WO2012014861A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012014861A1
WO2012014861A1 PCT/JP2011/066898 JP2011066898W WO2012014861A1 WO 2012014861 A1 WO2012014861 A1 WO 2012014861A1 JP 2011066898 W JP2011066898 W JP 2011066898W WO 2012014861 A1 WO2012014861 A1 WO 2012014861A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel circuit
switching element
sensor
sensor pixel
light receiving
Prior art date
Application number
PCT/JP2011/066898
Other languages
English (en)
French (fr)
Inventor
耕平 田中
杉田 靖博
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/811,974 priority Critical patent/US9384707B2/en
Publication of WO2012014861A1 publication Critical patent/WO2012014861A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a display device, and more particularly to a display device in which a plurality of photosensors are arranged in a pixel region.
  • a method of providing a plurality of optical sensors on a display panel and providing an input function such as a touch panel, a pen input, and a scanner is known for display devices.
  • a display device in which a light receiving element such as a photodiode is formed in a pixel region simultaneously with the step of forming a semiconductor element or the like of a display pixel in the pixel region is widely known (for example, JP, 2006-3857, WO 2007/145346, and WO 2007/145347).
  • an object of the present invention is to provide a display device in which the number of bus lines for supplying a drive signal to the optical sensor is suppressed in a display device including an optical sensor in a pixel region.
  • a display device disclosed herein is a display device including an active matrix substrate, and includes a display pixel circuit and a sensor pixel circuit provided in a pixel region of the active matrix substrate, and the sensor pixel circuit includes a light receiving element and a sensor pixel circuit.
  • a storage node for storing charges according to the amount of light incident on the light receiving element; and a readout switching element for reading out the charges of the storage node, wherein the display device supplies the storage node with the storage node.
  • a drive circuit for supplying a sensor drive signal for controlling a reset operation and an accumulation operation of the display pixel circuit via a source line for supplying a display data signal to the display pixel circuit, and a sensor control line provided other than the source line And a protective switching element for protecting the sensor signal of the sensor pixel circuit.
  • the present invention it is possible to provide a display device in which the number of bus lines for supplying a drive signal to the optical sensor is suppressed in a display device including the optical sensor in the pixel region.
  • FIG. 1 is a block diagram showing a configuration of a display device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an arrangement of sensor pixel circuits in the pixel region.
  • FIG. 3A is a circuit diagram illustrating a configuration of a first sensor pixel circuit according to the first embodiment.
  • FIG. 3B is a circuit diagram illustrating a configuration of a second sensor pixel circuit according to the first embodiment.
  • FIG. 4 is a circuit diagram showing a configuration example when the first sensor pixel circuit according to the first embodiment is integrated in a pixel.
  • FIG. 5 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the first embodiment.
  • FIG. 6 is a circuit diagram illustrating a configuration of a sensor pixel circuit according to the second embodiment.
  • FIG. 7 is a circuit diagram showing a configuration example when the sensor pixel circuit according to the second embodiment is integrated in a pixel.
  • FIG. 8 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the second embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a sensor pixel circuit according to the third embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration example when the sensor pixel circuit according to the third embodiment is integrated in a pixel.
  • FIG. 11 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the third embodiment.
  • FIG. 12A is a circuit diagram illustrating a configuration of a first sensor pixel circuit according to the fourth embodiment.
  • FIG. 12B is a circuit diagram illustrating a configuration of a second sensor pixel circuit according to the fourth embodiment.
  • FIG. 13 is a circuit diagram illustrating a configuration example when the sensor pixel circuit according to the fourth embodiment is integrated in a pixel.
  • FIG. 14 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the fourth embodiment.
  • FIG. 15 is a circuit diagram showing a configuration of a sensor pixel circuit according to the fifth embodiment.
  • FIG. 16 is a circuit diagram illustrating a configuration example when the sensor pixel circuit according to the fifth embodiment is integrated in a pixel.
  • FIG. 17 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the fifth embodiment.
  • FIG. 18 is a circuit diagram showing a configuration of a sensor pixel circuit according to the sixth embodiment.
  • FIG. 19 is a circuit diagram showing a configuration example when the sensor pixel circuit according to the sixth embodiment is integrated in a pixel.
  • FIG. 20 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the sixth embodiment.
  • FIG. 21 is a circuit diagram showing a configuration of a sensor pixel circuit according to the seventh embodiment.
  • FIG. 22 is a circuit diagram illustrating a configuration example when the sensor pixel circuit according to the seventh embodiment is integrated in a pixel.
  • FIG. 23 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the seventh embodiment.
  • FIG. 24 is a circuit diagram showing a configuration of a sensor pixel circuit according to the eighth embodiment.
  • FIG. 25 is a circuit diagram showing a configuration example when the sensor pixel circuit according to the eighth embodiment is integrated in a pixel.
  • FIG. 26 is a waveform diagram showing signals supplied to the sensor pixel circuit according to the eighth embodiment.
  • a display device includes: A display device comprising an active matrix substrate, A display pixel circuit and a sensor pixel circuit provided in a pixel region of the active matrix substrate;
  • the sensor pixel circuit includes: A light receiving element; An accumulation node for accumulating charges according to the amount of light incident on the light receiving element; A readout switching element for reading out the charge of the storage node,
  • the display device A drive circuit for supplying a sensor drive signal for controlling a reset operation and an accumulation operation of the storage node to the sensor pixel circuit via a source line for supplying a display data signal to the display pixel circuit;
  • the configuration further includes a protective switching element that is connected to a sensor control line provided other than the source line and protects a sensor signal of the sensor pixel circuit (first configuration).
  • the sensor control line is arranged perpendicular to the source line in the pixel region (second configuration).
  • the sensor pixel circuit comprises: A control switching element connected between the light receiving element and the storage node;
  • the protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a reset voltage to the light receiving element; It is preferable to include a second protective switching element connected between the control switching element and the storage node (third configuration).
  • the sensor pixel circuit comprises: A first sensor pixel circuit and a second sensor pixel circuit each comprising the storage node and the readout switching element; The first sensor pixel circuit and the second sensor pixel circuit share one light receiving element, Each of the first sensor pixel circuit and the second sensor pixel circuit further includes a control switching element connected between the light receiving element and the storage node, The protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a reset voltage to the light receiving element; Each of the first sensor pixel circuit and the second sensor pixel circuit may include a second protection switching element connected between the control switching element and the storage node ( Fourth configuration).
  • the sensor pixel circuit comprises: A control switching element connected between the light receiving element and the storage node; A storage capacitor provided between the control switching element and the storage node; A switching element connected between the storage capacitor and the storage node; The protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a reset voltage to the light receiving element; A configuration including a second protective switching element connected between the storage capacitor and the storage node may be employed (fifth configuration).
  • the sensor pixel circuit comprises: A control switching element connected between the light receiving element and the storage node; A reset switching element connected between the control switching element and the storage node and controlling a reset operation;
  • the protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a constant voltage to the light receiving element;
  • a configuration including a second protection switching element connected between the control switching element and the storage node may be employed (sixth configuration).
  • the sensor pixel circuit comprises: A control switching element connected between the light receiving element and the storage node; A storage capacitor connected between the control switching element and the storage node; A reset switching element connected between the control switching element and the storage capacitor and controlling a reset operation; A switching element connected between the storage capacitor and the storage node;
  • the protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a constant voltage to the light receiving element;
  • a configuration including a second protective switching element connected between the storage capacitor and the storage node may be employed (seventh configuration).
  • the sensor pixel circuit comprises: A reset switching element connected to the light receiving element and controlling a reset operation;
  • the protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a constant voltage to the light receiving element;
  • a connection point between the light receiving element and the reset switching element and a second protection switching element connected between the storage nodes may be included (eighth configuration).
  • the sensor pixel circuit comprises: A reset switching element that is connected to the light receiving element and controls a reset operation; A read control switching element that is connected to the read switching element and controls a read operation;
  • the protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a constant voltage to the light receiving element; A connection point between the light receiving element and the reset switching element and a second protection switching element connected between the storage nodes may be included (a ninth structure).
  • the sensor pixel circuit comprises: A reset switching element that is connected to the light receiving element and controls a reset operation; A read control switching element that is connected to the read switching element and controls a read operation;
  • the protective switching element is A first protective switching element connected between the light receiving element and a source line for supplying a constant voltage to the light receiving element; A connection point between the light receiving element and the reset switching element, and a second protection switching element connected between the storage node,
  • the light receiving element may be formed of a transistor of the same type as the switching element included in the sensor pixel circuit (tenth structure).
  • the drive circuit performs a sensor drive signal for controlling the reset operation and the accumulation operation in a blanking period in a drive period of the display pixel circuit (an eleventh configuration).
  • the drive circuit performs a sensor drive signal for controlling the reset operation and the accumulation operation in a vertical blanking period in a drive period of the display pixel circuit (a twelfth configuration).
  • a counter substrate facing the active matrix substrate may further include a liquid crystal sandwiched between the active matrix substrate and the counter substrate (a thirteenth configuration).
  • the display device according to the present invention is not limited to the liquid crystal display device, and is an active matrix.
  • the present invention can be applied to any display device using a substrate.
  • the display device according to the present invention includes a touch panel display device that performs an input operation by detecting an object close to the screen by using an optical sensor, and a display for bidirectional communication including a display function and an imaging function. Use as a device is assumed.
  • each drawing referred to below shows only the main members necessary for explaining the present invention in a simplified manner among the constituent members of the embodiment of the present invention for convenience of explanation. Therefore, the display device according to the present invention can include arbitrary constituent members that are not shown in the drawings referred to in this specification. Moreover, the dimension of the member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each member, etc. faithfully.
  • FIG. 1 is a block diagram showing a configuration of a display device according to the first embodiment of the present invention.
  • the display device shown in FIG. 1 includes a display control circuit 1, a display panel 2, and a backlight 3.
  • the display panel 2 includes a pixel region 4, a gate driver circuit 5, a source driver circuit 6, a sensor row driver circuit 7, and a sensor control circuit 11.
  • the pixel region 4 includes a plurality of display pixel circuits 8 and a plurality of sensor pixel circuits 9.
  • This display device has a function of displaying an image on the display panel 2 and a function of detecting light incident on the display panel 2.
  • x is an integer of 2 or more
  • y is a multiple of 3
  • m and n are even numbers
  • the frame rate of the display device is 60 frames / second.
  • the video signal Vin and the timing control signal Cin are supplied from the outside to the display device shown in FIG. Based on these signals, the display control circuit 1 outputs a video signal VS and control signals CSg, CSs, and CSr to the display panel 2 and outputs a control signal CSb to the backlight 3.
  • the video signal VS may be the same as the video signal Vin, or may be a signal obtained by performing signal processing on the video signal Vin.
  • the backlight 3 is a sensing light source provided separately from the display light source, and irradiates the display panel 2 with light. More specifically, the backlight 3 is provided on the back side of the display panel 2 and irradiates the back surface of the display panel 2 with light. The backlight 3 is turned on when the control signal CSb is at a high level, and is turned off when the control signal CSb is at a low level. As the backlight 3, for example, an infrared light source or the like can be used.
  • (x ⁇ y) display pixel circuits 8 and (n ⁇ m / 2) sensor pixel circuits 9 are two-dimensionally arranged. More specifically, the pixel region 4 is provided with x gate lines GL1 to GLx and y source lines SL1 to SLy.
  • the gate lines GL1 to GLx are arranged in parallel to each other, and the source lines SL1 to SLy are arranged in parallel to each other so as to be orthogonal to the gate lines GL1 to GLx.
  • the (x ⁇ y) display pixel circuits 8 are arranged in the vicinity of intersections of the gate lines GL1 to GLx and the source lines SL1 to SLy.
  • Each display pixel circuit 8 is connected to one gate line GL and one source line SL.
  • the display pixel circuit 8 is classified into red display, green display, and blue display. These three types of display pixel circuits 8 are arranged side by side in the extending direction of the gate lines GL1 to GLx, and constitute one color pixel.
  • n sensor control lines EL1 to ELn and n readout lines RWS1 to RWSn are provided in parallel with the gate lines GL1 to GLx.
  • FIG. 2 is a diagram illustrating an arrangement of the sensor pixel circuit 9 in the pixel region 4.
  • a first sensor pixel circuit 9a that detects light incident during the lighting period of the backlight 3 and light incident during the extinguishing period of the backlight 3 are detected.
  • a second sensor pixel circuit 9b The number of first sensor pixel circuits 9a and the number of second sensor pixel circuits 9b is the same.
  • first sensor pixel circuits 9a are arranged in the vicinity of intersections of odd-numbered sensor control lines EL1 to ELn-1 and odd-numbered output lines OUT1 to OUTm-1. .
  • the (n ⁇ m / 4) second sensor pixel circuits 9b are arranged in the vicinity of the intersections of the even-numbered sensor control lines EL2 to ELn and the even-numbered output lines OUT2 to OUTm.
  • the display panel 2 includes the plurality of output lines OUT1 to OUTm that propagate the output signal of the first sensor pixel circuit 9a and the output signal of the second sensor pixel circuit 9b, and includes the first sensor pixel circuit 9a and the second sensor.
  • the pixel circuit 9b is connected to a different output line for each type.
  • the gate driver circuit 5 drives the gate lines GL1 to GLx. More specifically, the gate driver circuit 5 sequentially selects one gate line from the gate lines GL1 to GLx based on the control signal CSg, sets a high level potential to the selected gate line, and applies to the remaining gate lines. Apply a low level potential. As a result, the y display pixel circuits 8 connected to the selected gate line are collectively selected.
  • the source driver circuit 6 drives the source lines SL1 to SLy. More specifically, the source driver circuit 6 applies potentials corresponding to the video signal VS to the source lines SL1 to SLy based on the control signal CSs. At this time, the source driver circuit 6 may perform line sequential driving or dot sequential driving.
  • the potentials applied to the source lines SL1 to SLy are written into y display pixel circuits 8 selected by the gate driver circuit 5. Thus, by writing the potential according to the video signal VS to all the display pixel circuits 8 using the gate driver circuit 5 and the source driver circuit 6, a desired image can be displayed on the display panel 2.
  • the sensor row driver circuit 7 drives the sensor control lines EL1 to ELn, the read lines RWS1 to RWSn, and the like. Although details will be described later, the sensor row driver circuit 7 supplies a high-level potential to the sensor control lines EL1 to ELn simultaneously at a predetermined timing based on the control signal CSr. In addition, the sensor row driver circuit 7 sequentially selects one readout line from the readout lines RWS1 to RWSn based on the control signal CSr, and applies a high level potential for readout to the selected readout line and the remaining readout lines. A low level potential is applied to. As a result, the m sensor pixel circuits 9 connected to the selected one readout line can be collectively read out.
  • the source driver circuit 6 applies a high level potential to the power supply lines VDD1 to VDDm.
  • signals corresponding to the amount of light detected by each sensor pixel circuit 9 (hereinafter referred to as sensor signals) are output from the m sensor pixel circuits 9 in a readable state to the output lines OUT1 to OUTm.
  • the output line OUT also serves as the source line SL, and the sensor signal output to the output line OUT is input to the source driver circuit 6.
  • the source driver circuit 6 amplifies the sensor signal output from the output line OUT, and outputs the amplified signal to the outside of the display panel 2 as the sensor output Sout.
