場合は5%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板である。
 本発明はさらにまた、鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部、Sの濃化部、Alの濃化部の少なくともいずれかを有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり、Seの濃化部の場合は2%以上、Sの濃化部の場合は2%以上および、Alの濃化部の場合は5%以上である方向性電磁鋼板に対し、電子ビームを照射し、磁区細分化する方向性電磁鋼板の製造方法である。
 ここで、電子ビーム径0.05mm以上0.5mm以下、電子線の走査速度1.0m/秒以上、加速電圧30kV以上の条件で電子ビームを照射することが好ましい。
 本発明に従って、鋼板表面のフォルステライト被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に濃化部を有する方向性電磁鋼板につき、電子ビーム照射による磁区細分化処理を施すことにより、この磁区細分化効果をフォルステライト被膜の損傷により相殺されることなく発揮されることになり、極めて低い鉄損特性を得ることが可能となる。
フォルステライト被膜中のSe濃化部を示す圧延直角方向断面の二次電子像である。 EPMAによるSe濃化部を示す2次元マッピング像である。 プラズマ炎照射処理における鉄損とSeおよびSの濃化部の占有面積率との関係を示すグラフである。 電子ビーム照射処理における鉄損とSeおよびSの濃化部の占有面積率との関係を示すグラフである。 鉄損とAlの濃化部の占有面積率との関係を示すグラフである。
 本発明においては、フォルステライト被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に濃化部を有する方向性電磁鋼板に、電子ビームの照射による磁区細分化を行うことが極めて肝要である。
 すなわち、レーザーは照射された部分を高温とするため、最も外側にある絶縁被膜、フォルステライト被膜が最も熱影響を受ける。また、プラズマ炎の照射も同様にプラズマで発生させた10000℃以上の炎で直接熱を与えるため、最も外側にある絶縁被膜やフォルステライト被膜が影響を受ける。これらの方法では、磁区細分化のために鋼板表面から鋼板内部への伝熱によって熱歪みを与える必要がある。したがって、十分な鉄損低減効果を得るために必要な熱歪みを鋼板の内部に形成するためには、鋼板最外側にある被膜ではさらに大きな入熱が必要となるため、被膜への影響は大きなものとなる。
 一方、電子ビームの照射は、電子を鋼板内部に打ち込むことにより熱を発生させる。打ち込まれた電子は被膜にも熱影響を与えるものの、被膜や鋼板に対する透過力が強いため、鋼板に対しても直接的に熱影響を与えることが可能である。このため、レーザーやプラズマ炎の照射に比べて、電子ビームの照射は、被膜への熱影響を抑えながら、鋼板へ熱影響を与えることが可能になる、という大きな違いがある。
 このような電子ビームに特有な性質を利用することにより、鋼板に対しては大きな熱影響を与えつつ、フォルステライト被膜への熱影響を抑えることが可能となる。従って、本発明のように被膜の熱感受性が大きい場合、すなわち、鋼板とフォルステライト被膜との界面やフォルステライト被膜中に、フォルステライト被膜とは熱膨張率の異なる特定元素の濃化部が生じる場合において、その熱影響を抑えることが可能となるのである。
 ここに、SeあるいはSの濃化部を有する、0.23mm厚の方向性電磁鋼板に対して、電子ビーム(ビーム径0.2mm、走査速度は3m/s程度、加速電圧30kV)を鋼板の圧延方向と直交する向きの線状に間隔5mmで照射する、熱歪みを与えて磁区細分化した際に、該磁区細分化後の鉄損を調査した。その結果を、鉄損とSeおよびSの濃化部の上記占有面積率との関係として、図4に示すように、濃化部の占有面積率が2%以上であっても、低い鉄損が得られることがわかる。すなわち、上記した図3に結果を示した実験と同様の処理条件下において、磁区細分化処理をプラズマ炎照射から電子ビーム照射に換えることによって、濃化部の占有面積率が2%以上であっても低い鉄損が維持されることがわかる。
 なお、SeもしくはSの濃化部の占有面積率は、50%を超えると、フォルステライト被膜として鋼板に張力を与える効果が不均一となるため、50%以下に制限することが好ましい。そして、濃化部の占有面積率を50%以下に制限するには、例えば、SeもしくはSをインヒビターとして利用する場合に、その鋼スラブ中の含有量を0.03質量%以下とする必要がある。
 さらに、種々の方向性電磁鋼板に対して、EPMAによる濃化部検出を行ったところ、濃化部を形成する元素としてAlを確認した。SeやSはフォルステライト被膜と非常に入り組んだ形状で存在しており、これらの濃化層が熱により膨張することで周囲のフォルステライトは大きな影響を受けていたが、Alは主に鋼板とフォルステライト被膜との界面にフォルステライト被膜と干渉が小さい形で存在することが多く、影響はSeやSに比べて非常に小さい。
 このAl濃化部を有する0.23mm厚の方向性電磁鋼板に対して、前掲のSeおよびSの濃化部に対して行った調査と同様の調査を実施した。その結果を図5に示すように、プラズマ炎による熱歪みを与え磁区細分化した場合、得られる鉄損値は占有面積2%程度では劣化が認められず、5%以上存在する場合に鉄損劣化が認められた。これに対して、電子ビームによって磁区細分化を行うことでAl濃化部が5%以上濃化しても劣化を抑制できることを突き止めた(図5参照)。
 なお、Al濃化部の占有面積率は、50%を超えるとフォルステライト被膜として鋼板に張力を与える効果が不均一となるため、50%以下に制限することが好ましい。そして、濃化部の占有面積率を50%以下に制限するには、Alをインヒビターとして利用する場合に、その鋼中の含有量を0.065質量%以下とする必要がある。
