WO2012014368A1 - Contact mechanism and electromagnetic contactor using same - Google Patents

Contact mechanism and electromagnetic contactor using same Download PDF

Info

Publication number
WO2012014368A1
WO2012014368A1 PCT/JP2011/003376 JP2011003376W WO2012014368A1 WO 2012014368 A1 WO2012014368 A1 WO 2012014368A1 JP 2011003376 W JP2011003376 W JP 2011003376W WO 2012014368 A1 WO2012014368 A1 WO 2012014368A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
conductive plate
movable
portions
movable contact
Prior art date
Application number
PCT/JP2011/003376
Other languages
French (fr)
Japanese (ja)
Inventor
中 康弘
幸悦 高谷
鈴木 健司
Original Assignee
富士電機機器制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機機器制御株式会社 filed Critical 富士電機機器制御株式会社
Priority to US13/640,612 priority Critical patent/US8816803B2/en
Priority to CN201180018392.9A priority patent/CN102844833B/en
Priority to EP11811975.9A priority patent/EP2546853B1/en
Priority to KR1020137004680A priority patent/KR101750137B1/en
Publication of WO2012014368A1 publication Critical patent/WO2012014368A1/en
Priority to US14/289,127 priority patent/US8981883B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/06Contacts characterised by the shape or structure of the contact-making surface, e.g. grooved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/14Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/54Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H45/00Details of relays
    • H01H45/14Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/546Contact arrangements for contactors having bridging contacts

Definitions

  • the present invention relates to a contact mechanism including a fixed contact and a movable contact inserted in a current path and an electromagnetic contactor using the contact mechanism, and to an electromagnetic repulsive force that separates the movable contact from the fixed contact during energization. It is designed to generate a Lorentz force to resist.
  • a contact mechanism that opens and closes a current path as a fixed contact that is applied to a switch that generates an arc when a current is interrupted, such as a circuit breaker or an electromagnetic contactor, the U-shaped fixed contact is viewed from the side.
  • the fixed contact is formed in the folded part, and the movable contact of the movable contact is arranged on the fixed contact so that the movable contact can be contacted / separated, and the electromagnetic repulsive force acting on the movable contact when a large current is interrupted is increased.
  • a switch in which the opening speed is increased to rapidly stretch the arc see, for example, Patent Document 1).
  • a contactor structure of an electromagnetic contactor that drives an arc by a magnetic field generated by a flowing current in a similar configuration has been proposed (see, for example, Patent Document 2).
  • JP 2001-210170 A Japanese Patent Laid-Open No. 4-123719
  • an electromagnetic contactor that constitutes a circuit in combination with a fuse or a circuit breaker needs to prevent the movable contact from being opened by electromagnetic repulsion when energizing a large current that flows during a short circuit.
  • the spring force of the contact spring that secures the contact pressure of the movable contact with the fixed contact is increased.
  • the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and suppresses the electromagnetic repulsive force that opens the movable contact when energized without increasing the overall configuration. It is an object of the present invention to provide a contact mechanism that can be used and an electromagnetic contactor using the contact mechanism.
  • a first aspect of the contact mechanism according to the present invention is a contact mechanism having a fixed contact and a movable contact inserted in an energization path.
  • the contact mechanism is configured to increase the Lorentz force against the electromagnetic repulsive force in the opening direction generated between the fixed contact and the movable contact when energized, by forming at least one of the fixed contact and the movable contact. It is characterized by that.
  • the electromagnetic repulsion force in the opening direction generated between the fixed contact and the movable contact when energized with the shape of at least one of the fixed contact and the movable contact being, for example, L-shaped or U-shaped. Therefore, the opening of the movable contact when a large current is applied can be suppressed.
  • the movable contact is supported by the movable part, and includes a conductive plate having contact parts on both end sides on one side of the front and back.
  • the contact mechanism includes a pair of fixed contact portions where the fixed contact faces the contact portion of the conductive plate, and both ends of the conductive plate in parallel with the conductive plate, supporting the pair of fixed contact portions. L formed by a first conductive plate portion that extends further outward and a second conductive plate portion that extends from the outer end portion of the first conductive plate portion through the outside of the end portion of the conductive plate. It has a character-shaped conductive plate portion.
  • the L-shaped conductive portion is formed by the first conductive plate portion and the second conductive plate portion on the fixed contact, with respect to the movable contact formed by the conductive plate, and the second when energized. From the relationship between the magnetic flux formed by the conductive plate portion and the current flowing through the first conductive plate portion, the movable contact member is resisted against the electromagnetic repulsion force in the opening direction that occurs during energization between the fixed contact member and the movable contact member. Generates a large Lorentz force in the direction of contact with the stationary contact.
  • the fixed contact has a third conductive plate portion extending inward from the end of the second conductive plate portion in parallel to the conductive plate. It is characterized by having a U-shape. According to this configuration, currents in opposite directions flow through the first and third conductive portions, and the movable contact is fixed between the conductive plate of the movable contact and the third conductive plate of the fixed contact. An electromagnetic repulsive force can be generated in the direction of contact with the contact.
  • the movable contact includes a conductive plate portion supported by the movable portion, U-shaped folded portions formed at both ends of the conductive plate portion, And a contact portion formed on a surface of the U-shaped folded portion facing the conductive plate portion.
  • the said fixed contact is a pair of 1st electroconductive board part which formed the contact part which contacts the contact part of the said movable contact arranged in the said U-shaped folding
  • the U-shaped folded portion is formed on the movable contact side, and the conductive plate portion of the movable contact and the first conductive of the fixed contact are utilized using the current path in the U-shaped folded portion.
  • An electromagnetic repulsive force is generated between the plate portion and the movable contact in the direction of bringing the movable contact into contact with the fixed contact.
  • the first aspect of the electromagnetic contactor according to the present invention includes the contact mechanism structure according to any one of the first to fourth aspects, and the movable contact is coupled to the movable iron core of the operation electromagnet.
  • the fixed contact is connected to an external connection terminal.
  • the spring of the contact spring that makes the movable contact contact the fixed contact by generating a Lorentz force against the electromagnetic repulsion force that opens the gap between the movable contact and the fixed contact when the electromagnetic contactor is energized.
  • the power can be reduced.
  • the thrust of the electromagnet that drives the movable contact can also be reduced, and a small electromagnetic contactor can be provided.
  • an electromagnetic repulsion force in the opening direction generated in the stator contact and the movable contact when a large current is supplied to the contact mechanism having the fixed contact and the movable contact inserted in the energization path is resisted.
  • Lorentz force can be generated. For this reason, it is possible to reliably prevent the opening of the movable contact when energizing a large current without using a mechanical pressing force.
  • FIG. 1 is a main body case made of, for example, a synthetic resin.
  • the main body case 1 has a two-part structure of an upper case 1a and a lower case 1b.
  • the upper case 1a is internally provided with a contact mechanism CM.
  • the contact mechanism CM includes a fixed contact 2 fixedly disposed on the upper case 1a, and a movable contact 3 disposed so as to be able to contact with and separate from the fixed contact 2.
  • an operation electromagnet 4 for driving the movable contact 3 is disposed.
  • the electromagnet 4 for operation has a stationary iron core 5 formed of an E-shaped laminated steel plate and a movable iron core 6 formed of an E-shaped laminated steel plate facing each other.
  • An electromagnetic coil 8 supplied with a single-phase alternating current wound around a coil holder 7 is fixed to the central leg 5a of the fixed iron core 5.
  • a return spring 9 is provided between the upper surface of the coil holder 7 and the root of the central leg 6 a of the movable iron core 6 to urge the movable iron core 6 in a direction away from the fixed iron core 5.
  • a shading coil 10 is embedded in the upper end surface of the outer leg portion of the fixed iron core 5.
  • the shading coil 10 can suppress fluctuations in electromagnetic attraction, noise, and vibration due to changes in alternating magnetic flux in the single-phase AC electromagnet.
  • a contact holder 11 is connected to the upper end of the movable iron core 6. The contact holder 11 is pressed downwardly into an insertion hole 11a formed on the upper end side thereof in a direction perpendicular to the axis so that the movable contact 3 obtains a predetermined contact pressure against the fixed contact 2 by the contact spring 12. Being held.
  • the movable contact 3 is composed of an elongated bar-shaped conductive plate 3a whose central portion is pressed by a contact spring 12, and a movable contact portion 3b is formed on the lower surface of both ends of the conductive plate 3a. , 3c are formed.
  • the fixed contact 2 supports a pair of fixed contact portions 2a and 2b opposed to the movable contact portions 3b and 3c of the movable contact 3 from the lower side, and a conductive plate 3a.
  • the first conductive plate portions 2c and 2d facing outward in parallel and the upper ends of the first conductive plate portions 2c and 2d from the outer end portion outside the conductive plate 3a through the outside of the end portions of the conductive plate 3a L-shaped conductive plate portions 2g and 2h formed by second conductive plate portions 2e and 2f extending in the length direction. And as shown in FIG. 1, it connects with the external connection terminals 2i and 2j extended and fixed to the outer side of the upper case 1a at the upper end of these L-shaped electroconductive board parts 2g and 2h.
  • the movable contact 3 In the state where the movable iron core 6 is at the current interruption position, the movable contact 3 is in contact with the bottom of the insertion hole 11a of the contact holder 11 by the contact spring 12 as shown in FIG. In this state, the movable contact portions 3b and 3c formed on both ends of the conductive plate 3a of the movable contact 3 are spaced upward from the fixed contact portions 2a and 2b of the fixed contact 2, and the contact mechanism CM is opened. It is in a state.
  • a large current of, for example, several tens of kA inputted from the external connection terminal 2i of the fixed contact 2 connected to a DC power source (not shown) is applied to the second conductive plate portion 2e, 1 is supplied to the movable contact portion 3b of the movable contact 3 through the conductive plate portion 2c and the fixed contact portion 2a.
  • the large current supplied to the movable contact portion 3b is supplied to the fixed contact portion 2b through the conductive plate 3a and the movable contact portion 3c.
  • the large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, and the external connection terminal 2j to form an energization path that is supplied to an external load.