  • the sensor output Sout is appropriately processed as necessary by the signal processing circuit 20 provided outside the display panel 2.
  • Sensor control circuit 11 drives clock lines CLK1 to CLKm, reset lines RST1 to RSTm, and the like. Although details will be described later, the sensor control circuit 11 supplies a high-level potential to the clock lines CLK1 to CLKm and the reset lines RST1 to RSTm based on the control signal CSr at a predetermined timing.
  • the source driver circuit 6 and the sensor control circuit 11 may be integrated.
  • the first sensor pixel circuit 9a includes a photodiode D1, transistors T1, T2, M1, and M2, and a capacitor C1.
  • the transistors T1, T2, M1, and M2 are, for example, N-type TFTs (Thin-Film-Transistors).
  • the anode of the photodiode D1 is connected to the drain of the transistor M1, and the cathode is connected to the source of the transistor T1.
  • the gate of the transistor T1 is connected to the clock line CLK1, and the drain is connected to the source of the transistor M2.
  • the gate of the transistor M2 is connected to the sensor control line EL, and the drain is connected to one electrode of the capacitor C1 and the gate of the transistor T2.
  • the source of the transistor M1 is connected to the reset line RST1.
  • the other electrode of the capacitor C1 is connected to the readout line RWS1.
  • the drain of the transistor T2 is connected to the power supply line VDD, and the source is connected to the output line OUT.
  • the transistor T2 functions as a read switching element.
  • the transistors M1 and M2 function as protective switching elements.
  • the configuration of the second sensor pixel circuit 9b shown in FIG. 3B is the same as that of the first sensor pixel circuit 9a.
  • FIG. 4 is a circuit diagram showing a configuration example when the first sensor pixel circuit 9a is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T2 of the first sensor pixel circuit 9a also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the clock line CLK1 connected to the gate of the transistor T1 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • a sensor driving period is provided in which the reset and sensing of the first sensor pixel circuit 9a and the second sensor pixel circuit 9b are performed once per frame period.
  • the sensor driving period is provided separately from the display driving period in which display is performed in the display pixel circuit 8. This is because part of the source line SL for supplying a display signal to the display pixel circuit 8 is also used for sensor driving as described above.
  • FIG. 5 is a waveform diagram showing various drive signals supplied to the first sensor pixel circuit 9a and the second sensor pixel circuit 9b.
  • a sensor driving period is provided in which the reset and sensing of the first sensor pixel circuit 9a and the second sensor pixel circuit 9b are performed once per frame period.
  • the sensor driving period is provided separately from the display driving period in which display is performed in the display pixel circuit 8. This is because part of the source line SL for supplying a display signal to the display pixel circuit 8 is also used for sensor driving as described above.
  • the sensor driving period is preferably provided in the vertical blanking period or a period including the vertical blanking period.
  • the length of the vertical baseline period is, for example, 2 ms.
  • the backlight control signal BL in the first half of the sensor driving period, the backlight control signal BL becomes a high level, and the first sensor pixel circuit 9a is reset and sensed.
  • the backlight control signal BL in the second half of the sensor driving period, the backlight control signal BL is at a low level, and the second sensor pixel circuit 9b is reset and sensed.
  • image display is performed by the display pixel circuit 8, and in the first sensor pixel circuit 9a and the second sensor pixel circuit 9b, holding of the sensor signal sensed in the sensor driving period and reading signal RWS are performed. Accordingly, the sensor signals are sequentially read out.
  • the sensor control signal EL maintains a high level during the sensor driving period.
  • the transistors M1 and M2 are in the on state during the sensor driving period.
  • the clock signal CLK1 supplied to the first sensor pixel circuit 9a becomes high level
  • the reset signal RST1 becomes high level.
  • the transistor T1 is turned on, and the high level potential of the reset signal RST1 is supplied to the anode of the photodiode D1.
  • the potential Vint of the storage node is reset to a potential corresponding to the high level of the reset signal RST1.
  • the sensing period of the first sensor pixel circuit 9a ( Accumulation period).
  • the sensing period when light enters the photodiode D1 of the first sensor pixel circuit 9a, the potential Vint of the storage node decreases according to the amount of light incident during the period in which the clock signal CLK1 is at a high level. Charge is accumulated in the capacitor C1.
  • the charge (ON signal) accumulated in the capacitor C1 is the sum of the signal component incident on the photodiode D1 and the noise component caused by external light or the like. It corresponds to.
  • the clock signal CLK1 when the clock signal CLK1 is switched from the high level to the low level at the end of the first half of the sensor driving period, the clock signal CLK2 supplied to the second sensor pixel circuit 9b is subsequently set to the high level.
  • the reset signal RST2 is also at a high level.
  • the second sensor pixel circuit 9b similarly to the first sensor pixel circuit 9a, the second sensor pixel circuit 9b also performs reset and sensing.
  • the charge (off signal) accumulated in the capacitor C1 of the second sensor pixel circuit 9b corresponds to the noise component of the photodiode D1.
  • the potential Vint of the storage node in the second sensor pixel circuit 9b holds the potential at the end of the storage period.
  • the sensor control signal EL is kept at a low level. Accordingly, the transistors M1 and M2 are maintained in the off state during the display driving period.
  • the clock lines CLK1 and CLK2 also serve as the source line SLr for supplying a data signal to the display pixel circuit 8 for red display. Therefore, as shown in FIG. 5, a data signal for performing red pixel display is supplied to the clock lines CLK1 and CLK2.
  • the reset lines RST1 and RST2 also serve as the source line SLg for supplying a data signal to the display pixel circuit 8 for green display. Therefore, as shown in FIG. 5, a data signal for displaying a green pixel is supplied to the reset lines RST1 and RST2.
  • high level potentials for reading are sequentially supplied to the read lines RWS1 to RWSn.
  • the potential Vint of the storage node is (Cqa / Cpa) times the amplitude of the high level potential (where Cpa is the capacitance value of one sensor pixel circuit, Cqa Increases by the capacitance value of the capacitor C1).
  • the transistor T2 constitutes a source follower amplifier circuit using a transistor (not shown) included in the source driver circuit 6 as a load, and drives the output line OUT according to the potential Vint.
  • the first sensor pixel circuit 9a that detects the on signal and the second sensor pixel circuit 9b that detects the off signal include the difference between the on signal and the off signal.
  • the clock signal CLK, the reset signal RST, and the constant voltage VDD are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. Therefore, it is possible to realize a highly accurate sensor pixel circuit while suppressing the addition of the bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high. When the aperture ratio increases, the brightness of the backlight 3 can be reduced, which leads to a reduction in power consumption.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the potential (Vc) on the cathode side of the photodiode D1 from becoming higher than the reset level.
  • the transistor M2 maintains the off state during the display driving period, thereby protecting the potential Vint of the storage node from the potential fluctuation of the clock line CLK (source line SLr) in the display driving period (holding period before reading). It has a function.
  • FIG. 6 is a circuit diagram showing a configuration of the sensor pixel circuit 9 according to the second embodiment.
  • the sensor pixel circuit 9 shown in FIG. 6 is configured so that the first sensor pixel circuit 9a shown in FIG. 3A and the second sensor pixel circuit 9b shown in FIG. 3B share the photodiode D1 and the transistor M1. It is the structure connected symmetrically.
  • the photodiode D1, the transistor M1, and the right half circuit element correspond to the first sensor pixel circuit 9a
  • the photodiode D1, the transistor M1, and the left half circuit element are the second sensor elements. This corresponds to the sensor pixel circuit 9b.
  • FIG. 7 is a circuit diagram when the sensor pixel circuit 9 shown in FIG. 6 is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT1 connected to the source of the transistor T2 of the first sensor pixel circuit 9a also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the power supply line VDD1 connected to the drain of the transistor T2 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the clock line CLK1 connected to the gate of the transistor T1 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the reset line RST connected to the source of the transistor M1 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the output line OUT2 connected to the source of the transistor T2 of the second sensor pixel circuit 9b also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD2 connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the clock line CLK1 connected to the gate of the transistor T1 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • FIG. 8 is a waveform diagram showing various drive signals supplied to the first sensor pixel circuit 9a and the second sensor pixel circuit 9b. As shown in FIG. 8, the timing of the drive signal supplied to the display device according to the present embodiment is basically the same as that of the first embodiment.
  • the clock signal CLK1 is at a high level and the clock signal CLK2 is at a low level. Therefore, the potential Vint1 of the storage node of the first sensor pixel circuit 9a is reset. Is done. After that, while the clock signal CLK1 is at a high level, the potential Vint1 of the storage node of the first sensor pixel circuit 9a drops according to the amount of light incident on the photodiode D1 during this period. During this period, since the backlight 3 is lit, the charge (ON signal) accumulated in the capacitor C1 is the sum of the signal component incident on the photodiode D1 and the noise component caused by external light or the like. It corresponds to.
  • the clock signal CLK2 is high level and the clock signal CLK1 is low level. Therefore, the potential Vint2 of the storage node of the second sensor pixel circuit 9b is Reset. After that, while the clock signal CLK2 is at a high level, the potential Vint2 of the storage node of the second sensor pixel circuit 9b drops according to the amount of light incident on the photodiode D1 during this period. During this period, since the backlight 3 is turned off, the charge (off signal) accumulated in the capacitor C1 here corresponds to the noise component of the photodiode D1.
  • a high level potential for reading is sequentially supplied to the reading wirings RWS1 to RWSn, whereby an ON signal is obtained from the output line OUT1 of the first sensor pixel circuit 9a, and the second sensor pixel circuit.
  • An off signal is obtained from the output line OUT2 of 9b.
  • the source driver circuit 6 obtains the difference between the on signal and the off signal, thereby obtaining a highly accurate sensor output from which the noise component has been removed.
  • the clock signal CLK, the reset signal RST, and the constant voltage VDD are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. Therefore, it is possible to realize a highly accurate sensor pixel circuit while suppressing the addition of the bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high. When the aperture ratio increases, the brightness of the backlight 3 can be reduced, which leads to a reduction in power consumption.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the potential (Vc) on the cathode side of the photodiode D1 from becoming higher than the reset level.
  • the transistor M2 maintains the off state during the display driving period, thereby protecting the potential Vint of the storage node from the potential fluctuation of the clock line CLK (source line SLr) in the display driving period (holding period before reading). It has a function.
  • the first pixel circuit 9a and the second pixel circuit 9b share one photodiode D1, and therefore, variation in sensitivity characteristics of the photodiode can be prevented. Since the influence is eliminated, the difference between the light amount when the backlight is turned on (on signal) and the light amount when the backlight is turned off (off signal) can be accurately obtained. In addition, the number of photodiodes can be reduced, the aperture ratio can be increased, and the sensitivity of the sensor pixel circuit can be increased.
  • FIG. 9 is a circuit diagram showing a configuration of the sensor pixel circuit 9 according to the third embodiment.
  • a sensor pixel circuit 9 shown in FIG. 9 includes a photodiode D1, transistors T1, T2, T3, M1, and M2, and capacitors C1 and C2.
  • the sensor pixel circuit 9 according to the present embodiment there is no distinction between the first sensor pixel circuit 9a and the second sensor pixel circuit 9b, and all the sensor pixel circuits 9 provided in the pixel region 4 have the same configuration. have.
  • the sensor pixel circuit 9 according to the present embodiment outputs a sensor output corresponding to the difference between the on signal and the off signal described in the first embodiment from the output line OUT.
  • the transistors T1, T2, T3, M1, and M2 are, for example, N-type TFTs (Thin Film Transistors).
  • the anode of the photodiode D1 is connected to the drain of the transistor M1, and the cathode is connected to the source of the transistor T1.
  • the gate of the transistor T1 is connected to the clock line CLK1, and the drain is connected to one electrode of the capacitor C2.
  • the other electrode of the capacitor C2 is connected to the drain of the transistor T3.
  • the gate of the transistor T3 is connected to the clock line CLK2, and the source is connected to the constant voltage line REF.
  • the gate of the transistor M2 is connected to the sensor control line EL, and the source is connected to the other electrode of the capacitor C2.
  • the drain of the transistor M2 is connected to one electrode of the capacitor C1.
  • the other electrode of the capacitor C1 is connected to the readout line RWS.
  • the drain of the transistor T2 is connected to the power supply line VDD, and the source is connected to the output line OUT.
  • FIG. 10 is a circuit diagram when the sensor pixel circuit 9 shown in FIG. 9 is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T2 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the clock line CLK1 connected to the gate of the transistor T1 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the reset line RST connected to the source of the transistor M1 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the constant voltage line REF connected to the source of the transistor T3 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the clock line CLK2 connected to the gate of the transistor T3 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • FIG. 11 is a waveform diagram showing various drive signals supplied to the sensor pixel circuit 9.
  • BL represents the luminance of the backlight 3.
  • the clock signals CLK1 and CLK2 remain at the high level and the read signal RWS remains at the low level.
  • the transistors T1 and T3 are on.
  • the potential Vsig falls according to the amount of light incident during the period in which the clock signal CLK2 is at a high level (period in which the backlight 3 is lit), and the charge Qon is accumulated in the capacitor C2.
  • the charge Qon (ON signal) accumulated in the capacitor C2 corresponds to the sum of the photocurrent component of the photodiode D1 and the noise component of the photodiode D1.
  • Vrst_h Vrst_h-Qon / C2 It is.
  • Vrst_h is a high level potential of the reset signal RST, and Qon is an integral value of the on-current (Ion) flowing through the photodiode D1.
  • the potential of the storage node Vint is equal to the reference voltage Vref supplied from the constant voltage line REF.
  • the reset signal RST becomes the high level again.
  • the clock signal CLK1 is at a high level.
  • the read signal RWS also maintains a low level.
  • the transistor T1 is on and the transistors T3 and T2 are off.
  • the potential of the node Vsig becomes equal to the high level potential of the reset signal RST.
  • the charge Qon stored in the capacitor C2 moves to the storage node Vint and is stored in the capacitors C1 and C2.
  • Vint Vref + Qon / (C1 + C2) It is.
  • the clock signal CLK1 is at the high level and the clock signal CLK2 is at the low level during the off signal accumulation period.
  • an off-current (Ioff) flows from the node Vsig to the reset line RST via the transistor T1 and the photodiode D1, and charges are extracted from the node Vsig.
  • the potential Vsig falls according to the amount of light incident while the clock signal CLK1 is at the high level after the reset signal RST is switched to the low level, and the charge Qoff is accumulated in the capacitor C2.
  • the charge Qoff (off signal) accumulated in the capacitor C2 corresponds to the noise component of the photodiode D1.
  • Vsig Vrst_h ⁇ Qoff / (C1 // C2) It is.
  • Qoff is an integral value of the off-current (Ioff) of the photodiode D1.
  • C1 // C2 is a combined capacity when capacitors C1 and C2 are connected in series.
  • Vint Vref + Qon / (C1 + C2) ⁇ Qff / C1 It is.
  • the clock signals CLK1 and CLK2 and the reset signal RST are set to the low level, and the reading signals RWS are sequentially set to the high level for reading. Become. At this time, the transistors T1 and T3 are turned off. At this time, the potential Vint increases by (C1 / Cpa) times (where Cpa is the entire capacitance value of the sensor pixel circuit) the amount of increase in the potential of the readout signal RWS.
