WO2012015247A2 - 휴대용 뇌파 측정 및 제어 시스템 - Google Patents

휴대용 뇌파 측정 및 제어 시스템 Download PDF

Info

Publication number
WO2012015247A2
WO2012015247A2 PCT/KR2011/005551 KR2011005551W WO2012015247A2 WO 2012015247 A2 WO2012015247 A2 WO 2012015247A2 KR 2011005551 W KR2011005551 W KR 2011005551W WO 2012015247 A2 WO2012015247 A2 WO 2012015247A2
Authority
WO
WIPO (PCT)
Prior art keywords
eeg
signal
portable
wave
control system
Prior art date
Application number
PCT/KR2011/005551
Other languages
English (en)
French (fr)
Other versions
WO2012015247A3 (ko
Inventor
강성철
Original Assignee
Kang Sungchul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kang Sungchul filed Critical Kang Sungchul
Priority to US13/812,718 priority Critical patent/US20130123585A1/en
Priority to CN2011800370785A priority patent/CN103052351A/zh
Publication of WO2012015247A2 publication Critical patent/WO2012015247A2/ko
Publication of WO2012015247A3 publication Critical patent/WO2012015247A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Definitions

  • the present invention relates to an apparatus and method for controlling an EEG-related external device by displaying a signal wirelessly received through a short range wireless module from an apparatus for measuring brain waves and an apparatus for measuring acceleration values in three axes, and using the signal.
  • EEG signals delta wave ( ⁇ ), theta wave ( ⁇ ), alpha wave ( ⁇ ), SMR, which are detected through the MCU (Micro Controller Unit; Waves, beta waves ( ⁇ ) and gamma waves ( ⁇ ) are measured by a portable EEG measuring device that can be easily identified by a user through a visual device, the EEG measuring device, and an acceleration measuring device in the three-axis direction.
  • the present invention relates to an EEG-related external device control system using values.
  • EEG is a wavelength with a potential difference of several tens of microvolts and a frequency of 30 hertz or less, which is measured on the human scalp, and is a physical value that reflects the state of human consciousness.
  • EEG can be divided into six types according to its frequency: delta wave ( ⁇ ), theta wave ( ⁇ ), alpha wave ( ⁇ ), SMR wave, beta wave ( ⁇ ) and gamma wave ( ⁇ ).
  • Delta waves are brain waves with a frequency of 0.5 to 3.5 hertz and are related to a state of almost unconscious or deep sleep.
  • Theta waves are brain waves with a frequency of 4 to 7 hertz.
  • alpha waves are brain waves with a frequency of 8 to 11 hertz, which is related to a stable and relaxed state
  • beta waves are 16 to A brainwave with a frequency of 30 hertz, which is related to a state in which a person is slightly nervous and focused when he opens his eyes and is active.
  • gamma waves ( ⁇ ) are brain waves with a frequency of 30 to 50 hertz, which are related to a state of deep thought or concentration in high-order logic.
  • the EEG measurement and control device is basically a measurement method of the brain wave output by the user is very complicated and difficult to visually identify, a separate program or PC for the EEG analysis rather than a simple and specific numerical results The results can be confirmed only by connecting to a separate processing system.Therefore, it was difficult for the general public to systematically concentrate on learning and training.In the EEG-related device control method using brain waves, the use of them is very limited. In addition, there is a problem that it is difficult to compatible with other EEG-related devices.
  • the EEG detection unit worn on the user's scalp detects and digitizes the signal to visually confirm the EEG, and by feeding it back, the concentration can be specifically trained and operated efficiently.
  • the purpose of the present invention is to provide a portable EEG measurement and control system capable of precise control of EEG-related external devices by enabling the setting of the numerical value of EEG.
  • Portable EEG measurement and control system includes a brain wave detection means and an acceleration sensor which is worn on the user's head to detect the brain wave, the brain wave detected by the EEG detection means according to the frequency Display means for classifying the six EEG signals to light LEDs corresponding to the respective signals; Display means for outputting a change value of a signal input to a receiver of the portable EEG measurement and control system; It includes a storage means having a function that can be confirmed by comparing and storing the result value analyzed by the EEG signal itself or the processing of the MCU unit.
  • the system includes a system capable of controlling EEG-related external devices in various ways through wireless communication modules such as a PC or Bluetooth using data.
  • the portable EEG measurement and control system includes a data transmission system 100 and a data reception system 200.
  • the data transmission system 100 transmits an EEG signal to an EEG (EEG) input unit 104 via three EEG detecting headset sensors 102, and the EEG input unit 104.
  • EEG EEG
  • the data measured by the EEG signal and the acceleration sensor 120 is transmitted to the amplification / filter unit 106 to filter the noise, and then amplifies the EEG wavelength and is input to the MCU 108 to be processed.
  • the EEG signal is classified by the signal analysis unit 110 and inputs each signal detected by the LED display unit 112, the data measured by the acceleration sensor controls the EEG-related external device control Used for.
  • the battery unit 110 manages the overall power supply of FIG. 1 and sends a signal to the LED display unit 112 when the power supply is insufficient, and charges the battery 114 inside through the battery charging unit 116.
  • the Bluetooth transmitter 118 transmits a Bluetooth signal for wireless communication with the data receiving system 200.
  • the data receiving system 200 transmits the processed brain wave signal received by the Bluetooth receiver 202 to an input terminal of the MCU 208.
  • the MCU 208 converts the electrical signal into a numerical form in the LCD 206 and the output unit 214 and stores the signal received by the EEG measurement and data transmission system in a memory.
  • the EEG-related external devices may be wired or wirelessly controlled using data measured by the EEG signal and the acceleration sensor.
  • the battery unit 210 manages the entire power supply of FIG. 2 and sends a signal to the LCD 208 when the power supply is insufficient, and charges the internal battery 210 through the battery charger 212.
  • the EEG signal measured using the three headset sensor units 112 and the data measured by the acceleration sensor may be Bluetooth at the Bluetooth transmitter 118 via Bluetooth. It is delivered to the receiver 202.
  • the LCD 206 may measure its own EEG with a numerical output.
  • the three headset sensor unit 112 includes a battery 114 required for the headset and supplies power to the headset through the battery 114.
  • the LCD unit 206 may numerically represent the electrical signal of the EEG received by the Bluetooth receiver 202.
  • the power and time setting unit 302 has a function of displaying the number of brain waves by setting the time required for measurement, such as 1 minute, 3 minutes, and 5 minutes.
  • the connect unit 304 may communicate with and control the EEG-related external device using a PC or Bluetooth, and the manual / automatic setting of the measurement personnel may be performed by a plurality of users using the setting switch 306.
  • the portable EEG measurement and control system when multiple data transmission systems 100 are used, signals are analyzed by the MCU 108 and time-division communication methods are used to display multiple signal values on the LCD 206. At the same time.
  • the Bluetooth 220 is used to connect with nearby mobile phones, PDAs and PCs.
  • the acceleration sensor 120 outputs an acceleration value in a three-axis direction configured as an XYZ axis as a constant data signal, and the acceleration sensor 120 is mounted on two heads of a person. And detect the movement of the head to control the direction of the EEG-related external device.
  • the acceleration sensor 120 may be mounted on the head of the person in the form of a headset, it may be manufactured in various forms according to the user's convenience may be mounted on the head.
  • FIG. 5 (a) it can be seen the operation principle of the acceleration sensor 120 according to an embodiment of the present invention, the movement of the head attached to the acceleration sensor 120, that is, the brain wave in accordance with the direction and inclination of the head The direction of the associated external device is controlled