 次に、磁区細分化に供する電子ビームは、照射面積が広く、また照射時間が長いと、被膜への熱影響は大きくなることが予想される。また、加速電圧が低い場合は、打ち込まれた電子線の透過が表層近傍に留まるため被膜への熱影響は大きくなる傾向にある。ここに、フォルステライト被膜を透過し、鋼板そのものに熱歪みを与えるためにのより良い条件について、調査を試みた。
 すなわち、実験は、Seの濃化部の占有面積が3±0.5%である、0.23mmの方向性電磁鋼板に対して、電子ビームによって熱歪みを与えて磁区細分化し、その後鉄損を測定することにより行った。まず、照射面積を変更するために、電子ビーム径を0.1mm、0.3mm、0.5mm、0.7mm、0.9mm、1.0mmとした。なお、本発明において、特に断らない場合、径は直径を意味する。
 その際、電子ビームの走査速度は2m/秒および加速電圧は50kVで固定した。一方、照射時間に関しては、0.3mmの電子ビーム径と加速電圧50kVを基準とし、走査速度を0.1m/秒、0.5m/秒、1.0m/秒、2.0m/秒、3.0m/秒とした。加速電圧については、10kV、20kV、30kV、50kV、100kVとし、この際、電子ビーム径は0.3mm、走査速度は2m/秒を基準条件とした。この結果、電子ビーム径は0.5mm以下、走査速度は1.0m/秒以上、加速電圧は30kV以上が、鉄損の向上に好適であることを見出した。
 さらに、電子ビームを照射するに当って、一般的に熱歪み型の磁区細分化処理に適した照射方向や照射間隔などを適用することが好ましい。具体的には、照射方向は圧延方向を横切る方向、好適には圧延方向に対して60°~90°の方向にて、3~15mm程度の間隔を圧延方向において照射を施し、0.005~10mAの電流を用いて点状あるいは線状に施すのが効果的である。
 また、本発明に係る方向性電磁鋼板は、従来公知の方向性電磁鋼板であればよい。例えば、Si:2.0~8.0質量%を含む電磁鋼素材を用いればよい。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であり、含有量が2.0質量%以上でとくに鉄損低減効果が良好である。一方、8.0質量%以下の場合、とくに優れた加工性や磁束密度を得ることができる。従って、Si量は2.0~8.0質量%の範囲とすることが好ましい。
 なお、結晶粒の<100>方向への集積度が高いほど、磁区細分化による鉄損低減効果は大きくなるため、集積度の指標となる磁束密度Bが1.90T以上であることが好ましい。
 なお、本発明の方向性電磁鋼板の製造においては、出発成分として、下記の成分を含有することができる。
C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減する負担が増大するため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を良好にする上で有利な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方1.0質量%以下とすると製品板の磁束密度がとくに良好となる。このため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
 ここで、二次再結晶を生じさせるために、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。
 上記の成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%、Nb:0.0005~0.0100質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織をさらに改善して磁気特性を一層向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%以下ではとくに二次再結晶の安定性が増し、磁気特性がさらに改善される。そのため、Ni量は0.03~1.5質量%の範囲とするのが好ましい。
 また、Sn、Sb、Cu、P、Mo、NbおよびCrはそれぞれ磁気特性のさらなる向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量以下の場合、二次再結晶粒の発達が最も良好となる。このため、それぞれ上記の範囲で含有させることが好ましい。
 なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
 上記した成分組成になる鋼スラブは、やはり方向性電磁鋼板の一般に従う工程を経て、二次再結晶焼鈍後に張力絶縁被膜を形成した方向性電磁鋼板とする。すなわち、スラブ加熱後に熱間圧延を施し、1回又は中間焼鈍を挟む2回の冷間圧延にて最終板厚とし、その後、脱炭、一次再結晶焼鈍した後、マグネシアを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終仕上げ焼鈍を施す。
 ここで、マグネシアが主成分であるとは、本発明の目的とするフォルステライト被膜の形成を阻害しない範囲で、マグネシア以外の公知の焼鈍分離剤成分や特性改善成分を含有してもよいことを意味する。
 ここで、焼鈍分離剤として用いるマグネシアは、期待値μ(A)が3.4~3.7および標準偏差σ(A)が2.0~2.6の活性度分布を持つマグネシアを積極的に用いることが出来る。
 なお、期待値μ(A)および標準偏差σ(A)は、次に示すように求めることができる。まず、確率変数Aは、
 A=Lnt
(ここで、Lntは反応時間t(s)の自然対数)
であり
 P(A)=dR/d(Lnt)=dR/dA
(ここで、Rはマグネシアの反応率)
としたとき、
 μ(A)=∫A・P(A)dA
 σ(A)=[∫{(A-μ)・P(A)}dA]1/2 
より計算することができる。