  • the transistor T2 constitutes a source follower amplifier circuit using a transistor (not shown) included in the source driver circuit 6 as a load, and drives the output line OUT according to the potential Vint.
  • the difference between the on signal and the off signal is obtained inside one sensor pixel circuit 9 and is output from the output line OUT as the sensor output, so that the noise component is removed.
  • a highly accurate sensor output can be obtained.
  • the clock signal CLK, the reset signal RST, and the constant voltage VDD are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. Therefore, it is possible to realize a highly accurate sensor pixel circuit while suppressing the addition of the bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high. When the aperture ratio increases, the brightness of the backlight 3 can be reduced, which leads to a reduction in power consumption.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the potential (Vc) on the cathode side of the photodiode D1 from becoming higher than the reset level.
  • the transistor M2 maintains the off state during the display driving period, thereby protecting the potential Vint of the storage node from the potential fluctuation of the clock line CLK (source line SLr) in the display driving period (holding period before reading). It has a function.
  • a display device according to a fourth embodiment of the present invention will be described below.
  • the same components as those described in the above-described embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • [Configuration of sensor pixel circuit] 12A and 12B are circuit diagrams illustrating configurations of the first sensor pixel circuit 9a and the second sensor pixel circuit 9b according to the fourth embodiment.
  • the first sensor pixel circuit 9a shown in FIG. 12A includes a photodiode D1, transistors T1, T2, T3, M1, and M2, and a capacitor C1.
  • the second sensor pixel circuit 9b has a circuit configuration similar to that of the first sensor pixel circuit 9a.
  • the transistors T1, T2, T3, M1, and M2 are, for example, N-type TFTs (Thin Film Transistors).
  • the anode of the photodiode D1 is connected to the drain of the transistor M1, and the cathode is connected to the source of the transistor T1.
  • the gate of the transistor T1 is connected to the clock line CLK1, and the drain is connected to the drain of the transistor T3.
  • the gate of the transistor T3 is connected to the reset line RST1, and the source is connected to the constant voltage line REF.
  • the gate of the transistor M1 is connected to the sensor control line EL, and the source is connected to the constant voltage line COM.
  • the gate of the transistor M2 is connected to the sensor control line EL, and the source is connected to the drain of the transistor T3.
  • One electrode of the capacitor C1 is connected to the gate of the transistor T2, and the other electrode of the capacitor C1 is connected to the readout line RWS.
  • the drain of the transistor T2 is connected to the power supply line VDD, and the source is connected to the output line OUT.
  • the source driver circuit 6 includes a difference circuit (not shown) for obtaining a difference between the output signal of the first sensor pixel circuit 9a and the output signal of the second sensor pixel circuit 9b.
  • the source driver circuit 6 amplifies the light amount difference obtained by the difference circuit, and outputs the amplified signal to the outside of the display panel 2 as the sensor output Sout.
  • the sensor output Sout is appropriately processed as necessary by the signal processing circuit 20 provided outside the display panel 2.
  • FIG. 13 is a circuit diagram when the sensor pixel circuit 9 shown in FIGS. 12A and 12B is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T2 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the clock line CLK1 connected to the gate of the transistor T1 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the reset line RST connected to the gate of the transistor T3 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the constant voltage line REF connected to the source of the transistor T3 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the constant voltage line COM connected to the source of the transistor M1 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • FIG. 14 is a waveform diagram showing various drive signals supplied to the sensor pixel circuit 9.
  • the backlight 3 is turned on for a predetermined time once in one frame period, and is turned off in other periods. Specifically, the backlight 3 is turned on in the first half of the sensor driving period and turned off in the second half. In addition, all the first sensor pixel circuits 9a are reset at the beginning of the sensor driving period, and all the second sensor pixel circuits 9b are reset at the beginning of the second half of the sensor driving period.
  • the first sensor pixel circuit 9a detects light incident in the first half of the sensor driving period (lighting period of the backlight 3).
  • the second sensor pixel circuit 9b detects light incident in the latter half of the sensor driving period (the backlight 3 is turned off).
  • the reading from the first sensor pixel circuit 9a and the reading from the second sensor pixel circuit 9b are performed in line sequence within the display driving period after the sensor driving period ends.
  • the potentials of the odd-numbered clock lines CLK1 to CLKn-1 are set to a high level twice in one frame period and for a predetermined time in the first half of the sensor driving period.
  • the potentials of the even-numbered clock lines CLK2 to CLKn are set to a high level for a predetermined time in the second half of the sensor driving period twice in one frame period.
  • the potentials of the odd-numbered reset lines RST1 to RSTn ⁇ 1 are set to the high level once for one frame period and for a predetermined time at the beginning of the sensor driving period.
  • the potentials of the even-numbered reset lines RST2 to RSTn are set to the high level once every frame period and for a predetermined time at the beginning of the second half of the sensor driving period.
  • the read lines RWS1 to RWSn sequentially become high level for a predetermined time within the display drive period.
  • the transistors T1 and T3 are both turned on.
  • the potential Vint of the storage node Vint becomes substantially equal to the reference voltage Vref (here, 0 V) of the constant voltage line REF.
  • the high level potential of the clock signal CLK is set so that the transistor T1 operates in the saturation region.
  • the accumulation period starts when the reset period ends when the reset signal RST switches from high level to low level.
  • the clock signal CLK, the reset signal RST, and the read signal RWS are all maintained at a low level.
  • the transistors T1 and T3 are off.
  • the transistors T1 and T3 are off.
  • the potential Vint of the accumulation node Vint is maintained at the potential (Vref) of the reset period.
  • Cint is the load capacity of the storage node Vint.
  • t is the length of the accumulation period.
  • Vint_on Vref ⁇ Ipd_on ⁇ t / Cint It becomes.
  • Ipd_on represents the current value of the photocurrent that has flowed through the photodiode D1 during the accumulation period (the first half accumulation period of the sensor driving period) when the backlight 3 is lit.
  • Vint_off Vref ⁇ Ipd_off ⁇ t / Cint It becomes.
  • Ipd_off represents the current value of the current flowing through the photodiode D1 during the accumulation period (accumulation period in the second half of the sensor driving period) when the backlight 3 is turned off.
  • Sensor signals corresponding to the amount of light incident during the detection period when the light is turned off are respectively read out.
  • the difference circuit included in the source driver circuit 6 obtains the difference between the output signal of the first sensor pixel circuit 9a and the output signal of the second sensor pixel circuit 9b, whereby the amount of light when the backlight is turned on and the time when the backlight is turned off. The difference in the amount of light can be obtained.
  • the output signal from the second sensor pixel circuit 9b that is, the sensor signal corresponding to the amount of light incident during the detection period when the backlight 3 is turned off, includes only noise components due to the surrounding environment. Therefore, in the difference circuit of the source driver circuit 6, by subtracting the output signal from the second sensor pixel circuit 9b from the output signal from the first sensor pixel circuit 9a, a highly accurate sensor output from which noise components are removed is obtained. Obtainable.
  • the ON signal is obtained by the first sensor pixel circuit 9a and the OFF signal is obtained by the second sensor pixel circuit 9b, and the difference between the ON signal and the OFF signal is obtained by the source driver circuit 6. Therefore, a highly accurate sensor output from which noise components are removed can be obtained.
  • the clock signal CLK, the reset signal RST, and the constant voltages VDD, REF, and COM are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. Therefore, it is possible to realize a highly accurate sensor pixel circuit while suppressing the addition of the bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the potential (Vc) on the cathode side of the photodiode D1 from becoming higher than the reset level.
  • the transistor M2 maintains the off state during the display driving period, thereby protecting the potential Vint of the storage node from the potential fluctuation of the clock line CLK (source line SLr) in the display driving period (holding period before reading). It has a function.
  • FIG. 15 is a circuit diagram showing a configuration of a sensor pixel circuit 9 according to the fifth embodiment.
  • the sensor pixel circuit 9 shown in FIG. 15 has a configuration in which a transistor T4 is added to the sensor pixel circuit 9 according to the third embodiment.
  • the transistor T4 is, for example, an N-type TFT (Thin Film Transistor).
  • the gate of the transistor T4 is connected to the reset line RST.
  • the source of the transistor M1 is connected to the constant voltage line COM instead of the reset line RST.
  • the drain of the transistor T4 is connected between the transistor T1 and the capacitor C2.
  • FIG. 16 is a circuit diagram when the sensor pixel circuit 9 shown in FIG. 15 is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T2 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the clock line CLK1 connected to the gate of the transistor T1 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the clock line CLK2 connected to the gate of the transistor T3 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the constant voltage line REF connected to the source of the transistor T3 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the constant voltage line COM connected to the source of the transistor M1 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • FIG. 17 is a waveform diagram showing various drive signals supplied to the sensor pixel circuit 9.
  • the clock signals CLK1 and CLK2 applied to the sensor pixel circuit 9 become high level once every frame period.
  • the clock signal CLK1 is maintained at a high level during the sensor driving period, and the clock signal CLK2 is at a high level only in the first half of the sensor driving period.
  • the reset signal RST goes high twice during one frame period.
  • the reset signal RST when the reset signal RST first becomes a high level, the clock signals CLK1 and CLK2 and the reset signal RST are at a high level.
  • the read signal RWS is at a low level.
  • the transistors T1 and T3 are turned on, and the potential of the cathode (referred to as the node Vx) of the photodiode D1 is reset to the reference voltage Vref supplied from the constant voltage line REF.
  • the potential of the storage node Vint is equal to the reference voltage Vref supplied from the constant voltage line REF.
  • the off signal accumulation period begins.
  • the clock signals CLK1 and CLK2 are maintained at a high level. Therefore, the transistors T1 and T3 are on.
  • the potential of the node Vx decreases according to the amount of light incident during the off signal accumulation period.
  • the decrease in potential of the node Vx corresponds to the noise component of the photodiode D1.
  • the reset signal RST becomes high level again.
  • the clock signal CLK1 is maintained at a high level, but CLK2 is at a low level.
  • the read signal RWS is at a low level.
  • the transistor T3 is turned off.
  • the potential of the storage node Vint becomes a floating state.
  • A is a constant determined by the capacitance ratio between the capacitors C1 and C2.
  • the ON signal accumulation period is a period from when the second reset signal in the sensor driving period becomes low level to when the clock signal CLK1 switches from high level to low level.
  • the clock signal CLK1 is at a high level and the clock signal CLK2 is at a low level.
  • the reset signal RST is at a low level.
  • the read signal RWS is at a low level. Note that the backlight 3 is lit during this ON signal accumulation period.
  • an on-current photocurrent of the photodiode D1 flows from the node Vx to the constant voltage line COM via the photodiode D1, and charge is extracted from the node Vx. .
  • the potential Vx drops according to the amount of light (external light and backlight light) incident on the photodiode D1 during the ON signal accumulation period.
  • the backlight 3 since the backlight 3 is turned on, the decrease in potential of the node Vx ( ⁇ Von) is caused by the component due to the external light and backlight incident on the photodiode D1 and the noise component of the photodiode D1. It corresponds to the total value.
  • the clock signals CLK1 and CLK2 are at a low level, the reset signal RST is at a low level, and the readout signal RWS is at a high level.
  • the transistor T2 forms a source follower amplifier circuit using a transistor (not shown) included in the source driver circuit 6 as a load, and drives the output line OUT according to the potential of the storage node Vint.
  • the clock signal CLK, the reset signal RST, and the constant voltages VDD, REF, and COM are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. Therefore, it is possible to realize a highly accurate sensor pixel circuit while suppressing the addition of the bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high. When the aperture ratio increases, the brightness of the backlight 3 can be reduced, which leads to a reduction in power consumption.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the potential (Vx) on the cathode side of the photodiode D1 from becoming higher than the reset level.
  • the transistor M1 has a function of preventing the constant voltage line COM and the constant voltage line REF from being short-circuited during the display drive period.
  • the transistor M2 maintains the off state during the display driving period, thereby protecting the potential Vint of the storage node from the potential fluctuation of the clock line CLK (source line SLr) in the display driving period (holding period before reading). It has a function.
  • FIG. 18 is a circuit diagram showing a configuration of the sensor pixel circuit 9 according to the sixth embodiment.
  • the sensor pixel circuit 9 according to the present embodiment includes a photodiode D1, transistors M1, M2, T2, and T5, and a capacitor C1.
  • the transistors T2, T5, M1, and M2 are, for example, N-type TFTs (Thin Film Transistors).
  • the anode of the photodiode D1 is connected to the drain of the transistor M1, and the cathode is connected to the drain of the transistor T5 and the source of the transistor M2.
  • the gate of the transistor T5 is connected to the reset line RST, the drain is connected to the cathode of the photodiode D1, and the source is connected to the constant voltage line REF.
  • the gates of the transistors M1 and M2 are connected to the sensor control line EL.
  • the source of the transistor M1 is connected to the constant voltage line COM.
  • the drain of the transistor M2 is connected to the gate of the transistor T2.
  • One electrode of the capacitor C1 is connected to the gate of the transistor T2.
  • the other electrode of the capacitor C1 is connected to the readout line RWS.
  • the drain of the transistor T2 is connected to the power supply line VDD, and the source is connected to the output line OUT.
  • FIG. 19 is a circuit diagram when the sensor pixel circuit 9 shown in FIG. 18 is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T2 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the reset line RST connected to the gate of the transistor T5 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the constant voltage line REF connected to the source of the transistor T5 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the constant voltage line COM connected to the source of the transistor M1 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • FIG. 20 is a waveform diagram showing various drive signals supplied to the sensor pixel circuit 9. Also in the display device according to the present embodiment, a sensor driving period in which the resetting and sensing of the sensor pixel circuit 9 is performed once per frame period is provided separately from the display driving period.
  • the sensor control signal EL maintains a high level during the sensor driving period.
  • the transistors M1 and M2 are in the on state during the sensor driving period.
  • the reset signal RST becomes high level for a predetermined period.
  • the transistor T5 is turned on, and the potential Vint of the storage node is reset to the reference voltage Vref.
  • the sensing period (accumulation period) of the sensor pixel circuit 9 is from when the reset signal RST is switched from the high level to the low level until the sensor control signal EL is switched from the high level to the low level.
  • the potential Vint of the storage node decreases according to the amount of light incident during this storage period, and charges are stored in the capacitor C1.
  • the backlight 3 is turned on during the sensor driving period.
  • the sensor control signal EL is maintained at a low level. Accordingly, the transistors M1 and M2 are maintained in the off state during the display driving period.
  • a high level potential for reading is sequentially supplied to the reading wirings RWS1 to RWSn.
  • the potential Vint of the storage node is (Cqa / Cpa) times the amplitude of the high level potential (where Cpa is the capacitance value of one sensor pixel circuit, Cqa Increases by the capacitance value of the capacitor C1).
  • the transistor T2 constitutes a source follower amplifier circuit using a transistor (not shown) included in the source driver circuit 6 as a load, and drives the output line OUT according to the potential Vint.
  • the reset signal RST and the constant voltages REF and COM are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. As a result, a highly accurate sensor pixel circuit can be realized while suppressing the addition of a bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the constant voltage lines COM and REF from being short-circuited during the display driving period.
  • the transistor M2 has a function of protecting the potential Vint of the storage node from the potential fluctuation of the source line in the display driving period (holding period before reading) by maintaining the off state in the display driving period.
  • a seventh embodiment of the display device of the present invention will be described below.
