WO2012017669A1 - 方向性電磁鋼板およびその製造方法 - Google Patents
方向性電磁鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2012017669A1 WO2012017669A1 PCT/JP2011/004440 JP2011004440W WO2012017669A1 WO 2012017669 A1 WO2012017669 A1 WO 2012017669A1 JP 2011004440 W JP2011004440 W JP 2011004440W WO 2012017669 A1 WO2012017669 A1 WO 2012017669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- grain
- oriented electrical
- coating
- electrical steel
- Prior art date
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 82
- 239000010959 steel Substances 0.000 claims abstract description 82
- 239000011248 coating agent Substances 0.000 claims abstract description 57
- 238000000576 coating method Methods 0.000 claims abstract description 57
- 229910052839 forsterite Inorganic materials 0.000 claims abstract description 55
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 238000010894 electron beam technology Methods 0.000 claims abstract description 50
- 230000005381 magnetic domain Effects 0.000 claims abstract description 46
- 230000001133 acceleration Effects 0.000 claims description 15
- 230000001678 irradiating effect Effects 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 69
- 229910052742 iron Inorganic materials 0.000 abstract description 33
- 230000011218 segmentation Effects 0.000 abstract 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 44
- 230000000694 effects Effects 0.000 description 33
- 238000000137 annealing Methods 0.000 description 25
- 239000000395 magnesium oxide Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 20
- 239000003112 inhibitor Substances 0.000 description 17
- 229910052717 sulfur Inorganic materials 0.000 description 17
- 229910052711 selenium Inorganic materials 0.000 description 16
- 238000009826 distribution Methods 0.000 description 13
- 238000001953 recrystallisation Methods 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 229910000976 Electrical steel Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to a grain-oriented electrical steel sheet having excellent iron loss characteristics, which is used for iron core materials such as transformers.
- the grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
- it is important to highly align secondary recrystallized grains in the steel sheet in the (110) [001] orientation (so-called Goth orientation) and to reduce impurities in the product steel sheet.
- control of crystal orientation and reduction of impurities are limited in view of the manufacturing cost.
- a technique for reducing the iron loss by introducing non-uniformity (strain) to the surface of the steel sheet by a physical method and subdividing the width of the magnetic domain has been developed.
- Patent Document 1 proposes a technique for reducing the iron loss of a steel sheet by irradiating the final product plate with a laser, introducing a high dislocation density region into the steel sheet surface layer, and narrowing the magnetic domain width.
- Patent Document 2 a technique for controlling the magnetic domain width by irradiating a steel sheet with a plasma flame is proposed and put into practical use.
- a grain-oriented electrical steel sheet is generally produced by producing secondary recrystallization by using precipitates called inhibitors such as MnS, MnSe, and AlN.
- the grain-oriented electrical steel sheet that has undergone this production has an undercoat called forsterite on the surface of the steel sheet, and the forsterite film (a film mainly composed of Mg 2 SiO 4 ) has further insulating properties. Often forms a tensioned film.
- the insulating tension film formed on the forsterite film is useful for reducing iron loss, and has a great effect on the material subjected to the above-mentioned magnetic domain subdivision.
- Patent Document 3 the property of the forsterite film is improved by using magnesia, in which the expected value of the activity distribution is controlled within a specific standard deviation, as an annealing separator during finish annealing. It has been shown that it is possible to produce grain-oriented electrical steel sheets having different coating properties.
- magnesia having a specific activity distribution described above when magnesia having a specific activity distribution described above is used as an annealing separator, that is, when magnesia having a specific activity distribution is used as a material for forsterite coating, the formation rate of forsterite is different from the conventional one.
- the time when the inhibitor element (S, Se, Al, etc.) is concentrated on the steel sheet surface coincides with the time when the forsterite is formed.
- Patent Document 3 includes magnesia low active ingredients, medium active ingredients and high active ingredients. By controlling these to the appropriate activity distribution ⁇ (A) and standard deviation ⁇ (A), magnetic properties are obtained. And the formation of a strong film are shown to be compatible. It has also been shown that the decomposition of the inhibitor is suppressed when alkaline earth metal ions such as Ca, Sr, and Ba are contained. It is known that the inhibitor component is concentrated in the steel plate surface after being decomposed in the steel. Magnesia having different activities also have different timings at which film formation starts.
- the interface between the forsterite and the steel sheet and / or the forsterite as shown in the secondary electron image in the vicinity of the steel sheet coating interface observed from the cross section in the direction perpendicular to the rolling direction of the product plate having the insulating coating on the forsterite film In some cases, the specific element as described above is concentrated in the coating.
- the low active component, medium active component, and high active component of magnesia contribute to the concentration of alkaline earth metal on the surface, the concentration of Mg, and the concentration of Ti, respectively. It is shown.
- the relationship with the inhibitor component is not clear, but when magnesia having these activity distributions ⁇ (A) is used, the concentration of the component may be promoted.
- the thermal expansion coefficient differs between the area where specific elements aggregate and concentrate and the surrounding forsterite coating. In some cases, there were defects in the film, or adhesion was lost. Furthermore, the tension applied to the steel sheet is not uniform due to the insulating coating formed on the forsterite coating, and a sufficient iron loss reduction effect may not be obtained.
- an object of the present invention is to provide a grain-oriented electrical steel sheet having a low iron loss, which has been subjected to a magnetic domain refinement process that eliminates the above-described causes of iron loss deterioration.