  • the fixed contact 2 has L-shaped conductive plate portions 2g and 2h formed by the first conductive plate portions 2c and 2d and the second conductive plate portions 2e and 2f.
  • a magnetic field shown in FIG. 2D is formed for the current flowing through the movable contact 3.
  • the machining of the stationary contact 2 can be easily performed, and the electromagnetic repulsive force in the opening direction is separately provided. Since the member which generate
  • a Lorentz force is generated against the electromagnetic repulsion force in the opening direction generated with respect to the stationary contact and the movable contact on the back side of the movable contact. That is, in the second embodiment, as shown in FIG. 3, the second conductive plate in the L-shaped conductive plate portions 2g and 2h of the stationary contact 2 in the configuration of FIG. 2 in the first embodiment described above. The portions 2e and 2f are bent so as to cover the upper end side of the end portion of the conductive plate 3a of the movable contact 3 to form third conductive plate portions 2m and 2n parallel to the conductive plate 3a to form a U-shaped conductive portion. Except that 2o and 2p are formed, the configuration is the same as that of the first embodiment described above.
  • a large current of about several tens kA, for example, input from the external connection terminal 2i of the fixed contact 2 connected to the DC power source (not shown) is third.
  • the conductive plate portion 2m, the second conductive plate portion 2e, the first conductive plate portion 2c, and the fixed contact portion 2a are supplied to the movable contact portion 3b of the movable contact 3.
  • the large current supplied to the movable contact portion 3b is supplied to the fixed contact portion 2b through the conductive plate 3a and the movable contact portion 3c.
  • the large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, the third conductive plate portion 2n, and the external connection terminal 2j, and is applied to an external load.
  • a supplied energization path is formed.
  • an electromagnetic repulsive force is generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3 in a direction to open the movable contact portions 3b and 3c.
  • the fixed contact 2 has a U-shaped conductive plate by the first conductive plate portions 2c and 2d, the second conductive plate portions 2e and 2f, and the third conductive plate portions 2m and 2n. Since the portions 2o and 2p are formed, a current in the reverse direction flows between the third conductive plate portions 2m and 2n of the fixed contact 2 and the conductive plate 3a of the movable contact 3 facing the third conductive plate portions 2m and 2n.
  • the conductive plate 3a of the movable contact 3 is defined by the Fleming left-hand rule from the relationship between the magnetic field formed by the third conductive plate portions 2m and 2n of the fixed contact 2 and the current flowing through the conductive plate 3a of the movable contact 3.
  • a Lorentz force that presses against the fixed contact portions 2 a and 2 b of the fixed contact 2 can be generated. This Lorentz force can resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3. It is possible to prevent the three movable contact portions 3b and 3c from opening.
  • the electromagnetic repulsion in the opening direction generated between the fixed contact 2 and the movable contact 3 with a simple configuration in which the U-shaped conductive plate portions 2o and 2p are formed on the fixed contact 2 also.
  • a Lorentz force against the force can be generated, and the same effect as in the first embodiment described above can be obtained.
  • a U-shaped folded portion is formed on the movable contact, contrary to the second embodiment described above. That is, in the third embodiment, as shown in FIGS. 4A to 4C, the first conductive plate portions 3d and 3e extending upward from both ends of the conductive plate 3a of the movable contact 3 are provided. And the second conductive plate portions 3f and 3g extending inward from the upper ends of the first conductive plate portions 3d and 3e form U-shaped folded portions 3h and 3i that are folded back to the upper side of the conductive plate 3a.
  • Movable contact portions 3j and 3k are formed on the lower surfaces of the distal ends of the second conductive plate portions 3f and 3g of the U-shaped folded portions 3h and 3i.
  • the fixed contact 2 faces the conductive plate 3a forming the U-shaped folded portions 3h, 3i of the movable contact 3 and the second conductive plate portions 3f, 3g in the opened state of the contact mechanism CM.
  • Inwardly extending fourth conductive plate portions 2q, 2r and inner ends of the U-shaped folded portions 3h, 3i of the movable contact 3 upward from the inner ends of the fourth conductive plate portions 2q, 2r L-shaped conductive plate portions 2u and 2v are formed by fifth conductive plate portions 2s and 2t extending upward through the inside of the portion.
  • the fixed contact portions 2w and 2x are formed at positions facing the movable contact portions 3j and 3k of the movable contact 3 of the fourth conductive plate portions 2q and 2r.
  • the contact mechanism CM as shown in FIG. 4B, the conductive plate 3 a of the movable contact 3 is in contact with the bottom of the insertion hole 11 a by the contact spring 12.
  • the fourth conductive plate portions 2q and 2r of the fixed contact 2 are located at the intermediate portion between the conductive plate 3a and the second conductive plate portions 3f and 3g constituting the U-shaped folded portions 3h and 3i. 2w and 2x are spaced apart from the movable contact portions 3j and 3k and are open.
  • the contact holder 11 When the movable iron core 6 is attracted by the fixed iron core 5 against the return spring 9 by applying a single-phase alternating current to the electromagnetic coil 8 of the operation electromagnet 4 from the opened state of the contact mechanism CM, the contact holder 11 is moved. Descend. For this reason, in the contact mechanism CM, as shown in FIG. 4C, the movable contact portions 3 j and 3 k of the movable contact 3 are in a closed state in which they are in contact with the fixed contact portions 2 w and 2 x of the fixed contact 2.
  • a large current of about several tens of kA, for example, input from the external connection terminal 2i of the fixed contact 2 connected to a DC power source (not shown) is the fifth.
  • the large current supplied to the movable contact portion 3j includes the second conductive plate portion 3f, the first conductive plate portion 3d, the conductive plate 3a, the first conductive plate portion 3e, the second conductive plate portion 3g, and the movable contact point. It is supplied to the fixed contact portion 2x through the portion 3k.
  • the large current supplied to the fixed contact portion 2x forms an energization path that is supplied to an external load through the fourth conductive plate portion 2r, the fifth conductive plate portion 2t, and the external connection terminal 2j.
  • the conductive plate 3a is moved by the current flowing through the conductive plate 3a of the movable contact 3 and the magnetic field formed by the fourth conductive plate portions 2q and 2r of the fixed contact 2.
  • Lorentz force that presses the movable contact portions 3j and 3k of the contact 3 against the fixed contact portions 2w and 2x of the fixed contact 2 can be generated.
  • this Lorentz force it becomes possible to resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2w and 2x of the fixed contact 2 and the movable contact portions 3j and 3k of the movable contact 3, and a large current It is possible to prevent the movable contact portions 3j and 3k of the movable contact 3 from opening when energized.
  • the L-shaped conductive plate portions 2u and 2v are formed on the fixed contact 2, the L-shaped upper side of the second conductive plate portions 3f and 3g of the movable contact 3 is formed.
  • a magnetic flux strengthening portion is formed by the fifth conductive plate portions 2s and 2t of the conductive plate portions 2u and 2v.
  • both the fixed contact and the movable contact are formed in a flat plate shape to generate a Lorentz force that resists the electromagnetic repulsion force in the opening direction. That is, in the fourth embodiment, as shown in FIGS. 5A to 5D, the fixed contact 2 and the movable contact 3 constituting the contact mechanism CM are both formed in a flat plate shape.
  • the fixed contact 2 has flat plate conductors 21a and 21b that are rectangular when viewed from a plane arranged at a predetermined distance from each other.
  • These flat conductors 21a and 21b are formed in line symmetry, and U-shaped grooves 22a and 22b whose open end faces are on the inner end face side at the positions facing the longitudinal ends of the movable contactor 3 are on the front and back sides.
  • Fixed contact portions 24a and 24b are formed on the surfaces of the plate portions 23a and 23b that are formed so as to penetrate and are surrounded by the U-shaped grooves 22a and 22b.
  • the movable contact 3 has rectangular through holes 31a and 31b separated from each other at positions facing the plate portions 23a and 23b surrounded by the U-shaped grooves 22a and 22b in the flat conductors 21a and 21b of the fixed contact 2. Is formed. Movable contact portions 32a and 32b are formed on the lower surface of the fixed contact 2 opposite to the fixed contact portions 24a and 24b at the outer end portions of the through holes 31a and 31b.
  • the movable iron core 6 when the electromagnetic coil 8 of the operation electromagnet 4 is in a non-energized state, the movable iron core 6 is moved to the upper position by the return spring 9 as in the first to third embodiments described above. It is in. For this reason, since the contact holder 11 is in the upper position as shown in FIG. 5B, the flat conductors 21a and 21b of the fixed contact 2 and the movable contact 3 are separated from each other, and the fixed contact portions 24a of both of them are separated. 24b and the movable contact portions 32a and 32b are separated from each other, and the contact mechanism CM is in an open state.
  • a large current from, for example, a DC power source input from the external connection terminal 2i is input to the flat conductor 21a on the left end side, and is fixed to the plate portion 23a surrounded by the U-shaped groove 22a. Since the portion 24a is formed, a large current input to the flat conductor 21a enters the plate portion 23a through the side plate portions 25a and 25b on both side surfaces of the U-shaped groove 22a and is movable from the fixed contact portion 24a. It is supplied to the movable contact portion 32 a of the contact 3.
  • the large current supplied to the movable contact portion 32a passes through the side plate portions 33a and 33b on both side surfaces of the through hole 31a, passes through the side plate portions 34a and 34b on both side surfaces of the through hole 31b, and then from the movable contact portion 32b. It is supplied to the fixed contact portion 24b of the flat conductor 21b.
  • the large current supplied to the fixed contact portion 24b passes through the side plate portions 26a and 26b on both sides of the U-shaped groove 22b from the plate portion 23b, and passes through the external connection terminal 2j from the right end side of the flat conductor 21b. To be supplied.
  • This Lorentz force can suppress the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 24a and 24b and the movable contact portions 32a and 32b, and can prevent the opening of the movable contact 3 as described above.
  • the same effects as those of the first to third embodiments can be obtained.
  • the case where the operation electromagnet 4 is AC-excited has been described.
  • an operation electromagnet that performs DC excitation may be applied, and the drive mechanism of the movable contact 3 has the above-described configuration.
  • the driving mechanism is not limited, and an arbitrarily configured driving mechanism can be applied.
  • the case where the contact mechanism CM of the present invention is applied to an electromagnetic contactor has been described.
  • the present invention is not limited to this and can be applied to any device such as a switch. .
  • At least one of the fixed contact and the movable contact is shaped so as to generate a Lorentz force that resists the electromagnetic repulsion force in the opening direction generated in the stator contact and the movable contact when a large current is applied.
  • the contact mechanism which can suppress the opening at the time of current supply, and the electromagnetic contactor using this can be provided.