  • the acceleration sensor 120 detects movement along the X, Y, and Z axis directions in a three-dimensional space, and outputs the signal.
  • the X axis is a left and right direction and the right side is a + signal
  • the Y axis is a front and rear direction and the front is +.
  • Signal, Z axis is up and down, and + signal is down.
  • the acceleration sensor 120 determines the direction of the EEG-related external device by measuring an inclination value with respect to the X, Y, and Z axis directions.
  • Table 1 316 degrees to 360 degrees and 0 to 45 degrees range ( ⁇ 8), ( ⁇ 1) Advance (Forward Zone) 46 degrees to 135 degrees range ( ⁇ 2), ( ⁇ 3) Left turn (left side area) 136 degrees to 225 degrees range ( ⁇ 4), ( ⁇ 5) Reverse (rear zone) 226 degrees to 315 range ( ⁇ 6), ( ⁇ 7) Turn right (right side area)
  • FIG. 6 illustrates a neutral state of the acceleration sensor 120. It is preferable to allow the acceleration sensor 120 to generate a neutral signal when the head is turned only to the left and right while the user's neck is not inclined. This is to prevent an error situation in which the EEG-related external device moves in a direction that is not intended because a situation in which the user turns to the left and right sides may occur during the influence or unconsciousness.
  • the range within the left and right ⁇ 5 degrees inclination around the Z axis is set to the neutral region inclination, and the neutral region inclination is not limited to ⁇ 5 degrees and may be appropriately adjusted by the user. will be.
  • the present invention has a built-in LED to enable the user to check what signal comes out when measuring the brain wave and head movement direction of the headset-type wireless transmitter to be worn on the scalp, each delta wave ( ⁇ ) according to the type of brain waves detected
  • the LEDs corresponding to theta waves ( ⁇ ), alpha waves ( ⁇ ), SMR waves, beta waves ( ⁇ ), and gamma waves ( ⁇ ) are turned on to easily identify the type of brain waves being measured.
  • the headset-type wireless transmitter can send data to a wireless receiver in a short distance, and by using the data of the brain waves received in a short distance, the brain wave data can be confirmed through the FND or LCD screen for convenient analysis.
  • EEG can be easily measured without a separate processing system. Through the connect unit, the EEG signal and the data measured by the acceleration sensor are connected to a wired / wireless communication device such as a PC or Bluetooth to control an EEG-related near / far external device by wire or wirelessly.
  • the portable EEG measurement and control system of the present invention can measure the concentration of the user and can display and store the measured values numerically, thereby making it possible to objectively determine the comparative analysis.
  • the wireless receiver is quantified so that the received signal can be displayed from 0 to 100, deviating from the existing simple task of directly applying the wirelessly received brain wave signal to a toy or device control, and variously through the output setting according to the digitized brain wave data.
  • precise analysis and control is possible, and since it is a basis for objectively determining, users have an advantage of using the present invention more conveniently.
  • the present invention is configured to wirelessly control the direction of the EEG-related external device by detecting a signal according to the inclination direction of the head using a wireless headset-shaped acceleration sensor without using a separate wireless remote controller, By simultaneously using the signal detected by the acceleration sensor and the quantified EEG data, complicated control such as simultaneously controlling the direction and speed of the EEG-related external device is possible.
  • the Bluetooth module inside the wireless receiver enables various applications using the Internet through compatibility with a PC, and wireless communication and control with a short-range external device is possible.
  • the present invention is not only applied to the device control by checking the alpha wave or SMR wave coming out at high concentration, but can be visually confirmed by quantifying each of the six types of EEG, and combined with the acceleration sensor, the EEG-related external device is more complicated.
  • the effect is very good in terms of being able to conduct research that can increase the concentration even more because it can be controlled.
  • FIG. 1 is a block diagram showing the configuration of the EEG measurement and the transmission of the measurement value of the acceleration sensor signal of the portable EEG measurement and control system according to the present invention.
  • FIG. 2 is a block diagram illustrating the configuration of an output system and a device control system by receiving signal measurement values of an EEG and an acceleration sensor transmitted from a transmitter of a portable EEG measurement and control system according to the present invention.
  • FIG. 3 conceptually illustrates the use environment of the portable EEG measurement and control system according to the present invention.
  • FIG. 4 conceptually illustrates a usage environment that can be simultaneously measured by a plurality of users using a time division method in a portable EEG measurement and control system according to the present invention.
  • FIG. 5 is an exemplary view illustrating an operating principle of an acceleration sensor according to the present invention.
  • FIG. 6 is an exemplary view illustrating a neutral state of an acceleration sensor according to the present invention.
  • the correlation between the alpha wave appearance ratio and the concentration is determined by checking the appearance ratio of alpha wave, which is related to the brain wave, and other brain waves. Show how to control the device.
  • An acceleration sensor is mounted inside an EEG detecting means for detecting an EEG in the form of a headset worn on the head of the measurer, thereby configuring an apparatus capable of detecting EEG and detecting a direction from the acceleration sensor.
  • EEG detecting by EEG Since the EEG signal is a micro signal of several microvolts, it needs to be amplified so that it can be analyzed and utilized, and a filter system must be established for the noise generated inevitably. Through this experiment, the appearance rate of alpha wave at the time of concentration was tested. For the experiment, the subject was measured with two concentration states: meditation and reading.
  • the next step is to quantify the rate of appearance of the alpha wave through the device invented so that the state of concentration can be visually identified.
  • the acceleration sensor mounted inside the EEG means calculates coordinate values for the movements of x, y, and z axes.
  • the X axis is the left and right directions, the right side is the + signal, and the Y axis is the forward and backward direction. It becomes a + signal, the Z axis is in the up and down direction, and the bottom is a + signal.
  • the range according to the inclination of the acceleration sensor is forward (x-axis + value), rear (x-axis-value), and left. (y-axis + value) and right (y-axis-value) were divided by movement to confirm the agreement with the actual measured coordinate values.
  • direction detection is possible using coordinate values input from the acceleration sensor. It is possible to implement the EEG measurement and control system using the alpha wave and acceleration sensor which has the reliability which is the core of this development by using the two kinds of input signals simultaneously, and by using the alpha wave and the direction signal at the same time Control of the wireless electronic device used can also be implemented.
  • the portable EEG measurement and control system of the present invention can be widely used in controlling electronic devices using EEG. For example, it is possible to control relatively simple devices such as electric fan control and electric light control, and analyzing the EEG algorithm may enable TV ON / OFF as well as channel selection. In addition, even in the case of a wireless electric train, it is possible to stop at a specific position as well as move forward or to run backward.
  • the alpha wave appearance ratio related to concentration can be digitized in units of 0 to 100, so it can be applied to classes that improve concentration.
  • the present invention can be utilized in everybody, such as electronic device control, improved concentration, wireless EEG toy control.