- FIG. 2 shows a two-dimensional mapping image of the element Se with an observation field of 100 ⁇ m square by EPMA and a measurement pitch of every 0.5 ⁇ m.
- the portion observed in the form of dots in FIG. 2 is the Se concentration portion.
- This concentrated part may be dissolved in the entire forsterite depending on its component, but the cross-section at the high strength part with a difference of 5 ⁇ or more with respect to the variation of the background strength ( ⁇ ).
- a thickened portion as shown in FIG. 1 was confirmed. Therefore, a portion having a difference of 5 ⁇ or more and a high strength with respect to the variation ( ⁇ ) of the background strength in the measurement on the steel plate surface is defined as a concentrated portion, and the existence ratio is defined as an observation visual field of 10,000 ⁇ m 2. It was evaluated by the occupation area ratio.
- the inventors have intensively studied the cause of the increase in the iron loss value, and the irradiation of such a plasma flame gives local strain to the steel sheet to cause magnetic domain fragmentation, while a specific forsterite It has been found that the influence of the film damage is large when the film structure, that is, when the area ratio is 2% or more. Therefore, as a result of investigating a method that does not give heat to the forsterite film while giving sufficient thermal strain to the steel for these materials, magnetic domain fragmentation by electron beam irradiation is extremely suitable. In particular, the inventors have found that electron beam irradiation is suitable in which the irradiation beam diameter is reduced and the scanning speed and acceleration voltage are increased, and the present invention has been completed. That is, the gist configuration of the present invention is as follows.
- a grain-oriented electrical steel sheet obtained by subjecting a grain-oriented electrical steel sheet having a surface area of 2% or more per 10000 ⁇ m 2 to magnetic domain refinement by electron beam irradiation.
- a grain-oriented electrical steel sheet obtained by subjecting a grain-oriented electrical steel sheet having a surface area of 2% or more per 10000 ⁇ m 2 to magnetic domain refinement by electron beam irradiation.
- a grain-oriented electrical steel sheet obtained by subjecting a grain-oriented electrical steel sheet having a surface area of 5% or more per 10000 ⁇ m 2 to magnetic domain refinement by electron beam irradiation.
- a method for producing a grain-oriented electrical steel sheet wherein the grain-oriented electrical steel sheet having a surface of 10000 ⁇ m 2 of 2% or more is irradiated with an electron beam to subdivide the magnetic domains of the grain-oriented electrical steel sheet.
- Electron beams are irradiated to grain-oriented electrical steel sheets with a surface of 10000 ⁇ m 2 at 2% or more at a diameter of 0.05 mm or more and 0.5 mm or less, a scanning speed of 1.0 m / s or more, and an acceleration voltage of 30 kV or more. And the manufacturing method of the grain-oriented electrical steel sheet which subdivides the magnetic domain of this grain-oriented electrical steel sheet.
- the present invention also has a forsterite coating on the surface of the steel plate, and at least one of the coating and the interface between the coating and the steel plate has a Se concentration portion, a S concentration portion, and an Al concentration portion.
- concentration ratio of the concentrated portion per area of the steel sheet surface of 10,000 ⁇ m 2 is 2% or more in the case of the Se concentrated portion, 2% or more in the case of the S concentrated portion, and
- the grain-oriented electrical steel sheet is obtained by subjecting a grain-oriented electrical steel sheet that is 5% or more to magnetic domain refinement by electron beam irradiation.
- the present invention further has a forsterite coating on the surface of the steel sheet, and at least one of the coating and the interface between the coating and the steel sheet has a Se-concentrated portion, a S-concentrated portion, and an Al-concentrated portion.
- the concentration ratio of the concentrated portion per area of the steel sheet surface of 10,000 ⁇ m 2 is 2% or more in the case of the Se concentrated portion, 2% or more in the case of the S concentrated portion, and
- the grain-oriented electrical steel sheet is irradiated with an electron beam to a grain-oriented electrical steel sheet that is 5% or more to subdivide the magnetic domain.
- it is preferable to irradiate the electron beam under conditions of an electron beam diameter of 0.05 mm to 0.5 mm, an electron beam scanning speed of 1.0 m / second or more, and an acceleration voltage of 30 kV or more.
- the grain-oriented electrical steel sheet having a concentrated portion in at least one of the forsterite coating on the steel sheet surface and the interface between the coating and the steel sheet is subjected to a magnetic domain subdivision treatment by electron beam irradiation.
- the magnetic domain refinement effect is exhibited without being canceled by the damage of the forsterite film, and extremely low iron loss characteristics can be obtained.
- the present invention it is extremely important to perform magnetic domain subdivision by irradiating an electron beam on a grain-oriented electrical steel sheet having a concentrated portion in at least one of the forsterite film and the interface between the film and the steel sheet. . That is, since the irradiated portion of the laser is heated to a high temperature, the outermost insulating film and forsterite film are most affected by heat. Similarly, since the plasma flame is directly heated by a flame generated by plasma at a temperature of 10000 ° C. or higher, the outermost insulating coating or forsterite coating is affected. In these methods, it is necessary to give thermal strain by heat transfer from the steel sheet surface to the inside of the steel sheet in order to subdivide the magnetic domain. Therefore, in order to form the thermal strain necessary to obtain a sufficient iron loss reduction effect inside the steel plate, the coating on the outermost side of the steel plate requires a larger heat input, so the effect on the coating is large. It will be a thing.
- irradiation with an electron beam generates heat by driving electrons into the steel plate.