  • the same components as those described in the above-described embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 21 is a circuit diagram showing a configuration of the sensor pixel circuit 9 according to the seventh embodiment.
  • the sensor pixel circuit 9 according to the present embodiment has a configuration in which a transistor T6 is added to the sensor pixel circuit 9 according to the sixth embodiment.
  • the transistor T6 is, for example, an N-type TFT (Thin Film Transistor).
  • the gate of the transistor T6 is connected to the readout line RWS.
  • One electrode of the capacitor C1 is connected to the gate of the transistor T2, and the other electrode is connected to the constant voltage line VDD.
  • the drain of the transistor T6 is connected to the source of the transistor T2, and the source of the transistor T6 is connected to the output line OUT.
  • FIG. 22 is a circuit diagram when the sensor pixel circuit 9 shown in FIG. 21 is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T6 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the reset line RST connected to the gate of the transistor T5 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the constant voltage line REF connected to the source of the transistor T5 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the constant voltage line COM connected to the source of the transistor M1 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • FIG. 23 is a waveform diagram showing various drive signals supplied to the sensor pixel circuit 9. Also in the display device according to the present embodiment, a sensor driving period in which the resetting and sensing of the sensor pixel circuit 9 is performed once per frame period is provided separately from the display driving period.
  • the sensor control signal EL maintains a high level during the sensor driving period.
  • the transistors M1 and M2 are in the on state during the sensor driving period.
  • the reset signal RST becomes high level for a predetermined period.
  • the transistor T5 is turned on, and the potential Vint of the storage node is reset to the reference voltage Vref.
  • the sensing period (accumulation period) of the sensor pixel circuit 9 is from when the reset signal RST is switched from the high level to the low level until the sensor control signal EL is switched from the high level to the low level.
  • the potential Vint of the storage node decreases according to the amount of light incident during this storage period, and charges are stored in the capacitor C1.
  • the backlight 3 is turned on during the sensor driving period.
  • the sensor control signal EL is maintained at a low level. Accordingly, the transistors M1 and M2 are maintained in the off state during the display driving period.
  • the display driving period as shown in FIG. 23, read-out high level potentials are sequentially supplied to the read wirings RWS1 to RWSn. By supplying the high level potential for reading, the transistor T6 is turned on.
  • the transistors T2 and T6 form a source follower amplifier circuit using a transistor (not shown) included in the source driver circuit 6 as a load, and drives the output line OUT according to the potential Vint.
  • the reset signal RST and the constant voltages REF and COM are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. As a result, a highly accurate sensor pixel circuit can be realized while suppressing the addition of a bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high. When the aperture ratio increases, the brightness of the backlight 3 can be reduced, which leads to a reduction in power consumption.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the constant voltage lines COM and REF from being short-circuited during the display driving period.
  • the transistor M2 has a function of protecting the potential Vint of the storage node from the potential fluctuation of the source line in the display driving period (holding period before reading) by maintaining the off state in the display driving period.
  • FIG. 24 is a circuit diagram showing a configuration of the sensor pixel circuit 9 according to the eighth embodiment.
  • the sensor pixel circuit 9 according to the present embodiment is obtained by replacing the photodiode D1 with a phototransistor TD in the sensor pixel circuit 9 according to the seventh embodiment.
  • the phototransistor TD is, for example, an N-type TFT (Thin Film Transistor). Thereby, all the transistors included in the sensor pixel circuit 9 are N-type. Therefore, the sensor pixel circuit 9 can be manufactured using a one-channel process that can manufacture only N-type transistors.
  • the gate of the phototransistor TD is connected to the control line CTL in order to control the current flowing through the phototransistor TD.
  • FIG. 25 is a circuit diagram when the sensor pixel circuit 9 shown in FIG. 24 is integrated in a pixel.
  • the sensor control line EL and the readout line RWS are arranged in parallel to the gate line GL.
  • the output line OUT connected to the source of the transistor T6 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the power supply line VDD connected to the drain of the transistor T2 also serves as the source line SLg connected to the display pixel circuit 8 for green display.
  • the reset line RST connected to the gate of the transistor T5 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the constant voltage line REF connected to the source of the transistor T5 also serves as the source line SLr connected to the display pixel circuit 8 for red display.
  • the constant voltage line COM connected to the source of the transistor M1 also serves as the source line SLb connected to the display pixel circuit 8 for blue display.
  • the control line CTL connected to the gate of the phototransistor TD is connected to the source line SLg connected to the display pixel circuit 8 for green display.
  • FIG. 26 is a waveform diagram showing various drive signals supplied to the sensor pixel circuit 9. Since the driving of the sensor pixel circuit 9 according to the present embodiment is the same as that of the seventh embodiment, the description thereof is omitted.
  • the reset signal RST and the constant voltages REF, COM, and CTL are supplied via the source line SL. Therefore, only the sensor control line EL and the readout line RWS need to be added as bus lines for driving the sensor pixel circuit 9 to the bus line for driving the display pixel circuit 8. As a result, a highly accurate sensor pixel circuit can be realized while suppressing the addition of a bus line. Moreover, since the addition of the bus line is suppressed, there is also an advantage that the aperture ratio can be kept high. When the aperture ratio increases, the brightness of the backlight 3 can be reduced, which leads to a reduction in power consumption.
  • the sensor pixel circuit 9 has the following advantages by providing the transistors M1 and M2.
  • the transistor M1 has a function of preventing the constant voltage lines COM and REF from being short-circuited during the display driving period.
  • the transistor M2 has a function of protecting the potential Vint of the storage node from the potential fluctuation of the source line in the display driving period (holding period before reading) by maintaining the off state in the display driving period.
  • the type of light source provided in the display device is not particularly limited. Therefore, in the first to eighth embodiments, the backlight that is lit during the sensor driving period may be a visible light backlight provided for display, or provided separately from the visible light backlight for display. Further, an invisible light (for example, infrared light) backlight for the sensor may be used.
  • the backlight 3 is turned on to acquire the on signal in the first half of the sensor driving period and the off signal is acquired in the second half by turning off the backlight 3 has been described.
  • the backlight may be turned off in the first half of the sensor driving period and turned on in the second half.
  • the configuration in which the off signal obtained by the second sensor pixel circuit is subtracted from the on signal obtained by the first sensor pixel circuit is exemplified.
  • the ON signal may be acquired in all the sensor pixel circuits in the pixel region 4 and the ON signal may be used as it is as the sensor output.
  • the present invention is industrially applicable as a display device having an optical sensor function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 画素領域内に光センサを備え、光センサへ駆動信号を供給するためのバスライン数が抑制された表示装置を提供する。アクティブマトリクス基板の画素領域(4)に、表示画素回路(8)およびセンサ画素回路(9)を備えた表示装置である。前記センサ画素回路(9)は、受光素子(D1)と、前記受光素子(D1)に入射した光の量に応じた電荷を蓄積する蓄積ノードと、前記蓄積ノードの電荷を読み出す読み出し用スイッチング素子(T2)とを備えている。前記表示装置は、前記センサ画素回路(9)へ、前記蓄積ノードのリセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路(8)へ表示データ信号を供給するソース線(SL)を介して供給する駆動回路と、前記ソース線(SL)以外に設けられたセンサ制御線(EL)に接続され、前記センサ画素回路のセンサ信号を保護する保護用スイッチング素子(M1),(M2)とをさらに有する。

Description

表示装置
 本発明は、表示装置に関し、特に、画素領域に複数の光センサを配置した表示装置に関する。
 従来から表示装置に関し、表示パネルに複数の光センサを設け、タッチパネル、ペン入力、スキャナなどの入力機能を提供する方法が知られている。また、近年は特に、画素領域内に表示用画素の半導体素子等を形成する工程と同時に、フォトダイオード等の受光素子が画素領域内に形成されてなる表示装置も、広く知られている(例えば、特開2006-3857号公報、国際公開第2007/145346号パンフレット、および国際公開第2007/145347号パンフレットを参照)。
 しかしながら、画素領域内に光センサを配置する場合、画素領域内の表示画素回路に対して駆動信号を供給するためのバスライン(配線)に加えて、光センサへ駆動信号を供給するためのバスラインが別途必要となり、画素開口率が低くなるという問題がある。
 そこで、本発明は、上記の問題を鑑み、画素領域内に光センサを備えた表示装置において、光センサへ駆動信号を供給するためのバスライン数が抑制された表示装置を提供することを目的とする。
 ここに開示する表示装置は、アクティブマトリクス基板を備えた表示装置であって、前記アクティブマトリクス基板の画素領域に設けられた表示画素回路およびセンサ画素回路を備え、前記センサ画素回路は、受光素子と、前記受光素子に入射した光の量に応じた電荷を蓄積する蓄積ノードと、前記蓄積ノードの電荷を読み出す読み出し用スイッチング素子とを備え、前記表示装置が、前記センサ画素回路へ、前記蓄積ノードのリセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路へ表示データ信号を供給するソース線を介して供給する駆動回路と、前記ソース線以外に設けられたセンサ制御線に接続され、前記センサ画素回路のセンサ信号を保護する保護用スイッチング素子とをさらに有する構成である。