Abstract

본 발명은 인간의 두피로부터 검출되는 미약한 뇌파신호를 비 침습적 방법으로 측정하여 검출된 뇌파신호의 분석 및 처리를 통한 집중도를 측정할 수 있는 휴대용 뇌파 측정 방법과, 그 뇌파신호를 이용한 근거리 전자기기 제어 또는 인터넷을 통하여 원격 모니터링이 가능한 제어방법에 관한 것으로, 사용자의 두(頭)부에 착용되어서 뇌파를 검출하는 뇌파검출수단 및 XYZ 축으로 구성되는 3축 방향의 가속도 값을 일정 데이터의 신호로 출력하는 가속도센서로 상기 두부의 움직임을 검출해 뇌파관련 기기의 방향 및 속도를 제어하는 것을 특징으로 한다. 더욱 상세하게는, 상기 뇌파 검출수단 으로부터 출력되는 신호를 무선 신호로 변환 후 송신하여 그 값을 디스플레이 장치의 수신부로 입력하고, 상기 디스플레이 장치에 들어온 값을 수치적으로 표현 가능하며 그 값을 설정하여 정밀한 기기제어가 가능한 휴대용 뇌파 측정기 이다. 제어 시스템에 있어서, 상기 휴대용 뇌파 측정기를 통하여 측정된 6가지의 뇌파신호델타파(δ), 쎄타파(θ), 알파파(α), SMR파, 베타파(β) 및 감마파(σ) 와 상술한 바와 같이 사용자의 두(頭)부에 착용되는 가속도센서를 이용해 두부의 기울기 방향에 따른 신호를 검출하여 분석하고 수치적으로 나타내며, 상기 무선 신호를 송, 수신하는 근거리 무선 모듈이 구성되어진 무선시스템은 무선 수신 모듈과 신호 분석부 및 제어 출력부로 구성되어 PC 등과 연결 되거나 뇌파 관련 근/ 원거리의 외부기기 제어가 가능한 것을 특징으로 한다.