Abstract

Provided is a contact mechanism that has the ability to minimize electromagnetic repulsion which opens a moveable contactor when a current is applied without increasing the size of the entire structure. Also provided is an electromagnetic contactor that uses the contact mechanism. The contact mechanism (CM) comprises an immobile contactor (2) and the moveable contactor (3), which are inserted in a current path. With the immobile contactor (2) and/or the moveable contactor (3) in an L-shape or a U-shape, the contact mechanism (CM) generates a Lorentz force that resists electromagnetic repulsion in the contactor opening direction generated between the immobile contactor (2) the moveable contactor (3) when a current is applied.

Description

接点機構及びこれを使用した電磁接触器Contact mechanism and electromagnetic contactor using the same
 本発明は、電流路に介挿された固定接触子及び可動接触子を備えた接点機構及びこれを使用した電磁接触器に関し、通電時の可動接触子を固定接触子から離反させる電磁反発力に抗するローレンツ力を発生するようにしたものである。 The present invention relates to a contact mechanism including a fixed contact and a movable contact inserted in a current path and an electromagnetic contactor using the contact mechanism, and to an electromagnetic repulsive force that separates the movable contact from the fixed contact during energization. It is designed to generate a Lorentz force to resist.
 電流路の開閉を行う接点機構として、従来、例えば、回路遮断器や電磁接触器など、電流遮断時にアークが発生する開閉器に適用する固定接触子として、固定接触子を側面からみてU字形状に折り返し、折り返し部に固定接点を形成し、この固定接点に可動接触子の可動接点を接離可能に配設した構成とし、大電流遮断時に可動接触子に作用する電磁反発力を大きくすることにより開極速度を大きくして、アークを急速に引き伸ばすようにした開閉器が提案されている(例えば、特許文献1参照)。
 また、同様の構成において流れる電流により発生する磁界によりアークを駆動させる電磁接触器の接触子構造が提案されている(例えば、特許文献2参照)。
Conventionally, as a contact mechanism that opens and closes a current path, as a fixed contact that is applied to a switch that generates an arc when a current is interrupted, such as a circuit breaker or an electromagnetic contactor, the U-shaped fixed contact is viewed from the side. The fixed contact is formed in the folded part, and the movable contact of the movable contact is arranged on the fixed contact so that the movable contact can be contacted / separated, and the electromagnetic repulsive force acting on the movable contact when a large current is interrupted is increased. Has proposed a switch in which the opening speed is increased to rapidly stretch the arc (see, for example, Patent Document 1).
Further, a contactor structure of an electromagnetic contactor that drives an arc by a magnetic field generated by a flowing current in a similar configuration has been proposed (see, for example, Patent Document 2).
特開2001-210170号公報JP 2001-210170 A 特開平4-123719号公報Japanese Patent Laid-Open No. 4-123719
 ところで、上記特許文献1に記載の従来例にあっては、固定接触子を側面から見てU字形状として発生する電磁反発力を大きくするようにしており、この大きな電磁反発力によって、短絡等による大電流を遮断する大電流遮断時の可動接触子の開極速度を大きくして、アークを急速に引き伸ばし、事故電流を小さな値に限流することができるものである。 By the way, in the conventional example described in Patent Document 1, the electromagnetic repulsive force generated as a U-shape when the fixed contact is viewed from the side is increased, and a short circuit or the like is caused by this large electromagnetic repulsive force. The opening speed of the movable contact at the time of interrupting a large current that interrupts a large current by increasing the arc rapidly, and the fault current can be limited to a small value.
 しかしながら、ヒューズや回路遮断器と組み合わせて回路を構成する電磁接触器は、短絡時に流れる大電流の通電時に可動接触子が電磁反発力によって開極することを阻止する必要があり、上述した特許文献2に記載の従来例を適用するには、一般的には可動接触子の固定接触子に対する接触圧を確保する接触スプリングのばね力を大きくすることで対処している。 However, an electromagnetic contactor that constitutes a circuit in combination with a fuse or a circuit breaker needs to prevent the movable contact from being opened by electromagnetic repulsion when energizing a large current that flows during a short circuit. In order to apply the conventional example described in No. 2, generally, the spring force of the contact spring that secures the contact pressure of the movable contact with the fixed contact is increased.
 このように接触スプリングによる接触圧を大きくすると、可動接触子を駆動する電磁石で発生する推力も大きくする必要があり、全体の構成が大型化する。あるいは、より限流効果が高く、遮断性能に優れるヒューズや回路遮断器と組み合わせる必要がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、全体の構成を大型化することなく通電時に可動接触子を開極させる電磁反発力を抑制することができる接点機構及びこれを使用した電磁接触器を提供することを目的としている。
When the contact pressure by the contact spring is increased in this way, it is necessary to increase the thrust generated by the electromagnet that drives the movable contact, and the overall configuration increases. Alternatively, it is necessary to combine with a fuse or a circuit breaker that has a higher current limiting effect and an excellent breaking performance.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and suppresses the electromagnetic repulsive force that opens the movable contact when energized without increasing the overall configuration. It is an object of the present invention to provide a contact mechanism that can be used and an electromagnetic contactor using the contact mechanism.
 上記目的を達成するために、本発明に係る接点機構の第1の態様は、通電路に介挿された固定接触子及び可動接触子を有する接点機構である。この接点機構は、前記固定接触子及び可動接触子の少なくとも一方の形状を、通電時に前記固定接触子及び前記可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を高める形状としたことを特徴としている。 In order to achieve the above object, a first aspect of the contact mechanism according to the present invention is a contact mechanism having a fixed contact and a movable contact inserted in an energization path. The contact mechanism is configured to increase the Lorentz force against the electromagnetic repulsive force in the opening direction generated between the fixed contact and the movable contact when energized, by forming at least one of the fixed contact and the movable contact. It is characterized by that.
 この構成によると、固定接触子及び可動接触子の少なくとも一方の形状を、例えば、L字形状やU字形状として、通電時に固定接触子及び可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する形状としたので、大電流通電時の可動接触子の開極を抑制することができる。 According to this configuration, the electromagnetic repulsion force in the opening direction generated between the fixed contact and the movable contact when energized, with the shape of at least one of the fixed contact and the movable contact being, for example, L-shaped or U-shaped. Therefore, the opening of the movable contact when a large current is applied can be suppressed.
 また、本発明に係る接点機構の第2の態様は、前記可動接触子が、可動部に支持され、表裏の一方の面における両端側にそれぞれ接点部を有する導電板を備えている。また、接点機構は、前記固定接触子が、前記導電板の接点部に対向する一対の固定接点部と、該一対の固定接点部を支持してそれぞれ前記導電板と平行に当該導電板の両端より外側に向かう第1の導電板部と、該第1の導電板部の外方端部から前記導電板の端部の外側を通って延長する第2の導電板部とで形成されたL字状導電板部を備えていることを特徴としている。 Further, in a second aspect of the contact mechanism according to the present invention, the movable contact is supported by the movable part, and includes a conductive plate having contact parts on both end sides on one side of the front and back. Further, the contact mechanism includes a pair of fixed contact portions where the fixed contact faces the contact portion of the conductive plate, and both ends of the conductive plate in parallel with the conductive plate, supporting the pair of fixed contact portions. L formed by a first conductive plate portion that extends further outward and a second conductive plate portion that extends from the outer end portion of the first conductive plate portion through the outside of the end portion of the conductive plate. It has a character-shaped conductive plate portion.
 この構成によると、導電板で形成される可動接触子に対して、固定接触子に第1の導電板部及び第2の導電板部によってL字状導電部を形成して、通電時に第2の導電板部で形成される磁束と第1の導電板部に流れる電流の関係から、固定接触子及び可動接触子間に通電時に生じる開極方向の電磁反発力に抗して可動接触子を固定接触子に接触させる方向の大きなローレンツ力を発生させる。 According to this configuration, the L-shaped conductive portion is formed by the first conductive plate portion and the second conductive plate portion on the fixed contact, with respect to the movable contact formed by the conductive plate, and the second when energized. From the relationship between the magnetic flux formed by the conductive plate portion and the current flowing through the first conductive plate portion, the movable contact member is resisted against the electromagnetic repulsion force in the opening direction that occurs during energization between the fixed contact member and the movable contact member. Generates a large Lorentz force in the direction of contact with the stationary contact.
 また、本発明に係る接点機構の第3の態様は、前記固定接触子が、前記第2の導電板部の端部から前記導電板と平行に内方に延長する第3の導電板部を有してU字状に構成されていることを特徴としている。
 この構成によると、第1及び第3の導電部で逆方向の電流が流れることになり、可動接触子の導電板と固定接触子の第3の導電板部との間に可動接触子を固定接触子に接触させる方向の電磁反発力を発生することができる。
In a third aspect of the contact mechanism according to the present invention, the fixed contact has a third conductive plate portion extending inward from the end of the second conductive plate portion in parallel to the conductive plate. It is characterized by having a U-shape.
According to this configuration, currents in opposite directions flow through the first and third conductive portions, and the movable contact is fixed between the conductive plate of the movable contact and the third conductive plate of the fixed contact. An electromagnetic repulsive force can be generated in the direction of contact with the contact.
 また、本発明に係る接点機構の第4の態様は、前記可動接触子が、可動部に支持される導電板部と、該導電板部の両端に形成されたU字状折り返し部と、該U字状折り返し部の前記導電板部との対向面に形成された接点部とを備えている。そして、前記固定接触子は、前記U字状折り返し部内に前記導電板部と平行に配設された前記可動接触子の接点部と接触する接点部を形成した一対の第1の導電板部と、該一対の第1の導電板部の内側端からそれぞれ前記U字状折り返し部の端部の内側を通って延長する第2の導電板部とで構成されるL字状導電板部を備えていることを特徴としている。 According to a fourth aspect of the contact mechanism of the present invention, the movable contact includes a conductive plate portion supported by the movable portion, U-shaped folded portions formed at both ends of the conductive plate portion, And a contact portion formed on a surface of the U-shaped folded portion facing the conductive plate portion. And the said fixed contact is a pair of 1st electroconductive board part which formed the contact part which contacts the contact part of the said movable contact arranged in the said U-shaped folding | turning part in parallel with the said electroconductive plate part, And an L-shaped conductive plate portion that includes a second conductive plate portion that extends from the inner ends of the pair of first conductive plate portions through the inside of the end portion of the U-shaped folded portion. It is characterized by having.
 この構成によると、可動接触子側にU字状折り返し部を形成し、このU字状折り返し部における電流経路を利用して、可動接触子の導電板部と、固定接触子の第1の導電板部との間に可動接触子を固定接触子に接触させる方向の電磁反発力を発生させる。 According to this configuration, the U-shaped folded portion is formed on the movable contact side, and the conductive plate portion of the movable contact and the first conductive of the fixed contact are utilized using the current path in the U-shaped folded portion. An electromagnetic repulsive force is generated between the plate portion and the movable contact in the direction of bringing the movable contact into contact with the fixed contact.
 また、本発明に係る電磁接触器の第1の態様は、上記第1~第4の態様の何れか1つの態様の接点機構構を備え、前記可動接触子が操作用電磁石の可動鉄心に連結され、前記固定接触子が外部接続端子に接続されていることを特徴としている。
 この構成によると、電磁接触器の通電時に可動接触子及び固定接触子間を開極させる電磁反発力に抗するローレンツ力を発生させて、可動接触子を固定接触子に接触させる接触スプリングのバネ力を小さくすることができる。これに応じて、可動接触子を駆動する電磁石の推力も小さくすることができ、小型な電磁接触器を提供することができる。
The first aspect of the electromagnetic contactor according to the present invention includes the contact mechanism structure according to any one of the first to fourth aspects, and the movable contact is coupled to the movable iron core of the operation electromagnet. The fixed contact is connected to an external connection terminal.
According to this configuration, the spring of the contact spring that makes the movable contact contact the fixed contact by generating a Lorentz force against the electromagnetic repulsion force that opens the gap between the movable contact and the fixed contact when the electromagnetic contactor is energized. The power can be reduced. Accordingly, the thrust of the electromagnet that drives the movable contact can also be reduced, and a small electromagnetic contactor can be provided.
