WO2012013119A1 - 具有感应线圈的薄型电路板及其制造方法 - Google Patents

具有感应线圈的薄型电路板及其制造方法 Download PDF

Info

Publication number
WO2012013119A1
WO2012013119A1 PCT/CN2011/077189 CN2011077189W WO2012013119A1 WO 2012013119 A1 WO2012013119 A1 WO 2012013119A1 CN 2011077189 W CN2011077189 W CN 2011077189W WO 2012013119 A1 WO2012013119 A1 WO 2012013119A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic induction
substrate
induction coil
circuit board
layer
Prior art date
Application number
PCT/CN2011/077189
Other languages
English (en)
French (fr)
Inventor
杨坤山
郑清汾
萧烽吉
林东赋
李至伟
徐国原
杨宜学
宋家驹
Original Assignee
钒创科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钒创科技股份有限公司 filed Critical 钒创科技股份有限公司
Priority to JP2013520953A priority Critical patent/JP2013534364A/ja
Priority to KR1020137004663A priority patent/KR20130069739A/ko
Publication of WO2012013119A1 publication Critical patent/WO2012013119A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • the present invention relates to a thin circuit board having an induction coil and a method of fabricating the same. Specifically, it relates to a thin circuit board designed with an induction coil considering absorbing characteristics and a method of manufacturing the same. Background technique
  • Radio frequency identification technology is a communication technology that uses electromagnetic wave signals to identify specific targets and read and write related data.
  • the principle of operation of the RFID component is to use an external RFID reader to emit electromagnetic waves to trigger an RFID component (such as an RFID tag) in the sensing range.
  • the RFID component generates current due to electromagnetic induction. To supply the RFID chip operation on it, and then send electromagnetic waves back to the sensor to achieve the effect of RF identification. Since it is identified by electromagnetic induction, there is no need to establish any mechanical or optical contact between the RFID system (such as the reader reader) and the identification target (such as the RFID tag).
  • Radio frequency identification has many advantages, such as long effective identification distance, large amount of information that can be stored and transmitted, fast recognition speed, reproducible data in labels, and better security. It has been widely used in the industry to replace traditional identification. Bar code ⁇ The application of today's RFID components extends to retail logistics supply, asset tracking, and verification applications.
  • FIG. 1 it is a cross-sectional structural view of a radio frequency identification component 100 typically having an induction coil in the prior art.
  • a typical radio frequency identification component 100 is mainly composed of a flexible substrate 101, an induction coil 103, a metal wiring layer 105, and a radio frequency identification chip 107, wherein the existing flexible substrate 101 is used. Since the electromagnetic wave is not absorbed, the design of the induction coil 103 does not require consideration of the magnetic flux characteristics of the flexible substrate 101.
  • the flexible substrate 101 is a structural substrate provided as a component of the radio frequency identification element 100, and is formed of a soft material such as PET (p 0 lyethyl ene terephthalate). Flexible, easy to carry and so on.
  • the induction coil 103 on the upper surface of the flexible substrate 101 is for receiving electromagnetic waves emitted by an external radio frequency identification reader to generate current by electromagnetic induction.
  • the lower surface of the flexible substrate 101 is formed with a metal wiring layer 105 which is electrically connected to the induction coil 103 through the interconnection structure 104.
  • the metal wiring layer 105 also includes a circuit wiring region of the radio frequency identification element 100, so that the radio frequency identification chip 107 is electrically connected to the induction coil 103.
  • a plurality of through holes 109 connecting the upper and lower surfaces are formed in the flexible substrate 101 to electrically connect the metal wiring layer 105 on the lower surface of the flexible substrate 101 and the radio frequency identification chip 107 on the upper surface of the flexible substrate 101.
  • the RFID component Due to the use of electromagnetic wave induction mechanism, the RFID component is sensitive to the environment of metal and liquid under high frequency operation, especially on a metal surface or a container containing liquid. In such a use environment, the electromagnetic wave signals emitted by the external reader and the RFID component are easily interfered by metal or liquid in the vicinity of the RFID component, resulting in poor reading of the sensing signal. This problem is particularly serious in passive RFID components. .
  • a magnetic induction patch (or absorbing patch) may be added between the RFID component 100 and the metal surface 102 . In order to prevent the electromagnetic wave received/transmitted from generating surface waves, cavity resonance waves, reflected waves, or/and electromagnetic interference on the surface of metal or liquid, to avoid poor reading of the sensing signal.
  • the magnetic induction patches commonly used in the industry take up a lot of RF identification component manufacturing costs, and the magnetic induction patches have a certain thickness, which makes it difficult to thin the RFID components.
  • magnetic induction patch must be carefully selected to avoid affecting its effect.
  • the inventors intend to design the induction coil of the thin circuit board in consideration of the magnetic flux characteristics of the substrate, so as to avoid the trouble of using the magnetic induction patch on the metal surface in the future. Therefore, the radio frequency identification element of the present invention can be applied to a thin design, and a thin circuit board structure having a wave absorbing effect and a manufacturing method thereof are developed. Summary of the invention
  • the present invention discloses a thin circuit board and a method of fabricating the same.
  • the substrate of the thin circuit board of the present invention is made of an organic resin material mixed with a absorbing powder, so that the substrate has the characteristics of absorbing electromagnetic waves, and at the same time has the characteristics of a general flexible circuit board, and can be fabricated on a thin circuit board.
  • the buildup and circuit construction required for the RFID component is made of an organic resin material mixed with a absorbing powder, so that the substrate has the characteristics of absorbing electromagnetic waves, and at the same time.
  • a thin circuit board includes components such as a magnetic induction substrate, an induction coil, and a metal wiring layer.
  • the induction coil is formed on one side surface of the magnetic induction substrate.
  • a metal wiring layer is formed on one side surface of the magnetic induction substrate and electrically connected to the induction coil.
  • An RFID chip is disposed on one side surface of the magnetic induction substrate and electrically connected to the metal wiring layer.
  • the induction coil is designed to take into account the magnetic flux characteristics of the magnetic induction substrate to be disposed on the surface of the magnetic induction substrate, so that the induction coil can generate current by electromagnetic induction to supply the RFID chip and emit electromagnetic waves to respond to external sensors (r e ad er ).
  • the induction coil is formed by laminating a plurality of turns of the plurality of turns on one side surface of the magnetic induction substrate, and a magnetic induction layer is interposed between the layers of the induction coils to enhance magnetic induction. Enhance the absorbing effect.
  • the material of the magnetic induction layer is the same as that of the magnetic induction substrate.
  • An object of the present invention is to provide a novel thin circuit board comprising: a magnetic induction substrate made of an organic resin and an inorganic powder; an induction coil formed on one side surface of the magnetic induction substrate; The metal wiring layer is formed on one side surface of the magnetic induction substrate and electrically connected to the induction coil; wherein the magnetic flux characteristic of the induction coil reference magnetic induction substrate is disposed on the surface of the magnetic induction substrate.
  • the structural support substrate used has an electromagnetic wave absorbing function, so that the thin circuit board can achieve excellent radio frequency identification without providing an additional magnetic induction patch or absorbing patch.
  • Another object of the present invention is to provide a novel method for manufacturing a thin film circuit board, comprising: providing a magnetic induction substrate made of an organic resin and an inorganic powder; forming an induction coil on one side surface of the magnetic induction substrate And the magnetic flux characteristic of the induction coil reference magnetic induction substrate is disposed on the surface of the magnetic induction substrate; and a metal wiring layer is formed on one side surface of the magnetic induction substrate, and the metal wiring layer is electrically connected to the induction coil.