- the injected electrons have a thermal effect on the film, but have a strong permeability to the film and the steel sheet, and therefore can directly affect the steel sheet.
- the electron beam irradiation has a great difference that it is possible to exert a thermal influence on the steel sheet while suppressing the thermal influence on the coating.
- the thermal sensitivity of the coating is large as in the present invention, that is, in the interface between the steel plate and the forsterite coating or in the forsterite coating, a concentrated portion of a specific element having a thermal expansion coefficient different from that of the forsterite coating is generated. In some cases, the thermal influence can be suppressed.
- an electron beam (beam diameter 0.2 mm, scanning speed is about 3 m / s, acceleration voltage 30 kV) is applied to the rolling direction of the steel sheet on a 0.23 mm-thick grain-oriented electrical steel sheet having a concentrated portion of Se or S.
- the magnetic domain was subdivided by applying thermal strain to the wire in the direction perpendicular to the magnetic field, the iron loss after the magnetic domain subdivision was investigated.
- the relationship between the iron loss and the occupied area ratio of the concentrated portion of Se and S as shown in FIG. 4, even if the occupied area ratio of the concentrated portion is 2% or more, low iron loss It can be seen that That is, under the same processing conditions as the experiment whose results are shown in FIG. 3, the magnetic domain subdivision processing is changed from plasma flame irradiation to electron beam irradiation, so that the occupied area ratio of the concentrated portion is 2% or more. It can be seen that even low iron loss is maintained.
- the occupied area ratio of the concentrated portion of Se or S exceeds 50%, the effect of applying tension to the steel sheet as a forsterite film becomes non-uniform, so it is preferable to limit it to 50% or less.
- the content in the steel slab needs to be 0.03% by mass or less.
- the electron beam used for magnetic domain subdivision has a large irradiation area and a long irradiation time, so that the thermal effect on the coating increases. Further, when the acceleration voltage is low, transmission of the implanted electron beam stays in the vicinity of the surface layer, so that the thermal effect on the coating tends to increase.
- an investigation was made on better conditions for passing through the forsterite film and imparting thermal strain to the steel sheet itself.
- the electron beam diameter was set to 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 0.9 mm, and 1.0 mm. In the present invention, the diameter means the diameter unless otherwise specified. At that time, the scanning speed of the electron beam was fixed at 2 m / second and the acceleration voltage was fixed at 50 kV.
- the scanning speed was set to 0.1 m / second, 0.5 m / second, 1.0 m / second, 2.0 m / second, and 3.0 m / second based on the electron beam diameter of 0.3 mm and the acceleration voltage of 50 kV. .
- the acceleration voltage was 10 kV, 20 kV, 30 kV, 50 kV, and 100 kV.
- the electron beam diameter was 0.3 mm and the scanning speed was 2 m / sec. As a result, it was found that an electron beam diameter of 0.5 mm or less, a scanning speed of 1.0 m / second or more, and an acceleration voltage of 30 kV or more are suitable for improving iron loss.
- the irradiation direction is a direction crossing the rolling direction, preferably 60 ° to 90 ° with respect to the rolling direction, and an interval of about 3 to 15 mm is applied in the rolling direction, and 0.005 to 10 mA is applied. It is effective to use a current to form dots or lines.
- the grain-oriented electrical steel sheet according to the present invention may be a conventionally known grain-oriented electrical steel sheet.
- an electromagnetic steel material containing Si: 2.0 to 8.0% by mass may be used.
- Si: 2.0-8.0% by mass Si is an element effective for increasing the electrical resistance of steel and improving iron loss, and its content of 2.0% by mass or more is particularly effective for reducing iron loss.
- the Si content is preferably in the range of 2.0 to 8.0% by mass. Note that the higher the degree of integration of crystal grains in the ⁇ 100> direction, the greater the effect of reducing iron loss due to magnetic domain fragmentation. Therefore, the magnetic flux density B 8 serving as an index of the degree of integration is preferably 1.90 T or more.
- the following component can be contained as a starting component.
- C 0.08 mass% or less
- C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08 mass%, the burden of reducing C to 50 massppm or less where no magnetic aging occurs during the manufacturing process increases. Therefore, the content is preferably 0.08% by mass or less.
- the lower limit since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.
- Mn 0.005 to 1.0 mass%
- Mn is an element advantageous for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor. On the other hand, if it is 1.0 mass% or less, the magnetic flux density of a product board will become especially favorable. Therefore, the Mn content is preferably in the range of 0.005 to 1.0% by mass.
- Al and N are used when an AlN inhibitor is used, and Mn is used when an MnS / MnSe inhibitor is used.
- An appropriate amount of Se and / or S may be contained.
- both inhibitors may be used in combination.
- the preferred contents of Al, N, S and Se are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
- Ni 0.03-1.50% by mass
- Sn 0.01-1.50% by mass
- Sb 0.005-1.50% by mass
- Cu 0.03-3.0% by mass
- P 0.03-0.50% by mass
- Mo 0.005-0.10% by mass
- Nb At least one Ni selected from 0.0005 to 0.0100% by mass and Cr: 0.03 to 1.50% by mass is an element useful for further improving the hot rolled sheet structure and further improving the magnetic properties.
- the content is less than 0.03% by mass, the effect of improving the magnetic properties is small.
- the content is 1.5% by mass or less, the stability of secondary recrystallization is increased, and the magnetic properties are further improved. Therefore, the Ni content is preferably in the range of 0.03 to 1.5% by mass.