 なお、マグネシアの活性度分布を求める詳細な方法については、上述の特許文献3の段落[0017]~[0023]に記載された方法を適用することができる。また、活性度分布や焼鈍分離剤の好適条件や調整方法については、同じく特許文献3の段落[0041]~[0045]の記載内容に従うことが好適である。すなわち、焼鈍分離剤中には、マグネシア100質量部に対して、Ti化合物をTi換算で0.5~6質量部、Ca,Sr、BaおよびMgの各化合物のうち少なくとも一つを当該金属換算で0.2~3.0質量部含有させることが好ましく、またその他にも各種特性を改善するための添加剤を用いることができる。
 ところで、このようなマグネシアを焼鈍分離剤として使用した場合、SeやS、Alといった特定元素がフォルステライト中に濃化する場合があった。この原因としては、インヒビターが分解し鋼板表面へ濃化する温度において、フォルステライト被膜形成が部分的に進んだ状態が生じているため、未形成部に選択的に濃化の進むことが原因と考えられる。
 在来の焼鈍分離剤を用いた場合には、Se、S、Alの濃化の問題は通常発生しない。すなわち、本発明は、前述の特許文献3で提案された、活性度分布の期待値を制御したマグネシアを焼鈍分離剤として利用する技術において、新たに見出された課題、すなわちSe、S、Al濃化により磁区細分化効果が低下する問題を解決することに、とくに有効である。従って、焼鈍分離剤に関しては、特許文献3に開示された技術を適用することが好ましい。
 その他、特許文献3の技術に限らず、方向性電磁鋼板やその製造方法の改善がフォルステライト被膜中および/または該被膜と鋼板との界面へのSe、Sおよび/またはAlの濃化を伴う場合全てに、本発明は有効である。例えば、焼鈍分離剤の効果によらずとも、仕上げ焼鈍時の雰囲気制御の変更により、フォルステライト被膜形成のタイミングとインヒビター成分の鋼板表層への濃化タイミングが一致し、かつフォルステライト被膜の形成が一様に生じない場合、上記した濃化を含む被膜が形成される可能性がある。従って、このような場合にも、本発明を適用することができる。
 上述の方法で得られた最終仕上げ焼鈍の鋼板に、例えばコロイダルシリカとリン酸塩(リン酸マグネシウムやリン酸アルミニウム)からなる張力絶縁コーティングを塗布して焼付ければよい。
 そして、本発明での電子ビーム照射では、例えば、照射位置でのビーム径を0.05~1mmに収束させた電子ビームを、鋼板の圧延方向に対し60~90°、好適には幅方向(圧延方向と直交する方向)に対して、線状あるいは点状に熱歪みを導入させる。
 このときの電子ビーム径の上下限は0.05mm~1.0mmであり、さらに好適には0.5mm以下とすることにて良好な特性を得ることが出来る。すなわち、ビーム径が小さいと、磁区を分断して磁区を細分化する効果が減じられるため、ビーム径は0.05mm以上とする。一方、ビーム径が大きい場合は歪み導入範囲が大きくなり、特に履歴損を劣化させるため1.0mm以下とする。好適には0.5mm以下とすれば、履歴損の劣化分を抑え、鉄損改善効果を最大限得ることが可能となる。
 また、走査速度については、1.0m/s以上であれば、被膜への影響を抑えることが出来る。特に上限については定めない。一方、走査速度が過度に速い場合は、単位長さあたりの出力を十分に保つために高いエネルギー(電流、電圧)が必要となるため、設備的には1000m/s以下が望ましい。
 さらに、加速電圧は、30kV以上の加速電圧であれば、被膜を透過して鋼板に直接的に熱歪みを与えることが可能となる。上限については特に定めないが、過度に高い電圧で照射した場合、深さ方向への歪みの広がりが大きくなり、歪み深さを好適範囲に制御しにくいため、加速電圧は300kV以下とすることが望ましい。
 電子ビームの出力は10~2000W程度として、単位長さ当たりの出力が1~50J/m程度になるように調整し、線状に1~20mm程度の間隔で照射する、条件が好適である。
 なお、鋼板に電子ビーム照射にて付与される歪の深さは、5~30μm程度とするのが好適である。
 言うまでもなく、上記の記載は、上記以外の電子ビームの照射条件の適用を妨げるものではない。
 鋼スラブとして、Si:3質量%を含有し、インヒビター元素としてMnSe、MnS、AlNのいずれかを利用して製造した、最終板厚が0.23mmである方向性電磁鋼板を準備した。その製造にあたっては、最終板厚まで圧延された冷延板を脱炭、一次再結晶焼鈍した後、期待値μ(A)が3.4~3.7および標準偏差σ(A)が2.0~2.6となる活性度分布を有するMgOを主成分とした、焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を、最高温度1200℃および均熱時間10時間で行った。得られたフォルステライト被膜を有する電磁鋼板に、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布(片面:5g/mm)、800℃にて焼付けた。
 各種材料についてはコイル幅中央部から試験片を切り出し、試験片のBを測定し、いずれの試験片も1.92T±0.001Tのものを選別した。また、EPMAを用いて、各元素の濃化部の占有面積率を求めた。
 ついで、圧延方向と直角にプラズマ炎と電子ビームの2つの磁区細分化手法を用いて、磁区細分化を行い、磁区細分化後の鉄損を測定した。電子ビームについては、照射ビーム径を0.3mmと1mmの2水準、走査速度は2m/秒と0.5m/秒の2水準、加速電圧は20kVと100kVの2水準とした。
 以上の測定結果および諸パラメータとを併せて表1に示す。同表から、電子ビームを照射した条件(発明例A、B)で特性の劣化なく低鉄損を得ることが出来ていることが分かる。また、発明例Aの条件範囲にて電子ビームを照射することによって、さらに良好な特性を得ることが出来ることもわかる。
Figure JPOXMLDOC01-appb-T000001
 