  • the multi-layer induction coil design is realized by the overlapping arrangement of the induction coil and the magnetic induction layer, which increases the effective sensing distance of the induction coil.
  • FIG. 1 is a cross-sectional view of a typical RFID tag in the prior art
  • FIG. 2 is a cross-sectional view of a radio frequency identification tag in accordance with an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of another radio frequency identification tag in accordance with an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of a radio frequency identification component 200 in accordance with an embodiment of the present invention.
  • the radio frequency identification chip 207 is disposed on a thin film circuit board having an induction coil as an example of the radio frequency identification element 200.
  • a metal surface 202 for indicating the relationship of its use settings.
  • the radio frequency identification component 200 of the present invention is mainly composed of four components: a magnetic induction substrate 201, an induction coil 203, a metal wiring layer 205, and a radio frequency identification chip 207, wherein the magnetic induction substrate 201, the induction coil 203 and the metal
  • the wiring layer 205 constitutes a thin circuit board.
  • the magnetic induction substrate 201 is a plate material having good absorbing properties, which not only serves as a structural substrate for each component of the radio frequency identification component 200, but also effectively suppresses the radio frequency identification component 200 at a high frequency (eg, 13.56 MHz).
  • the electromagnetic wave absorbing function inherent to the magnetic induction substrate 201 of the present invention enables the radio frequency identification element 200 of the present invention to be easily applied in an environment where conventional radio frequency identification components (such as RFID) cannot be used, such as a metal surface such as a can or a liquid.
  • the bottle is placed on the metal case of the mobile device such as a mobile phone, and the existing expensive absorbing patch is not required, which saves considerable label manufacturing costs.
  • the magnetic induction substrate 201 of the present invention is formed by mixing an organic resin and an inorganic powder, wherein the organic resin imparts mechanical properties and manufacturing process feasibility to the magnetic induction substrate 201, and the inorganic powder causes magnetic induction.
  • the substrate 201 has a function of absorbing electromagnetic waves.
  • the organic resin in the magnetic induction substrate 201 is a PI (polyimide) material commonly used in general flexible printed circuit boards.
  • the substrate formed by the material has the advantages of light weight, flexibility, easy portability, simple manufacturing process, applicable to the continuous manufacturing process of the reel type (r 0 ll-to- r0 ll), and large-area production, so that the subsequent production is made.
  • the finished RFID tag product has better applicability.
  • the organic resin of the magnetic induction substrate 201 may also be other suitable materials having the same characteristics, including but not limited to the following materials and combinations thereof: Polyethylene terephthalate (PET) ), polyethylene naphthalate (PEN), polypropylene (PP), polyether sulfone (PES), polyphenylene sulfone (PPSU) Poly-p-phenylenebenzobisoxazole (PBO), liquid crystal polymer (LCP), acrylic resin (Acrylate), polyurethane (PU), or epoxy resin (Epoxy).
  • PET Polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • PES polyether sulfone
  • PPSU polyphenylene sulfone
  • PBO Poly-p-phenylenebenzobisoxazole
  • LCP liquid crystal polymer
  • acrylic resin Acrylate
  • PU polyurethane
  • Epoxy epoxy resin
  • the inorganic powder material of the magnetic induction substrate 201 is a material having good absorbing properties, which can effectively attenuate the electromagnetic wave signal and prevent the radio frequency identification element 200 from being subjected to reverse electromagnetic wave interference on the metal body or the liquid surface.
  • the material of the inorganic powder in the embodiment of the present invention may be, for example, a soft ferrite, which includes, but is not limited to, MnZn ferrite, nickel zinc ferrite, nickel copper zinc ferrite, manganese magnesium zinc ferrite, a manganese-magnesium-aluminum ferrite, a manganese-copper-zinc ferrite, a cobalt ferrite or a mixture thereof; an alloy material, including but not limited to a nickel-iron alloy, a ferrosilicon alloy, and an iron-aluminum alloy; a metal material, which includes It is not limited to alloys such as copper, aluminum, iron, and nickel.
  • a soft ferrite which includes, but is not limited to, MnZn ferrite, nickel zinc ferrite, nickel copper zinc ferrite, manganese magnesium zinc ferrite, a manganese-magnesium-aluminum ferrite, a manganese-copper-zinc ferrite,
  • the ratio of the organic resin to the inorganic powder is about 15% to 35% and 85% to 65%, respectively, and when mixed, a slurry or coating having absorbing properties can be formed. Further solidified into a structurally supported solid such as a film, a film, a plate, a bulk substrate or the like.
  • the magnetic induction substrate 201 prepared by mixing the above ratios can be completely applied to the conventional PI soft board manufacturing process, such as coating, etching, engraving, and drilling on the magnetic induction substrate 201, and can also be applied to the radio frequency identification chip. High temperature manufacturing processes required, such as flip chip fabrication in surface bonding technology.
  • the magnetic induction substrate 201 serves as both a structural support member and a absorbing member for the radio frequency identification component 200, and a through hole and a circuit wiring required for forming the radio frequency identification component through the soft board manufacturing process. Trace) and interconnection structure (interconnect) and other circuit structures.
  • the upper surface of the magnetic induction substrate 201 is formed with an induction coil 203, which is a multi-turn loop design, which is arranged to receive different signals issued by an external RFID reader.
  • the electromagnetic wave in the polarization direction generates current by electromagnetic induction such as Inductive Coupling or Back-scatter Coupling.
  • the induction coil 203 can be etched (such as copper etching and aluminum etching), silver offset printing (including screen printing, letterpress printing, gravure printing, or inkjet method), chemical deposition of copper, and electroplating copper. form.
  • the material, thickness, number of turns, Q factor, and setting of the induction coil 203 correspond to the absorbing properties of the magnetic induction substrate 201 used. Design or fine tune to achieve the required Impedance Matching and maintain the requirement for linear polarization in electromagnetic induction.
  • the operating frequency of the inductive coil 203 of the present invention depends on the environment in which it is applied, including but not limited to the low frequency of 125/134 KHz, and the operating frequency band of 13.56 (high frequency).
  • a lower surface of the magnetic induction substrate 201 is formed with a metal wiring layer 205 which is a part of the coil module of the radio frequency identification element 200.
  • Metal wiring layers 205 are coupled to the inductive coils 203 at both ends through vias or interconnect structures 204a, 204b to conduct electrical signals.
  • the metal wiring layer 205 can also serve as a ground plane of the induction coil 203 to prevent the induction coil 203 from being excessively generated by the electromagnetic induction from the radio frequency identification component 200. Generate electromagnetic interference.
  • the metal wiring layer 205 can serve as a signal transmission layer or a circuit wiring layer of the radio frequency identification element 200 at the same time. As shown in FIG.
  • the magnetic induction substrate 201 is formed with a plurality of through holes 209 communicating with the upper and lower surfaces.
  • the through holes 209 are filled with a conductive material to electrically connect with the metal wiring layer 205 on the lower surface of the magnetic induction substrate 201.
  • the opening position of the through hole 209 on the upper surface of the magnetic induction substrate 201 corresponds to the position of each pin of the radio frequency identification chip 207 (such as a gold bump bump).
  • the plurality of coil contacts The conductive glue 211, such as an anisotropic conductive paste (ACP), an anisotropic conductive film (ACF) or/and a non-conductive paste (NCP), etc., is spotted, and then the coil contact and the radio frequency identification are performed by the conductive adhesive 211.
  • the pins of the chip 207 are bonded, and then the coil module (including the induction coil 203 and the metal wiring layer 205) is electrically connected to the RFID chip 207 to transmit an induced current.
  • the fabrication of the inner panel (Inlay) of the radio frequency identification component 200 of the present invention is completed.