- Sn, Sb, Cu, P, Mo, Nb, and Cr are elements that are useful for further improving the magnetic properties. However, if all of these elements do not satisfy the lower limit of each component, the effect of improving the magnetic properties is small. On the other hand, when the amount is less than or equal to the upper limit amount of each component described above, the secondary recrystallized grains develop best. For this reason, it is preferable to make it contain in said range, respectively.
- the balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.
- the steel slab having the component composition described above is a grain-oriented electrical steel sheet in which a tensile insulating coating is formed after secondary recrystallization annealing through a process generally following that of grain-oriented electrical steel sheets. That is, hot rolling is performed after slab heating, and the final sheet thickness is obtained by one or two cold rolling sandwiching intermediate annealing, followed by decarburization and primary recrystallization annealing, followed by annealing with magnesia as a main component. A separating agent is applied and a final finish annealing including a secondary recrystallization process and a purification process is performed.
- magnesia is the main component, in the range that does not inhibit the formation of the forsterite film that is the object of the present invention, it may contain a known annealing separator component and property improving component other than magnesia. means.
- magnesia used as the annealing separator magnesia having an activity distribution with an expected value ⁇ (A) of 3.4 to 3.7 and a standard deviation ⁇ (A) of 2.0 to 2.6 can be positively used.
- the expected value ⁇ (A) and the standard deviation ⁇ (A) can be obtained as follows.
- the method described in paragraphs [0017] to [0023] of Patent Document 3 described above can be applied.
- magnesia when such magnesia is used as an annealing separator, specific elements such as Se, S, and Al may be concentrated in the forsterite. This is because the forsterite film formation partially progresses at the temperature at which the inhibitor decomposes and concentrates on the steel sheet surface, and the cause is that the concentration proceeds selectively in the unformed part. Conceivable.
- the present invention proposes a problem newly found in the technique of using magnesia with the expected activity distribution value controlled as an annealing separator proposed in Patent Document 3 described above, that is, Se, S, Al. It is particularly effective in solving the problem that the magnetic domain refinement effect decreases due to concentration. Therefore, it is preferable to apply the technique disclosed in Patent Document 3 for the annealing separator.
- improvement of the grain-oriented electrical steel sheet and its manufacturing method involves enrichment of Se, S and / or Al in the forsterite film and / or the interface between the film and the steel sheet.
- the present invention is effective.
- the forsterite film formation timing coincides with the concentration of the inhibitor component on the steel sheet surface due to the change in atmosphere control during the final annealing, and the formation of the forsterite film When it does not occur uniformly, there is a possibility that a film including the above-described concentration is formed. Therefore, the present invention can be applied to such a case.
- the final finish annealed steel plate obtained by the above method may be baked by applying a tension insulating coating made of, for example, colloidal silica and phosphate (magnesium phosphate or aluminum phosphate).
- a tension insulating coating made of, for example, colloidal silica and phosphate (magnesium phosphate or aluminum phosphate).
- an electron beam whose beam diameter at the irradiation position is converged to 0.05 to 1 mm is 60 to 90 ° with respect to the rolling direction of the steel plate, preferably in the width direction (rolling direction).
- the thermal strain is introduced in the form of a line or dot.
- the upper and lower limits of the electron beam diameter are 0.05 mm to 1.0 mm, more preferably 0.5 mm or less, and good characteristics can be obtained. That is, if the beam diameter is small, the effect of dividing the magnetic domain and subdividing the magnetic domain is reduced, so the beam diameter is set to 0.05 mm or more. On the other hand, when the beam diameter is large, the strain introduction range becomes large.
- the thickness is preferably 0.5 mm or less, it is possible to suppress the deterioration of the history loss and obtain the maximum effect of improving the iron loss.
- the scanning speed is 1.0 m / s or more, the influence on the coating can be suppressed. There is no particular upper limit.
- high energy current, voltage
- the acceleration voltage is an acceleration voltage of 30 kV or more, it becomes possible to directly apply thermal strain to the steel sheet through the coating.
- the upper limit is not particularly defined, but when irradiating with an excessively high voltage, the spread of strain in the depth direction becomes large and the strain depth is difficult to control within a suitable range, so the acceleration voltage may be 300 kV or less. desirable. It is preferable that the output of the electron beam is about 10 to 2000 W, the output per unit length is adjusted to be about 1 to 50 J / m, and the linear irradiation is performed at an interval of about 1 to 20 mm.
- the depth of strain applied to the steel sheet by electron beam irradiation is preferably about 5 to 30 ⁇ m. Needless to say, the above description does not preclude the application of other electron beam irradiation conditions.
- a grain oriented electrical steel sheet containing Si: 3% by mass as a steel slab and manufactured using any of MnSe, MnS, and AlN as an inhibitor element and having a final thickness of 0.23 mm was prepared.
- the expected value ⁇ (A) is 3.4 to 3.7 and the standard deviation ⁇ (A) is 2.0 to 2.6.
- An annealing separator containing MgO having a degree distribution as a main component was applied, and final annealing including a secondary recrystallization process and a purification process was performed at a maximum temperature of 1200 ° C. and a soaking time of 10 hours.
- An insulating coating made of 60% colloidal silica and aluminum phosphate was applied to the obtained electrical steel sheet having a forsterite coating (one side: 5 g / mm 2 ) and baked at 800 ° C.