Description

휴대용 뇌파 측정 및 제어 시스템
본 발명은 뇌파를 측정하는 장치 및 3축 방향의 가속도 값을 측정하는 장치로부터 근거리 무선 모듈을 통하여 무선으로 수신된 신호를 디스플레이 하고 그 신호를 이용하여 뇌파 관련 외부기기를 제어하는 장치 및 방법에 관한 것으로, 특히 사용자로부터 뇌파를 검출하여 뇌파 분석용 MCU(Micro Controller Unit; 이하 MCU)를 통해 분석된 6가지의 뇌파신호 (델타파(δ), 쎄타파(θ), 알파파(α), SMR파, 베타파(β) 및 감마파(σ))를 시각적 장치를 통하여 사용자가 쉽게 확인이 가능한 휴대용 뇌파 측정기 및 상기 뇌파를 측정하는 장치와 상기 3축 방향의 가속도 값을 측정하는 장치에서 측정된 값을 이용한 뇌파 관련 외부기기 제어 시스템에 관한 것이다.
일반적으로, 뇌파는 인간의 두피에서 측정되는 수십 마이크로 볼트의 전위차와 주로 30헤르츠 이하의 주파수를 지닌 파장으로서, 인간의 의식 상태를 반영하는 물리값이다. 뇌파는 그 주파수에 따라 델타파(δ), 쎄타파(θ), 알파파(α), SMR파, 베타파(β) 및 감마파(σ) 등 6가지 종류로 나눌 수 있다.
델타파는 0.5내지 3.5헤르츠의 주파수를 지닌 뇌파로서 거의 의식이 없는 상태 이거나 깊은 수면중인 상태에 관련이 있으며, 쎄타파는 4내지 7헤르츠의 주파수를 지닌 뇌파로서, 사람이 얕은잠이나 졸고 있는 상태에 관련되어 있다. 또한 알파파는 8내지 11헤르츠의 주파수를 지닌 뇌파로서, 안정되고 편안한 상태에 관련되어 있으며, SMR파는 12내지 15헤르츠의 주파수를 지닌 뇌파로서, 완전 주의집중한 상태에 관련되어 있고, 베타파는 16내지 30헤르츠의 주파수를 지닌 뇌파로서, 사람이 눈을 뜨고 활동시 약간 긴장되고 집중하고 있는 상태에 관련되어 있는 뇌파이다. 그리고 감마파(σ)는 30내지 50헤르츠의 주파수를 지닌 뇌파로서, 깊은 생각이나, 고차원적 논리에 집중하고 있는 상태에 관련이 있는 뇌파이다.
최근 뇌파를 응용하여 사물을 제어하는 연구가 활발히 진행되고 있다. 뇌파 측정전극이 20개에서 30개 이상의 의료용 뇌파측정기 개발이 계속 진행되고 있으며, 개인용 컴퓨터를 통하여 프로그램을 설치하여 집중력 발생시 그래픽으로 처리된 자동차가 달리거나, 화살이 날아 가는 등의 컴퓨터용 프로그램 게임과 소수의 뇌파전극 만을 장착하여 뇌파신호를 검출하여 팬의 회전으로 탁구공을 불어 올리거나 장난감 자동차를 앞으로 달리게 하는 단순 온오프 작동형태의 기기들이 등장하고 있다.
종래 기술에 따른 뇌파 측정 및 제어 장치는 기본적으로 사용자가 어떠한 뇌파를 출력하는지 그 측정 방법이 매우 복잡하며 시각적 확인에 어려움이 있으며, 단순하면서 구체적인 수치화된 결과값이 아닌 뇌파 분석용 별도의 프로그램이나 PC등 별도의 처리시스템에 연결하여야만 그 결과 확인이 가능하여 일반인들 에게는 체계적인 집중력 학습훈련 등을 하기에는 어려움이 있었으며, 뇌파를 이용한 뇌파관련 기기제어 방법에 있어서는 그 활용이 매우 제한적으로, 단순한 제어시스템이 일반적이고, 또한 다른 뇌파 관련 기기와의 호환이 어렵다는 등의 문제점이 있었다.
따라서 본 발명은 상기와 같은 문제점을 해결하기 위하여 사용자의 두피에 착용하는 뇌파검출부에서 신호를 검출하여 수치화 시켜 시각적으로 뇌파의 확인이 가능하도록 하고, 이를 피드백함으로 집중도를 구체적으로 훈련하고 효율적으로 운영 할 수 있도록 하며 수치화된 뇌파의 값을 설정 가능하게 하여 뇌파 관련 외부기기의 정밀한 제어가 가능한 휴대용 뇌파 측정 및 제어시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명에 따르는 휴대용 뇌파 측정 및 제어 시스템은, 사용자의 머리에 착용되어 뇌파를 검출하는 뇌파검출수단 및 가속도 센서를 포함하며, 상기 뇌파검출수단에서 검출된 뇌파를 주파수에 따라 상기 6개의 뇌파 신호로 분류하여 각각의 신호에 해당되는 LED를 점등시키는 표시수단; 상기 휴대용 뇌파 측정 및 제어시스템의 수신부로 입력된 신호의 변화 값을 출력하는 디스플레이 수단; 뇌파신호 자체 또는 MCU부의 처리를 통해 분석된 결과값을 비교 및 저장하여 확인이 가능한 기능을 가진 저장수단을 포함한다. 그리고 시분할 무선통신 방법을 통하여 1인 혹은 다수의 사용자가 정신집중력을 측정할 수 있으며, 수치적 확인을 통한 비교 분석의 객관적인 확인이 가능하고 또한 상기 가속도 센서 및 상기 뇌파검출수단으로부터 수치적으로 처리된 데이터를 이용하여 PC나 블루투스 등의 무선통신모듈을 통해 다양한 방법으로 뇌파 관련 외부기기 제어가 가능한 시스템을 포함한다.
상기 휴대용 뇌파 측정 및 제어 시스템은 데이터 송신 시스템(100)과 데이터 수신 시스템(200) 으로 구성된다. 도 1을 참조하면, 상기 데이터 송신 시스템(100)은 3개의 뇌파 검출용 헤드셋 센서(102)로 EEG(Electro Encephalo Graph; 이하 EEG) 입력부(104)에 뇌파신호를 전달하고, 상기 EEG 입력부(104)에서 받은 뇌파신호 및 가속도 센서(120)에서 측정된 데이터는 증폭/ 필터부(106)로 전달되어 노이즈를 필터링 한 뒤, 뇌파 파장을 증폭시켜 MCU(108)에 입력되어 처리된다. 이때, 상기 뇌파신호는 신호분석부(110)에서 상기 6개의 뇌파 신호를 분류하여 검출된 각각의 신호를 LED표시부(112)로 입력시키고, 상기 가속도 센서에서 측정된 데이터는 뇌파관련 외부기기 제어를 위해 사용된다.
베터리부(110)는 도 1의 전체적인 전원을 관리하며, 전원 부족시 LED표시부 (112)에 신호를 보내게 되고, 밧데리 충전부 (116)를 통하여 내부의 베터리(114)를 충전하게 된다. 블루투스 송신부(118)에서는 데이터 수신 시스템(200)과의 무선 통신을 위한 블루투스 신호를 송신한다.
도 2는 상기 블루투스 송신부(118)에서 송신된 신호를 수신하여 그 신호를 처리하는 데이터 수신 시스템(200)이다. 도 2를 참조하면, 상기 데이터 수신 시스템(200)은 블루투스 수신부(202)로 전달받은 처리된 뇌파 신호는 MCU(208)의 입력단으로 보내어진다. MCU(208)에서는 LCD(206) 및 출력부(214)에 전기적 신호를 수치 형식으로 바꾸고 메모리에 상기 뇌파 측정 및 데이터 송신 시스템에서 수신된 신호를 저장시킨다. PC연결부(216) 및 기기제어부(218)와 블루투스(220) 에서는 상기 뇌파신호 및 상기 가속도 센서에서 측정된 데이터를 이용해 상기 뇌파 관련 외부 기기들을 유선 또는 무선제어를 가능하게 하는 부분이다. 베터리부(210)에서는 도 2 전체의 전원을 관리하며, 전원부족시 LCD(208)에 신호를 보내게 되고, 밧데리 충전부(212)를 통하여 내부의 배터리(210)를 충전하게 된다.