  • the RFID chip 207 receives the induced current generated by the induction coil 203 and sends an electromagnetic wave to respond to the external RFID reader to complete the identification of the RF component.
  • the radio frequency identification chip 207 can be a combination of various functional circuits, including but not limited to: an AC to DC circuit, converting a radio frequency signal sent from an external reader into a DC power supply; and a voltage stabilizing circuit providing the radio frequency identification chip 207 a stable power supply; a modulation circuit that removes the carrier to extract the true modulated signal; a microprocessor that decodes the signal sent by the external reader and returns the data to the external reader as required;
  • the RFID device 200 stores the location of the identification data; and a modulation circuit that modulates the information sent by the microprocessor and sends it to the induction coil for transmission to the card reader.
  • the radio frequency identification component 200 of the present invention can be used as an internal panel of an RFID tag (including an induction coil, a magnetic induction substrate, a chip, etc.), which can be further subjected to a patch pressing step. (lamination) to complete the final RFID tag product.
  • the label pressing step is the final manufacturing process for label production. The manufacturing process is to insert the inner panel of the RFID tag into a self-adhesive sticker or a ticket card for hot pressing, so that the original is exposed to the outside.
  • the induction coil 203, the magnetic induction substrate 201, and the radio frequency identification chip 207 in the environment are sealed in the patch package, and become a label product that can be used by the customer.
  • the types of RFID tags produced by different operators are different, such as self-adhesive RFID tags, three-layer soft-card RFID tags, and five-layer hard-card RFID tags. . These types of final products can be used in applications such as electronic wallets, access cards, label stickers, and security chips.
  • the radio frequency identification component 200 is disposed such that its metal wiring layer faces the metal surface.
  • the induction coil portion is facing outward.
  • the metal surface 202 may be an IC circuit board inside the mobile phone, a battery, a metal carrier, or a metal shell of a can. Since the magnetic induction substrate 201 is blocked between the induction coil 203 and the metal surface 202, the electromagnetic wave received or emitted by the induction coil 203 is not affected by the metal surface 202.
  • the above arrangement is only one of the embodiments of the present invention.
  • the inductive coil 203 and the metal wiring layer 205 of the radio frequency identification component 200 of the present invention may also be disposed on the same side of the magnetic induction substrate 201.
  • the radio frequency identification component design of the embodiment of the present invention integrates the absorbing material and the substrate, and it is not necessary to set an additional magnetic induction patch or absorbing patch as in the prior art to achieve the desired RF sensing recognition effect. .
  • the RF identification component of the present invention frees up the space (about 150 ⁇ to 200 ⁇ thickness) originally reserved for the magnetic induction patch, so that more components can be provided in the component. space.
  • FIG. 3 it is a cross-sectional view of a radio frequency identification tag according to another embodiment of the present invention.
  • the design of the radio frequency identification component is similar to that of the radio frequency identification component of Fig.
  • the induction coil 203 is designed into a plurality of layers of coil structures by utilizing the height space vacated in the radio frequency identification component.
  • the magnetic induction layer 213 is further disposed between the induction coils 203 of the layers as an isolation layer between the layers and enhances the overall absorbing effect inside the radio frequency identification component.
  • the material of the magnetic induction layer 213 is the same as that of the magnetic induction substrate 201, and has excellent electromagnetic wave absorption characteristics.
  • the magnetic induction coil 203 can be formed on the underlying induction coil 203 by a coating film build-up method, and then the layer of the induction coil 203 is continuously formed thereon.
  • the uppermost inductive coil 203 is electrically connected to the metal wiring layer 205 under the magnetic sensing substrate 201 through a via or interconnect structure 215.
  • the multi-layer induction coil design in this embodiment has the advantage that the space of the magnetic induction or the absorbing patch can be used to set the plurality of layers of induction coils, and the number of turns of the coil is increased in a constant unit area, thereby significantly increasing the number of Inductive sensing distance of the RFID component.
  • the double-layer induction coil in Fig. 3 is merely an exemplary embodiment. In other embodiments, the induction coil 203 can form a plurality of layers of coil structures upward to further increase the sensible distance of the RFID element.
  • the present invention is characterized in that a substrate having a absorbing property and capable of performing a complete soft board manufacturing process is provided to fabricate an RFID component, and no additional absorbing waves are required on the component. Patches save considerable manufacturing costs.
  • the induction coil and the magnetic induction layer can be multi-layered to further increase the sensible distance of the RFID tag.
  • the present invention provides a method of manufacturing a thin circuit board having an induction coil.
  • a magnetic induction substrate is first provided, the magnetic induction substrate is made of an organic resin and an inorganic powder, wherein the organic resin imparts mechanical properties and manufacturing process feasibility to the magnetic induction substrate, and the inorganic powder is
  • the magnetic induction substrate has a function of absorbing electromagnetic waves; then, an induction coil is formed on one surface of the magnetic induction substrate, and the induction coil is disposed on the surface of the magnetic induction substrate with reference to the magnetic flux characteristic of the magnetic induction substrate, which can be used
  • the connection is to transmit an electrical signal, or the excessive eddy current generated by the induction coil due to electromagnetic induction
  • the method further attaches an integrated circuit to one side surface of the magnetic induction substrate, and electrically connects the integrated circuit to the induction coil via the metal wiring layer.
  • more than one layer of induction coils are formed on the magnetic induction substrate, and a magnetic induction layer is formed between the layers of the induction coils as an isolation layer between the layers and strengthens the interior of the RFID component. Overall absorbing effect.
  • the magnetic induction substrate or the magnetic induction layer is composed of an organic resin and an inorganic powder, and the organic resin and the inorganic powder respectively occupy about 15 to 35% and 85 to 65% of the weight of the magnetic induction substrate and the magnetic induction layer. percentage.
  • the organic resin is selected from the following materials or a combination thereof: polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) poly Polypropylene (PP), Polyethersulfone (PES) Polyphenylene Sulfone (PPSU) > Poly-p-phenylene benzobisoxazole (PB0), Liquid Crystal Polymer (Liquid Crystal Polymer, LCP), Acrylate, Polyurethane (PU), or Epoxy (Epoxy).
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP Polypropylene
  • PES Polyethersulfone
  • PPSU Polyphenylene Sulfone
  • PB0 Poly-p-phenylene benzobisoxazole
  • PB0 Liquid Crystal Polymer
  • LCP Liquid Crystal Polymer
  • PU Polyurethane
  • Epoxy Epoxy
  • the inorganic powder is selected from the following materials or a combination thereof: MnZn ferrite, nickel zinc ferrite, nickel copper zinc ferrite, manganese magnesium zinc ferrite, manganese magnesium aluminum ferrite, manganese copper zinc iron Oxygen, cobalt ferrite, nickel-iron alloy, iron-silicon alloy, iron-aluminum alloy, copper, aluminum, iron, or nickel.
  • the inductive coil and the metal wiring layer of the radio frequency identification component may be disposed on the same side of the magnetic induction substrate; the magnetic induction substrate of the radio frequency identification component may also adopt a design of a plurality of flexible circuit boards; Or the coupled RFID chip may perform other functions than RF identification, such as voltage regulation, rectification, signal conversion, etc.; after the RF identification component is completed, other manufacturing process steps may be performed, such as label pressing, labeling, etc. .
  • the drawings shown in the specification are for the purpose Some parts of the drawings may be magnified and others may be abbreviated. Accordingly, the embodiments of the invention are to be construed as the