 鋼スラブとしてSi:3質量%を含有し、インヒビター元素としてMnSeとAlNの両方を利用して製造した、最終板厚が0.27mmである方向性電磁鋼板を準備した。その製造にあたっては、最終板厚まで圧延された冷延板を、脱炭、一次再結晶焼鈍した後、上述の特許文献3に規定される活性度分布を有するMgOを主成分とし、助剤としてSr化合物とTi化合物を含む焼鈍分離剤を、鋼板表面に塗布した後、コイル巻き鋼板における層間間隔を15μmとしたコイルに対し、最終仕上焼鈍(最高温度1200℃、均熱時間10時間)を行った。得られたフォルステライト被膜を有する電磁鋼板に、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布し、800℃にて焼付けた。
 各種材料についてはコイル幅中央部から試験片を切り出し、その試験片のBを測定し、いずれの試験片も1.91T±0.001Tのものを選抜した。また、EPMAを用いて、Seの占有面積率を求めたところ、いずれも2%以上の占有率を示していた。
 比較として、得られた試験片に対して、圧延方向と直角にプラズマ炎の照射を施して磁区細分化を行った。次いで、別の試験片に対して、電子ビームによる磁区細分化を行った。いずれも照射は5mm間隔で行った。それぞれ磁区細分化後の鉄損を測定した。電子ビームの照射条件については、それぞれで測定された特性および諸パラメータとあわせて表2にまとめた。電子ビームを照射することで良好な特性が得られること(発明例C、D)、また適正な電子ビーム照射条件でさらに良好な鉄損を得ることが出来ていることが分かる(発明例C)。
 