 本発明によれば、画素領域内に光センサを備えた表示装置において、光センサへ駆動信号を供給するためのバスライン数が抑制された表示装置を提供できる。
図1は、本発明の実施形態に係る表示装置の構成を示すブロック図である。 図2は、画素領域におけるセンサ画素回路の配置を示す図である。 図3Aは、第1の実施形態にかかる第1のセンサ画素回路の構成を示す回路図である。 図3Bは、第1の実施形態にかかる第2のセンサ画素回路の構成を示す回路図である。 図4は、第1の実施形態にかかる第1のセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図5は、第1の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図6は、第2の実施形態にかかるセンサ画素回路の構成を示す回路図である。 図7は、第2の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図8は、第2の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図9は、第3の実施形態にかかるセンサ画素回路の構成を示す回路図である。 図10は、第3の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図11は、第3の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図12Aは、第4の実施形態にかかる第1のセンサ画素回路の構成を示す回路図である。 図12Bは、第4の実施形態にかかる第2のセンサ画素回路の構成を示す回路図である。 図13は、第4の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図14は、第4の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図15は、第5の実施形態にかかるセンサ画素回路の構成を示す回路図である。 図16は、第5の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図17は、第5の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図18は、第6の実施形態にかかるセンサ画素回路の構成を示す回路図である。 図19は、第6の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図20は、第6の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図21は、第7の実施形態にかかるセンサ画素回路の構成を示す回路図である。 図22は、第7の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図23は、第7の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。 図24は、第8の実施形態にかかるセンサ画素回路の構成を示す回路図である。 図25は、第8の実施形態にかかるセンサ画素回路を画素内に集積した場合の構成例を示す回路図である。 図26は、第8の実施形態にかかるセンサ画素回路へ供給される信号を示す波形図である。
 本発明の一実施形態にかかる表示装置は、
 アクティブマトリクス基板を備えた表示装置であって、
 前記アクティブマトリクス基板の画素領域に設けられた表示画素回路およびセンサ画素回路を備え、
 前記センサ画素回路は、
 受光素子と、
 前記受光素子に入射した光の量に応じた電荷を蓄積する蓄積ノードと、
 前記蓄積ノードの電荷を読み出す読み出し用スイッチング素子とを備え、
 前記表示装置が、
 前記センサ画素回路へ、前記蓄積ノードのリセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路へ表示データ信号を供給するソース線を介して供給する駆動回路と、
 前記ソース線以外に設けられたセンサ制御線に接続され、前記センサ画素回路のセンサ信号を保護する保護用スイッチング素子とをさらに有する構成である(第1の構成)。
 前記第1の構成において、
 前記センサ制御線が、前記画素領域において、前記ソース線に対して垂直に配置されていることが好ましい(第2の構成)。
 前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子をさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へリセット電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記制御用スイッチング素子と前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含むことが好ましい(第3の構成)。
 前記第1または第2の構成において、
 前記センサ画素回路が、
 前記蓄積ノードと、前記読み出し用スイッチング素子とをそれぞれ備えた第1のセンサ画素回路および第2のセンサ画素回路とを含み、
 前記第1のセンサ画素回路と前記第2のセンサ画素回路とが、1つの受光素子を共有し、
 前記第1のセンサ画素回路および第2のセンサ画素回路のそれぞれが、前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子をさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へリセット電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記第1のセンサ画素回路および第2のセンサ画素回路とのそれぞれにおいて、前記制御用スイッチング素子と前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む構成としても良い(第4の構成)。
 あるいは、前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子と、
 前記制御用スイッチング素子と前記蓄積ノードとの間に設けられた蓄積用コンデンサと、
 前記蓄積用コンデンサと前記蓄積ノードとの間に接続されたスイッチング素子とをさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へリセット電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記蓄積用コンデンサと前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む構成としても良い(第5の構成)。
 前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子と、
 前記制御用スイッチング素子と前記蓄積ノードとの間に接続され、リセット動作を制御するリセット用スイッチング素子とをさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記制御用スイッチング素子と前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む構成としても良い(第6の構成)。
 前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子と、
 前記制御用スイッチング素子と前記蓄積ノードとの間に接続された蓄積用コンデンサと、
 前記制御用スイッチング素子と前記蓄積用コンデンサとの間に接続され、リセット動作を制御するリセット用スイッチング素子と、
 前記蓄積用コンデンサと前記蓄積ノードとの間に接続されたスイッチング素子とをさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記蓄積用コンデンサと前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む構成としても良い(第7の構成)。
 前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子に接続され、リセット動作を制御するリセット用スイッチング素子をさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記受光素子と前記リセット用スイッチング素子との接続点と、前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む構成としても良い(第8の構成)。
 前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子に接続され、リセット動作を制御するリセット用スイッチング素子と、
 前記読み出し用スイッチング素子に接続され、読み出し動作を制御する読み出し制御用スイッチング素子とをさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記受光素子と前記リセット用スイッチング素子との接続点と、前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む構成としても良い(第9の構成)。
 あるいは、前記第1または第2の構成において、
 前記センサ画素回路が、
 前記受光素子に接続され、リセット動作を制御するリセット用スイッチング素子と、
 前記読み出し用スイッチング素子に接続され、読み出し動作を制御する読み出し制御用スイッチング素子とをさらに備え、
 前記保護用スイッチング素子が、
 前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
 前記受光素子と前記リセット用スイッチング素子との接続点と、前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含み、
 前記受光素子が、前記センサ画素回路に含まれるスイッチング素子と同じ型のトランジスタで形成された構成としても良い(第10の構成)。
 前記第1ないし10の構成において、
 前記駆動回路が、前記リセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路の駆動期間における帰線期間に行うことが好ましい(第11の構成)。
 前記第11の構成において、
 前記駆動回路が、前記リセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路の駆動期間における垂直帰線期間に行うことがさらに好ましい(第12の構成)。
 前記第1ないし12の構成において、
 前記アクティブマトリクス基板に対向する対向基板と、
 前記アクティブマトリクス基板と対向基板との間に挟持された液晶とをさらに備えた構成としても良い(第13の構成)。
 [実施の形態]
 以下、本発明のより具体的な実施形態について、図面を参照しながら説明する。なお、以下の実施形態は、本発明にかかる表示装置を液晶表示装置として実施する場合の構成例を示したものであるが、本発明にかかる表示装置は液晶表示装置に限定されず、アクティブマトリクス基板を用いる任意の表示装置に適用可能である。なお、本発明にかかる表示装置は、光センサを有することにより、画面に近接する物体を検知して入力操作を行うタッチパネル付き表示装置や、表示機能と撮像機能とを具備した双方向通信用表示装置等としての利用が想定される。
 また、以下で参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明にかかる表示装置は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。
 [表示装置の全体構成]
 図1は、本発明の第1の実施形態に係る表示装置の構成を示すブロック図である。図1に示す表示装置は、表示制御回路1、表示パネル2、および、バックライト3を備えている。表示パネル2は、画素領域4、ゲートドライバ回路5、ソースドライバ回路6、センサロウドライバ回路7、およびセンサ制御回路11を含んでいる。画素領域4は、複数の表示画素回路8と複数のセンサ画素回路9を含んでいる。この表示装置は、表示パネル2に画像を表示する機能と、表示パネル2に入射した光を検知する機能とを有する。以下、xを2以上の整数、yを3の倍数、mおよびnを偶数とし、表示装置のフレームレートを60フレーム/秒とする。
 図1に示す表示装置には外部から、映像信号Vinとタイミング制御信号Cinが供給される。表示制御回路1は、これらの信号に基づき、表示パネル2に対して映像信号VSと制御信号CSg、CSs、CSrを出力し、バックライト3に対して制御信号CSbを出力する。映像信号VSは、映像信号Vinと同じでもよく、映像信号Vinに信号処理を施した信号でもよい。
 バックライト3は、表示用光源とは別途に設けられたセンシング用の光源であり、表示パネル2に光を照射する。より詳細には、バックライト3は、表示パネル2の背面側に設けられ、表示パネル2の背面に光を照射する。バックライト3は、制御信号CSbがハイレベルのときには点灯し、制御信号CSbがローレベルのときには消灯する。バックライト3としては、例えば赤外線光源等を用いることができる。
 表示パネル2の画素領域4には、(x×y)個の表示画素回路8、(n×m/2)個のセンサ画素回路9が、それぞれ2次元状に配置される。より詳細には、画素領域4には、x本のゲート線GL1~GLxとy本のソース線SL1~SLyが設けられる。ゲート線GL1~GLxは互いに平行に配置され、ソース線SL1~SLyはゲート線GL1~GLxと直交するように互いに平行に配置される。(x×y)個の表示画素回路8は、ゲート線GL1~GLxとソース線SL1~SLyの交点近傍に配置される。各表示画素回路8は、1本のゲート線GLと1本のソース線SLに接続される。表示画素回路8は、赤色表示用、緑色表示用および青色表示用に分類される。これら3種類の表示画素回路8は、ゲート線GL1~GLxの伸延方向に並べて配置され、1個のカラー画素を構成する。
 画素領域4には、ゲート線GL1~GLxと並行に、n本のセンサ制御線EL1~ELn、および、n本の読み出し線RWS1~RWSnが設けられる。
 図2は、画素領域4におけるセンサ画素回路9の配置を示す図である。(n×m/2)個のセンサ画素回路9には、バックライト3の点灯期間に入射した光を検知する第1センサ画素回路9aと、バックライト3の消灯期間に入射した光を検知する第2センサ画素回路9bとが含まれる。第1センサ画素回路9aと第2センサ画素回路9bは同数である。図2では、(n×m/4)個の第1センサ画素回路9aは、奇数番目のセンサ制御線EL1~ELn-1と奇数番目の出力線OUT1~OUTm-1の交点近傍に配置される。
(n×m/4)個の第2センサ画素回路9bは、偶数番目のセンサ制御線EL2~ELnと偶数番目の出力線OUT2~OUTmの交点近傍に配置される。このように表示パネル2は、第1センサ画素回路9aの出力信号と第2センサ画素回路9bの出力信号を伝搬する複数の出力線OUT1~OUTmを含み、第1センサ画素回路9aと第2センサ画素回路9bは種類ごとに異なる出力線に接続される。
 ゲートドライバ回路5は、ゲート線GL1~GLxを駆動する。より詳細には、ゲートドライバ回路5は、制御信号CSgに基づき、ゲート線GL1~GLxの中から1本のゲート線を順に選択し、選択したゲート線にハイレベル電位を、残りのゲート線にローレベル電位を印加する。これにより、選択されたゲート線に接続されたy個の表示画素回路8が、一括して選択される。
 ソースドライバ回路6は、ソース線SL1~SLyを駆動する。より詳細には、ソースドライバ回路6は、制御信号CSsに基づき、映像信号VSに応じた電位をソース線SL1~SLyに印加する。このときソースドライバ回路6は、線順次駆動を行ってもよく、点順次駆動を行ってもよい。ソース線SL1~SLyに印加された電位は、ゲートドライバ回路5によって選択されたy個の表示画素回路8に書き込まれる。このようにゲートドライバ回路5とソースドライバ回路6を用いてすべての表示画素回路8に映像信号VSに応じた電位を書き込むことにより、表示パネル2に所望の画像を表示することができる。
 センサロウドライバ回路7は、センサ制御線EL1~ELn、および、読み出し線RWS1~RWSnなどを駆動する。詳細は後述するが、センサロウドライバ回路7は、制御信号CSrに基づき、センサ制御線EL1~ELnに対して同時に、所定のタイミングでハイレベル電位を供給する。また、センサロウドライバ回路7は、制御信号CSrに基づき、読み出し線RWS1~RWSnの中から1本の読み出し線を順に選択し、選択した読み出し線に読み出し用のハイレベル電位を、残りの読み出し線にローレベル電位を印加する。これにより、選択された1本の読み出し線に接続されたm個のセンサ画素回路9が、一括して読み出し可能状態になる。このときソースドライバ回路6は、電源線VDD1~VDDmに対してハイレベル電位を印加する。これにより、読み出し可能状態にあるm個のセンサ画素回路9から出力線OUT1~OUTmに、各センサ画素回路9で検知した光の量に応じた信号(以下、センサ信号という)が出力される。出力線OUTは、ソース線SLを兼ねており、出力線OUTへ出力されたセンサ信号は、ソースドライバ回路6へ入力される。
 ソースドライバ回路6は、出力線OUTから出力されたセンサ信号を増幅し、増幅後の信号をセンサ出力Soutとして表示パネル2の外部に出力する。センサ出力Soutは、表示パネル2の外部に設けられた信号処理回路20によって、必要に応じて適宜の処理を施される。このようにソースドライバ回路6とセンサロウドライバ回路7を用いてすべてのセンサ画素回路9からセンサ信号を読み出すことにより、表示パネル2に入射した光を検知することができる。
 センサ制御回路11は、クロック線CLK1~CLKm、および、リセット線RST1~RSTmなどを駆動する。詳細は後述するが、センサ制御回路11は、制御信号CSrに基づき、クロック線CLK1~CLKm、および、リセット線RST1~RSTmに対して、所定のタイミングでハイレベル電位を供給する。なお、ソースドライバ回路6と、センサ制御回路11とは、一体化しても良い。
 [センサ画素回路の構成]
 ここで、センサ画素回路9の構成について、図面を参照しながら説明する。なお、以下の説明では、信号線上の信号を識別するために信号線と同じ名称を使用する(例えば、センサ制御線EL1上の信号を、センサ制御信号EL1という)。
 図3Aおよび図3Bは、図2に示した第1センサ画素回路9aおよび第2センサ画素回路9bの構成を示す回路図である。図3Aに示すように、第1センサ画素回路9aは、フォトダイオードD1と、トランジスタT1,T2,M1,M2と、コンデンサC1とを備えている。トランジスタT1,T2,M1,M2は、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。フォトダイオードD1のアノードはトランジスタM1のドレインに接続され、カソードはトランジスタT1のソースに接続される。トランジスタT1のゲートはクロック線CLK1に接続され、ドレインはトランジスタM2のソースに接続される。トランジスタM2のゲートはセンサ制御線ELに接続され、ドレインはコンデンサC1の一方の電極およびトランジスタT2のゲートに接続される。トランジスタM1のソースは、リセット線RST1に接続される。コンデンサC1の他方の電極は、読み出し線RWS1に接続される。トランジスタT2のドレインは電源線VDDに接続され、ソースは出力線OUTに接続される。トランジスタT2は読み出しスイッチング素子として機能する。トランジスタM1,M2は、保護用スイッチング素子として機能する。
 図3Bに示す第2センサ画素回路9bの構成は、第1センサ画素回路9aと同じである。
 図4は、第1センサ画素回路9aを画素内に集積した場合の構成例を示す回路図である。図4に示すように、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。第1センサ画素回路9aのトランジスタT2のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT1のゲートに接続されたクロック線CLK1は、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。本実施形態にかかる表示装置においては、1フレーム期間に1回、第1センサ画素回路9aおよび第2センサ画素回路9bのリセットとセンシングとが行われるセンサ駆動期間が設けられている。センサ駆動期間は、表示画素回路8における表示が行われる表示駆動期間とは別個に設けられる。前述したように、表示画素回路8へ表示信号を供給するためのソース線SLの一部が、センサ駆動にも用いられるからである。
 [センサ画素回路の動作]
 図5は、第1センサ画素回路9aおよび第2センサ画素回路9bに供給される各種の駆動信号を表す波形図である。本実施形態にかかる表示装置においては、1フレーム期間に1回、第1センサ画素回路9aおよび第2センサ画素回路9bのリセットとセンシングとが行われるセンサ駆動期間が設けられている。センサ駆動期間は、表示画素回路8における表示が行われる表示駆動期間とは別個に設けられる。前述したように、表示画素回路8へ表示信号を供給するためのソース線SLの一部が、センサ駆動にも用いられるからである。
 センサ駆動期間は、図5に示すように、垂直帰線期間内もしくは垂直帰線期間を含む期間に設けられていることが好ましい。1フレーム期間が16ms(ミリ秒)の場合、垂直基線期間の長さは、例えば2msである。図5の例では、センサ駆動期間の前半において、バックライト制御信号BLがハイレベルとなり、第1センサ画素回路9aのリセットおよびセンシングが行われる。一方、センサ駆動期間の後半においては、バックライト制御信号BLはローレベルとなり、第2センサ画素回路9bのリセットおよびセンシングが行われる。