 本発明によれば、通電路に介挿された固定接触子及び可動接触子を有する接点機構の大電流通電時の固定子接触子及び可動接触子に生じる開極方向の電磁反発力に抗するローレンツ力を発生することができる。このため、機械的押圧力を使用することなく大電流通電時の可動接触子の開極を確実に防止することができる。 According to the present invention, an electromagnetic repulsion force in the opening direction generated in the stator contact and the movable contact when a large current is supplied to the contact mechanism having the fixed contact and the movable contact inserted in the energization path is resisted. Lorentz force can be generated. For this reason, it is possible to reliably prevent the opening of the movable contact when energizing a large current without using a mechanical pressing force.
本発明を電磁接触器に適用した場合の第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment at the time of applying this invention to an electromagnetic contactor. 本発明の接点機構の第1の実施形態を示す図であって、(a)は斜視図、(b)は開成時の接点機構を示す断面図、(c)は閉成時の接点機構を示す断面図、(d)は閉成時の磁束を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the contact mechanism of this invention, (a) is a perspective view, (b) is sectional drawing which shows the contact mechanism at the time of opening, (c) is the contact mechanism at the time of closing. (D) is sectional drawing which shows the magnetic flux at the time of closing. 本発明の接点機構の第2の実施形態を示す図であって、(a)は斜視図、(b)は開成時の接点機構を示す断面図、(c)は閉成時の接点機構を示す断面図である。It is a figure which shows 2nd Embodiment of the contact mechanism of this invention, Comprising: (a) is a perspective view, (b) is sectional drawing which shows the contact mechanism at the time of opening, (c) is the contact mechanism at the time of closing. It is sectional drawing shown. 本発明の接点機構の第3の実施形態を示す図であって、(a)は斜視図、(b)は開成時の接点機構を示す断面図、(c)は閉成時の接点機構を示す断面図である。It is a figure which shows 3rd Embodiment of the contact mechanism of this invention, (a) is a perspective view, (b) is sectional drawing which shows the contact mechanism at the time of opening, (c) is the contact mechanism at the time of closing. It is sectional drawing shown. 本発明の第4の実施形態を示す図であって、(a)は斜視図、(b)は開成時の接点機構を示す断面図、(c)は閉成時の接点機構を示す断面図、(d)は閉成時の電流方向を示す説明図である。It is a figure which shows the 4th Embodiment of this invention, Comprising: (a) is a perspective view, (b) is sectional drawing which shows the contact mechanism at the time of opening, (c) is sectional drawing which shows the contact mechanism at the time of closing (D) is explanatory drawing which shows the electric current direction at the time of closing.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1において、1は例えば合成樹脂製の本体ケースである。この本体ケース1は、上部ケース1aと下部ケース1bの2分割構造を有する。上部ケース1aには、接点機構CMが内装されている。この接点機構CMは、上部ケース1aに固定配置された固定接触子2と、この固定接触子2に接離自在に配設された可動接触子3とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, 1 is a main body case made of, for example, a synthetic resin. The main body case 1 has a two-part structure of an upper case 1a and a lower case 1b. The upper case 1a is internally provided with a contact mechanism CM. The contact mechanism CM includes a fixed contact 2 fixedly disposed on the upper case 1a, and a movable contact 3 disposed so as to be able to contact with and separate from the fixed contact 2.
 また、下部ケース1bには、可動接触子3を駆動する操作用電磁石4が配設されている。この操作用電磁石4は、E字脚型の積層鋼板で形成された固定鉄心5と、同様にE字脚型の積層鋼板で形成された可動鉄心6とが対向して配置されている。
 固定鉄心5の中央脚部5aにはコイルホルダ7に巻装された単相交流が供給される電磁コイル8が固定されている。また、コイルホルダ7の上面と可動鉄心6の中央脚6aの付け根との間に可動鉄心6を固定鉄心5から離れる方向に付勢する復帰スプリング9が配設されている。
In the lower case 1b, an operation electromagnet 4 for driving the movable contact 3 is disposed. The electromagnet 4 for operation has a stationary iron core 5 formed of an E-shaped laminated steel plate and a movable iron core 6 formed of an E-shaped laminated steel plate facing each other.
An electromagnetic coil 8 supplied with a single-phase alternating current wound around a coil holder 7 is fixed to the central leg 5a of the fixed iron core 5. A return spring 9 is provided between the upper surface of the coil holder 7 and the root of the central leg 6 a of the movable iron core 6 to urge the movable iron core 6 in a direction away from the fixed iron core 5.
 さらに、固定鉄心5の外側脚部の上端面にはシェーディングコイル10が埋め込まれている。このシェーディングコイル10によって、単相交流電磁石において交番磁束の変化による電磁吸引力の変動、騒音及び振動を抑制することができる。
 そして、可動鉄心6の上端に接触子ホルダ11が連結されている。この接触子ホルダ11にはその上端側に軸直角方向に形成された挿通孔11aに、可動接触子3が接触スプリング12によって固定接触子2に対して所定の接触圧を得るように下方に押圧されて保持されている。
Further, a shading coil 10 is embedded in the upper end surface of the outer leg portion of the fixed iron core 5. The shading coil 10 can suppress fluctuations in electromagnetic attraction, noise, and vibration due to changes in alternating magnetic flux in the single-phase AC electromagnet.
A contact holder 11 is connected to the upper end of the movable iron core 6. The contact holder 11 is pressed downwardly into an insertion hole 11a formed on the upper end side thereof in a direction perpendicular to the axis so that the movable contact 3 obtains a predetermined contact pressure against the fixed contact 2 by the contact spring 12. Being held.
 この可動接触子3は、図2に拡大図示するように、中央部が接触スプリング12によって押圧された細長い棒状の導電板3aで構成され、この導電板3aの両端側の下面に可動接点部3b,3cがそれぞれ形成されている。
 一方、固定接触子2は、図2に拡大図示するように、可動接触子3の可動接点部3b,3cに下側から対向する一対の固定接点部2a,2bを支持して導電板3aと平行に外側に向かう第1の導電板部2c,2dと、この第1の導電板部2c,2dの導電板3aより外側となる外側端部から導電板3aの端部の外側を通って上方に延長する第2の導電板部2e,2fとで形成されたL字状導電板部2g,2hを備えている。そして、これらL字状導電板部2g,2hの上端に、図1に示すように、上部ケース1aの外側に延長して固定された外部接続端子2i,2jに連結されている。
As shown in an enlarged view in FIG. 2, the movable contact 3 is composed of an elongated bar-shaped conductive plate 3a whose central portion is pressed by a contact spring 12, and a movable contact portion 3b is formed on the lower surface of both ends of the conductive plate 3a. , 3c are formed.
On the other hand, as shown in an enlarged view in FIG. 2, the fixed contact 2 supports a pair of fixed contact portions 2a and 2b opposed to the movable contact portions 3b and 3c of the movable contact 3 from the lower side, and a conductive plate 3a. The first conductive plate portions 2c and 2d facing outward in parallel and the upper ends of the first conductive plate portions 2c and 2d from the outer end portion outside the conductive plate 3a through the outside of the end portions of the conductive plate 3a L-shaped conductive plate portions 2g and 2h formed by second conductive plate portions 2e and 2f extending in the length direction. And as shown in FIG. 1, it connects with the external connection terminals 2i and 2j extended and fixed to the outer side of the upper case 1a at the upper end of these L-shaped electroconductive board parts 2g and 2h.
 次に、上記第1の実施形態の動作を説明する。
 今、操作用電磁石4の電磁コイル8が非通電状態である状態では、固定鉄心5及び可動鉄心6間に電磁吸引力が生じることはなく、復帰スプリング9によって、可動鉄心6が固定鉄心5から上方に離れる方向に付勢され、この可動鉄心6の上端がストッパ13に当接することにより電流遮断位置に保持される。
Next, the operation of the first embodiment will be described.
Now, in a state where the electromagnetic coil 8 of the operation electromagnet 4 is in a non-energized state, no electromagnetic attractive force is generated between the fixed iron core 5 and the movable iron core 6, and the movable iron core 6 is removed from the fixed iron core 5 by the return spring 9. The movable iron core 6 is urged in a direction away from the top, and the upper end of the movable iron core 6 abuts against the stopper 13 to be held at the current interruption position.
 この可動鉄心6が電流遮断位置にある状態では、可動接触子3が、図2(b)に示すように、接触子ホルダ11の挿通孔11aの底部に接触スプリング12によって接触されている。この状態で、可動接触子3の導電板3aの両端側に形成された可動接点部3b,3cが固定接触子2の固定接点部2a,2bから上方に離間しており、接点機構CMが開成状態となっている。 In the state where the movable iron core 6 is at the current interruption position, the movable contact 3 is in contact with the bottom of the insertion hole 11a of the contact holder 11 by the contact spring 12 as shown in FIG. In this state, the movable contact portions 3b and 3c formed on both ends of the conductive plate 3a of the movable contact 3 are spaced upward from the fixed contact portions 2a and 2b of the fixed contact 2, and the contact mechanism CM is opened. It is in a state.
 この接点機構CMの開成状態から、操作用電磁石4の電磁コイル8に単相交流を供給すると、固定鉄心5と可動鉄心6との間で吸引力が発生し、可動鉄心6が復帰スプリング9に抗して下方に吸引される。これにより、接触子ホルダ11に支持されている可動接触子3が下降して、可動接点部3b,3cが固定接触子2の固定接点部2a,2bに接触スプリング12の接触圧で接触し、閉成状態となる。 When a single-phase alternating current is supplied to the electromagnetic coil 8 of the operation electromagnet 4 from the opened state of the contact mechanism CM, an attractive force is generated between the fixed iron core 5 and the movable iron core 6, and the movable iron core 6 becomes the return spring 9. It is sucked down against. Thereby, the movable contact 3 supported by the contact holder 11 is lowered, and the movable contact portions 3b and 3c come into contact with the fixed contact portions 2a and 2b of the fixed contact 2 with the contact pressure of the contact spring 12, Closed state.
 この閉成状態となると、例えば、直流電源(図示せず)に接続された固定接触子2の外部接続端子2iから入力される例えば数十kA程度の大電流が第2導電板部2e、第1導電板部2c、固定接点部2aを通じて可動接触子3の可動接点部3bに供給される。この可動接点部3bに供給された大電流は導電板3a、可動接点部3cを通じて固定接点部2bに供給される。この固定接点部2bに供給された大電流は、第1導電板部2d、第2導電板部2f、外部接続端子2jに供給されて、外部の負荷に供給される通電路が形成される。 In this closed state, for example, a large current of, for example, several tens of kA inputted from the external connection terminal 2i of the fixed contact 2 connected to a DC power source (not shown) is applied to the second conductive plate portion 2e, 1 is supplied to the movable contact portion 3b of the movable contact 3 through the conductive plate portion 2c and the fixed contact portion 2a. The large current supplied to the movable contact portion 3b is supplied to the fixed contact portion 2b through the conductive plate 3a and the movable contact portion 3c. The large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, and the external connection terminal 2j to form an energization path that is supplied to an external load.
 このとき、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b、3c間に可動接点部3b,3cを開極させる方向の電磁反発力が発生する。
 しかしながら、固定接触子2は、図2に示すように、第1の導電板部2c,2d及び第2の導電板部2e,2fによってL字状導電板部2g,2hが形成されているので、上述した電流路が形成されることにより、可動接触子3を流れる電流に対し、図2(d)に示す磁界を形成する。このため、フレミングの左手の法則により、可動接触子3の導電板3aに可動接点部3b,3cを固定接点部2a,2b側に押し付ける開極方向の電磁反発力に抗するローレンツ力を作用させることができる。
At this time, an electromagnetic repulsive force is generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3 in a direction to open the movable contact portions 3b and 3c.
However, as shown in FIG. 2, the fixed contact 2 has L-shaped conductive plate portions 2g and 2h formed by the first conductive plate portions 2c and 2d and the second conductive plate portions 2e and 2f. By forming the above-described current path, a magnetic field shown in FIG. 2D is formed for the current flowing through the movable contact 3. Therefore, according to Fleming's left-hand rule, a Lorentz force is applied to the conductive plate 3a of the movable contact 3 to resist the electromagnetic repulsion force in the opening direction that presses the movable contact portions 3b, 3c toward the fixed contact portions 2a, 2b. be able to.
 したがって、可動接触子3を開極させる方向の電磁反発力が発生しても、これに抗するローレンツ力を発生させることができるので、可動接触子3が開極することを確実に抑制することができる。このため、可動接触子3を支持する接触スプリング12の押圧力を小さくすることができ、これに応じて操作用電磁石4で発生する推力も小さくすることができ、全体の構成を小型化することができる。 Therefore, even if an electromagnetic repulsive force in the direction to open the movable contact 3 is generated, a Lorentz force can be generated to resist this, so that the movable contact 3 is reliably prevented from opening. Can do. For this reason, the pressing force of the contact spring 12 that supports the movable contact 3 can be reduced, the thrust generated by the operation electromagnet 4 can be reduced accordingly, and the overall configuration can be downsized. Can do.
 しかも、この場合、固定接触子2にL字状導電板部2g,2hを形成するだけで良く、固定接触子2の加工を容易に行うことができるとともに、別途開極方向の電磁反発力に抗する電磁力又は機械力を発生する部材を必要としないので、部品点数が増加することはなく、全体の構成が大型化することを抑制することができる。 In addition, in this case, it is only necessary to form the L-shaped conductive plate portions 2g and 2h on the stationary contact 2, the machining of the stationary contact 2 can be easily performed, and the electromagnetic repulsive force in the opening direction is separately provided. Since the member which generate | occur | produces the electromagnetic force or mechanical force to resist is not required, the number of parts does not increase and it can suppress that the whole structure enlarges.