Figure JPOXMLDOC01-appb-T000002
  
 

Claims (5)

  1.  鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
  2.  鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Sの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
  3.  鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Alの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり5%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
  4.  鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に対し、電子ビームを照射して該方向性電磁鋼板の磁区を細分化する方向性電磁鋼板の製造方法。
  5.  鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に対し、電子ビームを、径:0.05mm以上0.5mm以下、走査速度:1.0m/s以上および加速電圧:30kV以上の条件にて照射して該方向性電磁鋼板の磁区を細分化する方向性電磁鋼板の製造方法。
     
PCT/JP2011/004440 2010-08-06 2011-08-04 方向性電磁鋼板およびその製造方法 WO2012017669A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201180038888.2A CN103069034B (zh) 2010-08-06 2011-08-04 方向性电磁钢板及其制造方法
BR112013002913-7A BR112013002913B1 (pt) 2010-08-06 2011-08-04 Folha de aço elétrico com orientação de grãos e método para a fabricação da mesma
EP11814304.9A EP2602341B1 (en) 2010-08-06 2011-08-04 Grain-oriented electrical steel sheet, and method for producing same
KR1020137003141A KR101423008B1 (ko) 2010-08-06 2011-08-04 방향성 전기 강판 및 그 제조 방법
US13/814,054 US20130228251A1 (en) 2010-08-06 2011-08-04 Grain oriented electrical steel sheet and method for manufacturing the same
MX2013001217A MX353179B (es) 2010-08-06 2011-08-04 Lamina de acero electrica de grano orientado y metodo para la produccion de la misma.
US15/019,201 US20160163436A1 (en) 2010-08-06 2016-02-09 Grain oriented electrical steel sheet and method of manufacturing the same
US15/019,171 US20160180991A1 (en) 2010-08-06 2016-02-09 Grain oriented electrical steel sheet and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-177764 2010-08-06
JP2010177764 2010-08-06