도 3 을 참조하면, 상기 휴대용 뇌파 측정 및 제어시스템에서, 상기 3개의 헤드셋 센서부(112)를 이용해 측정된 뇌파 신호 및 상기 가속도 센서에서 측정된 데이터는 블루투스를 통하여 상기 블루투스 송신부(118)에서 블루투스 수신부(202)로 전달된다. 상기 LCD(206)에서는 수치적인 출력으로 자신의 뇌파를 측정할 수 있다. 또한, 상기 3개의 헤드셋 센서부(112)에는 헤드셋에 필요한 베터리(114)를 포함하며 상기 배터리(114)를 통하여 헤드셋에 필요한 전원을 공급한다. 상기 LCD부(206)에서는 상기 블루투스 수신부(202)로 받아들인 뇌파의 전기적 신호를 수치적으로 표현할 수 있다. 그리고 전원 및 시간설정부(302)에서는 1분, 3분, 5분과 같이 사용자가 측정 소요시간을 설정하여 뇌파의 수치를 표시하는 기능을 가지고 있다. 커넥트부(304)는 PC나 블루투스 등을 이용하여 상기 뇌파관련 외부기기와의 통신 및 제어가 가능하며, 설정스위치(306)를 이용해 다수의 사용자일 경우 측정인원의 수동/ 자동 설정이 가능하다.
도 4 를 참조하면, 상기 휴대용 뇌파 측정 및 제어시스템에 있어서, 상기 데이터 송신 시스템(100)을 여러개 사용할 시 MCU(108)에서 신호를 분석하여 시분할 통신방법을 이용하여 여러개의 신호값을 LCD(206)에 동시에 나타낼 수 있다. 블루투스(220)는 인근의 휴대푠, PDA 및 PC와 접속시에 사용된다.
도 5 를 참조하면, 상기 가속도센서(120)는, XYZ 축으로 구성되는 3축 방향의 가속도 값을 일정 데이터 신호로 출력하는 것으로, 상기 가속도센서(120)는 사람의 두(頭)부에 장착되어 상기 두부의 움직임을 검출하여 상기 뇌파관련 외부기기의 방향을 제어하게 된다
여기서 상기 가속도센서(120)는 헤드셋 형태로 사람의 두부에 장착될 수 있는데, 사용자의 편의에 따른 다양한 형태로 제작되어 두부에 장착될 수 있을 것이다
도 5의 (a)는, 본 발명의 실시 예에 따른 가속도센서(120)의 작동원리에 대해 알 수 있는데, 가속도센서(120)가 부착된 두부의 움직임 즉, 두부의 방향과 기울기에 따라 뇌파관련 외부기기의 방향이 제어된다
상기 가속도센서(120)는 3차원 공간상의 X, Y, Z 축 방향에 따른 움직임을 검출하여 신호로 출력하게 되는데, X축은 좌우 방향이며 우측이 +신호가 되고, Y축은 전후 방향이며 전방이 +신호가 되고, Z축은 상하 방향이며 아래쪽이 +신호가 된다
상기와 같이 가속도센서(120)는 X, Y, Z의 축 방향에 대해서 기울기 값을 측정하여 상기 뇌파관련 외부기기의 방향을 결정하게 된다
도 5의 (b)는 가속도센서(120)의 기울기에 따른 범위를 나눈 것으로, 본 발명에서는 두부의 기울기에 따라 상기 뇌파관련 외부기기의 이동 범위를 아래 표와 같이 4단계로 구분하였다.
표 1
316도~360도 및 0~45도 범위 (θ8), (θ1) 전진 (전방 영역)
46도 ~ 135도 범위 (θ2), (θ3) 좌회전 (좌측방 영역)
136도 ~ 225도 범위 (θ4), (θ5) 후진 (후방 영역)
226도 ~ 315 범위 (θ6), (θ7) 우회전 (우측방 영역)
도 6은 가속도센서(120)의 중립상태를 설명하는 것으로, 사용자의 목이 기울지 않은 상태에서 두부가 좌우로만 돌려보는 동작에는 가속도센서(120)가 중립신호를 발생시키도록 하는 것이 바람직한데, 이는 주변의 영향이나 무의식중에 좌우측으로 돌아보는 상황이 발생할 수 있기 때문에 의도한 바가 아닌 방향으로 상기 뇌파관련 외부기기가 이동하는 오류 상황을 방지하기 위함이다.
도 6에 도시된 바와 같이 본 발명에서는 Z축을 중심으로 좌우 ±5도 기울기 이내의 범위는 중립영역 기울기로 설정하였으며, 상기 중립영역 기울기는 ±5도에 한정되지 않고 사용자에 의해 적절히 조절될 수 있을 것이다.
본 발명은 두피에 착용하는 헤드셋 형태의 무선 송신부에 뇌파 및 두부의 이동방향 측정시 어떠한 신호가 나오는지 눈으로 확인이 가능하도록 LED를 내장하여, 검출되는 뇌파의 종류에 따라 각각의 델타파(δ), 쎄타파(θ), 알파파(α), SMR파, 베타파(β) 및 감마파(σ)에 해당하는 LED가 점등되어, 측정 되어지는 뇌파의 종류가 쉽게 식별 가능하다. 또한 상기 헤드셋 형태의 무선 송신부를 통해 데이터를 근거리에 있는 무선수신부로 보낼 수 있고, 근거리 무선으로 수신된 뇌파의 데이터를 이용해 뇌파 분석을 편리하게 하기 위하여 FND나 LCD 화면을 통하여 확인 가능하게 함으로써 PC등의 별도의 처리 시스템 없이도 간편하게 뇌파를 측정 가능하다. 커넥트부를 통하여서는 상기 뇌파신호 및 상기 가속도 센서에서 측정된 데이터를 이용해 PC나 블루투스 등의 유/무선 통신기기등과 연결되어 뇌파 관련 근/원거리 외부기기를 유선 혹은 무선으로 제어가 가능하다.
본 발명의 휴대용 뇌파 측정 및 제어시스템은 사용자의 집중력 측정이 가능하고 측정된 값을 수치적으로 표시 및 저장 가능하여 비교 분석의 객관적인 판단이 가능하다. 또한 무선수신기에는 무선수신된 뇌파신호를 장난감이나 기기제어에 바로 적용시키는 기존의 단순작업에서 벗어나 수신신호를 0에서 100까지 표시할 수 있도록 수치화하여 상기 수치화된 뇌파 데이터에 따른 출력설정을 통해 다양하고도 정밀한 분석 및 제어가 가능할 뿐 아니라 객관적으로 판단할 수 있는 근거가 되기 때문에 사용자들이 본 발명을 보다 편리하게 사용할 수 있는 장점을 지니고 있다.
본 발명은 별도의 무선 조종기를 사용하지 않고서도 무선 헤드셋 모양의 가속도센서를 이용하여 두부(頭部)의 기울기 방향에 따른 신호를 검출하여 무선으로 뇌파관련 외부기기의 방향을 제어하도록 구성하고, 상기 가속도 센서에서 검출된 신호와 상기 수치화된 뇌파 데이터를 동시에 이용함으로써, 상기 뇌파관련 외부기기의 방향 및 속도를 동시에 제어하는 등의 복잡한 제어가 가능하다. 또한 무선수신기 내부의 블루투스 모듈에 의하여 PC와의 호환을 통해 인터넷을 이용한 다양한 응용이 가능하고, 근거리 외부기기와의 무선 통신 및 제어가 가능한 장점이 있다. 또한 그 활용에 있어서 환자 및 일반 사용자의 뇌파상태 및 집중력 상태를 근거리 측정 혹은 인터넷을 통하여 24시간 실시간 측정이 가능하다.