 次に、本発明の第2の実施形態を図3について説明する。
 この第2の実施形態では、可動接触子の背面側に固定接触子及び可動接触子に対して発生する開極方向の電磁反発力に抗するローレンツ力を発生させるようにしたものである。
 すなわち、第2の実施形態では、図3に示すように、前述した第1の実施形態における図2の構成において、固定接触子2のL字状導電板部2g,2hにおける第2の導電板部2e,2fを可動接触子3の導電板3aの端部の上端側を覆うように折り曲げて、導電板3aと平行な第3の導電板部2m,2nを形成してU字状導電部2o,2pを形成したことを除いては前述した第1の実施形態と同様の構成を有する。
Next, a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, a Lorentz force is generated against the electromagnetic repulsion force in the opening direction generated with respect to the stationary contact and the movable contact on the back side of the movable contact.
That is, in the second embodiment, as shown in FIG. 3, the second conductive plate in the L-shaped conductive plate portions 2g and 2h of the stationary contact 2 in the configuration of FIG. 2 in the first embodiment described above. The portions 2e and 2f are bent so as to cover the upper end side of the end portion of the conductive plate 3a of the movable contact 3 to form third conductive plate portions 2m and 2n parallel to the conductive plate 3a to form a U-shaped conductive portion. Except that 2o and 2p are formed, the configuration is the same as that of the first embodiment described above.
 この第2の実施形態によると、操作用電磁石4の電磁コイル8が非通電状態である状態では、固定鉄心5と可動鉄心6との間に吸引力が作用しない。したがって、前述した第1の実施形態と同様に、可動鉄心6及び接触子ホルダ11が復帰スプリング9のバネ力によって上方に付勢され、図3(b)に示すように、接点機構CMが開成状態となっている。 According to the second embodiment, no attractive force acts between the fixed iron core 5 and the movable iron core 6 when the electromagnetic coil 8 of the operation electromagnet 4 is in a non-energized state. Therefore, similarly to the first embodiment described above, the movable iron core 6 and the contact holder 11 are biased upward by the spring force of the return spring 9, and the contact mechanism CM is opened as shown in FIG. It is in a state.
 この接点機構CMの開成状態から操作用電磁石4の電磁コイル8に単相交流を通電することにより、固定鉄心5で吸引力が発生されて可動鉄心6が復帰スプリング9に抗して下方に吸引される。これによって、接点機構CMが、図3(c)に示すように、接触子ホルダ11が下降して可動接触子3の可動接点部3b,3cが固定接触子2の固定接点部2a,2bに接触スプリング12の接触圧で接触し閉成状態となる。 When a single-phase alternating current is applied to the electromagnetic coil 8 of the operation electromagnet 4 from the opened state of the contact mechanism CM, an attractive force is generated in the fixed iron core 5 and the movable iron core 6 is attracted downward against the return spring 9. Is done. As a result, as shown in FIG. 3C, the contact mechanism CM moves down the contact holder 11 so that the movable contact portions 3 b and 3 c of the movable contact 3 become the fixed contact portions 2 a and 2 b of the fixed contact 2. The contact spring 12 is brought into contact with the contact pressure to be closed.
 このように接点機構CMが閉成状態となると、例えば、直流電源(図示せず)に接続された固定接触子2の外部接続端子2iから入力される例えば数十kA程度の大電流が第3の導電板部2m、第2の導電板部2e、第1の導電板部2c、固定接点部2aを通じて可動接触子3の可動接点部3bに供給される。この可動接点部3bに供給された大電流は導電板3a、可動接点部3cを通じて固定接点部2bに供給される。この固定接点部2bに供給された大電流は、第1の導電板部2d、第2の導電板部2f、第3の導電板部2n、外部接続端子2jに供給されて、外部の負荷に供給される通電路が形成される。
 このとき、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b、3c間に可動接点部3b,3cを開極させる方向の電磁反発力が発生する。
When the contact mechanism CM is in the closed state in this way, for example, a large current of about several tens kA, for example, input from the external connection terminal 2i of the fixed contact 2 connected to the DC power source (not shown) is third. The conductive plate portion 2m, the second conductive plate portion 2e, the first conductive plate portion 2c, and the fixed contact portion 2a are supplied to the movable contact portion 3b of the movable contact 3. The large current supplied to the movable contact portion 3b is supplied to the fixed contact portion 2b through the conductive plate 3a and the movable contact portion 3c. The large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, the third conductive plate portion 2n, and the external connection terminal 2j, and is applied to an external load. A supplied energization path is formed.
At this time, an electromagnetic repulsive force is generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3 in a direction to open the movable contact portions 3b and 3c.
 しかしながら、固定接触子2は、図3に示すように、第1の導電板部2c,2d、第2の導電板部2e,2f及び第3の導電板部2m,2nによってU字状導電板部2o,2pが形成されているので、固定接触子2の第3の導電板部2m,2nとこれに対向する可動接触子3の導電板3aとで逆方向の電流が流れることになる。このため、固定接触子2の第3の導電板部2m,2nが形成する磁界と可動接触子3の導電板3aに流れる電流の関係からフレミング左手の法則により可動接触子3の導電板3aを固定接触子2の固定接点部2a,2bに押し付けるローレンツ力を発生することができる。このローレンツ力によって、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b,3c間に発生する開極方向の電磁反発力に抗することが可能となり、可動接触子3の可動接点部3b,3cが開極することを防止することができる。 However, as shown in FIG. 3, the fixed contact 2 has a U-shaped conductive plate by the first conductive plate portions 2c and 2d, the second conductive plate portions 2e and 2f, and the third conductive plate portions 2m and 2n. Since the portions 2o and 2p are formed, a current in the reverse direction flows between the third conductive plate portions 2m and 2n of the fixed contact 2 and the conductive plate 3a of the movable contact 3 facing the third conductive plate portions 2m and 2n. For this reason, the conductive plate 3a of the movable contact 3 is defined by the Fleming left-hand rule from the relationship between the magnetic field formed by the third conductive plate portions 2m and 2n of the fixed contact 2 and the current flowing through the conductive plate 3a of the movable contact 3. A Lorentz force that presses against the fixed contact portions 2 a and 2 b of the fixed contact 2 can be generated. This Lorentz force can resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3. It is possible to prevent the three movable contact portions 3b and 3c from opening.
 この第2の実施形態でも、固定接触子2にU字状導電板部2o,2pを形成するだけの簡易な構成で、固定接触子2及び可動接触子3間に生じる開極方向の電磁反発力に抗するローレンツ力を発生することができ、前述した第1の実施形態と同様の効果を得ることができる。 Also in the second embodiment, the electromagnetic repulsion in the opening direction generated between the fixed contact 2 and the movable contact 3 with a simple configuration in which the U-shaped conductive plate portions 2o and 2p are formed on the fixed contact 2 also. A Lorentz force against the force can be generated, and the same effect as in the first embodiment described above can be obtained.
 次に、本発明の第3の実施形態を図4について説明する。
 この第3の実施形態では、前述した第2の実施形態とは逆に可動接触子にU字状折り返し部を形成するようにしたものである。
 すなわち、第3の実施形態では、図4(a)~図4(c)に示すように、可動接触子3の導電板3aの両端側から上方に延長する第1の導電板部3d,3eと、この第1の導電板部3d,3eの上端から内方に延長する第2の導電板部3f,3gとで、導電板3aの上方側に折り返すU字状折り返し部3h,3iが形成されている。これらU字状折り返し部3h,3iの第2の導電板部3f,3gにおける先端側の下面に可動接点部3j,3kが形成されている。
Next, a third embodiment of the present invention will be described with reference to FIG.
In the third embodiment, a U-shaped folded portion is formed on the movable contact, contrary to the second embodiment described above.
That is, in the third embodiment, as shown in FIGS. 4A to 4C, the first conductive plate portions 3d and 3e extending upward from both ends of the conductive plate 3a of the movable contact 3 are provided. And the second conductive plate portions 3f and 3g extending inward from the upper ends of the first conductive plate portions 3d and 3e form U-shaped folded portions 3h and 3i that are folded back to the upper side of the conductive plate 3a. Has been. Movable contact portions 3j and 3k are formed on the lower surfaces of the distal ends of the second conductive plate portions 3f and 3g of the U-shaped folded portions 3h and 3i.
 また、固定接触子2は、接点機構CMの開成状態で、可動接触子3のU状折り返し部3h,3iを形成する導電板3aと第2の導電板部3f,3gとの間に対向し、内方に延長する第4の導電板部2q,2rと、これら第4の導電板部2q,2rの内方端から上方に可動接触子3のU字状折り返し部3h,3iの内側端部の内側を通って上方に延長する第5の導電板部2s,2tとでL字状導電板部2u,2vが形成されている。そして、第4の導電板部2q,2rの可動接触子3の可動接点部3j,3kに対向する位置に固定接点部2w,2xが形成されている。 The fixed contact 2 faces the conductive plate 3a forming the U-shaped folded portions 3h, 3i of the movable contact 3 and the second conductive plate portions 3f, 3g in the opened state of the contact mechanism CM. Inwardly extending fourth conductive plate portions 2q, 2r and inner ends of the U-shaped folded portions 3h, 3i of the movable contact 3 upward from the inner ends of the fourth conductive plate portions 2q, 2r L-shaped conductive plate portions 2u and 2v are formed by fifth conductive plate portions 2s and 2t extending upward through the inside of the portion. The fixed contact portions 2w and 2x are formed at positions facing the movable contact portions 3j and 3k of the movable contact 3 of the fourth conductive plate portions 2q and 2r.
 この第3の実施形態によると、操作用電磁石4の電磁コイル8が非通電状態であるときには、可動鉄心6が復帰スプリング9によって上方に移動して接触子ホルダ11がストッパ13に当接した位置となる。このとき、接点機構CMは、図4(b)に示すように、可動接触子3の導電板3aが接触スプリング12によって挿通孔11aの底部に当接している。そして、U状折り返し部3h,3iを構成する導電板3a及び第2の導電板部3f,3gの中間部に固定接触子2の第4の導電板部2q,2rが位置して固定接点部2w,2xが可動接点部3j,3kと下方に離間して、開成状態となっている。 According to the third embodiment, when the electromagnetic coil 8 of the operation electromagnet 4 is in a non-energized state, the position where the movable iron core 6 is moved upward by the return spring 9 and the contact holder 11 contacts the stopper 13. It becomes. At this time, in the contact mechanism CM, as shown in FIG. 4B, the conductive plate 3 a of the movable contact 3 is in contact with the bottom of the insertion hole 11 a by the contact spring 12. The fourth conductive plate portions 2q and 2r of the fixed contact 2 are located at the intermediate portion between the conductive plate 3a and the second conductive plate portions 3f and 3g constituting the U-shaped folded portions 3h and 3i. 2w and 2x are spaced apart from the movable contact portions 3j and 3k and are open.
 この接点機構CMの開成状態から、操作用電磁石4の電磁コイル8に単相交流を通電することにより、固定鉄心5で可動鉄心6を復帰スプリング9に抗して吸引すると、接触子ホルダ11が下降する。このため、接点機構CMでは、図4(c)に示すように、可動接触子3の可動接点部3j,3kが固定接触子2の固定接点部2w,2xに接触する閉成状態となる。 When the movable iron core 6 is attracted by the fixed iron core 5 against the return spring 9 by applying a single-phase alternating current to the electromagnetic coil 8 of the operation electromagnet 4 from the opened state of the contact mechanism CM, the contact holder 11 is moved. Descend. For this reason, in the contact mechanism CM, as shown in FIG. 4C, the movable contact portions 3 j and 3 k of the movable contact 3 are in a closed state in which they are in contact with the fixed contact portions 2 w and 2 x of the fixed contact 2.
 このように接点機構CMが閉成状態となると、例えば、直流電源(図示せず)に接続された固定接触子2の外部接続端子2iから入力される例えば数十kA程度の大電流が第5の導電板部2s、第4の導電板部2q、固定接点部2wを通じて可動接触子3の可動接点部3jに供給される。この可動接点部3jに供給された大電流は第2の導電板部3f、第1の導電板部3d、導電板3a、第1の導電板部3e、第2の導電板部3g、可動接点部3kを通じて固定接点部2xに供給される。この固定接点部2xに供給された大電流は、第4の導電板部2r、第5の導電板部2t、外部接続端子2jを通じて、外部の負荷に供給される通電路が形成される。 When the contact mechanism CM is thus closed, for example, a large current of about several tens of kA, for example, input from the external connection terminal 2i of the fixed contact 2 connected to a DC power source (not shown) is the fifth. Are supplied to the movable contact portion 3j of the movable contact 3 through the conductive plate portion 2s, the fourth conductive plate portion 2q, and the fixed contact portion 2w. The large current supplied to the movable contact portion 3j includes the second conductive plate portion 3f, the first conductive plate portion 3d, the conductive plate 3a, the first conductive plate portion 3e, the second conductive plate portion 3g, and the movable contact point. It is supplied to the fixed contact portion 2x through the portion 3k. The large current supplied to the fixed contact portion 2x forms an energization path that is supplied to an external load through the fourth conductive plate portion 2r, the fifth conductive plate portion 2t, and the external connection terminal 2j.
 このとき、固定接触子2の固定接点部2w,2x及び可動接触子3の可動接点部3j、3k間に可動接点部3j,3kを開極させる方向の電磁反発力が発生する。
 しかしながら、可動接触子3は、図4に示すように、導電板3a、第1の導電板部3d,3e及び第2の導電板部3f,3gによってU字状折り返し部3h,3iが形成されているので、可動接触子3の導電板3aと固定接触子2の第4の導電板部2q,2rとに逆方向の電流が流れることになる。このため、図4(c)に示すように、可動接触子3の導電板3aに流れる電流と固定接触子2の第4の導電板部2q,2rが形成する磁界により、導電板3aに可動接触子3の可動接点部3j,3kを固定接触子2の固定接点部2w,2xに押し付けるローレンツ力を発生することができる。このローレンツ力によって、固定接触子2の固定接点部2w,2x及び可動接触子3の可動接点部3j,3k間に発生する開極方向の電磁反発力に抗することが可能となり、大電流の通電時に可動接触子3の可動接点部3j,3kが開極することを防止することができる。