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/814,054 A-371-Of-International US20130228251A1 (en) 2010-08-06 2011-08-04 Grain oriented electrical steel sheet and method for manufacturing the same
US15/019,201 Division US20160163436A1 (en) 2010-08-06 2016-02-09 Grain oriented electrical steel sheet and method of manufacturing the same
US15/019,171 Division US20160180991A1 (en) 2010-08-06 2016-02-09 Grain oriented electrical steel sheet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012017669A1 true WO2012017669A1 (ja) 2012-02-09

Family

ID=45559188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004440 WO2012017669A1 (ja) 2010-08-06 2011-08-04 方向性電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (3) US20130228251A1 (ja)
EP (1) EP2602341B1 (ja)
JP (1) JP6116796B2 (ja)
KR (1) KR101423008B1 (ja)
CN (1) CN103069034B (ja)
BR (1) BR112013002913B1 (ja)
MX (1) MX353179B (ja)
WO (1) WO2012017669A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612359C1 (ru) * 2013-03-28 2017-03-07 ДжФЕ СТИЛ КОРПОРЕЙШН Способ контроля форстерита, устройство для оценки форстерита и технологическая линия для производства стального листа
CN105047394B (zh) * 2015-08-11 2017-06-20 湖南航天磁电有限责任公司 一种钐钴磁钢的加工方法
KR101869455B1 (ko) * 2016-12-19 2018-06-20 주식회사 포스코 방향성 전기강판 및 이의 제조방법
EP4053296A4 (en) 2019-10-31 2022-11-02 JFE Steel Corporation GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
KR20230132831A (ko) 2021-03-15 2023-09-18 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
KR20230095339A (ko) * 2021-12-22 2023-06-29 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572252B2 (ja) 1978-07-26 1982-01-14
JPS6296617A (ja) 1985-10-24 1987-05-06 Kawasaki Steel Corp 低鉄損方向性珪素鋼板の製造方法
JPH02277780A (ja) * 1988-10-26 1990-11-14 Kawasaki Steel Corp 低鉄損一方向性珪素鋼板及びその製造方法
JPH05335128A (ja) * 1992-05-29 1993-12-17 Kawasaki Steel Corp 騒音特性の優れた低鉄損一方向性珪素鋼板の製造方法
JPH0673509A (ja) * 1992-08-17 1994-03-15 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板及びその製造方法
JP2000124020A (ja) * 1998-08-10 2000-04-28 Kawasaki Steel Corp 磁気特性の優れた一方向性珪素鋼板およびその製造方法
JP2000273550A (ja) * 1999-03-26 2000-10-03 Nippon Steel Corp グラス被膜及び磁気特性の優れる方向性電磁鋼板の製造方法
JP2004353054A (ja) 2003-05-30 2004-12-16 Jfe Steel Kk 磁気特性及び被膜特性の良好な方向性電磁鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919733A (en) * 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
US4915750A (en) * 1988-03-03 1990-04-10 Allegheny Ludlum Corporation Method for providing heat resistant domain refinement of electrical steels to reduce core loss
JPH0689403B2 (ja) * 1988-09-02 1994-11-09 川崎製鉄株式会社 一方向性けい素鋼板の製造方法
US5296051A (en) * 1993-02-11 1994-03-22 Kawasaki Steel Corporation Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics
DE69331221T2 (de) * 1993-02-15 2002-05-23 Kawasaki Steel Corp., Kobe Verfahren zum Herstellen von rauscharmen kornorientierten Siliziumstahlblechern mit niedrigen Wattverlusten und mit hervorragenden Formeigenschaften
JP3539028B2 (ja) * 1996-01-08 2004-06-14 Jfeスチール株式会社 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
EP2770075B1 (en) * 2011-10-20 2018-02-28 JFE Steel Corporation Grain-oriented electrical steel sheet and method of producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572252B2 (ja) 1978-07-26 1982-01-14
JPS6296617A (ja) 1985-10-24 1987-05-06 Kawasaki Steel Corp 低鉄損方向性珪素鋼板の製造方法
JPH02277780A (ja) * 1988-10-26 1990-11-14 Kawasaki Steel Corp 低鉄損一方向性珪素鋼板及びその製造方法
JPH05335128A (ja) * 1992-05-29 1993-12-17 Kawasaki Steel Corp 騒音特性の優れた低鉄損一方向性珪素鋼板の製造方法
JPH0673509A (ja) * 1992-08-17 1994-03-15 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板及びその製造方法
JP2000124020A (ja) * 1998-08-10 2000-04-28 Kawasaki Steel Corp 磁気特性の優れた一方向性珪素鋼板およびその製造方法
JP2000273550A (ja) * 1999-03-26 2000-10-03 Nippon Steel Corp グラス被膜及び磁気特性の優れる方向性電磁鋼板の製造方法
JP2004353054A (ja) 2003-05-30 2004-12-16 Jfe Steel Kk 磁気特性及び被膜特性の良好な方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2602341A4