 表示駆動期間においては、表示画素回路8による画像表示が行われると共に、第1センサ画素回路9aおよび第2センサ画素回路9bにおいて、センサ駆動期間でセンシングされたセンサ信号の保持と、読み出し信号RWSにしたがったセンサ信号の順次読み出しとが行われる。
 図5の例において、センサ制御信号ELは、センサ駆動期間においてハイレベルを維持する。これにより、センサ駆動期間において、トランジスタM1,M2はオン状態である。センサ駆動期間の前半において、まず、第1センサ画素回路9aへ供給されるクロック信号CLK1がハイレベルとなり、リセット信号RST1がハイレベルとなる。クロック信号CLK1およびリセット信号RST1がハイレベルとなることにより、トランジスタT1がオンとなり、フォトダイオードD1のアノードにリセット信号RST1のハイレベル電位が供給される。これにより、蓄積ノードの電位Vintが、リセット信号RST1のハイレベルに応じた電位にリセットされる。
 そして、センサ駆動期間の前半において、リセット信号RST1がハイレベルからローレベルへ切り替わってから、クロック信号CLK1がハイレベルからローレベルへ切り替わるまでの間が、第1のセンサ画素回路9aのセンシング期間(蓄積期間)である。このセンシング期間において、第1のセンサ画素回路9aのフォトダイオードD1に光が入射すると、蓄積ノードの電位Vintは、クロック信号CLK1がハイレベルである期間に入射した光の量に応じて下降し、コンデンサC1に電荷が蓄積される。なお、このとき、バックライト3は点灯しているので、ここでコンデンサC1に蓄積される電荷(オン信号)は、フォトダイオードD1に入射するシグナル成分と外光等に起因するノイズ成分との合計に相当する。
 クロック信号CLK1がハイレベルからローレベルへ切り替わって蓄積期間が終了すると、トランジスタT1がオフとなり、蓄積ノードの電位Vintは、蓄積期間終了時の電位を保持する。
 前述のとおり、センサ駆動期間の前半の終了時にクロック信号CLK1がハイレベルからローレベルへ切り替わると、次に、第2のセンサ画素回路9bへ供給されるクロック信号CLK2がハイレベルとなり、続いて、リセット信号RST2もハイレベルとなる。以降、第1のセンサ画素回路9aと同様に、第2のセンサ画素回路9bも、リセットとセンシングとを行う。なお、このとき、バックライト3は消灯しているので、第2のセンサ画素回路9bのコンデンサC1に蓄積される電荷(オフ信号)は、フォトダイオードD1のノイズ成分に相当する。センサ駆動期間の後半の終了時に、クロック信号CLK2がハイレベルからローレベルへ切り替わってからは、第2のセンサ画素回路9bにおける蓄積ノードの電位Vintは、蓄積期間終了時の電位を保持する。
 そして、表示駆動期間においては、センサ制御信号ELはローレベルを維持する。これにより、トランジスタM1,M2は、表示駆動期間はオフ状態に維持される。クロック線CLK1,CLK2は、前述のとおり、赤色表示用の表示画素回路8にデータ信号を供給するソース線SLrを兼ねている。したがって、クロック線CLK1,CLK2には、図5に示すとおり、赤色の画素表示を行うためのデータ信号が供給される。また、リセット線RST1,RST2は、緑色表示用の表示画素回路8にデータ信号を供給するソース線SLgを兼ねている。したがって、リセット線RST1,RST2には、図5に示すとおり、緑色の画素表示を行うためのデータ信号が供給される。
 表示駆動期間において、図5に示すとおり、読み出し配線RWS1~RWSnへ、読み出し用のハイレベル電位が順次供給される。この読み出し用のハイレベル電位が供給されることにより、蓄積ノードの電位Vintは、このハイレベル電位の振幅の(Cqa/Cpa)倍(ただし、Cpaは1つのセンサ画素回路全体の容量値、CqaはコンデンサC1の容量値)だけ上昇する。トランジスタT2は、ソースドライバ回路6に含まれるトランジスタ(図示せず)を負荷としたソースフォロワ増幅回路を構成し、電位Vintに応じて出力線OUTを駆動する。
 ソースドライバ回路6において、第1のセンサ画素回路9aの出力線OUTから出力されたセンサ信号(オン信号)から、第2のセンサ画素回路9bの出力線OUTから出力されたセンサ信号(オフ信号)が差し引かれることにより、ノイズ成分が除去されたセンサ出力が得られる。
 以上のとおり、本実施形態によれば、オン信号を検知する第1のセンサ画素回路9aと、オフ信号を検知する第2のセンサ画素回路9bとを備え、オン信号とオフ信号との差分を求めることにより、ノイズ成分が除去された高精度なセンサ出力を得ることができる。
 また、本実施形態にかかるセンサ画素回路9によれば、クロック信号CLK、リセット信号RST、定電圧VDDがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。したがって、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。開口率が高くなると、バックライト3の輝度が低くて済むので、消費電力の低減にもつながる。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、フォトダイオードD1のカソード側の電位(Vc)がリセットレベルよりも高くなることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるクロック線CLK(ソース線SLr)の電位変動から保護する機能を有する。
 [第2の実施形態]
 本発明の表示装置の第2の実施形態について、以下に説明する。第1の実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図6は、第2の実施形態にかかるセンサ画素回路9の構成を示す回路図である。図6に示すセンサ画素回路9は、図3Aに示した第1センサ画素回路9aと、図3Bに示した第2センサ画素回路9bとを、フォトダイオードD1とトランジスタM1とを共有するように、左右対称に接続した構成である。図6の構成では、フォトダイオードD1とトランジスタM1と右半分の回路要素とが、第1のセンサ画素回路9aに相当し、フォトダイオードD1とトランジスタM1と左半分の回路要素とが、第2のセンサ画素回路9bに相当する。
 図7は、図6に示すセンサ画素回路9を画素内に集積した場合の回路図である。図7に示すように、第2の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。第1センサ画素回路9aのトランジスタT2のソースに接続された出力線OUT1は、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT2のドレインに接続された電源線VDD1は、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT1のゲートに接続されたクロック線CLK1は、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタM1のソースに接続されたリセット線RSTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。
 第2センサ画素回路9bのトランジスタT2のソースに接続された出力線OUT2は、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDD2は、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT1のゲートに接続されたクロック線CLK1は、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。
 [センサ画素回路の動作]
 図8は、第1センサ画素回路9aおよび第2センサ画素回路9bに供給される各種の駆動信号を表す波形図である。図8に示すように、本実施形態にかかる表示装置に供給される駆動信号のタイミングは、第1の実施形態と、基本的に同じである。
 センサ駆動期間の前半においてリセット信号RSTがハイレベルとなった時には、クロック信号CLK1がハイレベルであり、クロック信号CLK2がローレベルであるので、第1センサ画素回路9aの蓄積ノードの電位Vint1がリセットされる。その後、クロック信号CLK1がハイレベルである間、第1センサ画素回路9aの蓄積ノードの電位Vint1は、この間にフォトダイオードD1へ入射した光量に応じて下降する。なお、この間は、バックライト3は点灯されているので、ここでコンデンサC1に蓄積される電荷(オン信号)は、フォトダイオードD1に入射するシグナル成分と外光等に起因するノイズ成分との合計に相当する。
 センサ駆動期間の後半においてリセット信号RSTが再びハイレベルとなった時には、クロック信号CLK2がハイレベルであり、クロック信号CLK1がローレベルであるので、第2センサ画素回路9bの蓄積ノードの電位Vint2がリセットされる。その後、クロック信号CLK2がハイレベルである間、第2センサ画素回路9bの蓄積ノードの電位Vint2は、この間にフォトダイオードD1へ入射した光量に応じて下降する。なお、この間は、バックライト3は消灯されているので、ここでコンデンサC1に蓄積される電荷(オフ信号)は、フォトダイオードD1のノイズ成分に相当する。
 表示駆動期間において、読み出し配線RWS1~RWSnへ、読み出し用のハイレベル電位が順次供給されることにより、第1のセンサ画素回路9aの出力線OUT1からオン信号が得られ、第2のセンサ画素回路9bの出力線OUT2からオフ信号が得られる。そして、ソースドライバ回路6において、オン信号とオフ信号との差分を求めることにより、ノイズ成分が除去された高精度なセンサ出力を得ることができる。
 また、本実施形態にかかるセンサ画素回路9においても、クロック信号CLK、リセット信号RST、定電圧VDDがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。したがって、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。開口率が高くなると、バックライト3の輝度が低くて済むので、消費電力の低減にもつながる。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、フォトダイオードD1のカソード側の電位(Vc)がリセットレベルよりも高くなることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるクロック線CLK(ソース線SLr)の電位変動から保護する機能を有する。
 また、本実施形態にかかるセンサ画素回路9によれば、第1の画素回路9aと第2の画素回路9bとが1個のフォトダイオードD1を共有することにより、フォトダイオードの感度特性のばらつきの影響が無くなるため、バックライト点灯時の光量(オン信号)とバックライト消灯時の光量(オフ信号)の差を正確に求めることができる。また、フォトダイオードの個数を減らし、開口率を高くして、センサ画素回路の感度を高くすることができる。
 [第3の実施形態]
 本発明の表示装置の第3の実施形態について、以下に説明する。前述の各実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図9は、第3の実施形態にかかるセンサ画素回路9の構成を示す回路図である。図9に示すセンサ画素回路9は、フォトダイオードD1、トランジスタT1,T2,T3,M1,M2、および、コンデンサC1,C2を備えた構成である。なお、本実施形態にかかるセンサ画素回路9は、第1のセンサ画素回路9aと第2のセンサ画素回路9bとの区別はなく、画素領域4に設けられた全てのセンサ画素回路9が同じ構成を有している。また、本実施形態にかかるセンサ画素回路9からは、第1の実施形態で説明したオン信号とオフ信号との差分に相当するセンサ出力を、出力線OUTから出力する。
 トランジスタT1,T2,T3,M1,M2は、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。フォトダイオードD1のアノードはトランジスタM1のドレインに接続され、カソードはトランジスタT1のソースに接続される。トランジスタT1のゲートはクロック線CLK1に接続され、ドレインはコンデンサC2の一方の電極に接続される。コンデンサC2の他方の電極は、トランジスタT3のドレインに接続される。トランジスタT3のゲートは、クロック線CLK2に接続され、ソースは定電圧線REFに接続される。トランジスタM2のゲートはセンサ制御線ELに接続され、ソースはコンデンサC2の前記他方の電極に接続される。トランジスタM2のドレインは、コンデンサC1の一方の電極に接続される。コンデンサC1の他方の電極は、読み出し線RWSに接続される。トランジスタT2のドレインは電源線VDDに接続され、ソースは出力線OUTに接続される。
 図10は、図9に示すセンサ画素回路9を画素内に集積した場合の回路図である。図10に示すように、第3の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。トランジスタT2のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT1のゲートに接続されたクロック線CLK1は、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタM1のソースに接続されたリセット線RSTは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT3のソースに接続された定電圧線REFは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT3のゲートに接続されたクロック線CLK2は、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。
 [センサ画素回路の動作]
 図11は、センサ画素回路9に供給される各種の駆動信号を表す波形図である。
 図11において、BLはバックライト3の輝度を表す。
 センサ駆動期間において、最初にリセット信号RSTがハイレベルになったとき、クロック信号CLK1,CLK2はハイレベル、読み出し信号RWSはローレベルである。このとき、トランジスタT1,T3はオンである。したがって、リセット線RSTからフォトダイオードD1とトランジスタT1を経由してノードVsigに電流(フォトダイオードD1の順方向電流)が流れ、ノードVsigの電位は所定レベルにリセットされる。
 リセット信号RSTがローレベルに切り替わった後も、クロック信号CLK1,CLK2はハイレベル、読み出し信号RWSはローレベルを維持する。このとき、トランジスタT1,T3はオンである。このときにフォトダイオードD1に光が入射すると、ノードVsigからトランジスタT1とフォトダイオードD1を経由してリセット線RSTに電流が流れ、ノードVsigから電荷が引き抜かれる。したがって、電位Vsigは、クロック信号CLK2がハイレベルである期間(バックライト3が点灯している期間)に入射した光の量に応じて下降し、コンデンサC2に電荷Qonが蓄積される。ここでコンデンサC2に蓄積される電荷Qon(オン信号)は、フォトダイオードD1のフォト電流成分と、フォトダイオードD1のノイズ成分との合計に相当する。
 このとき、ノードVsigの電位は、
   Vsig=Vrst_h-Qon/C2
である。Vrst_hは、リセット信号RSTのハイレベル電位であり、Qonは、フォトダイオードD1に流れるオン電流(Ion)の積分値である。なお、このとき、蓄積ノードVintの電位は、定電圧線REFから供給される参照電圧Vrefに等しい。
 次に、センサ駆動期間内において、クロック信号CLK2がローレベルに切り替わった後に、リセット信号RSTが再度ハイレベルとなる。このとき、クロック信号CLK1はハイレベルである。読み出し信号RWSもローレベルを維持する。これにより、トランジスタT1はオン、トランジスタT3,T2はオフである。トランジスタT1がオンになり、かつ、リセット信号RSTがハイレベルになることにより、ノードVsigの電位はリセット信号RSTのハイレベル電位と等しくなる。さらに、コンデンサC2に蓄積されていた電荷Qonが、蓄積ノードVintへ移動し、コンデンサC1,C2に蓄積される。
 このとき、蓄積ノードVintの電位は、
   Vint=Vref+Qon/(C1+C2)
である。
 次に、リセット信号RSTがローレベルに切り替わった後、オフ信号の蓄積期間では、クロック信号CLK1はハイレベルであり、クロック信号CLK2はローレベルである。ここで、フォトダイオードD1に光が入射すると、ノードVsigからトランジスタT1とフォトダイオードD1を経由してリセット線RSTにオフ電流(Ioff)が流れ、ノードVsigから電荷が引き抜かれる。これにより、電位Vsigは、このリセット信号RSTがローレベルに切り替わってからクロック信号CLK1がハイレベルである間に入射した光の量に応じて下降し、コンデンサC2に電荷Qoffが蓄積される。なお、このときはバックライト3は消灯しているので、コンデンサC2に蓄積される電荷Qoff(オフ信号)は、フォトダイオードD1のノイズ成分に相当する。
 このとき、ノードVsigの電位は、
   Vsig=Vrst_h-Qoff/(C1//C2)
である。Qoffは、フォトダイオードD1のオフ電流(Ioff)の積分値である。C1//C2は、コンデンサC1,C2を直列接続した場合の合成容量である。また、蓄積ノードVintの電位は、
   Vint=Vref+Qon/(C1+C2)-Qff/C1
である。この式から分かるように、オフ信号の蓄積期間においては、蓄積ノードVintの電位は、オン信号とオフ信号との差分に相当した値となる。
 そして、センサ駆動期間が終了し、表示駆動期間になってからの読み出し期間において、クロック信号CLK1,CLK2およびリセット信号RSTはローレベル、読み出し信号RWSは、1本ずつ順に、読み出し用のハイレベルになる。このとき、トランジスタT1,T3はオフとなる。このとき電位Vintは、読み出し信号RWSの電位の上昇量の(C1/Cpa)倍(ただし、Cpaはセンサ画素回路の全体の容量値)だけ上昇する。トランジスタT2は、ソースドライバ回路6に含まれるトランジスタ(図示せず)を負荷としたソースフォロワ増幅回路を構成し、電位Vintに応じて出力線OUTを駆動する。
 以上のとおり、本実施形態によれば、1つのセンサ画素回路9の内部でオン信号とオフ信号との差分が求められ、センサ出力として出力線OUTから出力されるので、ノイズ成分が除去された高精度なセンサ出力を得ることができる。
 また、本実施形態にかかるセンサ画素回路9によれば、クロック信号CLK、リセット信号RST、定電圧VDDがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。したがって、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。開口率が高くなると、バックライト3の輝度が低くて済むので、消費電力の低減にもつながる。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、フォトダイオードD1のカソード側の電位(Vc)がリセットレベルよりも高くなることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるクロック線CLK(ソース線SLr)の電位変動から保護する機能を有する。
 [第4の実施形態]
 本発明の表示装置の第4の実施形態について、以下に説明する。前述の各実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図12Aおよび図12Bは、第4の実施形態にかかる第1のセンサ画素回路9aおよび第2のセンサ画素回路9bの構成を示す回路図である。図12Aに示す第1のセンサ画素回路9aは、フォトダイオードD1、トランジスタT1,T2,T3,M1,M2、および、コンデンサC1を備えた構成である。第2のセンサ画素回路9bは、第1のセンサ画素回路9aと同様の回路構成を有する。
 トランジスタT1,T2,T3,M1,M2は、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。第1のセンサ画素回路9aにおいて、フォトダイオードD1のアノードはトランジスタM1のドレインに接続され、カソードはトランジスタT1のソースに接続される。トランジスタT1のゲートはクロック線CLK1に接続され、ドレインは、トランジスタT3のドレインに接続される。トランジスタT3のゲートは、リセット線RST1に接続され、ソースは定電圧線REFに接続される。トランジスタM1のゲートはセンサ制御線ELに接続され、ソースは定電圧線COMに接続される。トランジスタM2のゲートはセンサ制御線ELに接続され、ソースはトランジスタT3のドレインに接続される。コンデンサC1の一方の電極は、トランジスタT2のゲートに接続され、コンデンサC1の他方の電極は、読み出し線RWSに接続される。トランジスタT2のドレインは電源線VDDに接続され、ソースは出力線OUTに接続される。
 本実施形態にかかるソースドライバ回路6は、第1センサ画素回路9aの出力信号と第2センサ画素回路9bの出力信号との差を求める差分回路(図示せず)を含んでいる。ソースドライバ回路6は、差分回路で求めた光量の差を増幅し、増幅後の信号をセンサ出力Soutとして表示パネル2の外部に出力する。センサ出力Soutは、表示パネル2の外部に設けられた信号処理回路20によって、必要に応じて適宜の処理を施される。