At this time, an electromagnetic repulsive force is generated between the fixed contact portions 2w and 2x of the fixed contact 2 and the movable contact portions 3j and 3k of the movable contact 3 in a direction to open the movable contact portions 3j and 3k.
However, in the movable contact 3, as shown in FIG. 4, U-shaped folded portions 3h and 3i are formed by the conductive plate 3a, the first conductive plate portions 3d and 3e, and the second conductive plate portions 3f and 3g. Therefore, a reverse current flows through the conductive plate 3a of the movable contact 3 and the fourth conductive plate portions 2q and 2r of the fixed contact 2. For this reason, as shown in FIG. 4C, the conductive plate 3a is moved by the current flowing through the conductive plate 3a of the movable contact 3 and the magnetic field formed by the fourth conductive plate portions 2q and 2r of the fixed contact 2. Lorentz force that presses the movable contact portions 3j and 3k of the contact 3 against the fixed contact portions 2w and 2x of the fixed contact 2 can be generated. By this Lorentz force, it becomes possible to resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2w and 2x of the fixed contact 2 and the movable contact portions 3j and 3k of the movable contact 3, and a large current It is possible to prevent the movable contact portions 3j and 3k of the movable contact 3 from opening when energized.
 さらに、第3の実施形態では、固定接触子2にL字状導電板部2u,2vが形成されているので、可動接触子3の第2の導電板部3f,3gの上側にL字状導電板部2u,2vの第5の導電板部2s,2tによる磁束強化部が形成される。このため、前述した第1の実施形態と同様のローレンツ力も発生することができ、より強力に可動接触子3の開極を防止することができる。 Furthermore, in the third embodiment, since the L-shaped conductive plate portions 2u and 2v are formed on the fixed contact 2, the L-shaped upper side of the second conductive plate portions 3f and 3g of the movable contact 3 is formed. A magnetic flux strengthening portion is formed by the fifth conductive plate portions 2s and 2t of the conductive plate portions 2u and 2v. For this reason, the same Lorentz force as in the first embodiment described above can be generated, and the opening of the movable contact 3 can be prevented more strongly.
 次に、本発明の第4の実施形態を図5について説明する。
 この第4の実施形態においては、固定接触子及び可動接触子をともに平板状に形成して開極方向の電磁反発力に抗するローレンツ力を発生させるようにしたものである。
 すなわち、第4の実施形態では、図5(a)~(d)に示すように、接点機構CMを構成する固定接触子2及び可動接触子3をともに平板状に形成されている。固定接触子2は、互いに所定間隔を保って配設された平面から見て長方形状の平板導体21a,21bを有する。これら平板導体21a,21bは、線対称に形成されており、可動接触子3の長手方向端部に対向する位置に、開放端面が内方端面側となるU字状溝22a,22bが表裏に貫通して形成され、これらU字状溝22a及び22bで囲まれる板部23a,23bの可動接触子3との対向面に固定接点部24a,24bが形成されている。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
In the fourth embodiment, both the fixed contact and the movable contact are formed in a flat plate shape to generate a Lorentz force that resists the electromagnetic repulsion force in the opening direction.
That is, in the fourth embodiment, as shown in FIGS. 5A to 5D, the fixed contact 2 and the movable contact 3 constituting the contact mechanism CM are both formed in a flat plate shape. The fixed contact 2 has flat plate conductors 21a and 21b that are rectangular when viewed from a plane arranged at a predetermined distance from each other. These flat conductors 21a and 21b are formed in line symmetry, and U-shaped grooves 22a and 22b whose open end faces are on the inner end face side at the positions facing the longitudinal ends of the movable contactor 3 are on the front and back sides. Fixed contact portions 24a and 24b are formed on the surfaces of the plate portions 23a and 23b that are formed so as to penetrate and are surrounded by the U-shaped grooves 22a and 22b.
 一方、可動接触子3は、固定接触子2の平板導体21a,21bにおけるU字状溝22a及び22bで囲まれる板部23a,23bに対向する位置に互いに離隔した方形の貫通孔31a,31bが形成されている。貫通孔31a,31bの外方側端部における固定接触子2の固定接点部24a,24bに対向する下面に可動接点部32a,32bが形成されている。 On the other hand, the movable contact 3 has rectangular through holes 31a and 31b separated from each other at positions facing the plate portions 23a and 23b surrounded by the U-shaped grooves 22a and 22b in the flat conductors 21a and 21b of the fixed contact 2. Is formed. Movable contact portions 32a and 32b are formed on the lower surface of the fixed contact 2 opposite to the fixed contact portions 24a and 24b at the outer end portions of the through holes 31a and 31b.
 この第4の実施形態によると、操作用電磁石4の電磁コイル8が非通電状態であるときには、前述した第1~第3の実施形態と同様に、可動鉄心6が復帰スプリング9によって上方の位置にある。このため、接触子ホルダ11が図5(b)に示すように上方の位置となるので、固定接触子2の平板導体21a,21bと可動接触子3とが離間し、両者の固定接点部24a,24bと可動接点部32a、32bとが離間して、接点機構CMが開成状態となっている。 According to the fourth embodiment, when the electromagnetic coil 8 of the operation electromagnet 4 is in a non-energized state, the movable iron core 6 is moved to the upper position by the return spring 9 as in the first to third embodiments described above. It is in. For this reason, since the contact holder 11 is in the upper position as shown in FIG. 5B, the flat conductors 21a and 21b of the fixed contact 2 and the movable contact 3 are separated from each other, and the fixed contact portions 24a of both of them are separated. 24b and the movable contact portions 32a and 32b are separated from each other, and the contact mechanism CM is in an open state.
 この接点機構CMの開成状態から、操作用電磁石4の電磁コイル8に単相交流を供給すると、固定鉄心5に可動鉄心6が復帰スプリング9に抗して吸引されることにより、接触子ホルダ11が下降し、接点機構CMの固定接触子2の固定接点部24a,24bと可動接触子3の可動接点部32a,32bとが接触して、閉成状態となる。 When single-phase alternating current is supplied to the electromagnetic coil 8 of the operation electromagnet 4 from the opened state of the contact mechanism CM, the movable iron core 6 is attracted to the fixed iron core 5 against the return spring 9, whereby the contact holder 11 Is lowered, and the fixed contact portions 24a and 24b of the fixed contact 2 of the contact mechanism CM and the movable contact portions 32a and 32b of the movable contact 3 come into contact with each other to be in a closed state.
 この接点機構CMの閉成状態では、外部接続端子2iから入力される例えば直流電源からの大電流が平板導体21aに左端側に入力され、U字状溝22aで囲まれる板部23aに固定接点部24aが形成されているので、平板導体21aに入力された大電流は、U字状溝22aの両側面側の側板部25a,25bを通って板部23aに入り、固定接点部24aから可動接触子3の可動接点部32aに供給される。 In the closed state of the contact mechanism CM, a large current from, for example, a DC power source input from the external connection terminal 2i is input to the flat conductor 21a on the left end side, and is fixed to the plate portion 23a surrounded by the U-shaped groove 22a. Since the portion 24a is formed, a large current input to the flat conductor 21a enters the plate portion 23a through the side plate portions 25a and 25b on both side surfaces of the U-shaped groove 22a and is movable from the fixed contact portion 24a. It is supplied to the movable contact portion 32 a of the contact 3.
 この可動接点部32aに供給された大電流は、貫通孔31aの両側面側の側板部33a,33bを通り、貫通孔31bの両側面側の側板部34a,34bを通って可動接点部32bから平板導体21bの固定接点部24bに供給される。
 この固定接点部24bに供給された大電流は、板部23bからU字状溝22bの両側面側の側板部26a,26bを通り、平板導体21bの右端側から外部接続端子2jを通って負荷に供給される。
The large current supplied to the movable contact portion 32a passes through the side plate portions 33a and 33b on both side surfaces of the through hole 31a, passes through the side plate portions 34a and 34b on both side surfaces of the through hole 31b, and then from the movable contact portion 32b. It is supplied to the fixed contact portion 24b of the flat conductor 21b.
The large current supplied to the fixed contact portion 24b passes through the side plate portions 26a and 26b on both sides of the U-shaped groove 22b from the plate portion 23b, and passes through the external connection terminal 2j from the right end side of the flat conductor 21b. To be supplied.
 このとき、互いに対向する固定接触子2の平板導体21aの側板部25a,25bと可動接触子3の側板部33a,33bとを通る電流の方向が同一方向となり、同様に互いに対向する可動接触子3の側板部34a,34bと固定接触子2の平板導体21bの側板部26a,26bとを通る電流の方向が同一方向となる。
 このため、可動接触子3の側板部33a,33b及び34a,34bにはフレミングの左手の法則によって下向きのローレンツ力が発生する。このローレンツ力によって固定接点部24a,24b及び可動接点部32a,32b間に発生する開極方向の電磁反発力を抑制することができ、可動接触子3の開極を防止することができ、前述した第1~第3の実施形態と同様の効果を得ることができる。
At this time, the direction of the current passing through the side plate portions 25a, 25b of the flat conductor 21a of the fixed contact 2 facing each other and the side plate portions 33a, 33b of the movable contact 3 becomes the same direction, and the movable contacts facing each other similarly. The direction of the current passing through the three side plate portions 34a and 34b and the side plate portions 26a and 26b of the flat conductor 21b of the fixed contact 2 is the same direction.
For this reason, downward Lorentz force is generated in the side plate portions 33a, 33b and 34a, 34b of the movable contact 3 by Fleming's left-hand rule. This Lorentz force can suppress the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 24a and 24b and the movable contact portions 32a and 32b, and can prevent the opening of the movable contact 3 as described above. The same effects as those of the first to third embodiments can be obtained.
 なお、上記各実施形態においては、操作用電磁石4を交流励磁する場合について説明したが、直流励磁する操作用電磁石を適用するようにしてもよく、さらに可動接点3の駆動機構としては上記構成に限定されるものではなく、任意の構成の駆動機構を適用することができる。
 また、上記各実施形態においては、本発明の接点機構CMを電磁接触器に適用した場合について説明したが、これに限定されるものではなく、開閉器等の任意の機器に適用することができる。
In each of the above embodiments, the case where the operation electromagnet 4 is AC-excited has been described. However, an operation electromagnet that performs DC excitation may be applied, and the drive mechanism of the movable contact 3 has the above-described configuration. The driving mechanism is not limited, and an arbitrarily configured driving mechanism can be applied.
In each of the above embodiments, the case where the contact mechanism CM of the present invention is applied to an electromagnetic contactor has been described. However, the present invention is not limited to this and can be applied to any device such as a switch. .
 本発明は、固定接触子及び可動接触子の少なくとも一方を、大電流通電時の固定子接触子及び可動接触子に生じる開極方向の電磁反発力に抗するローレンツ力を発生する形状として、大電流通電時の開極を抑制できる接点機構及びこれを使用した電磁接触器を提供できる。 In the present invention, at least one of the fixed contact and the movable contact is shaped so as to generate a Lorentz force that resists the electromagnetic repulsion force in the opening direction generated in the stator contact and the movable contact when a large current is applied. The contact mechanism which can suppress the opening at the time of current supply, and the electromagnetic contactor using this can be provided.
 1…本体ケース、1a…上部ケース、1b…下部ケース、2…固定接点、2a,2b…固定接点部、2c,2d…第1の導電板部、2e,2f…第2の導電板部、2g,2h…L字状導電板部、2i,2j…外部接続端子、2m,2n…第3の導電板部、2o,2p…U字状導電板部、2q,2r…第4の導電板部、2s,2t…第5の導電板部、2u,2v…L字状導電板部、2w,2x…固定接点部、3…可動接触子、3a…導電板部、3b,3c…可動接点部、3d,3e…第1の導電板部、3f,3g…第2の導電板部、3h,3i…U字状折り返し部、3j,3k…可動接点部、4…操作用電磁石、5…固定鉄心、6…可動鉄心、8…電磁コイル、9…復帰スプリング、11…接触子ホルダ、12…接触スプリング、13…ストッパ、21a,21b…平板導体、22a,22b…U字状溝、23a,23b…板部、24a,24b…固定接点部、31a,31b…貫通孔、41…電源ライン、42…避雷器、43…U字状折り返し部 DESCRIPTION OF SYMBOLS 1 ... Main body case, 1a ... Upper case, 1b ... Lower case, 2 ... Fixed contact, 2a, 2b ... Fixed contact part, 2c, 2d ... 1st conductive plate part, 2e, 2f ... 2nd conductive plate part, 2g, 2h ... L-shaped conductive plate portion, 2i, 2j ... external connection terminal, 2m, 2n ... third conductive plate portion, 2o, 2p ... U-shaped conductive plate portion, 2q, 2r ... fourth conductive plate , 2s, 2t ... fifth conductive plate, 2u, 2v ... L-shaped conductive plate, 2w, 2x ... fixed contact, 3 ... movable contact, 3a ... conductive plate, 3b, 3c ... movable contact , 3d, 3e ... first conductive plate, 3f, 3g ... second conductive plate, 3h, 3i ... U-shaped folded portion, 3j, 3k ... movable contact, 4 ... electromagnet for operation, 5 ... Fixed iron core, 6 ... movable iron core, 8 ... electromagnetic coil, 9 ... return spring, 11 ... contactor holder, 12 ... contact spring, 13 ... strike 21a, 21b ... Flat conductor, 22a, 22b ... U-shaped groove, 23a, 23b ... Plate part, 24a, 24b ... Fixed contact part, 31a, 31b ... Through hole, 41 ... Power line, 42 ... Lightning arrester, 43 ... U-shaped folded part

