WO2012014831A1 - Co2除去設備を有する排ガス処理システム - Google Patents

Co2除去設備を有する排ガス処理システム Download PDF

Info

Publication number
WO2012014831A1
WO2012014831A1 PCT/JP2011/066813 JP2011066813W WO2012014831A1 WO 2012014831 A1 WO2012014831 A1 WO 2012014831A1 JP 2011066813 W JP2011066813 W JP 2011066813W WO 2012014831 A1 WO2012014831 A1 WO 2012014831A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
treatment system
discharge gas
press
gas treatment
Prior art date
Application number
PCT/JP2011/066813
Other languages
English (en)
French (fr)
Inventor
祥悟 盛
中本 隆則
尾田 直己
利夫 勝部
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Priority to CA2806530A priority Critical patent/CA2806530A1/en
Priority to EP11812421.3A priority patent/EP2609987A4/en
Priority to US13/812,033 priority patent/US20130149204A1/en
Publication of WO2012014831A1 publication Critical patent/WO2012014831A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to an exhaust gas treatment system that removes carbon dioxide (CO 2 ) in combustion exhaust gas by a chemical absorption method, and more specifically, equipment that removes CO 2 from combustion exhaust gas using an amine compound aqueous solution as a CO 2 absorbent.
  • the present invention relates to an exhaust gas treatment system.
  • thermal power generation facilities and boiler facilities use a large amount of fossil fuel, heavy oil, etc. as fuel. From the standpoint of preventing air pollution and global warming, global studies have been conducted on the suppression of CO 2 emissions into the atmosphere. Is underway. From the exhaust gas, such as thermal power plants and chemical plants that is the mass generation source of CO 2, as a technology for separating and recovering CO 2, chemical absorption method using an amine aqueous solution such as alkanolamine absorbing solution for CO 2 Is widely known. An example of a power plant including a conventional de-CO 2 facility is shown in FIG.
  • the power plant consists mainly of boiler 1, denitration device 2, air heater 3, GGH (heat recovery device) 4, electrostatic precipitator 5, wet desulfurization device 6, press clubber 7, CO 2 removal equipment 8, and GGH (reheater) ) 9.
  • the boiler 1 is provided with turbine equipment, boiler steam 11 is supplied to the turbine equipment, and the generator connected to the turbine rotates to generate electricity.
  • the steam that has worked in the turbine is cooled to become feed water 12 and is supplied to boiler 1 again.
  • the boiler 1 generates exhaust gas by burning coal or the like.
  • nitrogen oxides (NOx) contained in the gas discharged from the boiler 1 are decomposed. Thereafter, the temperature of the gas discharged from the denitration device 2 is adjusted to 130 to 150 ° C.
  • NOx nitrogen oxides
  • the dust-removed gas is supplied to the wet desulfurization apparatus 6 to remove sulfur dioxide (SO 2 ), and further highly efficient desulfurization is performed by the press clubber 7 so that the SO 2 concentration in the gas becomes several ppm or less.
  • the exhaust gas at the outlet of the press club 7 is supplied to the CO 2 removal facility 8 where the CO 2 is absorbed and removed, and then the exhaust gas is heated to 80 to 90 ° C. by the GGH reheater 9 and then released from the chimney 10 to the atmosphere.
  • FIG. 3 shows an example of a detailed equipment configuration of the power plant in the prior art of FIG.
  • the press scrubber 7 has a water tank for storing the absorbent 13 supplied into the system, a circulation pump 14 for circulating the absorbent, a cooler 15 for cooling the circulating absorbent, and a countercurrent contact of the absorbent with the exhaust gas in the scrubber. It is composed of a spray part 16 for spraying.
  • the exhaust gas discharged from the wet desulfurization unit 6 supplied to the press scrubber 7 contains about 40 ppm to 80 ppm of SO 2, but SO 2 is removed by the press scrubber 7 because it is a deterioration factor of the amine absorbing liquid (1 at the press scrubber outlet).
  • the gas is cooled by the absorbent and then introduced into the absorption tower 18 as a press clubber outlet gas 17.
  • the filling layer 19 of the reaction to absorb the CO 2 in the exhaust gas in the amine absorbent occurs by the absorption liquid spray unit 20 for spraying the absorption liquid, to absorb CO 2 to amine absorbent.
  • a demister 27 is installed at the upper part of the washing part, and the mist of the absorbing solution that has passed through the washing part is removed.
  • the processing gas 28 discharged from the absorption tower outlet is heated to 80 to 90 ° C. by the GGH reheater 9 and discharged from the chimney 10.
  • the amine liquid that has absorbed CO 2 is sent from the reservoir at the lower part of the absorption tower 18 through the regeneration tower liquid supply pipe 30 to the regeneration tower 31 by the absorption tower extraction pump 29. Thereafter, in the upper part of the packed bed 32 in the intermediate part of the regeneration tower 31, the absorbing liquid sprayed from the spray part 33 comes into gas-liquid contact with the vapor rising from the lower part, so that CO 2 contained in the absorbing liquid is desorbed. I care.