 図13は、図12Aおよび図12Bに示すセンサ画素回路9を画素内に集積した場合の回路図である。図13に示すように、第4の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。トランジスタT2のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT1のゲートに接続されたクロック線CLK1は、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT3のゲートに接続されたリセット線RSTは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT3のソースに接続された定電圧線REFは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタM1のソースに接続された定電圧線COMは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。
 [センサ画素回路の動作]
 図14は、センサ画素回路9に供給される各種の駆動信号を表す波形図である。
 図14の例では、バックライト3は、1フレーム期間に1回、所定時間だけ点灯し、それ以外の期間では消灯する。具体的には、バックライト3は、センサ駆動期間の前半において点灯し、後半において消灯する。また、センサ駆動期間の最初においてすべての第1センサ画素回路9aに対するリセットが行われ、センサ駆動期間の後半の始めにおいて、すべての第2センサ画素回路9bに対するリセットが行われる。
 第1センサ画素回路9aは、センサ駆動期間の前半(バックライト3の点灯期間)に入射した光を検知する。第2センサ画素回路9bは、センサ駆動期間の後半(バックライト3の消灯期間)に入射した光を検知する。第1センサ画素回路9aからの読み出しと第2センサ画素回路9bからの読み出しは、センサ駆動期間の終了後、表示駆動期間内に、線順次で行われる。
 図14に示すように、奇数番目のクロック線CLK1~CLKn-1の電位は、1フレーム期間に2回、センサ駆動期間の前半においてそれぞれ所定時間だけハイレベルになる。偶数番目のクロック線CLK2~CLKnの電位は、1フレーム期間に2回、センサ駆動期間の後半においてそれぞれ所定時間だけハイレベルになる。奇数番目のリセット線RST1~RSTn-1の電位は、1フレーム期間に1回、センサ駆動期間の最初に、所定時間だけハイレベルになる。偶数番目のリセット線RST2~RSTnの電位は、1フレーム期間に1回、センサ駆動期間の後半の始めに所定時間だけハイレベルになる。読み出し線RWS1~RWSnは、表示駆動期間内に順に所定時間ずつハイレベルになる。
 なお、クロック線CLKのハイレベル電位をVclk、ノードVcの電位をVsig、トランジスタT1の閾値電圧をVthとすると、
   Vint-Vsig>Vclk-Vsig-Vth   
が成り立つ。
 クロック信号CLKおよびリセット信号RSTがハイレベルになることにより、トランジスタT1、T3は共にオンとなる。トランジスタT3がオンになることにより、蓄積ノードVintの電位Vintは、定電圧線REFの参照電圧Vref(ここでは0V)とほぼ等しくなる。クロック信号CLKのハイレベル電位は、トランジスタT1が飽和領域で動作するように設定されている。
 リセット信号RSTがハイレベルからローレベルへ切り替わることによってリセット期間が終了すると、蓄積期間が始まる。蓄積期間においては、クロック信号CLK、リセット信号RST、読み出し信号RWSはすべてローレベルに維持される。蓄積期間においては、トランジスタT1,T3はオフである。このときにフォトダイオードD1に光が入射すると、フォトダイオードD1に入射光に応じた電流Ipdが流れ、ノードVcから電荷Qsigが引き抜かれる。したがって、ノードVcの電位Vsigは、引き抜かれた電荷Qsigに応じて下降する。なお、蓄積期間のあいだ、トランジスタT1,T3がオフであることにより、蓄積ノードVintの電位Vintは、リセット期間の電位(Vref)に保たれる。
 次に、蓄積期間の終了時刻において、クロック信号CLKが再びハイレベルになると、トランジスタT1はオンになる。これにより、ノードVcから引き抜かれた電荷Qsigに相当する電荷が、蓄積ノードVintからノードVcへ移動する。これにより、蓄積ノードVintの電位(Vint)は、この電荷Qsigの量に応じてΔVintだけ下降する。したがって、
   Vint=Vref-ΔVint
       =Vref-Qsig/Cint
       =Vref-Ipd・t/Cint    
である。ここで、Cintは、蓄積ノードVintの負荷容量である。tは蓄積期間の長さである。
 以上より、本実施形態によれば、第1センサ画素回路9aの蓄積ノードの電位Vint_onは、
   Vint_on=Vref-Ipd_on・t/Cint   
となる。ただし、ここで、Ipd_onは、バックライト3が点灯した状態における蓄積期間(センサ駆動期間の前半の蓄積期間)にフォトダイオードD1に流れた光電流の電流値を表す。
 また、センサ駆動期間の後半において、第2センサ画素回路9bの蓄積ノードの電位Vint_offは、
   Vint_off=Vref-Ipd_off・t/Cint   
となる。ただし、ここで、Ipd_offは、バックライト3が消灯した状態における蓄積期間(センサ駆動期間の後半の蓄積期間)にフォトダイオードD1に流れた電流の電流値を表す。
 読み出し期間においては、第1センサ画素回路9aおよび第2センサ画素回路9bからは、上述のとおり、バックライト3の点灯時の検知期間に入射した光の量に応じたセンサ信号と、バックライト3の消灯時の検知期間に入射した光の量に応じたセンサ信号とが、それぞれ読み出される。ソースドライバ回路6に含まれる差分回路が、第1センサ画素回路9aの出力信号と第2センサ画素回路9bの出力信号との差を求めることにより、バックライト点灯時の光量とバックライト消灯時の光量の差を求めることができる。
 第2センサ画素回路9bからの出力信号、すなわち、バックライト3の消灯時の検知期間に入射した光の量に応じたセンサ信号は、周囲環境に起因するノイズ成分のみを含んでいる。したがって、ソースドライバ回路6の差分回路において、第1センサ画素回路9aからの出力信号から、第2センサ画素回路9bからの出力信号を差し引くことにより、ノイズ成分が除去された高精度なセンサ出力を得ることができる。
 以上のとおり、本実施形態によれば、第1のセンサ画素回路9aでオン信号、第2のセンサ画素回路9bでオフ信号がそれぞれ求められ、ソースドライバ回路6においてオン信号とオフ信号との差分が求められるので、ノイズ成分が除去された高精度なセンサ出力を得ることができる。
 また、本実施形態にかかるセンサ画素回路9によれば、クロック信号CLK、リセット信号RST、定電圧VDD,REF,COMがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。したがって、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、フォトダイオードD1のカソード側の電位(Vc)がリセットレベルよりも高くなることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるクロック線CLK(ソース線SLr)の電位変動から保護する機能を有する。
 [第5の実施形態]
 本発明の表示装置の第5の実施形態について、以下に説明する。前述の各実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図15は、第5の実施形態にかかるセンサ画素回路9の構成を示す回路図である。図15に示すセンサ画素回路9は、第3の実施形態にかかるセンサ画素回路9に、トランジスタT4を追加した構成である。トランジスタT4は、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。
 トランジスタT4のゲートは、リセット線RSTに接続されている。なお、本実施形態においては、トランジスタM1のソースは、リセット線RSTではなく、定電圧線COMに接続されている。トランジスタT4のドレインは、トランジスタT1とコンデンサC2との間に接続されている。
 図16は、図15に示すセンサ画素回路9を画素内に集積した場合の回路図である。図16に示すように、第5の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。トランジスタT2のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT1のゲートに接続されたクロック線CLK1は、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT3のゲートに接続されたクロック線CLK2は、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT3のソースに接続された定電圧線REFは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタM1のソースに接続された定電圧線COMは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。
 [センサ画素回路の動作]
 図17は、センサ画素回路9に供給される各種の駆動信号を表す波形図である。
 図17に示すように、センサ画素回路9に印加されるクロック信号CLK1,CLK2は、1フレーム期間に1回ずつハイレベルになる。クロック信号CLK1は、センサ駆動期間中、ハイレベルを維持し、クロック信号CLK2は、センサ駆動期間の前半のみにおいてハイレベルとなる。リセット信号RSTは、1フレーム期間に2回ハイレベルになる。
 センサ駆動期間において、リセット信号RSTが最初にハイレベルとなるとき、クロック信号CLK1,CLK2と、リセット信号RSTとは、ハイレベルである。読み出し信号RWSはローレベルである。これにより、トランジスタT1,T3はオンになり、フォトダイードD1のカソード(ノードVxと称する)の電位は、定電圧線REFから供給される参照電圧Vrefにリセットされる。また、このときの蓄積ノードVintの電位は、定電圧線REFから供給される参照電圧Vrefに等しい。
 リセット信号RSTがハイレベルからローレベルに切り替わると、オフ信号蓄積期間が始まる。オフ信号蓄積期間では、クロック信号CLK1,CLK2はハイレベルに維持される。したがって、トランジスタT1,T3はオンである。フォトダイオードD1に光が入射すると、ノードVxからフォトダイオードD1を経由して定電圧線COMに電流が流れ、ノードVxから電荷が引き抜かれる。これにより、ノードVxの電位は、オフ信号蓄積期間に入射した光の量に応じて下降する。なお、このときバックライト3は消灯しているので、ノードVxの電位の下降分(ΔVoff)は、フォトダイオードD1のノイズ成分に相当する。
 このとき、ノードVxおよび蓄積ノードVintの電位は、それぞれ、
   Vx=Vref-ΔVoff    
   Vint=Vref    
である。
 次に、センサ駆動期間において、リセット信号RSTが再度ハイレベルとなる。このとき、クロック信号CLK1はハイレベルを維持するが、CLK2はローレベルになっている。このとき、読み出し信号RWSはローレベルである。クロック信号CLK2がローレベルになることにより、トランジスタT3がオフになる。これにより、蓄積ノードVintの電位はフローティング状態となる。この状態で、リセット線RSTからハイレベル電圧Vrst_hが供給されることにより、ノードVxの電位は、参照電圧Vrefにリセットされる。一方、蓄積ノードVintの電位は、オフ信号蓄積期間における電位下降分(ΔVoff)に相当する電圧だけ上昇する。すなわち、蓄積ノードVintの電位は、
   Vint=Vref+ΔVoff・A   
である。なお、Aは、コンデンサC1とコンデンサC2と容量比で決まる定数である。
 その後、センサ駆動期間において、リセット信号RSTがハイレベルからローレベルへ切り替わると、オン信号の蓄積期間が始まる。オン信号蓄積期間は、センサ駆動期間における二度目のリセット信号がローレベルになってから、クロック信号CLK1がハイレベルからローレベルへ切り替わるまでの期間である。オン信号の蓄積期間では、クロック信号CLK1はハイレベルであり、クロック信号CLK2はローレベルである。リセット信号RSTはローレベルである。読み出し信号RWSはローレベルである。なお、このオン信号蓄積期間において、バックライト3は点灯する。オン信号蓄積期間において、フォトダイオードD1に光が入射すると、ノードVxからフォトダイオードD1を経由して定電圧線COMにオン電流(フォトダイオードD1のフォト電流)が流れ、ノードVxから電荷が引き抜かれる。これにより、電位Vxは、オン信号蓄積期間にフォトダイオードD1へ入射した光(外光とバックライト光)の量に応じて下降する。なお、このときバックライト3は点灯しているので、ノードVxの電位の下降分(ΔVon)は、フォトダイオードD1へ入射した外光およびバックライト光による成分と、フォトダイオードD1のノイズ成分との合計値に相当する。
 このとき、ノードVxおよび蓄積ノードVintの電位は、それぞれ、
  Vx=Vref-(ΔVoff+ΔVon)   
  Vint=Vref+ΔVoff・A-(ΔVoff+ΔVon)・A
      =Vref-ΔVon・A      
である。これらの式より、本実施形態によれば、オン信号蓄積期間の終了時点においては、蓄積ノードVintの電位が、外光成分とノイズ成分が除去された信号光(バックライト光による成分)を反映していることが分かる。
 センサ駆動期間終了後の読み出し期間では、クロック信号CLK1,CLK2はローレベルであり、リセット信号RSTはローレベル、読み出し信号RWSがハイレベルである。これにより、トランジスタT2が、ソースドライバ回路6に含まれるトランジスタ(図示せず)を負荷としたソースフォロワ増幅回路を構成し、蓄積ノードVintの電位に応じて出力線OUTを駆動する。
 以上のとおり、本実施形態によれば、センサ画素回路9内で外光とノイズ成分が相殺され、精度の高いセンサ出力を得ることができる。
 また、本実施形態にかかるセンサ画素回路9によれば、クロック信号CLK、リセット信号RST、定電圧VDD,REF,COMがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。したがって、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。開口率が高くなると、バックライト3の輝度が低くて済むので、消費電力の低減にもつながる。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、フォトダイオードD1のカソード側の電位(Vx)がリセットレベルよりも高くなることを防ぐ機能がある。トランジスタM1は、定電圧線COMと定電圧線REFとが表示駆動期間中にショートしてしまうことを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるクロック線CLK(ソース線SLr)の電位変動から保護する機能を有する。
 [第6の実施形態]
 本発明の表示装置の第6の実施形態について、以下に説明する。前述の各実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図18は、第6の実施形態にかかるセンサ画素回路9の構成を示す回路図である。図18に示すように、本実施形態にかかるセンサ画素回路9は、フォトダイオードD1、トランジスタM1,M2,T2,T5、および、コンデンサC1を備えている。トランジスタT2,T5,M1,M2は、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。
 フォトダイオードD1のアノードは、トランジスタM1のドレインに接続され、カソードはトランジスタT5のドレインとトランジスタM2のソースとに接続される。トランジスタT5のゲートはリセット線RSTに接続され、ドレインはフォトダイオードD1のカソードに接続され、ソースは定電圧線REFに接続される。トランジスタM1,M2のゲートはセンサ制御線ELに接続される。トランジスタM1のソースは、定電圧線COMに接続されている。トランジスタM2のドレインは、トランジスタT2のゲートに接続される。コンデンサC1の一方の電極は、トランジスタT2のゲートに接続される。コンデンサC1の他方の電極は、読み出し線RWSに接続される。トランジスタT2のドレインは電源線VDDに接続され、ソースは出力線OUTに接続される。
 図19は、図18に示すセンサ画素回路9を画素内に集積した場合の回路図である。図19に示すように、第6の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。トランジスタT2のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT5のゲートに接続されたリセット線RSTは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT5のソースに接続された定電圧線REFは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタM1のソースに接続された定電圧線COMは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。
 [センサ画素回路の動作]
 図20は、センサ画素回路9に供給される各種の駆動信号を表す波形図である。本実施形態にかかる表示装置においても、1フレーム期間に1回、センサ画素回路9のリセットとセンシングとが行われるセンサ駆動期間が、表示駆動期間とは別個に設けられている。
 図20の例において、センサ制御信号ELは、センサ駆動期間においてハイレベルを維持する。これにより、センサ駆動期間において、トランジスタM1,M2はオン状態である。センサ駆動期間の最初に、リセット信号RSTが、所定の期間ハイレベルとなる。リセット信号RSTがハイレベルとなることにより、トランジスタT5がオンとなり、蓄積ノードの電位Vintが、参照電圧Vrefにリセットされる。
 リセット信号RSTがハイレベルからローレベルへ切り替わってから、センサ制御信号ELがハイレベルからローレベルへ切り替わるまでの間が、センサ画素回路9のセンシング期間(蓄積期間)である。このセンシング期間において、フォトダイオードD1に光が入射すると、蓄積ノードの電位Vintは、この蓄積期間に入射した光の量に応じて下降し、コンデンサC1に電荷が蓄積される。なお、本実施形態においては、センサ駆動期間において、バックライト3は点灯状態とされる。
 センサ制御信号ELがハイレベルからローレベルへ切り替わって蓄積期間が終了すると、トランジスタM1,M2がオフとなり、蓄積ノードの電位Vintは、蓄積期間終了時の電位を保持する。
 表示駆動期間においては、センサ制御信号ELはローレベルを維持する。これにより、トランジスタM1,M2は、表示駆動期間はオフ状態に維持される。表示駆動期間において、図20に示すとおり、読み出し配線RWS1~RWSnへ、読み出し用のハイレベル電位が順次供給される。この読み出し用のハイレベル電位が供給されることにより、蓄積ノードの電位Vintは、このハイレベル電位の振幅の(Cqa/Cpa)倍(ただし、Cpaは1つのセンサ画素回路全体の容量値、CqaはコンデンサC1の容量値)だけ上昇する。トランジスタT2は、ソースドライバ回路6に含まれるトランジスタ(図示せず)を負荷としたソースフォロワ増幅回路を構成し、電位Vintに応じて出力線OUTを駆動する。
 本実施形態にかかるセンサ画素回路9によれば、リセット信号RST、定電圧REF,COMがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。この結果、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、表示駆動期間中に定電圧線COMとREFがショートすることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるソース線の電位変動から保護する機能を有する。
 [第7の実施形態]
 本発明の表示装置の第7の実施形態について、以下に説明する。前述の各実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図21は、第7の実施形態にかかるセンサ画素回路9の構成を示す回路図である。図21に示すように、本実施形態にかかるセンサ画素回路9は、第6の実施形態にかかるセンサ画素回路9に、トランジスタT6を追加した構成である。トランジスタT6は、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。
 トランジスタT6のゲートは、読み出し線RWSに接続される。コンデンサC1の一方の電極はトランジスタT2のゲートに接続され、他方の電極は定電圧線VDDに接続される。トランジスタT6のドレインはトランジスタT2のソースに接続され、トランジスタT6のソースは出力線OUTに接続される。
 図22は、図21に示すセンサ画素回路9を画素内に集積した場合の回路図である。図22に示すように、第7の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。トランジスタT6のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT5のゲートに接続されたリセット線RSTは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT5のソースに接続された定電圧線REFは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタM1のソースに接続された定電圧線COMは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。
 [センサ画素回路の動作]
 図23は、センサ画素回路9に供給される各種の駆動信号を表す波形図である。本実施形態にかかる表示装置においても、1フレーム期間に1回、センサ画素回路9のリセットとセンシングとが行われるセンサ駆動期間が、表示駆動期間とは別個に設けられている。