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

公开了一种薄型电路板及其制造方法。该电路板包含:一磁感应基板(201),由有机树脂与无机粉体所制成;一感应线圈(203),形成在磁感应基板(201)的其中一侧表面;及一金属布线层(205),形成在磁感应基板(201)的其中一侧表面,并与感应线圈(203)电连接;其中,感应线圈(203)参考磁感应基板(201)的磁通特性设置在磁感应基板(201)的表面。该薄型电路板的基板(201)是以混有吸波粉体的有机树脂材料所制成,使得感应线圈(203)的设计同时考量了该基板(201)所具有吸收电磁波的特性,可在该基板(201)上制作出射频识别标签所需的增层与电路构造。

Description

具有感应线圈的薄型电路板及其制造方法 技术领域
本发明与一种具有感应线圈的薄型电路板及其制造方法有关。 具体言之, 其系关于 一种考量吸波特性的的感应线圈设计的薄型电路板及其制造方法。 背景技术
射频辨识技术 (radio frequency identification technology, RFID), 是一种透过电磁波信 号辨识特定目标并读写相关数据的通信技术。 射频识别元件运作的原理系利用一外部的 射频辨识读取器 (RFID reader)发射电磁波触动处于感应范围内的射频辨识元件 (如射频辨 识标签 RFID tag), 该射频辨识元件会因电磁感应产生电流来供应其上的射频辨识芯片运 作, 继而发出电磁波回应该感应器达成射频辨识的效果。 由于是透过电磁感应方式来进 行辨识, 射频辨识系统 (如读取器 reader)与辨识目标 (如射频辨识标签)之间无须建立任何 机械性或光学性的接触。 射频辨识具有许多优点, 诸如有效的辨识距离较长、 可储存传 送大量的资讯、 辨识速度快、 可重复改写标签中的数据、 安全性较佳等, 故已广为业界 用来取代传统的辨识条码 (bar code^ 现今射频辨识元件的应用扩及零售物流供应、 资产 追踪、 及验证应用等多个领域。
如图 1所示, 其为现有技术中一典型具有感应线圈的射频辨识元件 100组成结构截 面图。 如图所示, 典型的射频辨识元件 100主要系由一软性基板 101、 感应线圈 103、 金 属布线层 105、 及一射频辨识芯片 107等四个部件所构成, 其中现有的软性基板 101不 具吸收电磁波的特性, 所以感应线圈 103的设计无须考量软性基板 101的磁通特性。 该 软性基板 101系作为射频辨识元件 100各部件设置的结构基材, 其多使 PET(p0lyethylene terephthalate, 聚对苯二甲二乙酯)等软性材质形成, 而具有质轻、 可挠、 易于携带等优 点。 软性基板 101的上表面的感应线圈 103, 用来接收由外部射频辨识读取器所发出的 电磁波, 以藉由电磁感应方式产生电流。 软性基板 101的下表面形成有一金属布线层 105, 其会透过互连结构 104与感应线圈 103电连接。 该金属布线层 105亦含有射频辨识 元件 100的电路布线区域, 使射频辨识芯片 107电连接感应线圈 103。
依先前技术, 软性基板 101中形成有数个连通上下表面的通孔 109来让软性基板 101下表面的金属布线层 105与软性基板 101上表面的射频辨识芯片 107产生电性连 结。 藉此, 感应线圈 103因电磁感应生成的电流会经由金属布线层 105传递到射频辨识 芯片 107供其运作, 以发出电磁波回应外部的射频辨识读取器, 完成标签辨识或数据传 递 /写入等动作。
因使用电磁波感应机制, 射频辨识元件在高频运作下对金属和液体等使用环境相当 敏感, 尤其是贴附在金属表面或是内含液体的容器上。 在此种使用环境下, 外部读取器 和射频辨识元件发出的电磁波信号容易受到射频辨识元件附近的金属或液体干扰, 导致 感应信号读取不良等问题, 此问题在被动式射频辨识元件方面特别严重。 对此, 在一般 被动式射频辨识标签的应用方面, 如图 1所示, 射频辨识元件 100与金属表面 102之间 会加设一磁感应贴片 (ferrite sheet, 或称之为吸波贴片) 106, 以抑制所接收 /发出的电磁波 在金属或液体表面生成表面波、 空腔共振波、 反射波、 或 /及电磁干扰等现象, 避免感应 信号读取不良。
然, 一般业界常用的磁感应贴片会占用不少的射频辨识元件制作成本, 加之磁感应 贴片具有一定的厚度, 会使射频辨识元件的薄型化变得困难; 再者, 因应射频辨识元件 的不同感应线圈设计, 磁感应贴片必须审慎选用以免影响其作用效果。 于此, 本发明人 立意在薄型电路板制造工艺之际, 其感应线圈设计即考量基板预设的磁通特性, 以避免 日后该薄型电路板应用于金属表面上对于选用磁感应贴片的困扰, 俾使本发明的射频辨 识元件能应用到薄型化设计中, 遂特以开发出一种具有吸波作用的薄型电路板结构及其 制造方法。 发明内容
鉴于上述现有技术的缺点, 本发明揭露了一种薄型电路板及其制造方法。 本发明薄 型电路板的基板系以混有吸波粉体的有机树脂材质制成, 使基板具有吸收电磁波的特 性, 同时又兼具一般软性电路板的特性, 可在薄型电路板上制作出射频辨识元件所需的 增层与电路构造。
在本发明一态样中, 一种薄型电路板包含磁感应基板、 感应线圈及金属布线层等组 成部件。 该感应线圈形成在该磁感应基板的其中一侧表面。 金属布线层则形成在该磁感 应基板的其中一侧表面并与该感应线圈电连接。 一射频辨识芯片则设置在该磁感应基板 的其中一侧表面并与该金属布线层电连接。 该感应线圈的设计系考量该磁感应基板的磁 通特性以设置在该磁感应基板的表面, 俾使感应线圈能藉由电磁感应产生电流以供应射 频辨识芯片运作并发出电磁波回应外部的感应器 (reader)。
在本发明另一态样中, 该感应线圈系为多层匝圈的层迭设计设置于该磁感应基板的 其中一侧表面, 且各层感应线圈间夹置有一磁感应层, 以增强磁感应性并加强吸波效 果。 该磁感应层材质与磁感应基板的材质相同。 本发明的目的在于提供一种新颖的薄型电路板, 该电路板包含: 一磁感应基板, 由 有机树脂与无机粉体所制成; 一感应线圈, 形成在磁感应基板的其中一侧表面; 及一金 属布线层, 形成在磁感应基板的其中一侧表面, 并与感应线圈电连接; 其中, 感应线圈 参考磁感应基板的磁通特性设置在磁感应基板的表面。 其采用的结构支撑性基板具有电 磁波吸收功能, 使该薄型电路板无需配置额外的磁感应贴片或吸波贴片即可达到优良的 射频辨识效果。
本发明的另一目的在于提供一种新颖的薄膜电路板制造方法, 包括: 提供一磁感应 基板, 磁感应基板由有机树脂与无机粉体所制成; 形成一感应线圈于磁感应基板的其中 一侧表面, 且感应线圈参考磁感应基板的磁通特性设置在磁感应基板的表面; 及形成一 金属布线层于磁感应基板的其中一侧表面, 金属布线层与感应线圈电连接。 其透过感应 线圈与磁感应层的交迭设置来实现多层感应线圈设计, 增加了该感应线圈的有效感应距 离。
在参阅下述详细的实施方式及相关的图示与申请专利范围后, 阅者将更能了解本发 明其他的目的、 特征、 及优点。 附图说明
参阅后续的图式与描述将可更了解本发明的系统及方法。 文中未详列暨非限制性的 实施例则请参考该后续图式的描述。 图式中的组成元件并不一定符合比例, 而系以强调 的方式描绘出本发明的原理。 在图式中, 相同的元件系于不同图示中标出相同对应的部 分。
图 1为现有技术中一典型的射频辨识标签的截面图;
图 2为根据本发明实施例一射频辨识标签的截面图;
图 3为根据本发明实施例另一射频辨识标签的截面图。