  • the degassed CO 2 gas is washed by the water washing section 34 and the water washing spray 35, and the mist passing through the water washing section accompanying the gas is collected by the demister 36 and discharged as CO 2 gas 37 from the top of the regeneration tower. Is done.
  • the CO 2 gas 37 is cooled to 40 ° C. by a cooler 38, and then separated into gas and condensed water by a CO 2 separator 39.
  • the separated CO 2 gas is introduced into a CO 2 liquefaction facility not shown in the figure. Is done.
  • the condensed water is supplied to the washing spray 35 by the drain pump 40.
  • the amine liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 41 and then sent to the reboiler 43 through the reboiler liquid supply pipe 42.
  • Heat transfer pipes are installed inside the reboiler 43, and steam is supplied from the reboiler through the steam supply pipe 45 to the regeneration tower when the amine liquid is indirectly heated by the steam 44 supplied by the steam supply pipe. Is done.
  • the amine absorbing liquid passes through the regeneration tower liquid extraction pipe 46 from the liquid reservoir at the lower part of the regeneration tower, is cooled by the heat exchanger 47, and is introduced into the absorption tower.
  • the outlet gas temperature of the wet desulfurization apparatus 6 is 50 ° C., and in order to maintain the CO 2 removal performance, the gas temperature at the inlet of the CO 2 absorption tower is lowered to about 40 ° C. in the press clubber 7 described above.
  • an absorber cooler In addition, in order to perform desulfurization with high efficiency, it is necessary to use a high-cost basic chemical such as sodium hydroxide (NaOH), etc., installation of a cooling system for exhaust gas cooling, and desulfurization wastewater associated therewith Reduction of utility costs and press club costs, such as an increase in the amount of processing, was an issue.
  • NaOH sodium hydroxide
  • the object of the present invention is to reduce the environmental burden in the operation of a de-CO 2 facility that removes CO 2 from the flue gas, and at the same time, to reduce the CO 2 equipment and utility costs of the press club as much as possible. 2 is to provide a processing system.
  • the above-described problem is achieved by using seawater as a desulfurization absorbent in a press club of a de-CO 2 facility that absorbs and removes CO 2 in combustion exhaust gas. That is, the invention claimed in the present application is as follows. (1) An exhaust gas treatment system provided with a CO 2 removal facility that absorbs and removes carbon dioxide (CO 2 ) in combustion exhaust gas with an amine compound absorbent, and the exhaust gas is discharged into the seawater upstream of the CO 2 removal facility. Exhaust gas treatment system characterized in that a press clubber is provided in contact with the exhaust gas.
  • the exhaust gas treatment system has a wet flue gas desulfurization device, and the press club is provided downstream of the wet flue gas desulfurization device and has a function of cooling the exhaust gas from the wet flue gas desulfurization device.
  • the exhaust gas treatment system according to (1) In the present invention, the use of seawater as the SO 2 absorbent in the press scrubber upstream of the de-CO 2 facility eliminates the need for a conventional absorbent such as NaOH, thereby reducing the cost. In normal seawater desulfurization, the emission of harmful substances such as mercury (Hg) contained in the exhaust gas becomes a problem. In the present invention (Claim 2), these harmful substances are caused by the lime-gypsum desulfurization device in the upstream of the press club.
  • seawater is used instead of the desulfurization absorbent in the press clubber, thereby eliminating the cooler and reducing the desulfurization waste water treatment load.
  • the facility cost and the utility cost can be reduced.
  • mercury and other toxic substances are almost completely removed by the desulfurization device in the upstream of the press scrubber, so the possibility of secondary pollution due to discharge of the used seawater is low.
  • the press scrubber 7 includes a seawater supply pump 49 that supplies seawater 48 that is an absorbent, and a spray section 16 that sprays the absorbent so as to counter-current contact with the exhaust gas.
  • the exhaust gas exiting the wet desulfurization apparatus 6 is supplied to the press scrubber 7, where the SO 2 is removed by the seawater 48 and at the same time the gas is cooled to about 40 ° C. and introduced into the absorption tower 18 as the press scrubber outlet gas 17, Seawater that has absorbed SO 2 is discharged directly into the sea.
  • the structures of the CO 2 absorption tower 18 and the regeneration tower 31 are the same as those of the conventional apparatus shown in FIG. 3 as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Chimneys And Flues (AREA)