- Test pieces were cut out from the coil width central portion for various materials, the B 8 pieces were measured, any of the test pieces were also selected ones of 1.92T ⁇ 0.001T. Moreover, the occupation area ratio of the concentrated part of each element was calculated
- the magnetic domain was subdivided using two magnetic domain subdivision methods, ie, a plasma flame and an electron beam at right angles to the rolling direction, and the iron loss after the magnetic domain subdivision was measured.
- the irradiation beam diameter was set at two levels of 0.3 mm and 1 mm
- the scanning speed was set at two levels of 2 m / sec and 0.5 m / sec
- the acceleration voltage was set at two levels of 20 kV and 100 kV.
- Table 1 From the table, it can be seen that low iron loss can be obtained without deterioration of characteristics under the conditions (Invention Examples A and B) irradiated with an electron beam. It can also be seen that even better characteristics can be obtained by irradiating the electron beam in the condition range of Invention Example A.
- a grain-oriented electrical steel sheet containing Si: 3% by mass as a steel slab and manufactured using both MnSe and AlN as inhibitor elements and having a final sheet thickness of 0.27 mm was prepared.
- the cold rolled sheet rolled to the final sheet thickness is decarburized and subjected to primary recrystallization annealing, and then the main component is MgO having an activity distribution defined in the above-mentioned Patent Document 3.
- final finish annealing (maximum temperature 1200 ° C, soaking time 10 hours) is performed on the coil with a 15 ⁇ m interlayer spacing in the coiled steel sheet. It was.
- An insulating coating composed of 60% colloidal silica and aluminum phosphate was applied to the obtained electrical steel sheet having a forsterite coating, and baked at 800 ° C.
- Test pieces were cut out from the coil width central portion for various materials, to measure the B 8 of the specimen, any of the test pieces were also selected ones of 1.91T ⁇ 0.001T. Moreover, when the occupation area ratio of Se was calculated
- the obtained test piece was subjected to plasma flame irradiation at right angles to the rolling direction to subdivide the magnetic domain. Next, magnetic domain subdivision was performed on another test piece using an electron beam. In all cases, irradiation was performed at intervals of 5 mm. The iron loss after each magnetic domain subdivision was measured.
- the electron beam irradiation conditions are summarized in Table 2 together with the characteristics and parameters measured for each. It can be seen that good characteristics can be obtained by irradiating an electron beam (Invention Examples C and D), and that even better iron loss can be obtained under appropriate electron beam irradiation conditions (Invention Example C). .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
例えば、特許文献1には、最終製品板にレーザーを照射し、鋼板表層に高転位密度領域を導入し、磁区幅を狭くすることで、鋼板の鉄損を低減する技術が提案されている。また、特許文献2では鋼板にプラズマ炎を照射することにより磁区幅を制御する技術が提案され、実用化されている。
インヒビター成分は鋼中で分解された後、鋼板表面に濃化する現象が知られている。活性度の異なるマグネシアは被膜形成の開始するタイミングも異なる。その結果、特許文献3に示される条件に従って活性度分布を調整した、マグネシアを利用し、かつアルカリ土類金属イオンが同時に存在した場合、インヒビターの分解温度の上昇が生じると共に、低活性度マグネシアを中心にフォルステライト被膜の形成の進んだ場所が発生するため、フォルステライト被膜の未形成部分にインヒビター成分が濃化する。すると、図1にフォルステライト被膜上に絶縁コーティングを有する製品板の圧延直角方向断面から観察した鋼板被膜界面近傍の二次電子像を示すように、フォルステライトと鋼板との界面および/またはフォルステライト被膜中に、前記のような特定元素が濃化する場合があった。
すなわち、本発明の要旨構成は次のとおりである。
ここで、電子ビーム径0.05mm以上0.5mm以下、電子線の走査速度1.0m/秒以上、加速電圧30kV以上の条件で電子ビームを照射することが好ましい。
すなわち、レーザーは照射された部分を高温とするため、最も外側にある絶縁被膜、フォルステライト被膜が最も熱影響を受ける。また、プラズマ炎の照射も同様にプラズマで発生させた10000℃以上の炎で直接熱を与えるため、最も外側にある絶縁被膜やフォルステライト被膜が影響を受ける。これらの方法では、磁区細分化のために鋼板表面から鋼板内部への伝熱によって熱歪みを与える必要がある。したがって、十分な鉄損低減効果を得るために必要な熱歪みを鋼板の内部に形成するためには、鋼板最外側にある被膜ではさらに大きな入熱が必要となるため、被膜への影響は大きなものとなる。
このような電子ビームに特有な性質を利用することにより、鋼板に対しては大きな熱影響を与えつつ、フォルステライト被膜への熱影響を抑えることが可能となる。従って、本発明のように被膜の熱感受性が大きい場合、すなわち、鋼板とフォルステライト被膜との界面やフォルステライト被膜中に、フォルステライト被膜とは熱膨張率の異なる特定元素の濃化部が生じる場合において、その熱影響を抑えることが可能となるのである。