主要元件符号说明:
100 射频辨识元件
101 软性基板
102 金属表面
103 感应线圈
104 互连结构
105 金属布线层
106 磁感应贴片 107 射频辨识芯片
109 通孔
200 射频辨识元件
201 磁感应基板
202 金属表面
203 感应线圈
204a 互连结构
204b 互连结构
205 金属布线层
207 射频辨识芯片
209 通孔
211 导电胶
213 磁感应层
215 互连结构 具体实施方式
现在请参照图 2, 其为根据本发明实施例一射频辨识元件 200的截面图。 在本发明 的实施例中, 将射频辨识芯片 207设置于具有感应线圈的薄膜电路板上以做为射频辨识 元件 200的例示。 射频辨识元件 200下方并绘有一金属表面 202用来表示其使用设置的 关系。 如图所示, 本发明的射频辨识元件 200主要系由磁感应基板 201、 感应线圈 203、 金属布线层 205、 及射频辨识芯片 207等四个部件所构成, 其中磁感应基板 201、 感应线 圈 203与金属布线层 205组成一薄型电路板。 在本发明中, 磁感应基板 201是为一具有 良好吸波特性的板材, 其不仅作为射频辨识元件 200各部件设置的结构基材, 且可有效 抑制射频辨识元件 200在高频 (如 13.56MHz)或超高频 (如 900MHz)环境下靠近金属或液 体表面时生成表面波、 空腔共振波、 反射波、 或 /及电磁干扰等现象, 避免衍生感应信号 读取不良的问题。 本发明磁感应基板 201固有的电磁波吸收功能使得本发明的射频辨识 元件 200可轻易适用在一般现有的射频辨识元件 (如 RFID)无法使用的环境中, 如粘贴在 罐头等金属表面或装有液体的药瓶上、 或是置于手机等行动装置的金属外壳中, 不需再 额外搭配现有的昂贵的吸波贴片, 得以省下可观的标签制作成本。
本发明的磁感应基板 201系以有机树脂与无机粉体两种材质混合而成, 其中该有机 树脂系赋予磁感应基板 201机械特性及制造工艺上的可行性, 而该无机粉体则使磁感应 基板 201有吸收电磁波的功能。 在一实施例中, 磁感应基板 201中的有机树脂为一般软 性印刷电路板常用的 PI (polyimide, 聚亚酰胺)材质。 以此材质形成的基板具有质轻、 可 挠、 易于携带、 制造工艺简易、 可适用于卷轴式连续制造工艺 (r0ll-to-r0ll)、 及可大面积 制作等优点, 使得后续制作出的射频辨识标签成品可适用性较佳。 须注意在其他实施例 中, 磁感应基板 201的有机树脂亦可为其他具有相同特性的合适材质, 其包含但不限定 于下列材质及其组合: 聚对苯二甲二乙酯 (polyethylene terephthalate, PET)、 聚对萘二甲 酸乙二酯 (polyethylene naphthalate, PEN)、 聚丙烯 (polypropylene, PP) 聚醚石风 (Polyether sulfone, PES)、 聚次苯基醚砜 (Polyphenylene Sulfone, PPSU) 聚苯恶唑共聚 合物 (Poly-p- phenylenebenzobisoxazole , PBO)、 液晶聚合物 (Liquid Crystal Polymer, LCP)、 丙烯酸树脂 (Acrylate)、 聚氨脂 (Polyurethane, PU)、 或环氧树脂 (Epoxy)等。
另一方面, 磁感应基板 201的无机粉体材料是为具有良好吸波特性的材质, 其可有 效使电磁波的信号衰减, 避免射频辨识元件 200在金属体或液体表面受到逆向的电磁波 干扰。 本发明实施例中无机粉体的材质可如软性铁氧体, 其包含但不限定于锰锌铁氧 体、 镍锌铁氧体、 镍铜锌铁氧体、 锰镁锌铁氧体、 锰镁铝铁氧体、 锰铜锌铁氧体、 钴铁 氧体或是其混合物; 合金材料, 其包含但不限定于镍铁合金、 铁硅合金、 及铁铝合金; 金属材料, 其包含但不限定于铜、 铝、 铁、 及镍等合金等。 在本发明中, 有机树脂与无 机粉体混合的比例分别约在 15%~35%与 85%~65%之间, 两者混合后可形成具有吸波特 性的浆料或涂料, 其可再进一步固化成具有结构支撑性的固体, 如胶片、 薄膜、 板状、 块状基材等。 上述比例混合调配而成的磁感应基板 201可完全适用于传统的 PI软板制造 工艺, 如在磁感应基板 201上进行镀膜、 蚀洗、 雕铣、 及钻孔等动作, 亦可适用于射频 辨识芯片所需的高温制造工艺, 如表面粘着技术中的覆晶制造工艺 (flip chip).
于本发明中, 磁感应基板 201系同时作为射频辨识元件 200的结构支撑件及吸波 件, 其上可透过软板制造工艺形成射频辨识元件所需的通孔 (through hole)、 电路布线 (trace) 及互连接点 (interconnect)等电路结构。 如图 2所示, 磁感应基板 201的上表面形 成有感应线圈 203, 该感应线圈 203为一多匝回圈设计, 其系设置来接收由一外部射频 辨识读取器 (reader)所发出在不同极化方向上的电磁波, 以藉由感应耦合 (Inductive Coupling)或后向散射耦合 (Back-scatter Coupling)等电磁感应方式产生电流。 发明中, 该 感应线圈 203可采用蚀刻 (如铜蚀刻及铝蚀刻)、 银胶印刷 (包含网版印刷、 凸版印刷、 凹 版印刷、 或喷墨方式等)、 化学沉积铜、 及电镀铜等方式形成。 感应线圈 203的材质、 厚 度、 匝数、 Q值 (quality factor)、 及设置等会对应所使用的磁感应基板 201的吸波性质来 进行设计或微调以达成所需的阻抗匹配 (Impedance Matching), 并维持在电磁感应上线性 极化的要求。 本发明的感应线圈 203的工作频率会视其应用的环境而定, 其包含但不限 定于 125/134KHz低频)、 13.56ΜΗζ(高频)等运作频段。
另一方面, 磁感应基板 201的下表面形成有一金属布线层 205, 是为射频辨识元件 200的线圈模组的一部份。 金属布线层 205会透过通孔或互连结构 204a, 204b分别与两 端的感应线圈 203耦接, 以传导电性信号。 在本发明其他实施例中, 金属布线层 205亦 可作为感应线圈 203的接地平面 (ground plane), 以将感应线圈 203因电磁感应所生成过 多的涡电流导引出射频辨识元件 200外避免产生电磁干扰。 在本发明中, 金属布线层 205可同时作为射频辨识元件 200的信号传递层或电路布线层。 如图 2所示, 磁感应基 板 201上形成有数个连通上下表面的通孔 209, 该些通孔 209内部会填满导电材质以与 磁感应基板 201下表面的金属布线层 205产生电性连结。 通孔 209位于磁感应基板 201 上表面的开口位置 (即线圈接点位置)系对应射频辨识芯片 207的各接脚位置 (如带金凸块 bump). 于覆晶制造工艺中, 该复数个线圈接点位置会点上导电胶 211, 如异向性导电胶 (ACP)、 异向性导电膜 (ACF)或 /及非导电胶 (NCP)等, 之后藉由该导电胶 211将线圈接点 与射频辨识芯片 207的接脚黏合接着, 使线圈模组 (包含感应线圈 203及金属布线层 205) 与射频辨识芯片 207产生电性连结以传递感应电流。 至此步骤, 即完成了本发明射频辨 识元件 200的内部嵌片 (Inlay)的制作。