Also Published As

Publication number Publication date
US20160163436A1 (en) 2016-06-09
EP2602341A4 (en) 2017-07-05
US20160180991A1 (en) 2016-06-23
EP2602341B1 (en) 2021-02-17
US20130228251A1 (en) 2013-09-05
KR20130025971A (ko) 2013-03-12
MX353179B (es) 2018-01-05
CN103069034B (zh) 2015-03-11
EP2602341A1 (en) 2013-06-12
BR112013002913A2 (pt) 2016-05-31
JP6116796B2 (ja) 2017-04-19
CN103069034A (zh) 2013-04-24
JP2012052232A (ja) 2012-03-15
MX2013001217A (es) 2013-04-08
BR112013002913B1 (pt) 2022-04-05
KR101423008B1 (ko) 2014-07-23

Similar Documents

Publication Publication Date Title
KR101421387B1 (ko) 방향성 전기 강판 및 그 제조 방법
US9290824B2 (en) Method of producing grain-oriented electrical steel sheet
JP6157360B2 (ja) 方向性電磁鋼板およびその製造方法
JP5927804B2 (ja) 方向性電磁鋼板およびその製造方法
JP5594437B2 (ja) 方向性電磁鋼板およびその製造方法
WO2016056501A1 (ja) 低鉄損方向性電磁鋼板およびその製造方法
WO2012032792A1 (ja) 方向性電磁鋼板およびその製造方法
EP3591080B1 (en) Grain-oriented electrical steel sheet and production method therefor
JP2012177149A (ja) 方向性電磁鋼板およびその製造方法
JP5594252B2 (ja) 方向性電磁鋼板の製造方法
WO2012017671A1 (ja) 方向性電磁鋼板
JP6116796B2 (ja) 方向性電磁鋼板およびその製造方法
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
JP2012177162A (ja) 方向性電磁鋼板の製造方法
EP4223891A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2020105589A (ja) 方向性電磁鋼板およびその製造方法
JP5527094B2 (ja) 方向性電磁鋼板の製造方法
JP5845848B2 (ja) 方向性電磁鋼板の製造方法
WO2022255014A1 (ja) 方向性電磁鋼板
JP5754170B2 (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038888.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/001217

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137003141

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011814304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13814054

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013002913

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013002913

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130206