このAl濃化部を有する0.23mm厚の方向性電磁鋼板に対して、前掲のSeおよびSの濃化部に対して行った調査と同様の調査を実施した。その結果を図5に示すように、プラズマ炎による熱歪みを与え磁区細分化した場合、得られる鉄損値は占有面積2%程度では劣化が認められず、5%以上存在する場合に鉄損劣化が認められた。これに対して、電子ビームによって磁区細分化を行うことでAl濃化部が5%以上濃化しても劣化を抑制できることを突き止めた(図5参照)。
その際、電子ビームの走査速度は2m/秒および加速電圧は50kVで固定した。一方、照射時間に関しては、0.3mmの電子ビーム径と加速電圧50kVを基準とし、走査速度を0.1m/秒、0.5m/秒、1.0m/秒、2.0m/秒、3.0m/秒とした。加速電圧については、10kV、20kV、30kV、50kV、100kVとし、この際、電子ビーム径は0.3mm、走査速度は2m/秒を基準条件とした。この結果、電子ビーム径は0.5mm以下、走査速度は1.0m/秒以上、加速電圧は30kV以上が、鉄損の向上に好適であることを見出した。
Si:2.0~8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であり、含有量が2.0質量%以上でとくに鉄損低減効果が良好である。一方、8.0質量%以下の場合、とくに優れた加工性や磁束密度を得ることができる。従って、Si量は2.0~8.0質量%の範囲とすることが好ましい。
なお、結晶粒の<100>方向への集積度が高いほど、磁区細分化による鉄損低減効果は大きくなるため、集積度の指標となる磁束密度B8が1.90T以上であることが好ましい。
C:0.08質量%以下
Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減する負担が増大するため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Mnは、熱間加工性を良好にする上で有利な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方1.0質量%以下とすると製品板の磁束密度がとくに良好となる。このため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%、Nb:0.0005~0.0100質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織をさらに改善して磁気特性を一層向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%以下ではとくに二次再結晶の安定性が増し、磁気特性がさらに改善される。そのため、Ni量は0.03~1.5質量%の範囲とするのが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
なお、期待値μ(A)および標準偏差σ(A)は、次に示すように求めることができる。まず、確率変数Aは、
A=Lnt
(ここで、Lntは反応時間t(s)の自然対数)
であり
P(A)=dR/d(Lnt)=dR/dA
(ここで、Rはマグネシアの反応率)
としたとき、
μ(A)=∫A・P(A)dA
σ(A)=[∫{(A-μ)2・P(A)}dA]1/2
より計算することができる。
ところで、このようなマグネシアを焼鈍分離剤として使用した場合、SeやS、Alといった特定元素がフォルステライト中に濃化する場合があった。この原因としては、インヒビターが分解し鋼板表面へ濃化する温度において、フォルステライト被膜形成が部分的に進んだ状態が生じているため、未形成部に選択的に濃化の進むことが原因と考えられる。
このときの電子ビーム径の上下限は0.05mm~1.0mmであり、さらに好適には0.5mm以下とすることにて良好な特性を得ることが出来る。すなわち、ビーム径が小さいと、磁区を分断して磁区を細分化する効果が減じられるため、ビーム径は0.05mm以上とする。一方、ビーム径が大きい場合は歪み導入範囲が大きくなり、特に履歴損を劣化させるため1.0mm以下とする。好適には0.5mm以下とすれば、履歴損の劣化分を抑え、鉄損改善効果を最大限得ることが可能となる。
また、走査速度については、1.0m/s以上であれば、被膜への影響を抑えることが出来る。特に上限については定めない。一方、走査速度が過度に速い場合は、単位長さあたりの出力を十分に保つために高いエネルギー(電流、電圧)が必要となるため、設備的には1000m/s以下が望ましい。
さらに、加速電圧は、30kV以上の加速電圧であれば、被膜を透過して鋼板に直接的に熱歪みを与えることが可能となる。上限については特に定めないが、過度に高い電圧で照射した場合、深さ方向への歪みの広がりが大きくなり、歪み深さを好適範囲に制御しにくいため、加速電圧は300kV以下とすることが望ましい。
電子ビームの出力は10~2000W程度として、単位長さ当たりの出力が1~50J/m程度になるように調整し、線状に1~20mm程度の間隔で照射する、条件が好適である。
なお、鋼板に電子ビーム照射にて付与される歪の深さは、5~30μm程度とするのが好適である。
言うまでもなく、上記の記載は、上記以外の電子ビームの照射条件の適用を妨げるものではない。
以上の測定結果および諸パラメータとを併せて表1に示す。同表から、電子ビームを照射した条件(発明例A、B)で特性の劣化なく低鉄損を得ることが出来ていることが分かる。また、発明例Aの条件範囲にて電子ビームを照射することによって、さらに良好な特性を得ることが出来ることもわかる。
比較として、得られた試験片に対して、圧延方向と直角にプラズマ炎の照射を施して磁区細分化を行った。次いで、別の試験片に対して、電子ビームによる磁区細分化を行った。いずれも照射は5mm間隔で行った。それぞれ磁区細分化後の鉄損を測定した。電子ビームの照射条件については、それぞれで測定された特性および諸パラメータとあわせて表2にまとめた。電子ビームを照射することで良好な特性が得られること(発明例C、D)、また適正な電子ビーム照射条件でさらに良好な鉄損を得ることが出来ていることが分かる(発明例C)。
Claims (5)
- 鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm2当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
- 鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Sの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm2当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
- 鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Alの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm2当たり5%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施してなる方向性電磁鋼板。
- 鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm2当たり2%以上である方向性電磁鋼板に対し、電子ビームを照射して該方向性電磁鋼板の磁区を細分化する方向性電磁鋼板の製造方法。
- 鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm2当たり2%以上である方向性電磁鋼板に対し、電子ビームを、径:0.05mm以上0.5mm以下、走査速度:1.0m/s以上および加速電圧:30kV以上の条件にて照射して該方向性電磁鋼板の磁区を細分化する方向性電磁鋼板の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180038888.2A CN103069034B (zh) | 2010-08-06 | 2011-08-04 | 方向性电磁钢板及其制造方法 |
BR112013002913-7A BR112013002913B1 (pt) | 2010-08-06 | 2011-08-04 | Folha de aço elétrico com orientação de grãos e método para a fabricação da mesma |
EP11814304.9A EP2602341B1 (en) | 2010-08-06 | 2011-08-04 | Grain-oriented electrical steel sheet, and method for producing same |
KR1020137003141A KR101423008B1 (ko) | 2010-08-06 | 2011-08-04 | 방향성 전기 강판 및 그 제조 방법 |
US13/814,054 US20130228251A1 (en) | 2010-08-06 | 2011-08-04 | Grain oriented electrical steel sheet and method for manufacturing the same |