Claims (5)

  1.  通電路に介挿された固定接触子及び可動接触子を有する接点機構であって、
     前記固定接触子及び可動接触子の少なくとも一方の形状を、通電時に前記固定接触子及び前記可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する形状としたことを特徴とする接点機構。
    A contact mechanism having a stationary contact and a movable contact inserted in a current path,
    The shape of at least one of the fixed contact and the movable contact is a shape that generates a Lorentz force that resists an electromagnetic repulsion force in the opening direction generated between the fixed contact and the movable contact during energization. Characteristic contact mechanism.
  2.  前記可動接触子は、可動部に支持され、表裏の一方の面における両端側にそれぞれ接点部を有する導電板を備え、
     前記固定接触子は、前記導電板の接点部に対向する一対の固定接点部を支持してそれぞれ前記導電板と平行に当該導電板の両端より外側に向かう第1の導電板部と、該第1の導電板部の外方端部から前記導電板の端部の外側を通って延長する第2の導電板部とで形成されたL字状導電板部を備えている
     ことを特徴とする請求項1に記載の接点機構。
    The movable contact is supported by a movable portion, and includes a conductive plate having contact portions on both end sides on one side of the front and back sides,
    The fixed contact supports a pair of fixed contact portions opposed to the contact portions of the conductive plate, and each of the fixed contact portions is parallel to the conductive plate and extends outward from both ends of the conductive plate. It comprises an L-shaped conductive plate portion formed by an outer end portion of one conductive plate portion and a second conductive plate portion extending through the outside of the end portion of the conductive plate. The contact mechanism according to claim 1.
  3.  前記固定接触子は、前記第2の導電板部の端部から前記導電板と平行に内方に延長する第3の導電板部を有してU字状に構成されていることを特徴とする請求項2に記載の接点機構。 The fixed contact has a third conductive plate portion extending inward from the end portion of the second conductive plate portion in parallel with the conductive plate, and is configured in a U shape. The contact mechanism according to claim 2.
  4.  前記可動接触子は、可動部に支持される導電板部と、該導電板部の両端に形成されたU字状折り返し部と、該U字状折り返し部の前記導電板部との対向面に形成された接点部とを備え、
     前記固定接触子は、前記U字状折り返し部内に前記導電板部と平行に配設された前記可動接触子の接点部と接触する接点部を形成した一対の第1の導電板部と、該一対の第1の導電板部の内側端からそれぞれ前記U字状折り返し部の端部の内側を通って延長する第2の導電板部とで構成されるL字状導電板部を備えている
     ことを特徴とする請求項1に記載の接点機構。
    The movable contact is formed on a conductive plate portion supported by the movable portion, a U-shaped folded portion formed at both ends of the conductive plate portion, and a surface of the U-shaped folded portion facing the conductive plate portion. A contact point formed,
    The fixed contact has a pair of first conductive plate portions in which a contact portion that contacts a contact portion of the movable contact disposed in parallel with the conductive plate portion is formed in the U-shaped folded portion, An L-shaped conductive plate portion that includes a second conductive plate portion that extends from the inner ends of the pair of first conductive plate portions through the inside of the end portion of the U-shaped folded portion, respectively. The contact mechanism according to claim 1.
  5.  前記請求項1乃至請求項4の何れか1項に記載の接点機構を備え、前記可動接触子が操作用電磁石の可動鉄心に連結され、前記固定接触子が外部接続端子に接続されていることを特徴とする電磁接触器。 The contact mechanism according to any one of claims 1 to 4, wherein the movable contact is connected to a movable iron core of an operation electromagnet, and the fixed contact is connected to an external connection terminal. An electromagnetic contactor characterized by.
PCT/JP2011/003376 2010-07-27 2011-06-14 Contact mechanism and electromagnetic contactor using same WO2012014368A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/640,612 US8816803B2 (en) 2010-07-27 2011-06-14 Contact mechanism and electromagnetic contactor using same
CN201180018392.9A CN102844833B (en) 2010-07-27 2011-06-14 The electromagnetic contactor of contact mechanism and this contact mechanism of use
EP11811975.9A EP2546853B1 (en) 2010-07-27 2011-06-14 Contact mechanism and electromagnetic contactor using same
KR1020137004680A KR101750137B1 (en) 2010-07-27 2011-06-14 Contact mechanism and electromagnetic contactor using same
US14/289,127 US8981883B2 (en) 2010-07-27 2014-05-28 Contact mechanism and electromagnetic contactor using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-168176 2010-07-27
JP2010168176A JP5134657B2 (en) 2010-07-27 2010-07-27 Contact mechanism and electromagnetic contactor using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/640,612 A-371-Of-International US8816803B2 (en) 2010-07-27 2011-06-14 Contact mechanism and electromagnetic contactor using same
US14/289,127 Division US8981883B2 (en) 2010-07-27 2014-05-28 Contact mechanism and electromagnetic contactor using same