Abstract

【課題】燃焼排ガス中のCO2を除去する脱CO2設備の運転において環境負荷の低減を図ると同時に、プレスクラバの設備コストやユーティリティコストを極力抑えることができる燃焼排ガス中の脱CO2設備および方法を提供する。 【解決手段】燃焼排ガス中の二酸化炭素(CO2)をアミン化合物の吸収液によって吸収、除去するCO2除去設備を設けた排ガス処理システムであって、該CO2除去設備の上流側に排ガスを海水と接触させるプレスクラバを設けた排ガス処理システム。

Description

CO2除去設備を有する排ガス処理システム
  本発明は、燃焼排ガス中の二酸化炭素(CO2)を化学吸収法により除去する排ガス処理システムに関し、更に詳しくはアミン化合物水溶液をCO2吸収剤として使用する、燃焼排ガスからCO2を除去する設備を有する排ガス処理システムに関する。
 近年、火力発電設備やボイラ設備では、多量の化石燃料及び重油等を燃料として用いており、大気汚染及び地球温暖化防止の見地から、大気中へのCO2の排出抑制について、世界的に検討が進められている。CO2の大量発生源となっている火力発電設備や化学プラント等の排ガスから、CO2を分離回収する技術の一つとして、アルカノールアミン等のアミン水溶液をCO2の吸収液に用いる化学吸収法が広く知られている。
 従来の脱CO2設備を含む発電プラントの一例を図2に示す。発電プラントは、主にボイラ1、脱硝装置2、エアヒータ3、GGH(熱回収器)4、電気集塵装置5、湿式脱硫装置6、プレスクラバ7、CO2除去設備8、およびGGH(再加熱器)9から構成される。ボイラ1にはタービン設備が付設され、ボイラ蒸気11がタービン設備に供給され、タービンが回転することにより連結した発電機が回転し発電する。タービンで仕事をした蒸気は冷却されて給水12となり、再度ボイラ1に供給される。ボイラ1は石炭等を燃焼することにより、排ガスを生成する。脱硝装置2では、ボイラ1から排出されたガスに含まれる窒素酸化物(NOx)を分解する。その後、脱硝装置2から排出されたガスの温度をエアヒータ3で130~150℃に調整し、GGH熱回収器4で排ガスの熱を回収した後、電気集塵装置5で煤塵を除去する。除塵されたガスは、湿式脱硫装置6に供給されて二酸化硫黄(SO2)を除去され、プレスクラバ7でガス中SO2濃度が数ppm以下となるよう、更に高効率の脱硫が行われる。プレスクラバ7出口の排ガスはCO2除去設備8に供給され、CO2を吸収除去された後、GGH再加熱器9で排ガスを80~90℃に加熱した後、煙突10から大気に放出される。
 図3は、図2の従来技術における発電プラントの詳細な機器構成の一例を示している。プレスクラバ7は、系内に供給する吸収剤13を収容する水槽、吸収剤を循環する循環ポンプ14、循環する吸収剤を冷却する冷却器15、スクラバー内で吸収剤を排ガスと向流接触するようにスプレするスプレ部16から構成されている。プレスクラバ7に供給される湿式脱硫装置6出口排ガスには、SO2が40ppm~80ppm程度含まれているが、SO2はアミン吸収液の劣化要因であるため、プレスクラバ7により除去(プレスクラバ出口で1~数ppm程度)するとともに、吸収剤によりガスを冷却し、その後プレスクラバ出口ガス17として吸収塔18に導入される。
 吸収塔18内では、排ガス中のCO2をアミン吸収液で吸収させる反応がおこる充填層19と、吸収液をスプレする吸収液スプレ部20とにより、CO2をアミン吸収液に吸収させる。その際、CO2を吸収する発熱反応により、温度が上昇した脱CO2排ガス21を冷却・水洗するため、脱CO2排ガス21に同伴するアミン吸収液を洗浄除去する水洗部22および水洗スプレ部23と、水洗した水を溜める水洗水溜め部24及び循環する水洗水を冷却する冷却器25と、水洗水を循環する水洗ポンプ26とが設置されている。また、水洗部上部にはデミスタ27が設置され、水洗部をくぐり抜けた吸収液のミストが除去される。吸収塔出口から排出される処理ガス28は、GGH再加熱器9で80~90℃に昇温されて、煙突10から排出される。また、CO2を吸収したアミン液は、吸収塔18下部の液溜めから、吸収塔抜出しポンプ29により再生塔液供給配管30を通り、再生塔31に送液される。その後、再生塔31中間部にある充填層32の上部において、スプレ部33から噴霧される吸収液が、下部から上昇する蒸気と気液接触することにより、吸収液に含まれたCO2が脱気される。次いで、脱気されたCO2ガスは水洗部34及び水洗スプレ35により洗浄され、ガスに同伴して水洗部をすり抜けたミストをデミスタ36で捕集し、CO2ガス37として再生塔上部より排出される。CO2ガス37は冷却器38で40℃まで冷却された後、CO2分離器39でガスと凝縮した水に分離され、分離後のCO2ガスは図に示していないCO2液化設備へ導入される。また、凝縮した水はドレンポンプ40によって水洗スプレ35に供給される。一方、CO2を脱気したアミン液は、再生塔液溜め部41に溜められた後、リボイラ液供給配管42を通ってリボイラ43に送液される。リボイラ43内部には伝熱管等が設置されており、スチーム供給配管によって供給されるスチーム44でアミン液が間接加熱されることにより、リボイラから蒸気が蒸気供給配管45を通って、再生塔に供給される。また、再生塔下部の液溜めから、アミン吸収液が再生塔液抜出し配管46を通り、熱交換器47で冷却されて吸収塔に導入される。