따라서 본 발명은 높은 집중력일 때 나오는 알파파나 SMR파 만을 확인하여 기기제어에 적용하는 것이 아니라 6종류의 뇌파를 각각 수치화하여 시각적으로 확인 가능하며, 상기 가속도센서와 결합하여 더욱 복잡한 상기 뇌파관련 외부기기의 제어가 가능하여 더욱더 집중력을 높일 수 있는 연구를 할 수 있다는 측면에서 그 효과가 매우 우수하다.
또한 뇌파측정 이외에도 뇌파신호를 이용한 무선 게임기, 교육용학습 등 여러 가지 응용이 가능하다.
이상과 같이 본 발명은 비록 한정된 도면과 실시예에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 전문적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변경이 가능하다.
따라서 본 발명 사상은 아래에 기재된 특허청구 범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.
도 1은 본 발명에 따른 휴대용 뇌파 측정 및 제어시스템의 뇌파 측정과 가속도 센서 신호의 측정값 송신에 대한 구성을 도시한 블록도 이다.
도 2는 본 발명에 따른 휴대용 뇌파 측정 및 제어시스템의 송신부 에서 송신된 뇌파 및 가속도 센서의 신호측정값을 수신하여 출력 시스템 및 기기제어 시스템의 구성을 도시한 블록도 이다.
도 3은 본 발명에 따른 휴대용 뇌파 측정 및 제어시스템의 사용환경을 개념적으로 도시한 것이다.
도 4는 본 발명에 따른 휴대용 뇌파 측정 및 제어시스템에서 시분할 방식을 이용하여 다수의 사용자들이 동시에 측정 가능한 사용환경을 개념적으로 도시한 것이다.
도 5는 본 발명에 따른 가속도센서의 작동원리를 설명하는 예시도 이다.
도 6은 본 발명에 따른 가속도센서의 중립상태를 설명하는 예시도 이다.
도 7은 집중 상태에 따른 주파수별 뇌파출력신호의 실험적 측정데이터 이다.
도 8은 가속도센서를 이용한 방향검출신호의 실험적 측정 데이터 이다.
<도면의 주요부분에 대한 부호의 설명>
100.. 데이터 송신 시스템
102.. 헤드셋 센서부 104.. EEG입력부
106.. 증폭/ 필터부 108.. MCU
110.. 신호분석부 112.. LED표시부
114.. 배터리 116.. 충전부
118.. 블루투스 송신부 120.. 가속도 센서
200.. 데이터 수신 시스템
202.. 블루투스 수신부 204.. 설정부
206.. LCD 208.. MCU
210.. 배터리 212.. 충전부
214.. 출력부 216.. PC 연결부
218.. 기기제어부 220.. 블루투스
302.. 전원 및 시간설정부 304.. 커넥트
306.. 수동 / 자동 스위치
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명을 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
[실시예]
본 실시 예에서 피측정자가 집중을 하고 있는 상태와 비 집중 상태의 경우 이와 연관성이 있는 뇌파인 알파파와 이외 뇌파의 출현비를 확인하여 알파파 출연비와 집중력의 상관관계를 판명하고, 이를 이용한 무선 전자기기의 제어 방법을 보여준다.
측정자의 머리에 착용되는 헤드셋 형태의 뇌파를 검출하는 뇌파검출수단에 가속도 센서를 내부에 장착시켜 뇌파의 검출 및 가속도 센서로 부터 방향검출이 가능한 장치를 구성한다.(도 3) 뇌파검출수단에서 검출된 뇌파 신호는 수 마이크로 볼트의 미세한 신호이므로, 분석 및 활용이 가능하도록 증폭 시킬 필요가 있으며, 필연적으로 발생하는 노이즈에 대한 필터 시스템을 구축하여야 한다. 이를 통해 집중시 알파파의 출현비율을 실험 하며, 실험을 위하여 피측정자를 명상 및 독서 2가지의 집중상태로 측정을 실시하였다.
실험결과, 독서 및 명상과 같은 집중을 하고 있는 경우 알파파의 출현비가알파파 이외의 뇌파신호(베타파와 감마파등)보다 높고, 특히 독서를 실시하고 있을 경우 명상의 경우보다 두배 이상의 알파파 출현을 보였다. 따라서 본 실시 예를 이용하여 알파파와 집중력의 상관관계를 판명할 수 있음을 확인하였다. (도 7)
다음 단계로, 발명된 기기를 통해 알파파의 출현비율을 수치화 하므로 집중력의 상태를 시각적으로 확인 가능하도록 변환한다. 또한 뇌파검출수단의 내부에 장착된 가속도센서는 x, y, z 3축의 이동에 대하여 좌표 값을 구해주는 역할을 하는데, X축은 좌우 방향이며 우측이 +신호가 되고, Y축은 전후 방향이며 전방이 +신호가 되고, Z축은 상하 방향이며 아래쪽이 +신호가 된다. 피 측정자의 가속도센서가 부착된 두부의 움직임 및 좌표 값의 일치성을 확인하기 위하여 본 실시 예에서는 가속도센서의 기울기에 따른 범위를 전방(x축 +값), 후(x축 -값), 좌(y축 +값), 우(y축 -값)의 이동으로 나누어 것으로, 실제 측정되는 좌표 값과의 일치성을 확인하였다.
(도 8)
이렇듯, 가속도 센서로부터 입력된 좌표 값을 이용하여 방향검출이 가능하다. 상기와 같은 두 종류의 입력신호를 동시에 이용하여 본 개발의 핵심이 되는 신뢰도를 가지는 알파파 및 가속도 센서를 이용한 뇌파측정 및 제어시스템의 구현이 가능하며, 알파파 및 방향신호를 동시에 활용함으로 집중력을 이용한 무선전자기기의 제어 또한 구현 가능하다.
본 발명인 휴대용 뇌파측정 및 제어시스템은, 뇌파를 이용한 전자기기제어에 있어서 폭넓게 활용이 가능하다. 예를 들어 선풍기제어, 전등제어 등 비교적 간단한 기기를 제어 할 수 가 있으며, 뇌파 알고리즘을 분석처리하게 되면 TV ON/OFF 는 물론 채널선택도 가능할 수가 있다. 그리고, 무선 전동열차의 경우에도 전진 뿐만 아니라 특정위치에 정지할 수도 있고 뒤로도 달리도록 응용이 가능하다
또한 집중력과 관련된 알파파 출현비가 0~100 단위로 수치화가 가능하여 집중력을 향상시키는 수업에도 적용이 가능하다.
자동차 운전에 적용을 시킬 경우 긴급한 방어운전시나 졸음 또는 건강이상유무에 따른 뇌파의 형태를 파악하여, 운전자 건강을 보호할 수 있는 시스템으로도 접목을 시킬 수 있다
따라서 본 발명은, 전자기기제어, 집중력향상, 무선뇌파 장난감제어 등 여러분야에 활용이 가능하다.