在本发明实施例中, 射频辨识芯片 207会接收感应线圈 203所产生的感应电流并藉 以发出电磁波以回应外部的射频辨识读取器, 完成射频元件的辨识动作。 射频辨识芯片 207可为多种功能性电路的结合, 其包含但不限定于: 交流转直流电路, 将外部读取器 送过来的射频信号转换成直流电源; 稳压电路, 提供射频辨识芯片 207稳定的电源; 调 变电路, 把载波去除以取出真正的调变信号; 微处理器, 把外部读取器所送过来的信号 解码, 并依其要求回送数据给外部读取器; 存储器, 作为射频辨识元件 200存放识别数 据的位置; 及调变电路, 将上述微处理器送出的资讯调变后载到感应线圈送出给读卡 机。
在完成射频辨识芯片 207的粘合后, 本发明射频辨识元件 200的制作即告一段落。 然而, 在其他实施例中, 本发明的射频辨识元件 200系可作为射频辨识标签的内部嵌片 (;包含感应线圈、 磁感应基板、 与芯片等部件), 其可再进行一道贴片压合步骤 (lamination) 以完成最后的射频辨识标签成品。 标签压合步骤是标签生产的最终制造工艺, 该制造工 艺系将射频辨识标签的内部嵌片插入自粘性贴纸或票卡中进行热压, 使原本裸露在外部 环境中的感应线圈 203、 磁感应基板 201、 与射频辨识芯片 207等部位被封入贴片包装 中, 成为客户可以使用的标签产品。 依业者需求的不同, 所制作出的射频辨识标签型态 亦有所不同, 如自黏性的射频辨识标签、 三层软卡式的射频辨识标签、 及五层硬卡式的 射频辨识标签等。 该些型态的最终产品可应用在电子钱包、 门禁卡、 标签贴纸、 防盗芯 片等应用中。
如图 2所示, 设置中, 射频辨识元件 200会设置成其金属布线层朝向金属表面
202, 感应线圈部分则朝向外部。 在实际应用中, 该金属表面 202可能为手机内部的 IC 电路板、 电池、 金属载体或罐头的金属壳皮等。 由于磁感应基板 201阻隔在感应线圈 203与金属表面 202之间, 故此设置方式可使感应线圈 203接收或放出的电磁波不会受 到该金属表面 202的影响。 然, 上述设置方式仅为本发明的实施例之一, 于其他实施例 中, 本发明射频辨识元件 200的感应线圈 203与金属布线层 205亦可能设置在磁感应基 板 201的同一侧上。
上述本发明实施例的射频辨识元件设计系将吸波材与基材整合在一起, 不需如现有 技术般设置额外的磁感应贴片或吸波贴片才能达到吾人所欲的射频感应辨识效果。 除了 省去一笔贴片的成本外, 由于本发明的射频辨识元件腾出了原先预留来设置磁感应贴片 的空间 (约 150μηι~200μηι的厚度), 故元件中可提供更多的容置空间。 如图 3所示, 其为 根据本发明另一实施例一射频辨识标签的截面图。 该实施例中射频辨识元件与图 2中射 频辨识元件的设计大同小异, 惟其利用了射频辨识元件中腾出来的高度空间将感应线圈 203设计成复数层层迭设置的线圈结构。 在本实施例中, 该各层的感应线圈 203间更设 置有磁感应层 213来作为层与层之间的隔离层并强化射频辨识元件内部的整体吸波效 果。 该磁感应层 213的材质与磁感应基板 201的材质相同, 具有良好的电磁波吸收特 性。 在本发明实施例中, 磁感应线圈 203可先采用涂膜增层法形成在底层的感应线圈 203上, 再于其上继续形成它层的感应线圈 203。 最上层的感应线圈 203会再透过一通孔 或互连结构 215与磁感应基板 201下的金属布线层 205产生电性连结。 本实施例中的多 层感应线圈设计的优点在于可利用原本预留给磁感应或吸波贴片的空间来设置复数层感 应线圈, 在不变的单位面积增加线圈的匝数, 进而显著增加本发明射频辨识元件的感测 距离。 须注意图 3中的双层感应线圈仅为一范例性实施例, 在其他实施例中, 该感应线 圈 203可往上形成更多层的线圈结构进一步增加射频辨识元件的可感应距离。
综上述本发明两实施例所述, 本发明设计的特点在于提供一具有吸波性质又同时能 够进行完整软板制造工艺的基材来制作射频辨识元件, 其元件上不需要配置额外的吸波 贴片, 节省了可观的制作成本。 发明中感应线圈与磁感应层又可采多层设计, 以进一步 增加射频辨识标签的可感应距离。
上述说明系关于本发明具有感应线圈的薄型电路板的实施例, 在下述实施例中, 本 发明提供了一种具有感应线圈的薄型电路板的制造方法。 在本方法中, 首先提供一磁感 应基板, 该磁感应基板由有机树脂与无机粉体所制成, 其中该有机树脂系赋予该磁感应 基板机械特性及制造工艺上的可行性, 而该无机粉体则使该磁感应基板有吸收电磁波的 功能; 接着, 于该磁感应基板的其中一侧表面上形成一感应线圈, 该感应线圈系参考该 磁感应基板的磁通特性设置在该磁感应基板的表面, 其可用来接收由外部射频辨识读取 器所发出的电磁波, 以藉由电磁感应方式产生电流; 之后, 再于该磁感应基板的其中一 侧表面上形成一金属布线层, 该金属布线层与该感应线圈电连接以传递电性信号, 或是 可将感应线圈因电磁感应所生成过多的涡电流导弓 I出薄型电路板外以避免产生电磁干 扰。
本方法可进一步附着一集成电路于该磁感应基板的其中一侧表面, 并使该集成电路 经由该金属布线层电连接该感应线圈。 而在另一方法实施例中, 磁感应基板上会形成一 层以上的感应线圈, 其各层感应线圈之间更形成有一磁感应层来作为层与层之间的隔离 层并强化射频辨识元件内部的整体吸波效果。
在上述方法实施例中, 该磁感应基板或磁感应层中系由有机树脂与无机粉体构成, 其有机树脂与无机粉体分别占磁感应基板与磁感应层约 15~35%与 85~65%的重量百分 比。 该有机树脂选自以下材质或其组合: 聚亚酰胺 (polyimide, PI)、 聚对苯二甲二乙酯 (polyethylene terephthalate, PET)、 聚对萘二甲酸乙二酉 (polyethylene naphthalate, PEN) 聚丙烯 (polypropylene , PP)、 聚醚石风 (Polyethersulfone , PES) 聚次苯基醚砜 (Polyphenylene Sulfone, PPSU)> 聚苯恶唑共聚合物 (Poly-p-phenylene benzobisoxazole , PB0)、 液晶聚合物 (Liquid Crystal Polymer, LCP)、 丙烯酸树脂 (Acrylate) 、 聚氨脂 (Polyurethane, PU)、 或环氧树脂 (Epoxy)。 而该无机粉体选自以下材质或其组合: 锰锌铁 氧体、 镍锌铁氧体、 镍铜锌铁氧体、 锰镁锌铁氧体、 锰镁铝铁氧体、 锰铜锌铁氧体、 钴 铁氧体、 镍铁合金、 铁硅合金、 铁铝合金、 铜、 铝、 铁、 或镍。
文中所述的实施例与图说系供予阅者, 俾其对于本发明各不同实施例结构有通盘性 的了解。 该些图示与说明并非意欲对利用此处所述结构或方法的装置与系统中的所有元 件及特征作完整性的描述。 于参阅本发明说明书书中, 本发明领域的熟习技艺者将更能 明白本发明许多其他的实施例, 其得以采由或得自本发明的揭露。 在不悖离本发明范畴 的情况下, 发明中可以进行结构与逻辑的置换与改变。 例如: 于本发明中, 射频辨识元 件的感应线圈与金属布线层可以设置在磁感应基板的同一侧; 射频辨识元件的磁感应基 板亦可能采行多层软性电路板的设计; 射频辨识元件所采用或所耦接的射频辨识芯片可 能行使射频辨识以外的其他功能, 如稳压、 整流、 信号转换等; 射频辨识元件制作完成 后可进一步进行其他制造工艺步骤, 如标签压合、 印上标示等。 此外, 说明书中所示图 式仅用于呈具而非按比例所绘制。 附图中的某些部分可能会被放大强调, 而其他部分可 能被简略。 据此, 本发明的实施例与附图理视为描述而非限制性质, 并将由权利要求范 围来限制。