 従来技術では、湿式脱硫装置6の出口ガス温度は50℃であり、CO2除去性能を維持するため、上記で述べたプレスクラバ7において、CO2吸収塔入口のガス温度を40℃程度に低下させる必要があり、吸収剤の冷却器が必要であった。更に、高効率で脱硫を行なうためには、水酸化ナトリウム(NaOH)等のような高コストの塩基性薬剤を用いる必要があり、また排ガス冷却のための冷却システムの設置、さらにそれに伴う脱硫排水の処理量の増加といった、ユーティリティコスト及びプレスクラバのコストの低減が課題であった。
 上記従来技術では、脱CO2設備のプレスクラバにおける脱硫吸収剤として、水酸化ナトリウム等の塩基性薬剤を使用する必要があり、コストの増加が問題であった。また、プレスクラバによって脱硫排水が増加するため、排水処理に関わるユーティリティコストが増加するという問題があった。更に、脱CO2設備における効率維持のため、プレスクラバにおいて排ガスの冷却(例えば50℃から40℃以下)を行う必要があるが、この冷却システムでは大量の冷却水を使用する必要があった。
 本発明の課題は、燃焼排ガス中のCO2を除去する脱CO2設備の運転において環境負荷の低減を図ると同時に、プレスクラバの設備コストやユーティリティコストを極力抑えることができる燃焼排ガス中の脱CO2処理システムを提供することである。
 上記課題は、燃焼排ガス中のCO2を吸収除去する脱CO2設備のプレスクラバにおける脱硫吸収剤として、海水を使用することにより達成される。すなわち、本願で特許請求される発明は以下のとおりである。
(1)燃焼排ガス中の二酸化炭素(CO2)をアミン化合物の吸収液によって吸収、除去するCO2除去設備を設けた排ガス処理システムであって、該CO2除去設備の上流側に排ガスを海水と接触させるプレスクラバを設けたことを特徴とする排ガス処理システム。
(2)前記排ガス処理システムは、湿式排煙脱硫装置を有し、前記プレスクラバは、前記湿式排煙脱硫装置の後流に設けられていて、前記湿式排煙脱硫装置出口排ガスを冷却する機能を有することを特徴とする(1)記載の排ガス処理システム。
 本発明では、脱CO2設備前流のプレスクラバにおけるSO2吸収剤として海水を使用することにより、従来のNaOH等の吸収剤が不要になるため、コスト低減が可能となる。なお、通常の海水脱硫では排ガス中に含まれる水銀(Hg)といった有害物質の排出が問題となるが、本発明(請求項2)においてはプレスクラバ前流にある石灰石膏法脱硫装置により、それら有害物質が除去されるため、二次公害が発生する可能性は低い。
 更に、常時20~30℃である海水をプレスクラバに供給することで、プレスクラバの冷却システムを省略し、設備コストや冷却水の使用量、及びそれに関わるユーティリティコストを低減することができる。
 以上述べたごとく、本発明によれば、脱CO2設備に導入する排ガスの前処理として、プレスクラバにおいて脱硫吸収剤に代えて海水を使用することにより、冷却器の省略、脱硫排水処理負荷の低減が可能であり、設備コスト及びユーティリティコストを低減することができる。また、プレスクラバ前流の脱硫装置により、水銀を始めとした有害物質がほとんど除去されるため、使用した海水の排出による二次公害の発生可能性は低い。
燃焼排ガス中のCO2を吸収除去するCO2除去装置システムのプレスクラバ脱硫吸収剤として、海水を使用した実施例を示す説明図。 従来技術による燃焼排ガス中のCO2を除去するシステムの燃焼排ガスのフローチャートを示す説明図。 図2における従来技術のCO2除去装置システムの詳細な機器構成の一例を示した図。
 本発明の一実施例を図1を参照して説明する。本発明における脱CO2設備の構成は、図3に示した従来設備と同じであるが、プレスクラバ7のみ異なっている。すなわち、プレスクラバ7は、吸収剤である海水48を供給する海水供給用ポンプ49と、吸収剤を排ガスと向流接触するようにスプレするスプレ部16とから構成されている。湿式脱硫装置6を出た排ガスは、プレスクラバ7に供給され、ここで海水48によりSO2を除去すると同時に40℃程度までガスが冷却され、プレスクラバ出口ガス17として吸収塔18に導入され、一方、SO2を吸収した海水は、海へそのまま排出される。なお、CO2の吸収塔18および再生塔31の構成は上述のように図3の従来装置と同じである。
 1‥ボイラ、2‥脱硝装置、3‥エアヒータ、4‥GGH(熱回収器)、5‥電気集塵装置、6‥湿式脱硫装置、7‥プレスクラバ、8‥CO2除去設備、9‥GGH(再加熱器)、10‥煙突、11‥ボイラ蒸気、18‥吸収塔、29‥吸収塔抜出しポンプ、30‥再生塔液供給配管、31‥再生塔、32‥充填層、33‥スプレ部、36‥デミスタ、38‥冷却器、39‥CO2分離器、42‥リボイラ液供給配管、43‥リボイラ、47‥熱交換器
 