Claims (13)

  1. 휴대용 뇌파 측정 및 제어시스템에 있어서,
    다수의 전극을 피험자의 두피에 부착하여 뇌파를 측정하는 뇌파 측정부에서 아날로그 뇌파 신호가 측정되면,
    상기 뇌파 측정부에서 측정된 상기 아날로그 뇌파 신호의 노이즈(Noise)를 제거하는 필터부 및 뇌파 신호를 증폭하는 증폭부를 통과한 신호가,
    휴대용 뇌파 측정기의 전체 시스템을 제어하는 MCU부의 처리를 통해 6가지 뇌파신호(델타파(δ), 쎄타파(θ), 알파파(α), SMR파, 베타파(β) 및 감마파(σ))로 구분하여 각각의 출력 신호를 LED로 표시하는 LED출력부와;
    상기 6가지 뇌파신호를 무선으로 전송 가능한 헤드셋 형태의 무선 송수신부와;
    상기 MCU부의 처리를 통해 출력된 값을 0 ~ 100까지 수치적으로 표시하는 LCD장치를 이용한 디스플레이부와;
    출력된 값을 하나 이상 저장하는 메모리부로 형성되는 것을 특징으로 하며,
    외부 기기 제어를 위하여,
    XYZ 축으로 구성되는 3축 방향의 가속도 값을 일정 데이터 신호로 출력하는 가속도센서의 출력값과 상기 MCU부의 처리를 통해 출력된 뇌파값을 이용하여 PC 및 블루투스를 이용한 뇌파관련 외부기기와 유무선 연결 및 제어가 가능한 커넥트부;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  2. 청구항 1에 있어서,
    상기 LCD장치를 이용한 디스플레이부는,
    상기 MCU부의 처리를 통해 분석된 뇌파의 값을 상기 6개의 뇌파 신호 별로 각각 0 ~ 100까지 수치적 표현이 가능하여 사용자가 수치적으로 비교/ 분석이 가능함으로 집중력 향상을 위한 객관적 자료가 되는 출력표시장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  3. 청구항 1에 있어서,
    상기 커넥트부는,
    개인용 PC등에 적용하여 원격으로 모니터링이 가능하며, 유선을 이용하여 커넥트 접속이 어려울 경우 무선 모듈 사용이 가능하여 PC, 블루투스, RF신호를 이용하여 뇌파관련 외부기기와의 호환성을 가지는 장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  4. 청구항 1에 있어서,
    상기 디스플레이부에서 측정된 뇌파의 지시값이 0~10을 표시할시 1번 출력, 11~20을 표시할시 2번출력, 21~30을 표시할시 3번출력 등과 같이 지시값의 범위를 정하여 해당 범위에 따른 세분화된 출력에 의하여 상기 뇌파관련 외부기기의 정밀제어가 가능한 장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  5. 청구항 1에 있어서
    상기 LED출력부는,
    뇌파 측정부에서 측정된 뇌파를 주파수에 따라 상기 6개의 뇌파 신호로 분류하여 각각의 신호에 해당되는 LED를 점등시킴으로 현재 어떠한 파가 수신 되는지를 표시하는 표시수단;
    을 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  6. 청구항 1에 있어서
    상기 무선으로 전송된 뇌파신호의 단위 시간당 입력되는 횟수를 이용해 1에서 100등분으로 나누어 수치화 함으로 측정된 뇌파를 객관적으로 비교분석이 가능하여 집중력 측정 및 측정된 신호를 활용 할 수 있도록 설계한 시스템;
    포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  7. 청구항 1에 있어서
    상기 EEG(뇌파신호)와 상기 가속도센서에서 검출된 두가지 신호를 상기 MCU에서 분석하여 EEG와 가속도센서 데이터를 동시에 이용함으로 상기 뇌파관련 외부기기의 복잡한 제어가 가능한 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  8. 청구항 1에 있어서,
    무선 수신기에서 뇌파 측정시간 및 뇌파의 종류를 설정 할 수 있도록 하여(1분~10분), 1분 셋팅시에는 1분동안에 수신되는 측정하고자 하는 뇌파의 값, 3분 셋팅시에는 3분 동안에 수신되는 측정하고자 하는 뇌파의 값을 수치적으로 표시하도록 하여 측정하고자 하는 뇌파의 시간대비 값을 구할 수 있는 무선 수신 장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  9. 청구항 1에 있어서,
    헤드셋 형태의 무선 송신기나 무선수신기 내부에 블루투스 모듈과, RF모듈 그리고 가속도센서 3가지를 모두 내장 설계하여 PC 및 무선 기기들과의 통신을 겸할 수 있는 무선 송, 수신장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템
  10. 청구항 1에 있어서,
    두피에 착용하는 무선송신기 내부에 상기 가속도센서를 내장하여 뇌파 측정 및 사용자의 머리 움직임 신호를 동시에 인식함으로 집중 신호 및 움직임 신호를 동시에 활용하여 기기를 제어할 수 있도록 설계한 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  11. 청구항 1에 있어서,
    상기 디스플레이부는,
    하나의 무선 수신부만 표시하는 것이 아니라 근거리에서 사용하고 있는 다수의 뇌파를 측정하여 하나의 무선 송신기로 여러개의 무선수신기를 관리할 수 있어 여러명의 뇌파측정 사용자의 관리를 할 수 있도록 설계된 디스플레이 장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  12. 청구항 11에 있어서,
    상기 디스플레이 장치는,
    셋팅한 뇌파의 종류와 수신된 뇌파의 값을 표시함과 동시에 기기의 배터리 부족 및 고장등의 이상상태를 표시하는 상기 휴대용 뇌파 측정기의 이상유무 확인이 가능한 디스플레이 장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
  13. 청구항 1에 있어서,
    상기 메모리부는,
    사용자의 설정을 통하여 정해진 횟수만큼 상기 휴대용 뇌파 측정기로 부터 수신되는 뇌파의 값을 상기 MCU부의 처리를 통해 분석하여 그 결과값을 저장하는 저장기능을 가지는 장치;
    를 포함하여 구성되는 것을 특징으로 하는 휴대용 뇌파 측정 및 제어시스템.
PCT/KR2011/005551 2010-07-28 2011-07-28 휴대용 뇌파 측정 및 제어 시스템 WO2012015247A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/812,718 US20130123585A1 (en) 2010-07-28 2011-07-28 Portable brainwave measuring and controlling system
CN2011800370785A CN103052351A (zh) 2010-07-28 2011-07-28 便携式脑电波检测及控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100072676A KR101031507B1 (ko) 2010-07-28 2010-07-28 휴대용 뇌파 측정 및 제어 시스템
KR10-2010-0072676 2010-07-28

Publications (2)

Publication Number Publication Date
WO2012015247A2 true WO2012015247A2 (ko) 2012-02-02
WO2012015247A3 WO2012015247A3 (ko) 2012-04-12

Family

ID=44050656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005551 WO2012015247A2 (ko) 2010-07-28 2011-07-28 휴대용 뇌파 측정 및 제어 시스템

Country Status (4)