MX2013001217A MX353179B (es) | 2010-08-06 | 2011-08-04 | Lamina de acero electrica de grano orientado y metodo para la produccion de la misma. |
US15/019,201 US20160163436A1 (en) | 2010-08-06 | 2016-02-09 | Grain oriented electrical steel sheet and method of manufacturing the same |
US15/019,171 US20160180991A1 (en) | 2010-08-06 | 2016-02-09 | Grain oriented electrical steel sheet and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-177764 | 2010-08-06 | ||
JP2010177764 | 2010-08-06 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/814,054 A-371-Of-International US20130228251A1 (en) | 2010-08-06 | 2011-08-04 | Grain oriented electrical steel sheet and method for manufacturing the same |
US15/019,201 Division US20160163436A1 (en) | 2010-08-06 | 2016-02-09 | Grain oriented electrical steel sheet and method of manufacturing the same |
US15/019,171 Division US20160180991A1 (en) | 2010-08-06 | 2016-02-09 | Grain oriented electrical steel sheet and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012017669A1 true WO2012017669A1 (ja) | 2012-02-09 |
Family
ID=45559188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/004440 WO2012017669A1 (ja) | 2010-08-06 | 2011-08-04 | 方向性電磁鋼板およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US20130228251A1 (ja) |
EP (1) | EP2602341B1 (ja) |
JP (1) | JP6116796B2 (ja) |
KR (1) | KR101423008B1 (ja) |
CN (1) | CN103069034B (ja) |
BR (1) | BR112013002913B1 (ja) |
MX (1) | MX353179B (ja) |
WO (1) | WO2012017669A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2612359C1 (ru) * | 2013-03-28 | 2017-03-07 | ДжФЕ СТИЛ КОРПОРЕЙШН | Способ контроля форстерита, устройство для оценки форстерита и технологическая линия для производства стального листа |
CN105047394B (zh) * | 2015-08-11 | 2017-06-20 | 湖南航天磁电有限责任公司 | 一种钐钴磁钢的加工方法 |
KR101869455B1 (ko) * | 2016-12-19 | 2018-06-20 | 주식회사 포스코 | 방향성 전기강판 및 이의 제조방법 |
EP4053296A4 (en) | 2019-10-31 | 2022-11-02 | JFE Steel Corporation | GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MANUFACTURING THEREOF |
KR20230132831A (ko) | 2021-03-15 | 2023-09-18 | 제이에프이 스틸 가부시키가이샤 | 방향성 전기 강판 및 그 제조 방법 |
KR20230095339A (ko) * | 2021-12-22 | 2023-06-29 | 주식회사 포스코 | 방향성 전기강판 및 방향성 전기강판의 제조 방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572252B2 (ja) | 1978-07-26 | 1982-01-14 | ||
JPS6296617A (ja) | 1985-10-24 | 1987-05-06 | Kawasaki Steel Corp | 低鉄損方向性珪素鋼板の製造方法 |
JPH02277780A (ja) * | 1988-10-26 | 1990-11-14 | Kawasaki Steel Corp | 低鉄損一方向性珪素鋼板及びその製造方法 |
JPH05335128A (ja) * | 1992-05-29 | 1993-12-17 | Kawasaki Steel Corp | 騒音特性の優れた低鉄損一方向性珪素鋼板の製造方法 |
JPH0673509A (ja) * | 1992-08-17 | 1994-03-15 | Nippon Steel Corp | 磁気特性の優れた一方向性電磁鋼板及びその製造方法 |
JP2000124020A (ja) * | 1998-08-10 | 2000-04-28 | Kawasaki Steel Corp | 磁気特性の優れた一方向性珪素鋼板およびその製造方法 |
JP2000273550A (ja) * | 1999-03-26 | 2000-10-03 | Nippon Steel Corp | グラス被膜及び磁気特性の優れる方向性電磁鋼板の製造方法 |
JP2004353054A (ja) | 2003-05-30 | 2004-12-16 | Jfe Steel Kk | 磁気特性及び被膜特性の良好な方向性電磁鋼板の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4919733A (en) * | 1988-03-03 | 1990-04-24 | Allegheny Ludlum Corporation | Method for refining magnetic domains of electrical steels to reduce core loss |
US4915750A (en) * | 1988-03-03 | 1990-04-10 | Allegheny Ludlum Corporation | Method for providing heat resistant domain refinement of electrical steels to reduce core loss |
JPH0689403B2 (ja) * | 1988-09-02 | 1994-11-09 | 川崎製鉄株式会社 | 一方向性けい素鋼板の製造方法 |
US5296051A (en) * | 1993-02-11 | 1994-03-22 | Kawasaki Steel Corporation | Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics |
DE69331221T2 (de) * | 1993-02-15 | 2002-05-23 | Kawasaki Steel Corp., Kobe | Verfahren zum Herstellen von rauscharmen kornorientierten Siliziumstahlblechern mit niedrigen Wattverlusten und mit hervorragenden Formeigenschaften |
JP3539028B2 (ja) * | 1996-01-08 | 2004-06-14 | Jfeスチール株式会社 | 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法 |
US6309473B1 (en) * | 1998-10-09 | 2001-10-30 | Kawasaki Steel Corporation | Method of making grain-oriented magnetic steel sheet having low iron loss |
EP1279747B1 (en) * | 2001-07-24 | 2013-11-27 | JFE Steel Corporation | A method of manufacturing grain-oriented electrical steel sheets |