Publications (1)

Publication Number Publication Date
WO2012014368A1 true WO2012014368A1 (en) 2012-02-02

Family

ID=45529607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003376 WO2012014368A1 (en) 2010-07-27 2011-06-14 Contact mechanism and electromagnetic contactor using same

Country Status (6)

Country Link
US (2) US8816803B2 (en)
EP (1) EP2546853B1 (en)
JP (1) JP5134657B2 (en)
KR (1) KR101750137B1 (en)
CN (3) CN102844833B (en)
WO (1) WO2012014368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130335177A1 (en) * 2011-03-22 2013-12-19 Panasonic Corporation Contact device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585550B2 (en) * 2011-07-18 2014-09-10 アンデン株式会社 relay
JP5793048B2 (en) * 2011-10-07 2015-10-14 富士電機株式会社 Magnetic contactor
JP5856426B2 (en) * 2011-10-07 2016-02-09 富士電機株式会社 Contact device and electromagnetic contactor using the same
JP6110109B2 (en) * 2012-11-15 2017-04-05 富士電機機器制御株式会社 Magnetic contactor
JP6111610B2 (en) 2012-11-15 2017-04-12 富士電機機器制御株式会社 Magnetic contactor
JP6119216B2 (en) 2012-12-05 2017-04-26 富士電機機器制御株式会社 Magnetic contactor
KR101545893B1 (en) * 2014-01-28 2015-08-20 엘에스산전 주식회사 Relay
EP3146548B1 (en) * 2014-05-19 2018-12-05 ABB Schweiz AG High speed limiting electrical switchgear device
US9548174B2 (en) * 2015-04-23 2017-01-17 Tyco Electronics Corporation Contractor assembly which counteracts electromagnetic repulsion of contacts
CN105529217B (en) * 2015-12-24 2017-08-08 北京安润通电子技术开发有限公司 A kind of gravity-type failure safe contactor and its application method
CN107910831B (en) * 2016-08-24 2019-09-20 盐城市科恒达材料有限公司 A kind of highly-safe cable distribution box
JP7066996B2 (en) 2017-08-10 2022-05-16 オムロン株式会社 Electromagnetic relay
WO2019181469A1 (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Circuit interrupter
JP6822436B2 (en) * 2018-03-30 2021-01-27 オムロン株式会社 relay
JP6848923B2 (en) * 2018-03-30 2021-03-24 オムロン株式会社 relay
GB2575684A (en) * 2018-07-20 2020-01-22 Eaton Intelligent Power Ltd Switching device and switching arrangement
KR102537549B1 (en) * 2018-08-31 2023-05-26 엘에스일렉트릭(주) Direct Current Relay
DE102020205869B4 (en) * 2020-05-11 2023-08-03 Siemens Aktiengesellschaft Electromagnetically assisted drive for a vacuum tube circuit breaker
DE102020132655A1 (en) 2020-12-08 2022-06-09 Te Connectivity Germany Gmbh Contact bridge for an electrical switching element and electrical switching element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041724A (en) * 1983-08-18 1985-03-05 三菱電機株式会社 Electromagnetic contactor
JPH0170246U (en) * 1987-10-29 1989-05-10
JPH0525644U (en) * 1991-09-13 1993-04-02 松下電工株式会社 Contact device of electromagnetic contactor

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436568Y1 (en) * 1964-11-16 1968-03-25
US3465270A (en) * 1967-07-06 1969-09-02 Pollak Corp Joseph Heavy duty relay with wiping contacts
JPS5241091Y2 (en) * 1972-05-31 1977-09-16
JPS49111772U (en) * 1973-01-24 1974-09-25
DE3211685C2 (en) * 1982-03-30 1984-02-09 Mannesmann AG, 4000 Düsseldorf Contactors for controlling electric motors
DE3224468A1 (en) * 1982-06-30 1984-01-05 Siemens AG, 1000 Berlin und 8000 München RELAY WITH BRIDGE CONTACT SPRING
US4467301A (en) * 1982-08-27 1984-08-21 Essex Group, Inc. Electric switch having enhanced fault current capability
US5132653A (en) * 1987-09-09 1992-07-21 Yoshiteru Nakatake Electromagnetic switch
JPH04123719A (en) 1990-09-14 1992-04-23 Fuji Electric Co Ltd Fixed contact and manufacture thereof
US5430420A (en) * 1994-01-24 1995-07-04 Eaton Corporation Contact arrangement for a circuit breaker using magnetic attraction for high current trip
US5448033A (en) * 1994-12-15 1995-09-05 Siemens Energy & Automation, Inc. Circuit breaker stationary contact strap
US5892194A (en) * 1996-03-26 1999-04-06 Matsushita Electric Works, Ltd. Sealed contact device with contact gap adjustment capability
EP0982746B1 (en) * 1998-08-26 2007-05-09 Matsushita Electric Works, Ltd. Single-pole relay switch
KR20000073458A (en) * 1999-05-11 2000-12-05 권수영 A magnetic contactor for star-delta connection
KR100442068B1 (en) * 1999-10-14 2004-07-30 마츠시타 덴코 가부시키가이샤 Contactor
JP2001210170A (en) 2000-01-24 2001-08-03 Mitsubishi Electric Corp Circuit breaker
EP1137031A3 (en) * 2000-03-24 2004-01-02 Rockwell Automation AG Contact arrangement foe electromagnetic switch gear, in particular for contactors
JP2004311389A (en) * 2003-02-21 2004-11-04 Sumitomo Electric Ind Ltd Dc relay
JP2006019148A (en) * 2004-07-01 2006-01-19 Matsushita Electric Works Ltd Electromagnetic switch
JP2007305467A (en) * 2006-05-12 2007-11-22 Omron Corp Electromagnetic relay, its adjustment method, and adjustment system
JP4765761B2 (en) * 2006-05-12 2011-09-07 オムロン株式会社 Electromagnetic relay
CN101231923B (en) * 2007-02-05 2010-11-24 厦门宏发电力电器有限公司 Electromagnetic relay resistant to electric repulsive force
JP2008226547A (en) * 2007-03-09 2008-09-25 Denso Corp Electromagnetic relay
JP5202072B2 (en) * 2007-09-14 2013-06-05 富士通コンポーネント株式会社 relay
DE102008005115A1 (en) * 2008-01-14 2009-07-16 Siemens Aktiengesellschaft Switching device, in particular power switching device, with two series-connected switching contact pairs for interrupting a current path
FR2939237B1 (en) * 2008-11-28 2011-02-11 Alstom Transport Sa DEVICE FOR DISCONNECTING AN ELECTRICAL CIRCUIT AND AN ELECTRICAL POWER DISTRIBUTION BOX COMPRISING SUCH A DEVICE FOR DISCONNECTING.
JP5767508B2 (en) * 2011-05-19 2015-08-19 富士電機株式会社 Magnetic contactor
JP5689741B2 (en) * 2011-05-19 2015-03-25 富士電機株式会社 Magnetic contactor
JP5778989B2 (en) * 2011-05-19 2015-09-16 富士電機機器制御株式会社 Magnetic contactor
JP5809443B2 (en) * 2011-05-19 2015-11-10 富士電機株式会社 Contact mechanism and electromagnetic contactor using the same
JP5838920B2 (en) * 2011-07-18 2016-01-06 アンデン株式会社 relay
JP5585550B2 (en) * 2011-07-18 2014-09-10 アンデン株式会社 relay
JP5876270B2 (en) * 2011-11-01 2016-03-02 富士電機株式会社 Magnetic contactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041724A (en) * 1983-08-18 1985-03-05 三菱電機株式会社 Electromagnetic contactor
JPH0170246U (en) * 1987-10-29 1989-05-10
JPH0525644U (en) * 1991-09-13 1993-04-02 松下電工株式会社 Contact device of electromagnetic contactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546853A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130335177A1 (en) * 2011-03-22 2013-12-19 Panasonic Corporation Contact device
US9281148B2 (en) * 2011-03-22 2016-03-08 Panasonic Intellectual Property Management Co., Ltd. Contact device
US9576760B2 (en) 2011-03-22 2017-02-21 Panasonic Intellectual Property Management Co., Ltd. Contact device

Also Published As

Publication number Publication date
US8981883B2 (en) 2015-03-17
CN104319184B (en) 2017-08-29
EP2546853A4 (en) 2014-11-05
JP2012028252A (en) 2012-02-09
EP2546853B1 (en) 2021-11-24
KR101750137B1 (en) 2017-06-22
US8816803B2 (en) 2014-08-26
CN104282490A (en) 2015-01-14
KR20130062332A (en) 2013-06-12
JP5134657B2 (en) 2013-01-30
CN102844833B (en) 2016-03-23
CN104319184A (en) 2015-01-28
US20140266522A1 (en) 2014-09-18
CN102844833A (en) 2012-12-26
EP2546853A1 (en) 2013-01-16
US20130113580A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5134657B2 (en) Contact mechanism and electromagnetic contactor using the same
JP5809443B2 (en) Contact mechanism and electromagnetic contactor using the same
JP5793048B2 (en) Magnetic contactor
JP5856426B2 (en) Contact device and electromagnetic contactor using the same
EP2919248B1 (en) Electromagnetic relay
JP5600577B2 (en) Contact mechanism and electromagnetic contactor using the same
KR20130044319A (en) Circuit breaker
WO2012014369A1 (en) Contact mechanism and electromagnetic contactor using same
JP5374630B2 (en) Contact mechanism and electromagnetic contactor using the same
JP2022012847A (en) Electromagnetic relay
JP5056571B2 (en) Circuit breaker
JP5323244B2 (en) Contact mechanism and electromagnetic contactor using the same
JP2012160482A (en) Circuit breaker
JP2015079674A (en) Contact arrangement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018392.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011811975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13640612

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137004680

Country of ref document: KR

Kind code of ref document: A