Claims

权利要求书
1、 一种薄型电路板, 其特征在于, 所述的电路板包含:
一磁感应基板, 由有机树脂与无机粉体所制成;
一感应线圈, 形成在所述的磁感应基板的其中一侧表面; 及
一金属布线层, 形成在所述的磁感应基板的其中一侧表面, 并与所述的感应线圈电 连接;
其中, 所述的感应线圈参考所述的磁感应基板的磁通特性设置在所述的磁感应基板 的表面。
2、 如权利要求 1所述的薄型电路板, 其特征在于, 所述的感应线圈包含一层以上的 线圈, 所述的各层感应线圈间形成有一磁感应层, 所述的磁感应层由有机树脂与无机粉 体所制成。
3、 如权利要求 1所述的薄型电路板, 其特征在于, 所述的磁感应基板中的有机树脂 与无机粉体分别占所述的磁感应基板约 15~35%与 85~65%的重量百分比。
4、 如权利要求 2所述的薄型电路板, 其特征在于, 所述的磁感应层中的有机树脂与 无机粉体分别占所述的磁感应层约 15~35%与 85~65%的重量百分比。
5、 如权利要求 3或 4所述的薄型电路板, 其特征在于, 所述的有机树脂选自以下材 质或其组合: 聚亚酰胺、 聚对苯二甲二乙酯、 聚对萘二甲酸乙二酯、 聚丙烯、 聚醚石 风、 聚次苯基醚砜、 聚苯恶唑共聚合物、 液晶聚合物、 丙烯酸树脂、 聚氨脂、 或环氧树 脂。
6、 如权利要求 3或 4所述的薄型电路板, 其特征在于, 所述的无机粉体选自以下材 质或其组合: 锰锌铁氧体、 镍锌铁氧体、 镍铜锌铁氧体、 锰镁锌铁氧体、 锰镁铝铁氧 体、 锰铜锌铁氧体、 钴铁氧体、 镍铁合金、 铁硅合金、 铁铝合金、 铜、 铝、 铁、 或镍。
7、 如权利要求 1所述的薄型电路板, 其特征在于, 所述的磁感应基板的其中一侧表 面附着一集成电路, 且所述的集成电路电连接所述的金属布线层。
8、 如权利要求 7所述的薄型电路板, 其特征在于, 所述的集成电路电连接所述的感 应线圈。
9、 如权利要求 1所述的薄型电路板, 其特征在于, 所述的薄型电路板为一射频辨识 元件。
10、 一种具有感应线圈的薄型电路板的制造方法, 其特征在于, 所述的方法包括: 提供一磁感应基板, 所述的磁感应基板由有机树脂与无机粉体所制成; 形成一感应线圈于所述的磁感应基板的其中一侧表面, 且所述的感应线圈参考所述 的磁感应基板的磁通特性设置在所述的磁感应基板的表面; 及
形成一金属布线层于所述的磁感应基板的其中一侧表面, 所述的金属布线层与所述 的感应线圈电连接。
11、 如权利要求 10所述的制造方法, 其特征在于, 所述的感应线圈包含一层以上的 线圈, 所述的各层感应线圈间形成有一磁感应层, 所述的磁感应层由有机树脂与无机粉 体所制成。
12、 如权利要求 10所述的制造方法, 其特征在于, 所述的磁感应基板中的有机树脂 与无机粉体分别占所述的磁感应基板约 15~35%与 85~65%的重量百分比。
13、 如权利要求 11所述的制造方法, 其特征在于, 所述的磁感应层中的有机树脂与 无机粉体分别占所述的磁感应层约 15~35%与 85~65%的重量百分比。
14、 如权利要求 12或 13所述的制造方法, 其特征在于, 所述的有机树脂选自以下 材质或其组合: 聚亚酰胺、 聚对苯二甲二乙酯、 聚对萘二甲酸乙二酯、 聚丙烯、 聚醚石 风、 聚次苯基醚砜、 聚苯恶唑共聚合物、 液晶聚合物、 丙烯酸树脂、 聚氨脂、 或环氧树 脂。
15、 如权利要求 12或 13所述的制造方法, 其特征在于, 所述的无机粉体选自以下 材质或其组合: 锰锌铁氧体、 镍锌铁氧体、 镍铜锌铁氧体、 锰镁锌铁氧体、 锰镁铝铁氧 体、 锰铜锌铁氧体、 钴铁氧体、 镍铁合金、 铁硅合金、 铁铝合金、 铜、 铝、 铁、 或镍。
16、 如权利要求 10所述的制造方法, 其特征在于, 所述的方法进一步包括附着一集 成电路于所述的磁感应基板的其中一侧表面, 且所述的集成电路经由所述的金属布线层 电连接所述的感应线圈。
PCT/CN2011/077189 2010-07-27 2011-07-15 具有感应线圈的薄型电路板及其制造方法 WO2012013119A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013520953A JP2013534364A (ja) 2010-07-27 2011-07-15 誘導コイルを具備する薄型回路基板及びその製造方法
KR1020137004663A KR20130069739A (ko) 2010-07-27 2011-07-15 유도코일을 구비하는 박형 회로기판 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102392610A CN102339407A (zh) 2010-07-27 2010-07-27 具有感应线圈的薄型电路板及其制造方法
CN201010239261.0 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012013119A1 true WO2012013119A1 (zh) 2012-02-02