 

Claims (2)

  1.  燃焼排ガス中の二酸化炭素(CO2)をアミン化合物の吸収液によって吸収、除去するCO2除去設備を設けた排ガス処理システムであって、該CO2除去設備の上流側に排ガスを海水と接触させるプレスクラバを設けたことを特徴とする排ガス処理システム。
  2.  前記排ガス処理システムは、湿式排煙脱硫装置を有し、前記プレスクラバは、前記湿式排煙脱硫装置の後流に設けられていて、前記湿式排煙脱硫装置出口排ガスを冷却する機能を有することを特徴とする請求項1記載の排ガス処理システム。
     
PCT/JP2011/066813 2010-07-26 2011-07-25 Co2除去設備を有する排ガス処理システム WO2012014831A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2806530A CA2806530A1 (en) 2010-07-26 2011-07-25 Exhaust gas treatment system with co2 removal equipment
EP11812421.3A EP2609987A4 (en) 2010-07-26 2011-07-25 DISCHARGE GAS TREATMENT SYSTEM WITH A DEVICE FOR CO2 REMOVAL
US13/812,033 US20130149204A1 (en) 2010-07-26 2011-07-25 Exhaust gas treatment system with co2 removal equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010167051A JP2012024718A (ja) 2010-07-26 2010-07-26 Co2除去設備を有する排ガス処理システム
JP2010-167051 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014831A1 true WO2012014831A1 (ja) 2012-02-02

Family

ID=45530039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066813 WO2012014831A1 (ja) 2010-07-26 2011-07-25 Co2除去設備を有する排ガス処理システム

Country Status (5)