EP2770075B1 (en) * | 2011-10-20 | 2018-02-28 | JFE Steel Corporation | Grain-oriented electrical steel sheet and method of producing the same |
-
2011
- 2011-08-04 KR KR1020137003141A patent/KR101423008B1/ko active IP Right Grant
- 2011-08-04 CN CN201180038888.2A patent/CN103069034B/zh active Active
- 2011-08-04 EP EP11814304.9A patent/EP2602341B1/en active Active
- 2011-08-04 US US13/814,054 patent/US20130228251A1/en not_active Abandoned
- 2011-08-04 WO PCT/JP2011/004440 patent/WO2012017669A1/ja active Application Filing
- 2011-08-04 MX MX2013001217A patent/MX353179B/es active IP Right Grant
- 2011-08-04 BR BR112013002913-7A patent/BR112013002913B1/pt active IP Right Grant
- 2011-08-05 JP JP2011172317A patent/JP6116796B2/ja active Active
-
2016
- 2016-02-09 US US15/019,201 patent/US20160163436A1/en not_active Abandoned
- 2016-02-09 US US15/019,171 patent/US20160180991A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572252B2 (ja) | 1978-07-26 | 1982-01-14 | ||
JPS6296617A (ja) | 1985-10-24 | 1987-05-06 | Kawasaki Steel Corp | 低鉄損方向性珪素鋼板の製造方法 |
JPH02277780A (ja) * | 1988-10-26 | 1990-11-14 | Kawasaki Steel Corp | 低鉄損一方向性珪素鋼板及びその製造方法 |
JPH05335128A (ja) * | 1992-05-29 | 1993-12-17 | Kawasaki Steel Corp | 騒音特性の優れた低鉄損一方向性珪素鋼板の製造方法 |
JPH0673509A (ja) * | 1992-08-17 | 1994-03-15 | Nippon Steel Corp | 磁気特性の優れた一方向性電磁鋼板及びその製造方法 |
JP2000124020A (ja) * | 1998-08-10 | 2000-04-28 | Kawasaki Steel Corp | 磁気特性の優れた一方向性珪素鋼板およびその製造方法 |
JP2000273550A (ja) * | 1999-03-26 | 2000-10-03 | Nippon Steel Corp | グラス被膜及び磁気特性の優れる方向性電磁鋼板の製造方法 |
JP2004353054A (ja) | 2003-05-30 | 2004-12-16 | Jfe Steel Kk | 磁気特性及び被膜特性の良好な方向性電磁鋼板の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2602341A4 |
Also Published As
Publication number | Publication date |
---|---|
US20160163436A1 (en) | 2016-06-09 |
EP2602341A4 (en) | 2017-07-05 |
US20160180991A1 (en) | 2016-06-23 |
EP2602341B1 (en) | 2021-02-17 |
US20130228251A1 (en) | 2013-09-05 |
KR20130025971A (ko) | 2013-03-12 |
MX353179B (es) | 2018-01-05 |
CN103069034B (zh) | 2015-03-11 |
EP2602341A1 (en) | 2013-06-12 |
BR112013002913A2 (pt) | 2016-05-31 |
JP6116796B2 (ja) | 2017-04-19 |
CN103069034A (zh) | 2013-04-24 |
JP2012052232A (ja) | 2012-03-15 |
MX2013001217A (es) | 2013-04-08 |
BR112013002913B1 (pt) | 2022-04-05 |
KR101423008B1 (ko) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101421387B1 (ko) | 방향성 전기 강판 및 그 제조 방법 | |
US9290824B2 (en) | Method of producing grain-oriented electrical steel sheet | |
JP6157360B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5927804B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5594437B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
WO2016056501A1 (ja) | 低鉄損方向性電磁鋼板およびその製造方法 | |
WO2012032792A1 (ja) | 方向性電磁鋼板およびその製造方法 | |
EP3591080B1 (en) | Grain-oriented electrical steel sheet and production method therefor | |
JP2012177149A (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5594252B2 (ja) | 方向性電磁鋼板の製造方法 | |
WO2012017671A1 (ja) | 方向性電磁鋼板 | |
JP6116796B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
WO2012001952A1 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP2012177162A (ja) | 方向性電磁鋼板の製造方法 | |
EP4223891A1 (en) | Grain-oriented electromagnetic steel sheet and method for manufacturing same | |
JP2020105589A (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5527094B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP5845848B2 (ja) | 方向性電磁鋼板の製造方法 | |
WO2022255014A1 (ja) | 方向性電磁鋼板 | |
JP5754170B2 (ja) | 方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180038888.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814304 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/001217 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137003141 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011814304 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13814054 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013002913 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013002913 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130206 |