Family

ID=45515128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077189 WO2012013119A1 (zh) 2010-07-27 2011-07-15 具有感应线圈的薄型电路板及其制造方法

Country Status (4)

Country Link
JP (1) JP2013534364A (zh)
KR (1) KR20130069739A (zh)
CN (1) CN102339407A (zh)
WO (1) WO2012013119A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774336B2 (en) 2014-01-17 2020-09-15 Dow Agrosciences Llc Increased protein expression in plants

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295049A (zh) * 2013-06-27 2013-09-11 中国兵器工业集团第五三研究所 一种柔性超高频抗金属电子标签
CN103793743B (zh) * 2013-12-13 2017-03-01 上海市信息网络有限公司 柔性高频电子标签
CN105875431B (zh) * 2016-04-19 2019-03-08 福州市佳璞电子商务有限公司 Rfid收发器、基于rfid收发器的小型畜禽扎堆报警系统和报警方法
CN105764029B (zh) * 2016-04-19 2021-11-26 福州佳璞辨溯科技有限公司 基于rfid的视频定位系统和定位方法
CN110429072A (zh) * 2019-08-15 2019-11-08 广东工业大学 一种倒装射频芯片及一种射频器件
CN114048831A (zh) * 2021-11-08 2022-02-15 惠州中启宏业电子技术有限公司 一种直边防盗标签

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127424A (ja) * 2004-11-01 2006-05-18 Daido Steel Co Ltd 無線タグ
CN101176109A (zh) * 2005-05-13 2008-05-07 3M创新有限公司 用于金属或其它导电物体上的射频识别标签
CN101390111A (zh) * 2006-02-22 2009-03-18 东洋制罐株式会社 适应金属材料的rfid标签用基材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243294A (zh) * 1998-07-28 2000-02-02 东芝株式会社 集成电路卡和数据读写装置和无线标记及它们的制造方法
JP4067858B2 (ja) * 2002-04-16 2008-03-26 東京エレクトロン株式会社 Ald成膜装置およびald成膜方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127424A (ja) * 2004-11-01 2006-05-18 Daido Steel Co Ltd 無線タグ
CN101176109A (zh) * 2005-05-13 2008-05-07 3M创新有限公司 用于金属或其它导电物体上的射频识别标签
CN101390111A (zh) * 2006-02-22 2009-03-18 东洋制罐株式会社 适应金属材料的rfid标签用基材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774336B2 (en) 2014-01-17 2020-09-15 Dow Agrosciences Llc Increased protein expression in plants

Also Published As

Publication number Publication date
JP2013534364A (ja) 2013-09-02
CN102339407A (zh) 2012-02-01
KR20130069739A (ko) 2013-06-26

Similar Documents

Publication Publication Date Title
CN101346853B (zh) 天线内置组件和卡片型信息装置及其制造方法
JP3687459B2 (ja) Icカード
WO2012013119A1 (zh) 具有感应线圈的薄型电路板及其制造方法
US7158033B2 (en) RFID device with combined reactive coupler
US7967216B2 (en) Wireless IC device
US20110011939A1 (en) Contact-less and dual interface inlays and methods for producing the same
US20090145971A1 (en) Printed wireless rf identification label structure
JP6016013B2 (ja) Rfidタグ及び自動認識システム
US10476147B2 (en) Antenna device and method of manufacturing the same
US10381720B2 (en) Radio frequency identification (RFID) integrated circuit (IC) and matching network/antenna embedded in surface mount devices (SMD)
CN109159506B (zh) 一种柔性uhf rfid抗金属标签
JP2006262054A (ja) アンテナモジュール及びこれを備えた携帯情報端末
US20140224882A1 (en) Flexible Smart Card Transponder
TWI404467B (zh) 具有感應線圈的薄型電路板及其製造方法
US8720789B2 (en) Wireless IC device
TWM396454U (en) The thin circuit board with induction coil
CN213934947U (zh) 微型电子标签
KR101444905B1 (ko) Nfc용 안테나
JP5098588B2 (ja) 非接触型icタグ及び非接触型icタグの製造方法
JP5746543B2 (ja) 非接触通信媒体
KR101320873B1 (ko) Nfc 안테나 제조방법 및 이 제조방법으로 제조된 nfc 안테나
KR20180101786A (ko) 단일 열압착을 이용한 안테나 모듈 제조 방법
JP2012094948A (ja) 非接触通信記録媒体用インレット及びその製造方法及び非接触通信記録媒体
JP5195241B2 (ja) 耐熱性icタグストラップ
JP4867831B2 (ja) 無線icデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137004663

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11811820

Country of ref document: EP

Kind code of ref document: A1