Country Link
US (1) US20130149204A1 (ja)
EP (1) EP2609987A4 (ja)
JP (1) JP2012024718A (ja)
CA (1) CA2806530A1 (ja)
WO (1) WO2012014831A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371734B2 (ja) * 2009-12-25 2013-12-18 三菱重工業株式会社 Co2回収装置およびco2回収方法
EP2578295B1 (en) 2010-05-31 2020-05-27 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment system and method
EP2578294B1 (en) 2010-05-31 2020-05-06 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment method
CA2801169C (en) 2010-05-31 2015-02-17 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
EP2578297B1 (en) * 2010-05-31 2019-12-18 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment system and method
JP5968159B2 (ja) * 2012-08-20 2016-08-10 三菱重工業株式会社 Co2回収装置およびco2回収方法
JP6345127B2 (ja) * 2015-01-22 2018-06-20 三菱重工業株式会社 排ガス処理システム及び方法
EP3085911B1 (en) * 2015-04-22 2017-12-13 Wärtsilä Moss AS Scrubber with dual water system
JP6847762B2 (ja) * 2017-05-15 2021-03-24 株式会社東芝 排ガス成分の除去方法、排ガス成分の除去器および二酸化炭素の分離回収方法ならびに分離回収装置
CA3031879C (en) * 2018-02-20 2023-04-25 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment with waste heat recovery and nitrogen oxide removal
RU2701538C1 (ru) * 2018-02-20 2019-09-27 Мицубиси Хеви Индастриз Энджиниринг, Лтд. Устройство очистки отработавшего газа и способ очистки отработавшего газа

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824569A (ja) * 1994-07-11 1996-01-30 Chiyoda Corp 排ガスの脱硫処理方法及び装置
JP2000325742A (ja) * 1999-05-21 2000-11-28 Babcock Hitachi Kk 脱硫装置出口ガスからの脱塵と水または水蒸気回収方法と装置
JP2008126154A (ja) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd 排気ガスの処理方法及び処理装置
JP2010070438A (ja) * 2008-09-22 2010-04-02 Chiyoda Kako Kensetsu Kk ガス中の二酸化炭素の分離回収方法及びその装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790096A (fr) * 1971-10-21 1973-04-13 Mobil Oil Corp Reduction de la corrosion des compartiments destines a la cargaison desnavires petroliers
DE69318433T2 (de) * 1992-01-17 1998-12-17 Kansai Electric Power Co Verfahren zur Behandlung von Verbrennungsabgasen
US6814948B1 (en) * 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
GB0721488D0 (en) * 2007-11-01 2007-12-12 Alstom Technology Ltd Carbon capture system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824569A (ja) * 1994-07-11 1996-01-30 Chiyoda Corp 排ガスの脱硫処理方法及び装置
JP2000325742A (ja) * 1999-05-21 2000-11-28 Babcock Hitachi Kk 脱硫装置出口ガスからの脱塵と水または水蒸気回収方法と装置
JP2008126154A (ja) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd 排気ガスの処理方法及び処理装置
JP2010070438A (ja) * 2008-09-22 2010-04-02 Chiyoda Kako Kensetsu Kk ガス中の二酸化炭素の分離回収方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2609987A4 *

Also Published As

Publication number Publication date
EP2609987A1 (en) 2013-07-03
JP2012024718A (ja) 2012-02-09
CA2806530A1 (en) 2012-02-02
US20130149204A1 (en) 2013-06-13
EP2609987A4 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2012014831A1 (ja) Co2除去設備を有する排ガス処理システム
JP6045654B2 (ja) Co2吸収液の飛散抑制方法
KR101110661B1 (ko) 발전설비용 산성가스 분리 시스템
CA2824740C (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
CA2801169C (en) Air pollution control system and method
WO2011132660A1 (ja) 二酸化炭素除去装置を有する排ガス処理システム
WO2011152548A1 (ja) 排ガス処理システム及び方法
WO2011152550A1 (ja) 排ガス処理システム及び方法
JP2012520167A (ja) アミン放出物制御のための方法およびプラント
US9216380B1 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
JP5639814B2 (ja) 脱co2設備付き火力発電システム
WO2011152546A1 (ja) 排ガス処理システム及び方法
JP5738137B2 (ja) Co2回収装置およびco2回収方法
WO2011152547A1 (ja) 排ガス処理システム及び方法
JP2011194292A (ja) 排ガス処理方法および装置
JP2012091083A (ja) 二酸化炭素吸収装置を備えた火力発電プラント
JP5944042B2 (ja) 排ガス処理システム及び排ガス処理方法
CN100577263C (zh) 一种燃煤电站烟气污染物一体化控制及其资源化的方法及专用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2806530

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011812421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13812033

Country of ref document: US