Country Link
US (1) US20130123585A1 (ko)
KR (1) KR101031507B1 (ko)
CN (1) CN103052351A (ko)
WO (1) WO2012015247A2 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351631B1 (ko) * 2011-12-14 2014-01-16 성균관대학교산학협력단 안경형 뇌파 측정 장치와 이를 포함하는 뇌파 측정 시스템
US10130278B2 (en) * 2012-10-15 2018-11-20 Jordan Neuroscience, Inc. Wireless EEG unit
CN103428965B (zh) * 2013-07-11 2015-07-22 常州大学 一种基于脑波控制的智能led变色灯及其智能控制方法
CN103561020B (zh) * 2013-10-30 2017-07-21 深圳市宏智力科技有限公司 一种脑波数据传输方法、装置及系统
CN103647582A (zh) * 2013-11-04 2014-03-19 成都佳锂科技有限公司 一种蓝牙脑电波监测装置
KR101480535B1 (ko) 2014-02-27 2015-01-12 주식회사 올비트앤 헤어핀 타입의 휴대용 뇌파 측정 장치를 포함한 뇌파 측정 시스템
KR101480536B1 (ko) * 2014-02-27 2015-01-12 주식회사 올비트앤 헤어밴드 타입의 휴대용 뇌파 측정 장치를 포함한 뇌파 측정 시스템 및 이를 이용한 수면 관리 방법
CN103976740B (zh) * 2014-05-23 2016-03-30 清华大学 一种面向网络环境的脑电信号身份识别系统及识别方法
KR101465587B1 (ko) * 2014-08-07 2014-11-27 (주)와이브레인 웨어러블 장치 및 이의 제어 방법
CN104581538B (zh) * 2015-01-28 2018-03-02 三星电子(中国)研发中心 消除噪音的方法和装置
KR101656186B1 (ko) * 2015-06-05 2016-09-08 건양대학교산학협력단 Smr파를 이용한 상태표출 시스템
KR101745423B1 (ko) * 2015-11-17 2017-06-12 서울대학교산학협력단 다채널 뇌파 측정 장치
KR101737930B1 (ko) * 2015-11-24 2017-05-19 한국과학기술연구원 군집활동 연구를 위한 뇌파 분석 및 시각화 장치 및 방법
KR102016455B1 (ko) 2017-01-17 2019-08-30 양한성 애완동물 소통 방법
CN107029384B (zh) * 2017-05-08 2018-11-23 江苏理工学院 一种跑步机安全附属装置
CN208541304U (zh) * 2017-09-06 2019-02-26 深圳创达云睿智能科技有限公司 脑电波检测设备
CN108245270A (zh) * 2017-12-29 2018-07-06 宁夏软件工程院有限公司 一种脑电波控制的快速反应电动牙刷
CN108309289A (zh) * 2018-02-11 2018-07-24 广东欧珀移动通信有限公司 脑电波采集方法及相关设备
WO2020056025A1 (en) 2018-09-12 2020-03-19 California Institute Of Technology A wearable inductive damping sensor
CN109256154A (zh) * 2018-10-31 2019-01-22 蔡凯鹏 一种多媒体脑电波播放机
EP4107487A4 (en) * 2020-02-19 2024-02-14 California Inst Of Techn INDUCTIVE DAMPENING BRAIN SENSOR
CN111897414B (zh) * 2020-06-10 2024-01-30 中国联合网络通信集团有限公司 控制物体速度的方法、系统及电子设备
KR20230105821A (ko) 2022-01-05 2023-07-12 (주)베테랑소사이어티 휴대용 무선 fNIRS 기술을 이용한 집중도 모니터링 장치, 그를 이용한 집중도 모니터링 방법 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020066445A (ko) * 2001-02-10 2002-08-17 학교법인 포항공과대학교 뇌파를 이용한 가전기기 원격제어장치 및 그 방법
KR20030002677A (ko) * 2001-06-29 2003-01-09 림스테크널러지주식회사 뇌파 파라미터를 사용한 뉴로피드백 훈련을 위한 무선시스템 및 그 방법
KR20030017124A (ko) * 2001-08-24 2003-03-03 림스테크널러지주식회사 뇌-기계 인터페이스 작동을 위한 무선 시스템 및 그의제어방법
KR20090001342A (ko) * 2007-06-29 2009-01-08 진경수 무선을 이용한 안구전위 기반 안구운동과 수면학습을 위한 안대장치 및 그 제어 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712378B2 (ja) * 1989-08-10 1995-02-15 パイオニア株式会社 脳波誘導用ゴーグルおよび脳波誘導装置
US5694939A (en) * 1995-10-03 1997-12-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Autogenic-feedback training exercise (AFTE) method and system
US20020067269A1 (en) * 1996-01-17 2002-06-06 Cadell Theodore C. Spread spectrum telemetry of physiological signals
US20040073129A1 (en) * 2002-10-15 2004-04-15 Ssi Corporation EEG system for time-scaling presentations
US20080177197A1 (en) * 2007-01-22 2008-07-24 Lee Koohyoung Method and apparatus for quantitatively evaluating mental states based on brain wave signal processing system
JP2007312921A (ja) * 2006-05-24 2007-12-06 Casio Comput Co Ltd 生体情報測定装置及び生体情報測定システム
US20110152709A1 (en) * 2008-10-29 2011-06-23 Toyota Jidosha Kabushiki Kaisha Mobile body control device and mobile body control method
EP2400884B1 (en) * 2009-02-25 2018-03-07 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
CN201379971Y (zh) * 2009-03-10 2010-01-13 深圳先进技术研究院 游戏交互装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020066445A (ko) * 2001-02-10 2002-08-17 학교법인 포항공과대학교 뇌파를 이용한 가전기기 원격제어장치 및 그 방법
KR20030002677A (ko) * 2001-06-29 2003-01-09 림스테크널러지주식회사 뇌파 파라미터를 사용한 뉴로피드백 훈련을 위한 무선시스템 및 그 방법
KR20030017124A (ko) * 2001-08-24 2003-03-03 림스테크널러지주식회사 뇌-기계 인터페이스 작동을 위한 무선 시스템 및 그의제어방법
KR20090001342A (ko) * 2007-06-29 2009-01-08 진경수 무선을 이용한 안구전위 기반 안구운동과 수면학습을 위한 안대장치 및 그 제어 방법

Also Published As

Publication number Publication date
WO2012015247A3 (ko) 2012-04-12
CN103052351A (zh) 2013-04-17
KR101031507B1 (ko) 2011-04-29
US20130123585A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2012015247A2 (ko) 휴대용 뇌파 측정 및 제어 시스템
Lin et al. Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning
US8923918B2 (en) Biosensor interface apparatus for a mobile communication device
CA2675507C (en) A method and apparatus for quantitatively evaluating mental states based on brain wave signal processing system
US20180279952A1 (en) Wired audio headset with physiological monitoring
CN204971277U (zh) 一种可实现脑电检测的健康服务机器人
CN105078450A (zh) 一种可实现脑电检测的健康服务机器人
JP2016526972A5 (ko)
WO2013122327A1 (ko) 가속도 센서를 이용한 체력검사 시스템
US20090259138A1 (en) Automatic bio-signal supervising system for medical care
WO2015076462A1 (ko) 생체 신호를 측정하는 방법 및 장치
KR20120098538A (ko) 피검자의 트래머데이터 측정장치
Hong et al. Septimu: continuous in-situ human wellness monitoring and feedback using sensors embedded in earphones
EP2903518A1 (en) A monitoring device for analysing a sleep condition
KR20120064921A (ko) 휴대용 무선전송형 근전도 센서 및 모션 센서 시스템
Fletcher et al. Wearable wireless sensor platform for studying autonomic activity and social behavior in non-human primates
US20160206224A1 (en) Ecg electrode snap connector and associated methods
CN108463168A (zh) 生理传感装置及包括该生理传感装置的生理监护设备
US20230103276A9 (en) Impairement screening system and method
KR101203902B1 (ko) 운동처방시스템용 개인 생체계측단말기
US20160183797A1 (en) Multifunction Biotelemetry Support System for Psychophysiology Monitoring
CN111920398A (zh) 一种复合型人体生理电信号检测头环
WO2017164495A1 (ko) 웨어러블 산소포화도 측정 시스템
WO2021107727A1 (ko) 동잡음을 통해 심정지 판단을 수행하는 스마트밴드 및 이를 이용한 심정지 관리시스템
WO2021242026A1 (ko) 반려 동물의 생체 정보를 측정하기 위한 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037078.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812776

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13812718

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11812776

Country of ref document: EP

Kind code of ref document: A2