 図23の例においても、センサ制御信号ELは、センサ駆動期間においてハイレベルを維持する。これにより、センサ駆動期間において、トランジスタM1,M2はオン状態である。センサ駆動期間の最初に、リセット信号RSTが、所定の期間ハイレベルとなる。リセット信号RSTがハイレベルとなることにより、トランジスタT5がオンとなり、蓄積ノードの電位Vintが、参照電圧Vrefにリセットされる。
 リセット信号RSTがハイレベルからローレベルへ切り替わってから、センサ制御信号ELがハイレベルからローレベルへ切り替わるまでの間が、センサ画素回路9のセンシング期間(蓄積期間)である。このセンシング期間において、フォトダイオードD1に光が入射すると、蓄積ノードの電位Vintは、この蓄積期間に入射した光の量に応じて下降し、コンデンサC1に電荷が蓄積される。なお、本実施形態においては、センサ駆動期間において、バックライト3は点灯状態とされる。
 センサ制御信号ELがハイレベルからローレベルへ切り替わって蓄積期間が終了すると、トランジスタM1,M2がオフとなり、蓄積ノードの電位Vintは、蓄積期間終了時の電位を保持する。
 表示駆動期間においては、センサ制御信号ELはローレベルを維持する。これにより、トランジスタM1,M2は、表示駆動期間はオフ状態に維持される。表示駆動期間において、図23に示すとおり、読み出し配線RWS1~RWSnへ、読み出し用のハイレベル電位が順次供給される。この読み出し用のハイレベル電位が供給されることにより、トランジスタT6がオンする。トランジスタT2,T6は、ソースドライバ回路6に含まれるトランジスタ(図示せず)を負荷としたソースフォロワ増幅回路を構成し、電位Vintに応じて出力線OUTを駆動する。
 本実施形態にかかるセンサ画素回路9によれば、リセット信号RST、定電圧REF,COMがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。この結果、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。開口率が高くなると、バックライト3の輝度が低くて済むので、消費電力の低減にもつながる。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、表示駆動期間中に定電圧線COMとREFがショートすることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるソース線の電位変動から保護する機能を有する。
 [第8の実施形態]
 本発明の表示装置の第8の実施形態について、以下に説明する。前述の各実施形態において説明した構成要素と同様の要素については、同じ参照符号を付記し、その詳細な説明を省略する。
 [センサ画素回路の構成]
 図24は、第8の実施形態にかかるセンサ画素回路9の構成を示す回路図である。図24に示すように、本実施形態にかかるセンサ画素回路9は、第7の実施形態にかかるセンサ画素回路9において、フォトダイオードD1をフォトトランジスタTDに置換したものである。フォトトランジスタTDは、例えば、N型TFT(Thin Film Transistor:薄膜トランジスタ)である。これにより、センサ画素回路9に含まれるトランジスタはすべてN型となる。したがって、N型トランジスタだけを製造できる片チャンネルプロセスを用いて、センサ画素回路9を製造することができる。フォトトランジスタTDのゲートは、フォトトランジスタTDを流れる電流をコントロールするために、コントロール線CTLに接続される。
 図25は、図24に示すセンサ画素回路9を画素内に集積した場合の回路図である。図25に示すように、第7の実施形態にかかるセンサ画素回路9の場合も、センサ制御線ELおよび読み出し線RWSは、ゲート線GLに並行に配置されている。トランジスタT6のソースに接続された出力線OUTは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタT2のドレインに接続された電源線VDDは、緑色表示用の表示画素回路8に接続されたソース線SLgを兼用している。トランジスタT5のゲートに接続されたリセット線RSTは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。トランジスタT5のソースに接続された定電圧線REFは、赤色表示用の表示画素回路8に接続されたソース線SLrを兼用している。トランジスタM1のソースに接続された定電圧線COMは、青色表示用の表示画素回路8に接続されたソース線SLbを兼用している。フォトトランジスタTDのゲートに接続された制御線CTLは、緑色表示用の表示画素回路8に接続されたソース線SLgに接続されている。
 [センサ画素回路の動作]
 図26は、センサ画素回路9に供給される各種の駆動信号を表す波形図である。本実施形態にかかるセンサ画素回路9の駆動は、第7の実施形態と同じであるため、説明を省略する。
 本実施形態にかかるセンサ画素回路9によれば、リセット信号RST、定電圧REF,COM,CTLがソース線SLを介して供給される。したがって、表示画素回路8を駆動するためのバスラインに対して、センサ画素回路9を駆動するためのバスラインとして追加する必要があるのは、センサ制御線ELと読み出し線RWSだけである。この結果、バスラインの追加を抑制しつつ、高精度なセンサ画素回路を実現することができる。また、バスラインの追加が抑制されているので、開口率を高く維持することができるという利点もある。開口率が高くなると、バックライト3の輝度が低くて済むので、消費電力の低減にもつながる。
 また、本実施形態にかかるセンサ画素回路9において、トランジスタM1,M2を設けたことにより、次のような利点もある。まず、トランジスタM1は、表示駆動期間中に定電圧線COMとREFがショートすることを防ぐ機能がある。また、トランジスタM2は、表示駆動期間にオフ状態を維持することにより、蓄積ノードの電位Vintを、表示駆動期間(読み出し前の保持期間)におけるソース線の電位変動から保護する機能を有する。
 [第1~第8の実施形態についてのさらなる変形例]
 以上、本発明についての第1~第8の実施形態を説明したが、本発明は上述の各実施形態にのみ限定されず、発明の範囲内で種々の変更が可能である。
 本発明では、表示装置に設けられる光源の種類には特に限定はない。したがって、第1~第8の実施形態において、センサ駆動期間において点灯するバックライトは、表示用に設けた可視光バックライトであっても良いし、表示用の可視光バックライトとは別に設けられたセンサ用の不可視光(例えば赤外光)バックライトであっても良い。
 また、第1~第4の実施形態においては、センサ駆動期間の前半においてバックライト3を点灯させてオン信号を取得し、後半においてバックライト3を消灯させてオフ信号を取得する例を説明した。しかし、この逆に、センサ駆動期間の前半にバックライトを消灯させ、後半にバックライトを点灯させることとしても良い。
 また、第1~第4の実施形態においては、第1のセンサ画素回路で得られたオン信号から、第2のセンサ画素回路で得られたオフ信号を差し引く構成を例示した。しかし、例えばノイズを許容しても良い場合等は、画素領域4におけるセンサ画素回路の全てにおいてオン信号を取得し、オン信号をそのままセンサ出力として使用するように構成しても良い。
 本発明は、光センサ機能を有する表示装置として、産業上利用可能である。

Claims (13)

  1.  アクティブマトリクス基板を備えた表示装置であって、
     前記アクティブマトリクス基板の画素領域に設けられた表示画素回路およびセンサ画素回路を備え、
     前記センサ画素回路は、
     受光素子と、
     前記受光素子に入射した光の量に応じた電荷を蓄積する蓄積ノードと、
     前記蓄積ノードの電荷を読み出す読み出し用スイッチング素子とを備え、
     前記表示装置が、
     前記センサ画素回路へ、前記蓄積ノードのリセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路へ表示データ信号を供給するソース線を介して供給する駆動回路と、
     前記ソース線以外に設けられたセンサ制御線に接続され、前記センサ画素回路のセンサ信号を保護する保護用スイッチング素子とをさらに有する表示装置。
  2.  前記センサ制御線が、前記画素領域において、前記ソース線に対して垂直に配置された、請求項1に記載の表示装置。
  3.  前記センサ画素回路が、
     前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子をさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へリセット電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記制御用スイッチング素子と前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  4.  前記センサ画素回路が、
     前記蓄積ノードと、前記読み出し用スイッチング素子とをそれぞれ備えた第1のセンサ画素回路および第2のセンサ画素回路とを含み、
     前記第1のセンサ画素回路と前記第2のセンサ画素回路とが、1つの受光素子を共有し、
     前記第1のセンサ画素回路および第2のセンサ画素回路のそれぞれが、前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子をさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へリセット電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記第1のセンサ画素回路および第2のセンサ画素回路とのそれぞれにおいて、前記制御用スイッチング素子と前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  5.  前記センサ画素回路が、
     前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子と、
     前記制御用スイッチング素子と前記蓄積ノードとの間に設けられた蓄積用コンデンサと、
     前記蓄積用コンデンサと前記蓄積ノードとの間に接続されたスイッチング素子とをさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へリセット電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記蓄積用コンデンサと前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  6.  前記センサ画素回路が、
     前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子と、
     前記制御用スイッチング素子と前記蓄積ノードとの間に接続され、リセット動作を制御するリセット用スイッチング素子とをさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記制御用スイッチング素子と前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  7.  前記センサ画素回路が、
     前記受光素子と前記蓄積ノードとの間に接続された制御用スイッチング素子と、
     前記制御用スイッチング素子と前記蓄積ノードとの間に接続された蓄積用コンデンサと、
     前記制御用スイッチング素子と前記蓄積用コンデンサとの間に接続され、リセット動作を制御するリセット用スイッチング素子と、
     前記蓄積用コンデンサと前記蓄積ノードとの間に接続されたスイッチング素子とをさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記蓄積用コンデンサと前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  8.  前記センサ画素回路が、
     前記受光素子に接続され、リセット動作を制御するリセット用スイッチング素子をさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記受光素子と前記リセット用スイッチング素子との接続点と、前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  9.  前記センサ画素回路が、
     前記受光素子に接続され、リセット動作を制御するリセット用スイッチング素子と、
     前記読み出し用スイッチング素子に接続され、読み出し動作を制御する読み出し制御用スイッチング素子とをさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記受光素子と前記リセット用スイッチング素子との接続点と、前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含む、請求項1または2に記載の表示装置。
  10.  前記センサ画素回路が、
     前記受光素子に接続され、リセット動作を制御するリセット用スイッチング素子と、
     前記読み出し用スイッチング素子に接続され、読み出し動作を制御する読み出し制御用スイッチング素子とをさらに備え、
     前記保護用スイッチング素子が、
     前記受光素子と当該受光素子へ定電圧を供給するソース線との間に接続された第1の保護用スイッチング素子と、
     前記受光素子と前記リセット用スイッチング素子との接続点と、前記蓄積ノードとの間に接続された第2の保護用スイッチング素子とを含み、
     前記受光素子が、前記センサ画素回路に含まれるスイッチング素子と同じ型のトランジスタで形成された、請求項1または2に記載の表示装置。
  11.  前記駆動回路が、前記リセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路の駆動期間における帰線期間に行う、請求項1~10のいずれか一項に記載の表示装置。
  12.  前記駆動回路が、前記リセット動作および蓄積動作を制御するセンサ駆動信号を、前記表示画素回路の駆動期間における垂直帰線期間に行う、請求項11に記載の表示装置。
  13.  前記アクティブマトリクス基板に対向する対向基板と、
     前記アクティブマトリクス基板と対向基板との間に挟持された液晶とをさらに備えた、請求項1~12のいずれか一項に記載の表示装置。
PCT/JP2011/066898 2010-07-27 2011-07-26 表示装置 WO2012014861A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/811,974 US9384707B2 (en) 2010-07-27 2011-07-26 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-168681 2010-07-27
JP2010168681 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012014861A1 true WO2012014861A1 (ja) 2012-02-02

Family

ID=45530069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066898 WO2012014861A1 (ja) 2010-07-27 2011-07-26 表示装置

Country Status (2)

Country Link
US (1) US9384707B2 (ja)
WO (1) WO2012014861A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206456A (ja) * 2012-03-29 2013-10-07 Samsung Display Co Ltd 光センサを含む表示装置及びその駆動方法
CN107728352A (zh) * 2017-11-22 2018-02-23 深圳市华星光电半导体显示技术有限公司 一种像素驱动电路及液晶显示面板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203530B1 (en) * 2017-11-28 2019-02-12 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel driving circuit and LCD panel
TWI722827B (zh) * 2019-11-27 2021-03-21 友達光電股份有限公司 畫素陣列基板
CN114708833B (zh) * 2022-03-31 2023-07-07 武汉天马微电子有限公司 显示面板及其驱动方法、显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091610A (ja) * 2008-10-03 2010-04-22 Toshiba Mobile Display Co Ltd 表示装置
WO2011040091A1 (ja) * 2009-09-30 2011-04-07 シャープ株式会社 表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2381644A (en) 2001-10-31 2003-05-07 Cambridge Display Tech Ltd Display drivers
JP4737956B2 (ja) 2003-08-25 2011-08-03 東芝モバイルディスプレイ株式会社 表示装置および光電変換素子
GB2439118A (en) 2006-06-12 2007-12-19 Sharp Kk Image sensor and display
GB2439098A (en) 2006-06-12 2007-12-19 Sharp Kk Image sensor and display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091610A (ja) * 2008-10-03 2010-04-22 Toshiba Mobile Display Co Ltd 表示装置
WO2011040091A1 (ja) * 2009-09-30 2011-04-07 シャープ株式会社 表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206456A (ja) * 2012-03-29 2013-10-07 Samsung Display Co Ltd 光センサを含む表示装置及びその駆動方法
KR20130110575A (ko) * 2012-03-29 2013-10-10 삼성디스플레이 주식회사 광 센서를 포함하는 표시 장치 및 그 구동 방법
KR101889915B1 (ko) * 2012-03-29 2018-08-21 삼성디스플레이 주식회사 광 센서를 포함하는 표시 장치 및 그 구동 방법
CN107728352A (zh) * 2017-11-22 2018-02-23 深圳市华星光电半导体显示技术有限公司 一种像素驱动电路及液晶显示面板
CN107728352B (zh) * 2017-11-22 2020-05-05 深圳市华星光电半导体显示技术有限公司 一种像素驱动电路及液晶显示面板

Also Published As

Publication number Publication date
US20130120332A1 (en) 2013-05-16
US9384707B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP4799696B2 (ja) 表示装置
US8373825B2 (en) Display device
US8350835B2 (en) Display device
US9064460B2 (en) Display device with touch sensor including photosensor
US8525953B2 (en) Display device
WO2011145507A1 (ja) 表示装置
US20110080390A1 (en) Display device
US20100134452A1 (en) Display device
WO2012014819A1 (ja) 表示装置
WO2012014861A1 (ja) 表示装置
US9069412B2 (en) Touch-sensor-equipped display device comrpising photodetecting elements
US8817333B2 (en) Display device with optical sensor included and image reading method employing same
US8593443B2 (en) Display device
US20110096049A1 (en) Display device
WO2012014865A1 (ja) 表示装置およびその駆動方法
US20110102393A1 (en) Display device
EP2562625A1 (en) Display with touch-sensor
US8068190B2 (en) Display device
WO2012014864A1 (ja) 表示装置
US20110315859A1 (en) Display device
WO2011040094A1 (ja) 表示装置
JP5289583B2 (ja) 表示装置
WO2010058630A1 (ja) 液晶表示装置、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13811974

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP