WO2012011497A1 - Light irradiation device for exposure apparatus, method for controlling light irradiation device, exposure apparatus, and exposure method - Google Patents

Light irradiation device for exposure apparatus, method for controlling light irradiation device, exposure apparatus, and exposure method Download PDF

Info

Publication number
WO2012011497A1
WO2012011497A1 PCT/JP2011/066467 JP2011066467W WO2012011497A1 WO 2012011497 A1 WO2012011497 A1 WO 2012011497A1 JP 2011066467 W JP2011066467 W JP 2011066467W WO 2012011497 A1 WO2012011497 A1 WO 2012011497A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
mask
substrate
exposure apparatus
Prior art date
Application number
PCT/JP2011/066467
Other languages
French (fr)
Japanese (ja)
Inventor
智紀 原田
新一郎 永井
洋徳 川島
山田 豊
修作 軽石
林 慎一郎
Original Assignee
Nskテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011154669A external-priority patent/JP5799306B2/en
Application filed by Nskテクノロジー株式会社 filed Critical Nskテクノロジー株式会社
Priority to CN201180001999.6A priority Critical patent/CN102483587B/en
Priority to KR1020117027227A priority patent/KR101443431B1/en
Publication of WO2012011497A1 publication Critical patent/WO2012011497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays

Definitions

  • the present invention relates to a light irradiation apparatus for an exposure apparatus, a control method for the light irradiation apparatus, an exposure apparatus, and an exposure method, and more particularly, a mask pattern of a mask on a substrate of a large flat panel display such as a liquid crystal display or a plasma display.
  • the present invention relates to a light irradiation apparatus for an exposure apparatus, a method for controlling the light irradiation apparatus, an exposure apparatus, and an exposure method that can be applied to an exposure apparatus that performs exposure transfer.
  • various exposure apparatuses such as a proximity exposure apparatus, a scan exposure apparatus, a projection exposure apparatus, a mirror projection, and a contact type exposure apparatus have been devised as apparatuses for manufacturing a panel such as a color filter of a flat panel display apparatus.
  • a mask smaller than the substrate is held on the mask stage, the substrate is held on the work stage and both are placed close to each other, and then the work stage is moved stepwise relative to the mask.
  • the substrate is moved stepwise relative to the mask.
  • a plurality of patterns drawn on the mask are exposed and transferred onto the substrate to produce a plurality of panels on one substrate.
  • the scanning exposure apparatus exposure light is irradiated through a mask onto a substrate being conveyed at a constant speed, and a mask pattern is exposed and transferred onto the substrate.
  • the size of the region where the divergent light emitted from the light source unit is incident on the incident surface is made smaller than the incident surface, and all of the diverged light is incident on the incident surface. In this way, effective use of light emitted from the light source unit is achieved.
  • the light irradiation apparatus described in Patent Document 2 is provided with an isolation wall that blocks light between adjacent light sources, prevents light irradiation from adjacent light sources, and prevents the problem of the light source unit due to heating or the like. It has been solved.
  • two sets of light source units in which a plurality of light source units are arranged in a staggered manner are spaced apart in the front-rear direction so as to have a gap between the light source units. It is designed to cool efficiently.
  • a light-shielding unit is provided to block the light from the light source and narrow the collection angle of the light incident on the integrator lens, and an integrator lens with a narrow irradiation area is used.
  • a light shielding means is inserted into the optical path.
  • an ultra-high pressure mercury lamp whose electrode is made of tungsten is used.
  • the plurality of ultrahigh pressure mercury lamps 2 are curved so that all the light L from the plurality of ultrahigh pressure mercury lamps 2 enters the integrator 3. Are arranged in a substantially arc shape.
  • the light emitted from the ultra-high pressure mercury lamp 2 generally has a light divergence angle of about 2 ° even when the ultra-high pressure mercury lamp 2 is not used.
  • the tungsten electrodes When a large current is supplied to the electrodes, the tungsten electrodes gradually evaporate in the bulb of the light source as the usage time elapses, the distance between the electrodes increases, and the base point of the light source increases, resulting in FIG. 28 (b). As shown, the light irradiation angle extends to, for example, 2.2 °.
  • the change in the irradiation angle of 0.2 ° is usually an irradiation range of about 100 to 200 mm at the irradiation position (incident surface of the integrator). This corresponds to an expansion of the irradiation range of about 14 mm with respect to the size of the integrator 3. For this reason, a part of the light from the ultra-high pressure mercury lamp 2 is lost without entering the integrator 3, thereby causing a problem that the illuminance is lowered.
  • Patent Documents 1 to 4 aim at effective use of light by setting the light incident area to the integrator and taking measures against heat of the light source unit, both of which are caused by the above-mentioned consumption of the electrodes. There was no room for improvement because the spread of light was not taken into consideration.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light irradiation apparatus for an exposure apparatus and a control method for the light irradiation apparatus that can suppress a decrease in illuminance with the lapse of irradiation time of the light source unit.
  • An exposure apparatus and an exposure method are provided.
  • a plurality of light source units each including a light emitting unit and a reflective optical system that emits light having directivity emitted from the light emitting unit;
  • a plurality of cassettes each having a light source support part for supporting the light source part so that the light of the predetermined number of light source parts is incident on an incident surface of the integrator lens;
  • a support body having a plurality of cassette mounting portions to which the plurality of cassettes are respectively mounted so that light of all the light source portions is incident on an incident surface of the integrator lens;
  • An optical axis angle adjustment mechanism capable of adjusting an optical axis angle of each light source unit with respect to the integrator lens so as to correct the diffusion of the light that occurs as the irradiation time of each light source unit elapses.
  • a light irradiation apparatus for an exposure apparatus (2) The light irradiation apparatus for an exposure apparatus according to (1), wherein the predetermined number of light source units includes a plurality of types of light source units having different spectral characteristics. (3) The light emitting units of the predetermined number of light source units have the same spectral characteristics, The predetermined number of light source units constitute a plurality of types of light source units having different spectral characteristics by disposing a wavelength cut filter in a part of the predetermined number of light source units. .
  • a substrate holding unit for holding a substrate as an exposed material;
  • a mask holding unit for holding a mask so as to face the substrate;
  • an illumination optical system having the light irradiation device according to any one of the above, and an integrator lens to which light emitted from a plurality of light source units of the light irradiation device is incident;
  • An exposure apparatus that irradiates the substrate with light from the illumination optical system through the mask.
  • a plurality of light source units each including a light emitting unit and a reflective optical system that emits light with directivity emitted from the light emitting unit;
  • a plurality of cassettes each having a light source support part for supporting the light source part so that the light of the predetermined number of light source parts is incident on an incident surface of the integrator lens;
  • a support body having a plurality of cassette mounting portions to which the plurality of cassettes are respectively mounted so that light of all the light source portions is incident on an incident surface of the integrator lens;
  • An exposure apparatus comprising: an optical axis angle adjustment mechanism capable of adjusting an optical axis angle of each light source unit with respect to the integrator lens so as to correct the diffusion of the light that occurs as the irradiation time of each light source unit elapses.
  • a method for controlling a light irradiation device for a vehicle Detecting the diffusion of the light that occurs with the lapse of the irradiation time of each light source unit; Correcting the diffusion of the light by the optical axis angle adjusting mechanism;
  • a method of controlling a light irradiation apparatus for an exposure apparatus comprising: (6) An illuminometer that is disposed downstream of the integrator lens and measures illuminance corresponding to each wavelength; A control unit for controlling lighting and extinction of each light emitting unit and illuminance; Further comprising
  • the predetermined number of light source units is constituted by a plurality of types of light source units having different spectral characteristics, The control unit controls each light source unit in the cassette so that desired illuminance can be obtained at a predetermined wavelength based on illuminance corresponding to each wavelength measured by the illuminometer.
  • the light emitting units of the predetermined number of light source units have the same spectral characteristics,
  • the predetermined number of light source units constitute a plurality of types of light source units having different spectral characteristics by disposing a wavelength cut filter in a part of the predetermined number of light source units. Control method.
  • a substrate holding unit for holding a substrate as an exposed material;
  • a mask holding unit for holding a mask so as to face the substrate;
  • the light irradiation device according to any one of the above, and an illumination optical system having an integrator lens into which light emitted from a plurality of light source units of the light irradiation device is incident,
  • the light from the illumination optical system is irradiated to the substrate through the mask, and the mask
  • An exposure method comprising exposing and transferring a pattern formed on the substrate to the substrate.
  • a plurality of light source parts including a light emitting part and a reflection optical system, a plurality of cassettes having a light source support part for supporting a predetermined number of light source parts, and a plurality of cassettes are attached.
  • Optical axis angle adjustment that can adjust the optical axis angle with respect to the integrator lens of each light source unit so as to correct the diffusion of light that occurs as the irradiation time of each light source unit elapses and the support body having a plurality of cassette mounting parts Even if light diffusion occurs as the irradiation time of the light source unit elapses, the light is adjusted by the optical axis angle adjusting mechanism to correct the amount of light from 70 to 100% from each light source unit. Can be made incident on the integrator lens, whereby a decrease in illuminance with the lapse of irradiation time can be suppressed, and stable illuminance can be obtained over a long period of time.
  • the diffusion of light that occurs as the irradiation time of each light source unit elapses is detected, and the detected light is diffused by the optical axis angle adjustment mechanism. Therefore, 70-100% of the light from each light source unit can be incident on the integrator lens with certainty, and the illuminance decrease with the lapse of the irradiation time can be suppressed. And stable illuminance can be obtained.
  • the pattern formed on the mask is exposed and transferred onto the substrate using the above-described light irradiation apparatus for exposure apparatus and the control method thereof. Exposure can be performed with exposure light having a stable illuminance, and the product quality can be improved by performing exposure with high accuracy.
  • FIG. 1 It is a partial exploded perspective view for demonstrating the division
  • FIG. It is a front view of the division
  • (A) is a front view showing a light irradiation device,
  • (b) is a sectional view taken along line IV-IV in (a), and (c) is a sectional view taken along line IV′-IV ′ in (a). is there It is an expanded sectional view of the light source part vicinity attached to the cassette. It is a principal part enlarged view which shows the state in which the cassette was attached to the support body.
  • (A)-(d) is a front view which respectively shows the shape of the opening part of a reflective mirror. It is the schematic which shows the distance from the output surface of each light source part to the entrance surface of an integrator lens. It is sectional drawing which shows the example which mounts a support body to a light illuminating device. It is sectional drawing which shows the example at the time of attaching a cassette to a cassette attachment part. It is a figure which shows the modification of the cassette fixing means for attaching a cassette to a support body, (a) is a perspective view, (b) is a top view, (c) is XI-XI of (b). It is sectional drawing along a line.
  • (A) is a front view which shows a light irradiation apparatus
  • (b) is sectional drawing along the XVII-XVII line of (a).
  • (A) is a front view which shows a cassette
  • (b) is a side view of (a)
  • (c) is a bottom view of (a).
  • (A) is a front view which shows the cassette of the light irradiation apparatus which concerns on the modification of 2nd Embodiment
  • (b) is a front view which shows the cassette of the light irradiation apparatus which concerns on another modification
  • (c) These are figures which show the case where the light source part of the light irradiation apparatus of (a) is partially extinguished.
  • FIG. 1 It is a whole perspective view of the proximity scan exposure apparatus which concerns on 3rd Embodiment of this invention. It is a top view which shows a proximity
  • (A) is a principal part top view for demonstrating the positional relationship of a mask and an air pad
  • (A) is a front view showing the light irradiation device of FIG.
  • (A) is a front view showing the light irradiation device of FIG. 26, and (b) is a cross-sectional view taken along line XXVII-XXVII in (a).
  • (A) And (b) is the schematic of the conventional light irradiation apparatus which shows the state from which the diffused light remove
  • the division sequential proximity exposure apparatus PE of the present embodiment includes a mask stage 10 that holds a mask M, a substrate stage 20 that holds a glass substrate (material to be exposed) W, and pattern exposure. And an illumination optical system 70 for irradiating light.
  • a glass substrate W (hereinafter simply referred to as “substrate W”) is disposed to face the mask M, and a surface (on the opposite surface side of the mask M) for exposing and transferring a pattern drawn on the mask M.
  • a photosensitive agent is applied to the surface.
  • the mask stage 10 is a mask stage base 11 in which a rectangular opening 11a is formed at the center, and a mask holding part that is mounted on the opening 11a of the mask stage base 11 so as to be movable in the X axis, Y axis, and ⁇ directions.
  • a mask holding frame 12 and a mask driving mechanism 16 that is provided on the upper surface of the mask stage base 11 and adjusts the position of the mask M by moving the mask holding frame 12 in the X axis, Y axis, and ⁇ directions. .
  • the mask stage base 11 is supported by a column 51 standing on the apparatus base 50 and a Z-axis moving device 52 provided at the upper end of the column 51 so as to be movable in the Z-axis direction (see FIG. 2). It is arranged above the stage 20.
  • a plurality of planar bearings 13 are arranged on the upper surface of the peripheral edge of the opening 11a of the mask stage base 11, and the mask holding frame 12 has a flange 12a provided at the outer peripheral edge of the upper end. It is mounted on the flat bearing 13. As a result, the mask holding frame 12 is inserted into the opening 11a of the mask stage base 11 through a predetermined gap, so that the mask holding frame 12 can move in the X axis, Y axis, and ⁇ directions by the gap.
  • a chuck portion 14 for holding the mask M is fixed to the lower surface of the mask holding frame 12 via a spacer 15.
  • the chuck portion 14 is provided with a plurality of suction nozzles 14a for sucking the peripheral portion of the mask M on which the mask pattern is not drawn, and the mask M is not shown in the drawing through the suction nozzle 14a. It is detachably held on the chuck portion 14 by the apparatus.
  • the chuck portion 14 can move in the X axis, Y axis, and ⁇ directions with respect to the mask stage base 11 together with the mask holding frame 12.
  • the mask driving mechanism 16 includes two Y-axis direction driving devices 16y attached to one side along the X-axis direction of the mask holding frame 12, and one X-axis attached to one side along the Y-axis direction of the mask holding frame 12.
  • Direction drive device 16x is attached to one side along the X-axis direction of the mask holding frame 12.
  • the Y-axis direction driving device 16y is installed on the mask stage base 11, and has a driving actuator (for example, an electric actuator) 16a having a rod 16b that expands and contracts in the Y-axis direction, and a pin support mechanism 16c at the tip of the rod 16b. And a guide rail 16e attached to a side portion of the mask holding frame 12 along the X-axis direction and movably attached to the slider 16d.
  • the X-axis direction drive device 16x has the same configuration as the Y-axis direction drive device 16y.
  • the mask holding frame 12 is moved in the X-axis direction by driving one X-axis direction drive device 16x, and the two Y-axis direction drive devices 16y are driven equally.
  • the mask holding frame 12 is moved in the Y axis direction.
  • the mask holding frame 12 is moved in the ⁇ direction (rotated about the Z axis) by driving one of the two Y-axis direction driving devices 16y.
  • a gap sensor 17 for measuring a gap between the opposing surfaces of the mask M and the substrate W, and a mounting position of the mask M held by the chuck portion 14.
  • an alignment camera 18 for confirming the above.
  • the gap sensor 17 and the alignment camera 18 are held so as to be movable in the X-axis and Y-axis directions via the moving mechanism 19 and are arranged in the mask holding frame 12.
  • aperture blades 38 are provided at both ends in the X-axis direction of the opening 11a of the mask stage base 11 to shield both ends of the mask M as necessary. It is done.
  • the aperture blade 38 is movable in the X-axis direction by an aperture blade drive mechanism 39 including a motor, a ball screw, a linear guide, and the like, and adjusts the shielding area at both ends of the mask M.
  • the aperture blades 38 are provided not only at both ends of the opening 11a in the X-axis direction but also at both ends of the opening 11a in the Y-axis direction.
  • the substrate stage 20 includes a substrate holding unit 21 that holds the substrate W, and a substrate that moves the substrate holding unit 21 in the X-axis, Y-axis, and Z-axis directions with respect to the apparatus base 50.
  • Drive mechanism 22 The substrate holding unit 21 detachably holds the substrate W by a vacuum suction mechanism (not shown).
  • the substrate drive mechanism 22 includes a Y-axis table 23, a Y-axis feed mechanism 24, an X-axis table 25, an X-axis feed mechanism 26, and a Z-tilt adjustment mechanism 27 below the substrate holder 21.
  • the Y-axis feed mechanism 24 includes a linear guide 28 and a feed drive mechanism 29, and a slider 30 attached to the back surface of the Y-axis table 23 extends 2 on the apparatus base 50.
  • the Y-axis table 23 is driven along the guide rail 31 by a motor 32 and a ball screw device 33 while straddling the guide rail 31 through a rolling element (not shown).
  • the X-axis feed mechanism 26 has the same configuration as the Y-axis feed mechanism 24, and drives the X-axis table 25 in the X direction with respect to the Y-axis table 23.
  • the Z-tilt adjustment mechanism 27 has one movable wedge mechanism, which is a combination of the wedge-shaped moving bodies 34 and 35 and the feed drive mechanism 36, arranged at one end in the X direction and two at the other end. Consists of.
  • the feed drive mechanisms 29 and 36 may be a combination of a motor and a ball screw device, or may be a linear motor having a stator and a mover. Further, the number of Z-tilt adjustment mechanisms 27 installed is arbitrary.
  • the substrate driving mechanism 22 feeds and drives the substrate holding unit 21 in the X direction and the Y direction, and moves the substrate holding unit 21 to Z so as to finely adjust the gap between the opposing surfaces of the mask M and the substrate W. Fine movement and tilt adjustment in the axial direction.
  • Bar mirrors 61 and 62 are respectively attached to the X-direction side and Y-direction side of the substrate holding unit 21, and a total of three laser interferometers are installed at the Y-direction end and the X-direction end of the apparatus base 50. 63, 64, 65 are provided. As a result, the laser light is applied to the bar mirrors 61 and 62 from the laser interferometers 63, 64 and 65, the laser light reflected by the bar mirrors 61 and 62 is received, and the laser light and the laser reflected by the bar mirrors 61 and 62 are received. The position of the substrate stage 20 is detected by measuring interference with light.
  • the illumination optical system 70 includes a light irradiation device 80 including a plurality of light source units 73, an integrator lens 74 into which light beams emitted from the plurality of light source units 73 are incident, An optical control unit 76 that supplies a direct current with a regulated voltage to the lamp 71 of the light source unit 73, a concave mirror 77 that changes the direction of the optical path emitted from the exit surface of the integrator lens 74, a plurality of light source units 73, and an integrator lens And an exposure control shutter 78 that controls opening and closing so as to transmit and block the irradiated light.
  • a light irradiation device 80 including a plurality of light source units 73, an integrator lens 74 into which light beams emitted from the plurality of light source units 73 are incident,
  • An optical control unit 76 that supplies a direct current with a regulated voltage to the lamp 71 of the light source unit 73, a concave mirror 77 that changes the
  • a DUV cut filter, a polarization filter, and a band pass filter may be disposed between the integrator lens 74 and the exposure surface.
  • the concave mirror 77 has a mirror whose curvature can be changed manually or automatically.
  • a clearance angle correction unit may be provided.
  • the light irradiation device 80 includes an ultra-high pressure mercury lamp 71 as a light emitting unit and a reflecting mirror as a reflecting optical system that emits light with directivity emitted from the lamp 71. 72, a plurality of light source units 73 including a plurality of light source units 73, a plurality of cassettes 81 to which a predetermined number of light source units 73 can be respectively mounted, and a support body 82 to which a plurality of cassettes 81 can be mounted. .
  • an exposure apparatus that manufactures a 6th generation flat panel has 374 light source units, and an exposure apparatus that manufactures a 7th generation flat panel.
  • 774 light source units are required.
  • a cassette 81 having a total of six light source sections 73 mounted in three rows in the ⁇ direction and two rows in the ⁇ direction is arranged in three rows. A description will be given assuming that there are 54 light source units 73 arranged in a total of 9 rows of 3 rows.
  • the cassette 81 and the support 82 may have a square shape with the same number of light source portions 73 arranged in the ⁇ and ⁇ directions, but a rectangular shape with a different number in the ⁇ and ⁇ directions is applied.
  • the opening part 72b of the reflective mirror 72 is formed in the substantially rectangular shape, and it arrange
  • the substantially rectangular opening 72b is not limited to a square shape or a substantially rectangular shape in which the corner 72c shown in FIG. 7A intersects at a right angle, but the corner 72c shown in FIG.
  • the surface may be chamfered, or the corner 72c shown in FIG. 7C may be chamfered linearly.
  • the opening part 72b may be the shape where the both ends of 2 sides which oppose were connected by the circular arc.
  • the electrode includes a cathode 95 that emits electrons into the discharge plasma and an anode 96 into which electrons flow from the discharge plasma, and arc discharge between the cathode 95 and the anode 96 is performed. Emits light.
  • the arc tube 94 is fixed so that the midpoint between the cathode 95 and the anode 96 is substantially located at the focal point of the reflecting mirror 72.
  • the reflecting mirror 72 may have a parabolic surface or an elliptical surface where the reflected light is concentrated on the focal point, or may be a parabolic mirror in which the reflected light becomes parallel light.
  • the reflecting mirror 72 is made of, for example, a molded body of borosilicate glass or crystallized glass, and a reflective coating film is formed on the inner surface thereof.
  • the reflective coating film reflects light in the visible region from the ultraviolet region of 300 to 590 nm, and transmits unnecessary light in the visible region and infrared region behind the reflecting mirror 72.
  • SiO 2 and Nb 2 O 5 A dielectric multilayer film comprising:
  • each cassette 81 presses the light source support part 83 that supports a predetermined number of light source parts 73 and the light source part 73 supported by the light source support part 83, and the light source support part 83.
  • the substantially rectangular parallelepiped shape including a concave lamp pressing cover (cover member) 84 attached to each other.
  • the substantially rectangular parallelepiped shape may be a shape including a chamfered portion.
  • the light source support portion 83 is provided corresponding to the number of the light source portions 73 and is provided on the cover side of the window portions 83 a that emit light from the light source portion 73.
  • a lamp recess 83b that surrounds the opening 72a (or the opening of the reflecting mirror mounting portion to which the reflecting mirror 72 is mounted) is formed.
  • a plurality of cover glasses 85 are attached to the window 83a on the side opposite to the cover. In addition, attachment of the cover glass 85 is arbitrary and does not need to be provided.
  • each lamp recess 83b includes an irradiation surface (here, an opening surface 72b of the reflecting mirror 72) for irradiating light from the light source unit 73 in a state where an optical axis angle adjusting mechanism 99 described later is not operating, and a light source.
  • the intersection point p with the optical axis LA of the portion 73 is formed in a flat surface or a curved surface (in this embodiment, a flat surface) so as to be positioned on a single curved surface, for example, the spherical surface r, in each ⁇ and ⁇ direction.
  • a contact portion 86 that contacts the rear portion of the light source portion 73 is provided on the bottom surface of the lamp pressing cover 84.
  • Each contact portion 86 is provided with an actuator such as a motor or a cylinder, a spring press, screwing, or the like.
  • a configured lamp holding mechanism 87 is provided.
  • the light of the predetermined number of light source units 73 positioned in the cassette 81 is incident on the incident surface of the integrator lens 74, and the light irradiated from each irradiation surface of the predetermined number of light source units 73.
  • the irradiation amount reaching the incident surface of the integrator lens 74 is 70% to 100%.
  • the support 82 includes a support body 91 having a plurality of cassette mounting portions 90 to which a plurality of cassettes 81 are attached, and a support cover 92 that is attached to the support body 91 and covers the rear portion of each cassette 81. Have.
  • the support 82 when the support 82 is mounted on the light irradiation device 80, considering the center of gravity of the support 82 to which the cassette 81 is attached, the front surface of the cassette 81 and the support located at the lowermost position. It is preferable that the angle ⁇ with respect to the installation surface 82 is set to ⁇ ⁇ 90 °. Thereby, it can prevent that the light irradiation apparatus 80 falls down.
  • each cassette mounting portion 90 is formed with an opening 90 a that faces the light source support portion 83, and a plane around which the rectangular plane around the light source support portion 83 is opposed.
  • a cassette recess 90c having a bottom surface 90b is formed.
  • a cassette fixing means 93 for fixing the cassette 81 is provided around the cassette concave portion 90c of the support body 91. In this embodiment, the cassette fixing means 93 is engaged with the concave portion 81a formed in the cassette 81. Then, the cassette 81 is fixed.
  • the light irradiation device 80 falls backward when the cassette 81 is assembled to the cassette mounting portion 90 with a part of the cassette 81 tilted. It is difficult and easy to assemble.
  • Each plane 90b of the cassette recess 90c arranged in the ⁇ direction or the ⁇ direction has an intersection point p between the irradiation surface that irradiates the light of all the light source parts 73 of each cassette 81 and the optical axis LA of the light source part 73.
  • are formed so as to intersect at a predetermined angle ⁇ so as to be positioned on a single curved surface, for example, a spherical surface r (see FIG. 8).
  • each cassette 81 is engaged with the cassette fixing means 93 in the recess 81a of the cassette 81 in a state where the light source support 83 is fitted and positioned in the cassette recess 90c of each cassette mounting portion 90.
  • Each is fixed to the support 82.
  • a support cover 92 is attached to the support body 91 in a state where each cassette 81 is attached to the support body 91. Therefore, as shown in FIG. 8, the light of all the light source units 73 positioned in each cassette 81 is incident on the incident surface of the integrator lens 74, and the light irradiated from each irradiation surface of all the light source units 73 is The amount of irradiation reaching the incident surface of the integrator lens 74 is 70% to 100%.
  • through holes 83c are provided on two opposite sides of the cassette 81, and a cylindrical shaft member 93a as the cassette fixing means is provided.
  • the cassette 81 may be fixed by being inserted into the concave portion 91b of the support body 91 through the through hole 83c.
  • the through hole and the cassette fixing means are provided in the middle part of the two opposite sides, they may be provided in the four corners of the cassette 81, for example. Further, as shown in FIG.
  • the cassette 81 is provided with a groove portion 83d facing the side surface of the cassette 81 instead of the through hole 83c, and the columnar shaft member 93a is connected to the support body 91 via the groove portion 83d.
  • the cassette 81 may be fixed by being inserted into the recess 91b.
  • the cassette fixing means may be a polygonal shaft member 93e as shown in FIG. 13 instead of the columnar shaft member 93a, and the shape of the through hole 83c and the recess 91b can be changed accordingly. That's fine.
  • the cassette fixing means as shown in FIGS. 11 and 12 can be used together with the cassette fixing means 93 shown in FIG.
  • cylindrical projections 93b or polygonal projections as cassette fixing means are provided at the four corners of the cassette 81, and as shown in FIG. You may make it align by fitting with the hole or groove part 91c.
  • tenons 93c are formed on two opposite sides of the cassette 81, and as shown in FIG. 15 (b), a hole or groove 91d formed on the support body 91 side. And may be aligned with each other.
  • the tenon 93c is preferably provided on two sides for ease of assembly, the tenon 93c may be provided on the other two opposite sides as shown by the one-dot chain line in FIG. .
  • the structure which provides the cylindrical protrusion 93b shown to Fig.14 (a) and the boss 93c shown to Fig.15 (a) in the support body 91 side, and provides a hole part and a groove part in the cassette 81 side may be sufficient.
  • the cassette fixing means shown in FIGS. 14A and 15A can also be used together with the cassette fixing means 93 shown in FIG.
  • a long male screw 97a extending backward from between adjacent light source portions 73 is fixed to the back surface of the frame-shaped light source support portion 83, and the tip of the male screw 97a is connected to the lamp retainer.
  • the nut is engaged with a nut 97b that is rotationally driven by a motor 98 fixed to the bottom of the cover 84.
  • the motor 98 is actuated to rotate the nut 97 b, the light source support portion 83 is pulled or pressed via the threaded male screw 97 a to be elastically deformed, and thereby the light source portion 73 fixed to the light source support portion 83.
  • the optical axis angle is adjusted.
  • the male screw 97a, the nut 97b, and the motor 98 constitute an optical axis angle adjusting mechanism 99 that adjusts the optical axis angle of each light source unit 73 with respect to the integrator lens 74.
  • the optical axis angle of each light source unit 73 adjusted by the optical axis angle adjusting mechanism 99 is an angle that can correct the diffusion of light that occurs with the lapse of the irradiation time of the light source unit 73, for example, a minute value of 1 ° or less. Since the angle is sufficient, the light source support 83 can be adjusted within the range of elastic deformation. Further, the optical axis angle adjusting mechanism 99 is not limited to the mechanism including the male screw 97a, the nut 97b, and the motor 98 described above, and any mechanism can be adopted, and the lamp pressing mechanism 87 that presses the rear portion of the light source unit 73 can be used. It may be arranged.
  • a light detection device 101 such as an illuminance meter is disposed adjacent to the integrator lens 74.
  • the light detection apparatus 101 detects the amount of light leaked outside the integrator lens 74 without being incident on the integrator lens 74 due to the diffusion of the light of the light source unit 73 that occurs as the irradiation time elapses.
  • the light detection device 101 and the motor 98 of the optical axis angle adjustment mechanism 99 are connected to the control device 102 by electric wires 103, respectively.
  • the motor 98 is operated to adjust the optical axis angle of the light source unit 73 so that 70 to 100% of the amount of light is incident on the integrator lens 74. Correct the amount of diffusion. More specifically, when the light detection device 101 detects a light amount exceeding a predetermined threshold value, the control device 102 transmits an operation command to the motor 98 to operate, and rotates the nut 97b.
  • the male screw 97a that is screwed into the nut 97b is pulled in the direction of the motor 98, and the light source support portion 83 is elastically deformed in a direction in which the radius of curvature decreases, so that the optical axis angle of each light source portion 73 is directed inward. Correct the amount of diffusion. As a result, when the amount of light detected by the light detection device 101 is reduced to an initial value or less, that is, when 70 to 100% of light is incident on the integrator lens 74 as in the initial state, the motor The operation of 98 stops.
  • the light detection device 101 is not limited to the light detection device 101 as long as it can detect the light diffusion of the light source unit 73 depending on the irradiation time, and the light amount detection device disposed on the incident surface of the integrator lens 74 or the irradiation A timer that counts time may be used.
  • the optical axis angle of each light source unit 73 is adjusted by the optical axis angle adjustment mechanism 99 when the light amount detected by the light amount detection device becomes smaller than a predetermined threshold. Then, the light is incident on the center side of the integrator lens 74. Then, when the detected light amount returns to the initial value, the operation is stopped.
  • the optical axis angle of each light source unit 73 is adjusted by the optical axis angle adjusting mechanism 99 to be less than a predetermined threshold value, it is determined that the illuminance of the lamp 71 itself has decreased, and the lamp 71 is replaced. .
  • the timer control is performed, the relationship between the irradiation time of the light source unit 73 and the light diffusion angle is investigated in advance, and the optical axis angle of each light source unit 73 is adjusted when a predetermined irradiation time has elapsed. To do.
  • the illuminance is checked after the lamp 71 is replaced, but the illuminance may not return. For example, when the cover glass 85 is dirty, the cover glass 85 is replaced. Contamination of the cover glass 85 may be confirmed visually or by a sensor.
  • a transmission type light detection sensor, a reflection type light detection sensor, or an eddy current sensor can be used.
  • the exposure control shutter 78 when the exposure control shutter 78 is controlled to be opened during exposure in the illumination optical system 70, the light emitted from the ultrahigh pressure mercury lamp 71 is incident on the incident surface of the integrator lens 74. Incident. The light emitted from the exit surface of the integrator lens 74 is changed in its traveling direction by the concave mirror 77 and converted into parallel light. The parallel light is irradiated as pattern exposure light substantially perpendicularly to the surface of the mask M held on the mask stage 10 and the surface of the substrate W held on the substrate stage 20. Is transferred onto the substrate W by exposure.
  • the light irradiated from the ultra high pressure mercury lamp 71 has a light spread angle of about 2 °, for example, even if the ultra high pressure mercury lamp 71 is an unused lamp, but obtains a high output. For this reason, when a large current is supplied between the electrodes 95 and 96, the tungsten electrodes 95 and 96 gradually evaporate in the arc tube 94 as the usage time elapses, and the distance between the electrodes 95 and 96 is widened. It becomes larger, the light diffuses, and the irradiation angle spreads to, for example, 2.2 °. This wear phenomenon in the ultra-high pressure mercury lamp 71 supplied with direct current tends to become more prominent than the ultra-high pressure mercury lamp supplied with alternating current because the current flows in one direction.
  • the control device 102 operates the motor 98 via the male screw 97a.
  • the light source support 83 is pulled in and elastically deformed.
  • the optical axis angle is adjusted so as to correct the light diffusion with the light source portions 73 fixed to the light source support portion 83 facing inward.
  • the light from the light source units 73 including the light emitting unit 71 and the reflection optical system 72 and the light from the predetermined number of light source units 73 are integrated into the integrator lens 74.
  • the plurality of cassettes 81 that support the light source unit 73 with the light source support unit 83 and the light of all the light source units 73 are incident on the incident surface of the integrator lens 74.
  • the irradiation time of the light source portion 73 is elapsed.
  • the accompanying light diffusion can be corrected so that 70 to 100% of the amount of light from each light source unit 73 can be incident on the integrator lens 74, thereby improving the light utilization efficiency and illuminance. It is possible to suppress the bottom.
  • each light source unit 73 since the light diffusion generated with the lapse of the irradiation time of each light source unit 73 is detected and the light irradiation device 80 is controlled by the optical axis angle adjustment mechanism 99 so as to correct the detected light diffusion, Light with a dose of 70 to 100% from each light source unit 73 can be reliably incident on the integrator lens 74, and a reduction in illuminance is prevented.
  • the light diffusion is detected and the optical axis angle of the light source unit 73 is automatically adjusted.
  • the relationship between the lifetime irradiation time and the light diffusion is predicted in advance. The light use efficiency can be improved to some extent by adjusting each light source unit 73 inward by the angle.
  • a wavelength cut filter 186 is disposed in the cassette 81 on the front surface corresponding to the desired lamp 71.
  • the wavelength cut filter 186 may be any of a low-pass filter, a high-pass filter, and a band-pass filter, and may be an ND (dimming) filter that reduces the intensity of a desired wavelength.
  • the wavelength cut filter 186 is preferably installed point-symmetrically. In this embodiment, the wavelength cut filter 186 is attached to the upper six lamps and the lower six lamps (shaded portions in FIGS. 17 and 18).
  • the cassette 81 includes two types of light source units 73 having different spectral characteristics.
  • the light source unit 73 to which the wavelength cut filter 186 is attached is referred to as a light source unit 73A with a filter
  • the light source unit 73 without the wavelength cut filter 186 is referred to as a light source unit 73B without a filter.
  • an opening 77a is formed in a part of the concave mirror 77, and each wavelength of g-line, h-line, i-line, j-line, k-line, etc. is behind the opening 77a.
  • Each illuminance meter 79 for measuring the illuminance is provided.
  • the optical control unit 76 measures in advance the spectral characteristics of the light source unit 73A with filter and the light source unit 73B without filter, particularly the peak height of each wavelength, and stores it as a database. Since the spectral characteristics of the light source units 73A and 73B change when the lamp 71 is continuously used, the illuminance at each wavelength of the light source units 73A and 73B is measured in a state where exposure is not performed.
  • the light irradiation device 80 configured in this manner determines the power and number of the lamps 71 to be turned on by referring to the database based on the result measured by the illuminance meter 79.
  • the number of lamps 71 to be lit is large, the influence on the exposure surface illuminance distribution is small even if the method of turning off the lamps 71 is not point-symmetric, but when the number of lamps 71 to be lit is small, for example, 216 lamps
  • the light source part 73A with a filter and the light source part 73B without a filter light the lamp 71 so that each may become point-symmetric.
  • the light emitted from the mercury lamp 71 is generally incoherent light.
  • the intensity is summed for each wavelength.
  • the spectral intensity ratio at each wavelength can be controlled to some extent.
  • an illuminance measurement test was performed when two types of lamps having different spectral characteristics were used and when a wavelength cut filter was provided on a lamp having the same spectral characteristics. Specifically, in a test using two types of lamps having different spectral characteristics, when the four first lamps are used, the four second lamps having a stronger intensity on the short wavelength side than the first lamp. The illuminance was measured when two first lamps and two second lamps were used. In addition, in a test in which a wavelength cut filter is provided, when four second lamps are used and the wavelength cut filter is not attached, when the wavelength cut filter is attached to the two lamps, the wavelength cut filter is the four lamps. The illuminance was measured when it was attached. The results when two types of lamps are used are shown in Table 1, and the results when a wavelength cut filter is provided are shown in Table 2.
  • a UV integrated light meter UIT-250 manufactured by Ushio Electric Co., Ltd. and a 365 nm measuring light receiver UVD-S365 and 313 nm measuring light receiver UVD-S313 are used in the light receiving part. Then, the i-line (365 nm) and j-line (313 nm) intensities at the center of the exposure surface of 200 mm ⁇ 200 mm were measured at these light receiving parts.
  • the predetermined number of light source units 73 including the light emitting unit 71 and the reflective optical system 72, and the predetermined number of light source units 73.
  • a cassette 81 that supports the light source unit 73 so that the light is incident on the incident surface of the integrator lens 74, and the predetermined number of light source units 73 are configured by two types of light source units 73 having different spectral characteristics. . Thereby, the intensity
  • the lamps 71 of the predetermined number of light source units 73 have the same spectral characteristics, and the predetermined number of light source units 73 are provided with two types of spectral characteristics different from each other by disposing the wavelength cut filter 186 in a part thereof.
  • a light source unit 73 is configured. Thereby, the intensity
  • a plurality of cassettes 81 are provided, and a lamp 82 is provided as a unit by further including a support 82 to which a plurality of cassettes 81 are attached so that light from all the light source units 73 is incident on the incident surface of the integrator lens 74. All the light source parts 73 are arranged on a single curved surface without shortening the replacement time of the lamp 71 and the downtime of the apparatus, and without performing a large curved surface processing on the mounting part of the lamp 71. Can do.
  • the light irradiation apparatus 80 includes an integrator in addition to the plurality of light source units 73, the plurality of cassettes 81, and the support 82 described above.
  • An illuminance meter 79 that is disposed on the downstream side of the lens 74 and measures illuminance corresponding to each wavelength, and an optical control unit 76 that controls lighting / extinction of each lamp 71 and illuminance.
  • the optical control unit 76 controls each light source unit 73 in the cassette 81 based on the illuminance corresponding to each wavelength measured by the illuminance meter 79 so that a desired illuminance is obtained at a predetermined wavelength.
  • the necessary lamp 71 can be turned on, the intensity of the wavelength component necessary for exposure can be freely set, and the life of the lamp 71 can be extended.
  • two types of light source units 73A and 73B having different spectral characteristics are configured by using one type of wavelength cut filter 186, but as shown in FIGS. 19A and 19B, You may make it comprise three types of light source parts 73A1, 73A2, and 73B from which a spectral characteristic differs using two types of wavelength cut filters 186a and 186b.
  • the three types of light source units 73A1, 73A2, and 73B may be configured at 8: 8: 8 as shown in FIG. 19A, and 10: 10: 4 as shown in FIG. 19B. You may comprise.
  • the three types of light source units 73A1, 73A2, and 73B are configured to be point-symmetric, and when the lamp 71 in FIG. 19A is turned off by the optical control unit 76, FIG. What is necessary is just to make it light-off point-symmetrically as shown to the shaded part of (c).
  • the proximity scan exposure apparatus 200 is used for exposure via a plurality of masks M on which patterns P are formed on a substantially rectangular substrate W that is transported in a predetermined direction while approaching the mask M.
  • the pattern L is exposed and transferred onto the substrate W by irradiating the light L. That is, the exposure apparatus 200 employs a scan exposure method in which exposure transfer is performed while the substrate W is moved relative to the plurality of masks M.
  • the size of the mask used in the present embodiment is set to 350 mm ⁇ 250 mm, and the X-direction length of the pattern P corresponds to the X-direction length of the effective exposure region.
  • the proximity scan exposure apparatus 200 floats and supports the substrate W, and also transports the substrate W in a predetermined direction (X direction in the figure), and a plurality of substrate transport mechanisms 120.
  • a mask holding mechanism 170 having a plurality of mask holding portions 171 each holding the mask M and arranged in two rows in a staggered manner along a direction (Y direction in the figure) intersecting with a predetermined direction, and a plurality of mask holding portions 171 is disposed above each of the plurality of irradiation units 180 as an illumination optical system that irradiates the exposure light L, and is disposed between the plurality of irradiation units 180 and the plurality of mask holding units 171.
  • a plurality of light shielding devices 190 that shield the exposure light L emitted from the light source.
  • the substrate transport mechanism 120, the mask holding mechanism 170, the plurality of irradiation units 180, and the light shielding device 190 are disposed on a device base 201 installed on the ground via a level block (not shown).
  • the area where the mask holding mechanism 170 is disposed is located upstream of the mask layout area EA and the mask layout area EA. This area is referred to as a substrate carry-in area IA, and an area downstream of the exposure area EA is referred to as a substrate carry-out area OA.
  • the substrate transport mechanism 120 is disposed on the carry-in frame 105, the precision frame 106, and the carry-out frame 107 installed on the apparatus base 201 via another level block (not shown), and floats the substrate W with air.
  • a floating unit 121 as a substrate holding unit to be supported, and a frame 109 installed on the apparatus base 201 via another level block 108 on the side of the floating unit 121 in the Y direction, and holds the substrate W
  • a substrate driving unit 140 for transporting the substrate W in the X direction.
  • the levitation unit 121 includes a plurality of long exhaust air pads 123 (see FIG. 22) to which a plurality of connecting rods 122 extending upward from the upper surface of the carry-in / out and precision frames 105, 106, 107 are respectively attached. 21), 124 and a plurality of elongated air intake / exhaust air pads 125a, 125b, and an air exhaust system 130 and air exhaust for exhausting air from a plurality of exhaust holes 126 formed in each of the air pads 123, 124, 125a, 125b. And an air suction system 132 and an air suction pump 133 for sucking air from the intake holes 127 formed in the intake / exhaust air pads 125a and 125b.
  • the intake / exhaust air pads 125a and 125b have a plurality of exhaust holes 126 and a plurality of intake holes 127, and balance the air pressure between the support surfaces 134 of the air pads 125a and 125b and the substrate W to obtain a predetermined value.
  • the flying height can be set with high accuracy and can be horizontally supported at a stable height.
  • the substrate driving unit 140 includes a gripping member 141 that grips the substrate W by vacuum suction, a linear guide 142 that guides the gripping member 141 along the X direction, and a gripping member 141 along the X direction. And a drive motor 143 and a ball screw mechanism 144 that are driven in the manner described above, and are attached to the side of the frame 109 in the substrate carry-in area IA so as to be movable in the Z direction and to be rotatable so as to protrude from the upper surface of the frame 109. And a plurality of work collision prevention rollers 145 that support the lower surface of the substrate W waiting to be conveyed to.
  • the substrate transport mechanism 120 is provided in the substrate carry-in side area IA, and the substrate pre-alignment mechanism 150 that performs pre-alignment of the substrate W waiting in the substrate carry-in side area IA, and the substrate alignment mechanism that performs alignment of the substrate W 160.
  • the mask holding mechanism 170 is provided for each of the plurality of mask holding portions 171 and the mask holding portions 171, and the mask holding portion 171 is moved in the X, Y, Z, and ⁇ directions, that is, , A predetermined direction, a crossing direction, a vertical direction with respect to the horizontal plane of the predetermined direction and the crossing direction, and a plurality of mask driving units 172 that drive around a normal line of the horizontal plane.
  • the plurality of mask holding portions 171 arranged in two rows in a staggered manner along the Y direction are arranged on the upstream side with a plurality of upstream mask holding portions 171a (six in this embodiment) arranged on the upstream side.
  • Two main frames 113 installed on the downstream side are respectively supported via a mask driving unit 172.
  • Each mask holding portion 171 has an opening 177 penetrating in the Z direction, and the mask M is vacuum-sucked on the lower surface of the peripheral edge portion.
  • the mask drive unit 172 is attached to the main frame 113 and moves along the X direction.
  • the X direction drive unit 173 moves along the X direction.
  • the Z direction drive unit 174 is attached to the tip of the X direction drive unit 173 and drives in the Z direction.
  • a Y-direction drive unit 175 attached to the Z-direction drive unit 174 and driven in the Y-direction, and a ⁇ -direction drive unit 176 attached to the Y-direction drive unit 175 and driven in the ⁇ -direction.
  • a mask holding portion 171 is attached to the tip of 176.
  • the plurality of irradiation units 180 are provided in the housing 181 in the same manner as in the first embodiment, the light irradiation device 80 ⁇ / b> A, the integrator lens 74, the optical control unit 76, the concave mirror 77, And an exposure control shutter 78, and plane mirrors 280, 281, and 282 disposed between the light source unit 73 A and the exposure control shutter 78, and between the integrator lens 74 and the concave mirror 77.
  • the concave mirror 77 or the flat mirror 282 as the folding mirror may be provided with a declination angle correcting means capable of changing the curvature of the mirror manually or automatically.
  • the light irradiation device 80A includes a support 82A that includes an ultra-high pressure mercury lamp 71 and a reflecting mirror 72, each of which includes, for example, three cassettes 81A including eight light source sections 73 arranged in four rows and two rows. is doing.
  • the cassette pressing cover 84 is attached to the light source support portion 83 on which the eight light source portions 73 are supported, so that the irradiation amount of 70% to 100% from each light source portion 73 can be obtained.
  • Each light source unit 73 is positioned so that light can enter the integrator lens 74.
  • each cassette 81A is attached to the plurality of cassette attaching portions 90 of the support 82A, it is possible to allow 70% to 100% irradiation light from each light source portion 73 to enter the integrator lens 74.
  • Each cassette 81A is positioned.
  • an optical axis angle adjusting mechanism 99 including a long male screw 97, a nut 97b, and a motor 98 is disposed. Further, the light detection device 101 and the optical axis angle adjustment mechanism 99 arranged adjacent to the integrator lens 74 are connected to the control device 102 by the electric wire 103 as in the first embodiment.
  • the plurality of light shielding devices 190 include a pair of plate-shaped blind members 208 and 209 that change the inclination angle, and the blind drive unit 192 changes the inclination angle of the pair of blind members 208 and 209. To do.
  • the exposure light L emitted from the irradiation unit 180 is shielded, and the light shielding width in a predetermined direction for shielding the exposure light L, that is, the Z direction.
  • the projected area viewed from the above can be made variable.
  • the pair of mask trays 221 that hold the mask M is driven in the Y direction, thereby exchanging the masks M held by the upstream and downstream mask holding units 171a and 171b.
  • a mask changer 220 is provided, and pre-alignment is performed by bringing a positioning pin (not shown) into contact with the mask M while pressing the mask M that is levitated and supported against the mask tray 221 before mask replacement.
  • a mask pre-alignment mechanism 240 is provided.
  • the proximity scanning exposure apparatus 200 includes various detection means such as a laser displacement meter 260, a mask alignment camera (not shown), a tracking camera (not shown), and a tracking illumination 273. Is arranged.
  • the proximity scan exposure apparatus 200 supports the substrate W transported to the substrate carry-in area IA by air from the exhaust air pad 123 by a loader or the like (not shown) and performs pre-alignment work and alignment work for the substrate W. Then, the substrate W chucked by the gripping member 141 of the substrate driving unit 140 is transferred to the mask arrangement area EA.
  • the substrate W is moved in the X direction along the linear guide 142 by driving the drive motor 143 of the substrate drive unit 140. Then, the substrate W is moved onto the exhaust air pad 124 and the intake / exhaust air pads 125a and 125b provided in the mask arrangement area EA, and is lifted and supported with vibrations eliminated as much as possible.
  • the exposure light L is emitted from the light source in the irradiation unit 180, the exposure light L passes through the mask M held by the mask holding unit 171 and exposes and transfers the pattern onto the substrate W.
  • the exposure apparatus 200 includes a follow-up camera (not shown) and a laser displacement meter 260, the relative position deviation between the mask M and the substrate W is detected during the exposure operation, and the detected relative position is detected. Based on the deviation, the mask driving unit 172 is driven to cause the position of the mask M to follow the substrate W in real time. At the same time, the gap between the mask M and the substrate W is detected, the mask driving unit 172 is driven based on the detected gap, and the gap between the mask M and the substrate W is corrected in real time.
  • pattern exposure can be performed on the entire substrate W by performing continuous exposure in the same manner. Since the masks M held by the mask holding part 171 are arranged in a staggered manner, even if the masks M held by the upstream or downstream mask holding parts 171a and 171b are arranged apart from each other, the substrate A pattern can be formed in W without a gap.
  • the pair of blind members 208 and 209 are opened and closed so that the blind members 208 and 209 are positioned in the non-exposure region in the same direction as the substrate W feed direction in accordance with the feed speed of the substrate W.
  • the blind members 208 and 209 are moved.
  • a large current is supplied between the electrodes 95 and 96 of the ultra-high pressure mercury lamp 71, so that the electrodes 95 and 96 evaporate with the passage of use time and light diffusion occurs.
  • light diffusion is detected by the light detection device 101, and the optical axis angle is adjusted by the optical axis angle adjustment mechanism 99 with the optical axis LA of each light source unit 73 facing inward.
  • the light detection device 101 detects the diffusion of light that occurs with the lapse of the irradiation time of each light source unit 73, and is detected by the optical axis angle adjustment mechanism 99.
  • the light irradiation device 80 By controlling the light irradiation device 80 so as to correct the diffused light, 70 to 100% of light from each light source unit 73 can be reliably incident on the integrator lens 74, resulting in a decrease in illuminance. Can be suppressed.
  • the proximity scan exposure apparatus of this embodiment has the same basic configuration as that of the proximity scan exposure apparatus of the third embodiment. Detailed description.
  • an opening 77a is formed in a part of the concave mirror 77 in the housing 181 of the plurality of irradiation units 180, and behind the opening 77a.
  • Each illuminance meter 79 for measuring the illuminance at each wavelength in the g-line, h-line, i-line, j-line, k-line, etc. is installed.
  • reference numeral 195 denotes a lighting power source
  • reference numeral 196 denotes a control circuit.
  • the light irradiation device 80A includes a support 82A that includes three ultra-high pressure mercury lamps 71 and a reflecting mirror 72, each including, for example, three cassettes 81 that include 24 light source sections 73 in six rows and four rows. is doing.
  • the cassette pressing cover 84 is attached to the light source support portion 83 on which the 24 light source portions 73 are supported, so that the irradiation amount of 70% to 100% from each light source portion 73 can be obtained.
  • Each light source unit 73 is positioned so that light can enter the integrator lens 74.
  • each cassette 81 is positioned so that light with an irradiation amount of 70% to 100% from each light source unit 73 can enter the integrator lens 74.
  • the light emitting units 71 of the predetermined number of light source units 73 have the same spectral characteristics, and the predetermined number of light source units 73 have the wavelength cut filter 186 as a part thereof. By arranging, two types of light source units 73 having different spectral characteristics are configured.
  • a predetermined number of light source units 73 including the light emitting unit 71 and the reflective optical system 72 and light of the predetermined number of light source units 73 are incident on the entrance surface of the integrator lens 74.
  • the wavelength cut filter 186 two types of light source units 73 having different spectral characteristics are configured. Thereby, the intensity
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. can be made as appropriate.
  • the divided sequential proximity exposure apparatus and the scanning proximity exposure apparatus have been described as the exposure apparatus.
  • the present invention is not limited to this, and the present invention can be applied to a mirror projection exposure apparatus, a lens projection exposure apparatus, a close contact
  • the present invention can also be applied to a type exposure apparatus.
  • the present invention can be applied to any exposure method such as a batch method, a sequential method, and a scanning method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Provided are: a light irradiation device for an exposure apparatus, wherein luminance decrease over irradiation time of a light source unit can be suppressed; a method for controlling a light irradiation device; an exposure apparatus; and an exposure method. The light irradiation device for an exposure apparatus comprises: a plurality of light source units (73), each of which contains a light emitting unit (71) and a reflective optical system (72); a plurality of cassettes (81), each of which supports a predetermined number of light source units (73) with light source supporting parts (83) so that light from the light source units (73) is incident on the incident surface of an integrator lens (74); a supporting body (82) which comprises a plurality of cassette fitting parts (90) that fit the plurality of cassettes (81) so that light from all of the light source units (73) is incident on the incident surface of the integrator lens (74); and an optical axis angle adjustment mechanism (99) which is capable of adjusting the angle of the optical axis of each light source unit (73).

Description

露光装置用光照射装置、光照射装置の制御方法、露光装置及び露光方法Light irradiation apparatus for exposure apparatus, control method for light irradiation apparatus, exposure apparatus and exposure method
 本発明は、露光装置用光照射装置、光照射装置の制御方法、露光装置及び露光方法に関し、より詳細には、液晶ディスプレイやプラズマディスプレイ等の大型のフラットパネルディスプレイの基板上にマスクのマスクパターンを露光転写する露光装置に適用可能な露光装置用光照射装置、光照射装置の制御方法、露光装置及び露光方法に関する。 The present invention relates to a light irradiation apparatus for an exposure apparatus, a control method for the light irradiation apparatus, an exposure apparatus, and an exposure method, and more particularly, a mask pattern of a mask on a substrate of a large flat panel display such as a liquid crystal display or a plasma display. The present invention relates to a light irradiation apparatus for an exposure apparatus, a method for controlling the light irradiation apparatus, an exposure apparatus, and an exposure method that can be applied to an exposure apparatus that performs exposure transfer.
 従来、フラットパネルディスプレイ装置のカラーフィルタ等のパネルを製造する装置として、近接露光装置、スキャン露光装置、投影露光装置、ミラープロジェクション、密着式露光装置などの種々の露光装置が考案されている。例えば、分割逐次近接露光装置では、基板より小さいマスクをマスクステージで保持すると共に、基板をワークステージで保持して両者を近接して対向配置した後、ワークステージをマスクに対してステップ移動させて各ステップ毎にマスク側から基板にパターン露光用の光を照射することにより、マスクに描かれた複数のパターンを基板上に露光転写して、一枚の基板に複数のパネルを製作する。また、スキャン露光装置では、一定速度で搬送されている基板に対して、露光用の光をマスクを介して照射し、基板上にマスクのパターンを露光転写する。 Conventionally, various exposure apparatuses such as a proximity exposure apparatus, a scan exposure apparatus, a projection exposure apparatus, a mirror projection, and a contact type exposure apparatus have been devised as apparatuses for manufacturing a panel such as a color filter of a flat panel display apparatus. For example, in the division sequential proximity exposure apparatus, a mask smaller than the substrate is held on the mask stage, the substrate is held on the work stage and both are placed close to each other, and then the work stage is moved stepwise relative to the mask. By irradiating the substrate with light for pattern exposure from the mask side at each step, a plurality of patterns drawn on the mask are exposed and transferred onto the substrate to produce a plurality of panels on one substrate. In the scanning exposure apparatus, exposure light is irradiated through a mask onto a substrate being conveyed at a constant speed, and a mask pattern is exposed and transferred onto the substrate.
 近年、ディスプレイ装置は次第に大型化されつつあり、例えば、分割逐次露光において、第8世代(2200mm×2500mm)のパネルを4回の露光ショットで製造する場合、一回の露光領域は、1300mm×1120mmとなり、6回の露光ショットで製造する場合、一回の露光領域は、1100mm×750mmとなる。従って、露光装置においても露光領域の拡大が求められており、使用される光源の出力も高める必要がある。このため、照明光学系として、複数の光源を用いて、光源全体の出力を高めるようにしたものが知られている(例えば、特許文献1,2及び3参照。)。 In recent years, display devices are gradually becoming larger. For example, in the case of manufacturing an eighth generation panel (2200 mm × 2500 mm) with four exposure shots in divided sequential exposure, one exposure area is 1300 mm × 1120 mm. Thus, in the case of manufacturing with six exposure shots, one exposure area is 1100 mm × 750 mm. Therefore, the exposure apparatus is also required to expand the exposure area, and it is necessary to increase the output of the light source used. For this reason, an illumination optical system that uses a plurality of light sources to increase the output of the entire light source is known (see, for example, Patent Documents 1, 2, and 3).
 特許文献1に記載の露光用照明装置では、光源部から出射される発散光が入射面に入射する領域の大きさを、入射面よりも小さくして、発散光の全てが入射面に入射するようにして、光源部から発せられた光の有効活用を図っている。また、特許文献2に記載の光照射装置は、隣接配置される各光源間に光を遮断する隔離壁を設け、隣接する光源からの光照射を防止して、加熱などによる光源部の問題を解決している。更に、特許文献3に記載の光照射装置は、複数の光源ユニットが千鳥状に配置された2組の光源部を、前後方向に離間配置して光源ユニット間に空隙を持たせ、光源ユニットを効率よく冷却するようにしている。また、特許文献4に記載の光照射装置では、光源からの光を遮光しインテグレータレンズに入射する光の集光角を狭くする遮光手段を設け、照射領域の狭いインテグレータレンズを用いた場合には遮光手段を光路内に挿入する。 In the exposure illumination device described in Patent Document 1, the size of the region where the divergent light emitted from the light source unit is incident on the incident surface is made smaller than the incident surface, and all of the diverged light is incident on the incident surface. In this way, effective use of light emitted from the light source unit is achieved. Moreover, the light irradiation apparatus described in Patent Document 2 is provided with an isolation wall that blocks light between adjacent light sources, prevents light irradiation from adjacent light sources, and prevents the problem of the light source unit due to heating or the like. It has been solved. Furthermore, in the light irradiation device described in Patent Document 3, two sets of light source units in which a plurality of light source units are arranged in a staggered manner are spaced apart in the front-rear direction so as to have a gap between the light source units. It is designed to cool efficiently. In addition, in the light irradiation device described in Patent Document 4, when a light-shielding unit is provided to block the light from the light source and narrow the collection angle of the light incident on the integrator lens, and an integrator lens with a narrow irradiation area is used. A light shielding means is inserted into the optical path.
日本国特許第4391136号公報Japanese Patent No. 4391136 日本国特開2006-324435号公報Japanese Unexamined Patent Publication No. 2006-324435 日本国特開2007-115817号公報Japanese Unexamined Patent Publication No. 2007-115817 日本国特開2005-292316号公報Japanese Unexamined Patent Publication No. 2005-292316
 一般的に、露光装置用の光源部としては、電極がタングステンで作られている超高圧水銀ランプが用いられている。図28(a)に示すように、露光装置用光照射装置1では、複数の超高圧水銀ランプ2からのすべての光Lがインテグレータ3に入射するように、複数の超高圧水銀ランプ2が曲面に沿って略円弧状に配置されている。この超高圧水銀ランプ2から照射される光は、超高圧水銀ランプ2が未使用であっても、略2°程度の光の広がり角を持つのが一般的であり、高出力を得るために電極に大電流を供給すると、使用時間の経過と共に、光源のバルブ内で徐々にタングステン電極が蒸発して電極同士の間隔が広がり、光源の基点が大きくなって、結果として図28(b)に示すように、光の照射角度が、例えば、2.2°に広がる。 Generally, as a light source unit for an exposure apparatus, an ultra-high pressure mercury lamp whose electrode is made of tungsten is used. As shown in FIG. 28A, in the light irradiation apparatus 1 for an exposure apparatus, the plurality of ultrahigh pressure mercury lamps 2 are curved so that all the light L from the plurality of ultrahigh pressure mercury lamps 2 enters the integrator 3. Are arranged in a substantially arc shape. The light emitted from the ultra-high pressure mercury lamp 2 generally has a light divergence angle of about 2 ° even when the ultra-high pressure mercury lamp 2 is not used. When a large current is supplied to the electrodes, the tungsten electrodes gradually evaporate in the bulb of the light source as the usage time elapses, the distance between the electrodes increases, and the base point of the light source increases, resulting in FIG. 28 (b). As shown, the light irradiation angle extends to, for example, 2.2 °.
 この場合、超高圧水銀ランプ2からインテグレータ3までの距離を、例えば4mとすると、照射角度0.2°の変化は、照射位置(インテグレータの入射面)において、通常、100~200mm程度の照射範囲のインテグレータ3のサイズに対して、略14mmの照射範囲の拡大に相当する。このため、超高圧水銀ランプ2からの光の一部は、インテグレータ3に入射せずにロスとなり、これにより照度が低下する問題がある。特許文献1~4に開示されている技術は、インテグレータへの光入射領域の設定や、光源部の熱対策によって、光の有効利用を図ったものであり、いずれも上記した電極の消耗に起因する光の広がりについては考慮されておらず、改善の余地があった。 In this case, if the distance from the ultra-high pressure mercury lamp 2 to the integrator 3 is 4 m, for example, the change in the irradiation angle of 0.2 ° is usually an irradiation range of about 100 to 200 mm at the irradiation position (incident surface of the integrator). This corresponds to an expansion of the irradiation range of about 14 mm with respect to the size of the integrator 3. For this reason, a part of the light from the ultra-high pressure mercury lamp 2 is lost without entering the integrator 3, thereby causing a problem that the illuminance is lowered. The technologies disclosed in Patent Documents 1 to 4 aim at effective use of light by setting the light incident area to the integrator and taking measures against heat of the light source unit, both of which are caused by the above-mentioned consumption of the electrodes. There was no room for improvement because the spread of light was not taken into consideration.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、光源部の照射時間の経過に伴う照度低下を抑制することができる露光装置用光照射装置、光照射装置の制御方法、露光装置及び露光方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light irradiation apparatus for an exposure apparatus and a control method for the light irradiation apparatus that can suppress a decrease in illuminance with the lapse of irradiation time of the light source unit. An exposure apparatus and an exposure method are provided.
 本発明の上記目的は、下記の構成により達成される。
(1) 発光部と該発光部から発生された光に指向性をもたせて射出する反射光学系をそれぞれ含む複数の光源部と、
 前記所定数の光源部の光がインテグレータレンズの入射面に入射されるように、前記光源部をそれぞれ支持する光源支持部を有する複数のカセットと、
 前記全ての光源部の光がインテグレータレンズの入射面に入射されるように、前記複数のカセットがそれぞれ取り付けられる複数のカセット取り付け部を有する支持体と、
 前記各光源部の照射時間の経過に伴って生じる前記光の拡散を修正するように、前記各光源部の前記インテグレータレンズに対する光軸角度を調整可能な光軸角度調整機構と、を備えることを特徴とする露光装置用光照射装置。
(2) 前記所定数の光源部は、分光特性が異なる複数種類の光源部によって構成されることを特徴とする(1)に記載の露光装置用光照射装置。
(3) 前記所定数の光源部の各発光部は、分光特性が同じであり、
 前記所定数の光源部は、その一部に波長カットフィルタを配置することで、分光特性が異なる複数種類の光源部を構成することを特徴とする(2)に記載の露光装置用光照射装置。
(4) 被露光材としての基板を保持する基板保持部と、
 前記基板と対向するようにマスクを保持するマスク保持部と、
 (1)~(3)の何れか1つに記載の前記光照射装置と、該光照射装置の複数の光源部から出射された光が入射されるインテグレータレンズと、を有する照明光学系と、
を備え、
 前記基板に対して前記照明光学系からの光を前記マスクを介して照射することを特徴とする露光装置。
(5) 発光部と該発光部から発生された光に指向性をもたせて射出する反射光学系をそれぞれ含む複数の光源部と、
 前記所定数の光源部の光がインテグレータレンズの入射面に入射されるように、前記光源部をそれぞれ支持する光源支持部を有する複数のカセットと、
 前記全ての光源部の光がインテグレータレンズの入射面に入射されるように、前記複数のカセットがそれぞれ取り付けられる複数のカセット取り付け部を有する支持体と、
 前記各光源部の照射時間の経過に伴って生じる前記光の拡散を修正するように、前記各光源部の前記インテグレータレンズに対する光軸角度を調整可能な光軸角度調整機構と、を備える露光装置用光照射装置の制御方法であって、
 前記各光源部の照射時間の経過に伴って生じる前記光の拡散を検出する工程と、
前記光軸角度調整機構によって、前記光の拡散を修正する工程と、
を有することを特徴とする露光装置用光照射装置の制御方法。
(6) 前記インテグレータレンズの下流側に配置され、各波長に対応した照度を計測する照度計と、
 前記各発光部の点灯・消灯、及び照度を制御する制御部と、
をさらに備え、
 前記所定数の光源部は、分光特性が異なる複数種類の光源部によって構成され、
 前記制御部は、前記照度計で計測された各波長に対応した照度に基づいて、所定の波長において所望の照度が得られるように、前記カセット内の各光源部を制御することを特徴とする(5)に記載の露光装置用光照射装置の制御方法。
(7) 前記所定数の光源部の各発光部は、分光特性が同じであり、
 前記所定数の光源部は、その一部に波長カットフィルタを配置することで、分光特性が異なる複数種類の光源部を構成することを特徴とする(6)に記載の露光装置用光照射装置の制御方法。
(8) 被露光材としての基板を保持する基板保持部と、
 前記基板と対向するようにマスクを保持するマスク保持部と、
 (5)~(7)の何れか1つに記載の前記光照射装置と、該光照射装置の複数の光源部から出射された光が入射されるインテグレータレンズと、を有する照明光学系と、
を備え、
 (5)~(7)の何れか1つに記載の前記光照射装置の制御方法を行いながら、前記基板に対して前記照明光学系からの光を前記マスクを介して照射して、前記マスクに形成されるパターンを前記基板に露光転写することを特徴とする露光方法。
The above object of the present invention can be achieved by the following constitution.
(1) a plurality of light source units each including a light emitting unit and a reflective optical system that emits light having directivity emitted from the light emitting unit;
A plurality of cassettes each having a light source support part for supporting the light source part so that the light of the predetermined number of light source parts is incident on an incident surface of the integrator lens;
A support body having a plurality of cassette mounting portions to which the plurality of cassettes are respectively mounted so that light of all the light source portions is incident on an incident surface of the integrator lens;
An optical axis angle adjustment mechanism capable of adjusting an optical axis angle of each light source unit with respect to the integrator lens so as to correct the diffusion of the light that occurs as the irradiation time of each light source unit elapses. A light irradiation apparatus for an exposure apparatus.
(2) The light irradiation apparatus for an exposure apparatus according to (1), wherein the predetermined number of light source units includes a plurality of types of light source units having different spectral characteristics.
(3) The light emitting units of the predetermined number of light source units have the same spectral characteristics,
The predetermined number of light source units constitute a plurality of types of light source units having different spectral characteristics by disposing a wavelength cut filter in a part of the predetermined number of light source units. .
(4) a substrate holding unit for holding a substrate as an exposed material;
A mask holding unit for holding a mask so as to face the substrate;
(1) to (3) an illumination optical system having the light irradiation device according to any one of the above, and an integrator lens to which light emitted from a plurality of light source units of the light irradiation device is incident;
With
An exposure apparatus that irradiates the substrate with light from the illumination optical system through the mask.
(5) a plurality of light source units each including a light emitting unit and a reflective optical system that emits light with directivity emitted from the light emitting unit;
A plurality of cassettes each having a light source support part for supporting the light source part so that the light of the predetermined number of light source parts is incident on an incident surface of the integrator lens;
A support body having a plurality of cassette mounting portions to which the plurality of cassettes are respectively mounted so that light of all the light source portions is incident on an incident surface of the integrator lens;
An exposure apparatus comprising: an optical axis angle adjustment mechanism capable of adjusting an optical axis angle of each light source unit with respect to the integrator lens so as to correct the diffusion of the light that occurs as the irradiation time of each light source unit elapses. A method for controlling a light irradiation device for a vehicle,
Detecting the diffusion of the light that occurs with the lapse of the irradiation time of each light source unit;
Correcting the diffusion of the light by the optical axis angle adjusting mechanism;
A method of controlling a light irradiation apparatus for an exposure apparatus, comprising:
(6) An illuminometer that is disposed downstream of the integrator lens and measures illuminance corresponding to each wavelength;
A control unit for controlling lighting and extinction of each light emitting unit and illuminance;
Further comprising
The predetermined number of light source units is constituted by a plurality of types of light source units having different spectral characteristics,
The control unit controls each light source unit in the cassette so that desired illuminance can be obtained at a predetermined wavelength based on illuminance corresponding to each wavelength measured by the illuminometer. (5) The control method of the light irradiation apparatus for exposure apparatuses as described in (5).
(7) The light emitting units of the predetermined number of light source units have the same spectral characteristics,
The predetermined number of light source units constitute a plurality of types of light source units having different spectral characteristics by disposing a wavelength cut filter in a part of the predetermined number of light source units. Control method.
(8) a substrate holding unit for holding a substrate as an exposed material;
A mask holding unit for holding a mask so as to face the substrate;
(5) to (7) the light irradiation device according to any one of the above, and an illumination optical system having an integrator lens into which light emitted from a plurality of light source units of the light irradiation device is incident,
With
(5) to (7), while performing the method of controlling the light irradiation apparatus according to any one of the above, the light from the illumination optical system is irradiated to the substrate through the mask, and the mask An exposure method comprising exposing and transferring a pattern formed on the substrate to the substrate.
 本発明の露光装置用光照射装置によれば、発光部及び反射光学系を含む複数の光源部と、所定数の光源部を支持する光源支持部を有する複数のカセットと、複数のカセットを取り付ける複数のカセット取り付け部を有する支持体と、各光源部の照射時間の経過に伴って生じる光の拡散を修正するように、各光源部のインテグレータレンズに対する光軸角度を調整可能な光軸角度調整機構と、を備えるので、光源部の照射時間の経過に伴って光の拡散が生じても、光軸角度調整機構によって拡散を修正して各光源部からの70~100%の照射量の光をインテグレータレンズに入射させることができ、これによって、照射時間の経過に伴う照度低下を抑制することができ、長期に亘って安定した照度を得ることができる。 According to the light irradiation apparatus for an exposure apparatus of the present invention, a plurality of light source parts including a light emitting part and a reflection optical system, a plurality of cassettes having a light source support part for supporting a predetermined number of light source parts, and a plurality of cassettes are attached. Optical axis angle adjustment that can adjust the optical axis angle with respect to the integrator lens of each light source unit so as to correct the diffusion of light that occurs as the irradiation time of each light source unit elapses and the support body having a plurality of cassette mounting parts Even if light diffusion occurs as the irradiation time of the light source unit elapses, the light is adjusted by the optical axis angle adjusting mechanism to correct the amount of light from 70 to 100% from each light source unit. Can be made incident on the integrator lens, whereby a decrease in illuminance with the lapse of irradiation time can be suppressed, and stable illuminance can be obtained over a long period of time.
 また、本発明の露光装置用光照射装置の制御方法によれば、各光源部の照射時間の経過に伴って生じる光の拡散を検出し、光軸角度調整機構によって、検出された光の拡散を修正するので、各光源部からの70~100%の照射量の光を、確実にインテグレータレンズに入射させることができ、照射時間の経過に伴う照度低下を抑制することができ、長期に亘って安定した照度を得ることができる。 Further, according to the method of controlling a light irradiation apparatus for an exposure apparatus of the present invention, the diffusion of light that occurs as the irradiation time of each light source unit elapses is detected, and the detected light is diffused by the optical axis angle adjustment mechanism. Therefore, 70-100% of the light from each light source unit can be incident on the integrator lens with certainty, and the illuminance decrease with the lapse of the irradiation time can be suppressed. And stable illuminance can be obtained.
 更に、本発明の露光装置及び露光方法によれば、上記の露光装置用光照射装置及びその制御方法を用いてマスクに形成されるパターンを基板に露光転写するようにしたので、長期に亘って安定した照度の露光光で露光することができ、高い精度での露光を行って製品の品質を向上させることができる。 Furthermore, according to the exposure apparatus and the exposure method of the present invention, the pattern formed on the mask is exposed and transferred onto the substrate using the above-described light irradiation apparatus for exposure apparatus and the control method thereof. Exposure can be performed with exposure light having a stable illuminance, and the product quality can be improved by performing exposure with high accuracy.
本発明の第1実施形態に係る分割逐次近接露光装置を説明するための一部分解斜視図である。It is a partial exploded perspective view for demonstrating the division | segmentation successive proximity exposure apparatus which concerns on 1st Embodiment of this invention. 図1に示す分割逐次近接露光装置の正面図である。It is a front view of the division | segmentation successive proximity exposure apparatus shown in FIG. マスクステージの断面図である。It is sectional drawing of a mask stage. (a)は光照射装置を示す正面図、(b)は(a)のIV-IV線に沿った断面図、(c)は(a)のIV´-IV´線に沿った断面図である(A) is a front view showing a light irradiation device, (b) is a sectional view taken along line IV-IV in (a), and (c) is a sectional view taken along line IV′-IV ′ in (a). is there カセットに取り付けられた光源部近傍の拡大断面図である。It is an expanded sectional view of the light source part vicinity attached to the cassette. カセットが支持体に取り付けられた状態を示す要部拡大図である。It is a principal part enlarged view which shows the state in which the cassette was attached to the support body. (a)~(d)は、反射鏡の開口部の形状をそれぞれ示す正面図である。(A)-(d) is a front view which respectively shows the shape of the opening part of a reflective mirror. 各光源部の出射面からインテグレータレンズの入射面までの距離を示す概略図である。It is the schematic which shows the distance from the output surface of each light source part to the entrance surface of an integrator lens. 支持体を光照明装置に装着する例を示す断面図である。It is sectional drawing which shows the example which mounts a support body to a light illuminating device. カセットをカセット取り付け部に取り付ける際の例を示す断面図である。It is sectional drawing which shows the example at the time of attaching a cassette to a cassette attachment part. カセットを支持体に取り付けるためのカセット固定手段の変形例を示す図であり、(a)は斜視図であり、(b)は平面図であり、(c)は、(b)のXI-XI線に沿った断面図である。It is a figure which shows the modification of the cassette fixing means for attaching a cassette to a support body, (a) is a perspective view, (b) is a top view, (c) is XI-XI of (b). It is sectional drawing along a line. カセットを支持体に取り付けるためのカセット固定手段の他の変形例を示す図である。It is a figure which shows the other modification of the cassette fixing means for attaching a cassette to a support body. カセットを支持体に取り付けるためのカセット固定手段のさらに他の変形例を示す図である。It is a figure which shows the further another modification of the cassette fixing means for attaching a cassette to a support body. (a)は、カセットを支持体に取り付けるためのカセット固定手段の他の変形例を示す斜視図であり、(b)は、カセットが支持体に取り付けられた状態を示す断面図である。(A) is a perspective view which shows the other modification of the cassette fixing means for attaching a cassette to a support body, (b) is sectional drawing which shows the state with which the cassette was attached to the support body. (a)は、カセットを支持体に取り付けるためのカセット固定手段のさらに他の変形例を示す斜視図であり、(b)は、カセットが支持体に取り付けられた状態を示す断面図である。(A) is a perspective view which shows the other modification of the cassette fixing means for attaching a cassette to a support body, (b) is sectional drawing which shows the state with which the cassette was attached to the support body. 第2実施形態に係る分割逐次近接露光装置の正面図である。It is a front view of the division | segmentation successive proximity exposure apparatus which concerns on 2nd Embodiment. (a)は光照射装置を示す正面図、(b)は(a)のXVII-XVII線に沿った断面図である。(A) is a front view which shows a light irradiation apparatus, (b) is sectional drawing along the XVII-XVII line of (a). (a)はカセットを示す正面図であり、(b)は(a)の側面図であり、(c)は(a)の下面図である。(A) is a front view which shows a cassette, (b) is a side view of (a), (c) is a bottom view of (a). (a)は第2実施形態の変形例に係る光照射装置のカセットを示す正面図であり、(b)は他の変形例に係る光照射装置のカセットを示す正面図であり、(c)は(a)の光照射装置の光源部を部分的に消灯させた場合を示す図である。(A) is a front view which shows the cassette of the light irradiation apparatus which concerns on the modification of 2nd Embodiment, (b) is a front view which shows the cassette of the light irradiation apparatus which concerns on another modification, (c) These are figures which show the case where the light source part of the light irradiation apparatus of (a) is partially extinguished. 本発明の第3実施形態に係る近接スキャン露光装置の全体斜視図である。It is a whole perspective view of the proximity scan exposure apparatus which concerns on 3rd Embodiment of this invention. 近接スキャン露光装置を、照射部等の上部構成を取り除いた状態で示す上面図である。It is a top view which shows a proximity | contact scanning exposure apparatus in the state which removed upper structures, such as an irradiation part. 近接スキャン露光装置のマスク配置領域における露光状態を示す側面図である。It is a side view which shows the exposure state in the mask arrangement | positioning area | region of a proximity scan exposure apparatus. (a)は、マスクとエアパッドとの位置関係を説明するための要部上面図であり、(b)は、その断面図である。(A) is a principal part top view for demonstrating the positional relationship of a mask and an air pad, (b) is the sectional drawing. 近接スキャン露光装置の照射部を説明するための図である。It is a figure for demonstrating the irradiation part of a proximity scan exposure apparatus. (a)は、図24の光照射装置を示す正面図であり、(b)は、(a)のXXV-XXV線に沿った断面図である。(A) is a front view showing the light irradiation device of FIG. 24, and (b) is a cross-sectional view taken along line XXV-XXV of (a). 本発明の第4実施形態に係る近接スキャン露光装置の照射部を説明するための図である。It is a figure for demonstrating the irradiation part of the proximity scan exposure apparatus which concerns on 4th Embodiment of this invention. (a)は、図26の光照射装置を示す正面図であり、(b)は、(a)のXXVII-XXVII線に沿った断面図である(A) is a front view showing the light irradiation device of FIG. 26, and (b) is a cross-sectional view taken along line XXVII-XXVII in (a). (a)及び(b)は、拡散した光が、インテグレータレンズから外れる状態を示す従来の光照射装置の概略図である。(A) And (b) is the schematic of the conventional light irradiation apparatus which shows the state from which the diffused light remove | deviated from an integrator lens.
 以下、本発明に係る露光装置用光照射装置、およびこの光照射装置を用いた露光装置及び露光方法に係る実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of a light irradiation apparatus for an exposure apparatus according to the present invention and an exposure apparatus and an exposure method using the light irradiation apparatus will be described in detail with reference to the drawings.
(第1実施形態)
 図1及び図2に示すように、本実施形態の分割逐次近接露光装置PEは、マスクMを保持するマスクステージ10と、ガラス基板(被露光材)Wを保持する基板ステージ20と、パターン露光用の光を照射する照明光学系70と、を備えている。
(First embodiment)
As shown in FIGS. 1 and 2, the division sequential proximity exposure apparatus PE of the present embodiment includes a mask stage 10 that holds a mask M, a substrate stage 20 that holds a glass substrate (material to be exposed) W, and pattern exposure. And an illumination optical system 70 for irradiating light.
 なお、ガラス基板W(以下、単に「基板W」と称する。)は、マスクMに対向配置されており、このマスクMに描かれたパターンを露光転写すべく表面(マスクMの対向面側)に感光剤が塗布されている。 A glass substrate W (hereinafter simply referred to as “substrate W”) is disposed to face the mask M, and a surface (on the opposite surface side of the mask M) for exposing and transferring a pattern drawn on the mask M. A photosensitive agent is applied to the surface.
 マスクステージ10は、中央部に矩形形状の開口11aが形成されるマスクステージベース11と、マスクステージベース11の開口11aにX軸,Y軸,θ方向に移動可能に装着されるマスク保持部であるマスク保持枠12と、マスクステージベース11の上面に設けられ、マスク保持枠12をX軸,Y軸,θ方向に移動させて、マスクMの位置を調整するマスク駆動機構16と、を備える。 The mask stage 10 is a mask stage base 11 in which a rectangular opening 11a is formed at the center, and a mask holding part that is mounted on the opening 11a of the mask stage base 11 so as to be movable in the X axis, Y axis, and θ directions. A mask holding frame 12 and a mask driving mechanism 16 that is provided on the upper surface of the mask stage base 11 and adjusts the position of the mask M by moving the mask holding frame 12 in the X axis, Y axis, and θ directions. .
 マスクステージベース11は、装置ベース50上に立設される支柱51、及び支柱51の上端部に設けられるZ軸移動装置52によりZ軸方向に移動可能に支持され(図2参照。)、基板ステージ20の上方に配置される。 The mask stage base 11 is supported by a column 51 standing on the apparatus base 50 and a Z-axis moving device 52 provided at the upper end of the column 51 so as to be movable in the Z-axis direction (see FIG. 2). It is arranged above the stage 20.
 図3に示すように、マスクステージベース11の開口11aの周縁部の上面には、平面ベアリング13が複数箇所配置されており、マスク保持枠12は、その上端外周縁部に設けられるフランジ12aを平面ベアリング13に載置している。これにより、マスク保持枠12は、マスクステージベース11の開口11aに所定のすき間を介して挿入されるので、このすき間分だけX軸,Y軸,θ方向に移動可能となる。 As shown in FIG. 3, a plurality of planar bearings 13 are arranged on the upper surface of the peripheral edge of the opening 11a of the mask stage base 11, and the mask holding frame 12 has a flange 12a provided at the outer peripheral edge of the upper end. It is mounted on the flat bearing 13. As a result, the mask holding frame 12 is inserted into the opening 11a of the mask stage base 11 through a predetermined gap, so that the mask holding frame 12 can move in the X axis, Y axis, and θ directions by the gap.
 また、マスク保持枠12の下面には、マスクMを保持するチャック部14が間座15を介して固定されている。このチャック部14には、マスクMのマスクパターンが描かれていない周縁部を吸着するための複数の吸引ノズル14aが開設されており、マスクMは、吸引ノズル14aを介して図示しない真空式吸着装置によりチャック部14に着脱自在に保持される。また、チャック部14は、マスク保持枠12と共にマスクステージベース11に対してX軸,Y軸,θ方向に移動可能である。 Further, a chuck portion 14 for holding the mask M is fixed to the lower surface of the mask holding frame 12 via a spacer 15. The chuck portion 14 is provided with a plurality of suction nozzles 14a for sucking the peripheral portion of the mask M on which the mask pattern is not drawn, and the mask M is not shown in the drawing through the suction nozzle 14a. It is detachably held on the chuck portion 14 by the apparatus. The chuck portion 14 can move in the X axis, Y axis, and θ directions with respect to the mask stage base 11 together with the mask holding frame 12.
 マスク駆動機構16は、マスク保持枠12のX軸方向に沿う一辺に取り付けられる2台のY軸方向駆動装置16yと、マスク保持枠12のY軸方向に沿う一辺に取り付けられる1台のX軸方向駆動装置16xと、を備える。 The mask driving mechanism 16 includes two Y-axis direction driving devices 16y attached to one side along the X-axis direction of the mask holding frame 12, and one X-axis attached to one side along the Y-axis direction of the mask holding frame 12. Direction drive device 16x.
 Y軸方向駆動装置16yは、マスクステージベース11上に設置され、Y軸方向に伸縮するロッド16bを有する駆動用アクチュエータ(例えば、電動アクチュエータ等)16aと、ロッド16bの先端にピン支持機構16cを介して連結されるスライダ16dと、マスク保持枠12のX軸方向に沿う辺部に取り付けられ、スライダ16dを移動可能に取り付ける案内レール16eと、を備える。なお、X軸方向駆動装置16xも、Y軸方向駆動装置16yと同様の構成を有する。 The Y-axis direction driving device 16y is installed on the mask stage base 11, and has a driving actuator (for example, an electric actuator) 16a having a rod 16b that expands and contracts in the Y-axis direction, and a pin support mechanism 16c at the tip of the rod 16b. And a guide rail 16e attached to a side portion of the mask holding frame 12 along the X-axis direction and movably attached to the slider 16d. The X-axis direction drive device 16x has the same configuration as the Y-axis direction drive device 16y.
 そして、マスク駆動機構16では、1台のX軸方向駆動装置16xを駆動させることによりマスク保持枠12をX軸方向に移動させ、2台のY軸方向駆動装置16yを同等に駆動させることによりマスク保持枠12をY軸方向に移動させる。また、2台のY軸方向駆動装置16yのどちらか一方を駆動することによりマスク保持枠12をθ方向に移動(Z軸回りの回転)させる。 In the mask drive mechanism 16, the mask holding frame 12 is moved in the X-axis direction by driving one X-axis direction drive device 16x, and the two Y-axis direction drive devices 16y are driven equally. The mask holding frame 12 is moved in the Y axis direction. In addition, the mask holding frame 12 is moved in the θ direction (rotated about the Z axis) by driving one of the two Y-axis direction driving devices 16y.
 さらに、マスクステージベース11の上面には、図1に示すように、マスクMと基板Wとの対向面間のギャップを測定するギャップセンサ17と、チャック部14に保持されるマスクMの取り付け位置を確認するためのアライメントカメラ18と、が設けられる。これらギャップセンサ17及びアライメントカメラ18は、移動機構19を介してX軸,Y軸方向に移動可能に保持され、マスク保持枠12内に配置される。 Further, on the upper surface of the mask stage base 11, as shown in FIG. 1, a gap sensor 17 for measuring a gap between the opposing surfaces of the mask M and the substrate W, and a mounting position of the mask M held by the chuck portion 14. And an alignment camera 18 for confirming the above. The gap sensor 17 and the alignment camera 18 are held so as to be movable in the X-axis and Y-axis directions via the moving mechanism 19 and are arranged in the mask holding frame 12.
 また、マスク保持枠12上には、図1に示すように、マスクステージベース11の開口11aのX軸方向の両端部に、マスクMの両端部を必要に応じて遮蔽するアパーチャブレード38が設けられる。このアパーチャブレード38は、モータ、ボールねじ、及びリニアガイド等からなるアパーチャブレード駆動機構39によりX軸方向に移動可能とされて、マスクMの両端部の遮蔽面積を調整する。なお、アパーチャブレード38は、開口11aのX軸方向の両端部だけでなく、開口11aのY軸方向の両端部に同様に設けられている。 On the mask holding frame 12, as shown in FIG. 1, aperture blades 38 are provided at both ends in the X-axis direction of the opening 11a of the mask stage base 11 to shield both ends of the mask M as necessary. It is done. The aperture blade 38 is movable in the X-axis direction by an aperture blade drive mechanism 39 including a motor, a ball screw, a linear guide, and the like, and adjusts the shielding area at both ends of the mask M. The aperture blades 38 are provided not only at both ends of the opening 11a in the X-axis direction but also at both ends of the opening 11a in the Y-axis direction.
 基板ステージ20は、図1及び図2に示すように、基板Wを保持する基板保持部21と、基板保持部21を装置ベース50に対してX軸,Y軸,Z軸方向に移動する基板駆動機構22と、を備える。基板保持部21は、図示しない真空吸着機構によって基板Wを着脱自在に保持する。基板駆動機構22は、基板保持部21の下方に、Y軸テーブル23、Y軸送り機構24、X軸テーブル25、X軸送り機構26、及びZ-チルト調整機構27と、を備える。 As shown in FIGS. 1 and 2, the substrate stage 20 includes a substrate holding unit 21 that holds the substrate W, and a substrate that moves the substrate holding unit 21 in the X-axis, Y-axis, and Z-axis directions with respect to the apparatus base 50. Drive mechanism 22. The substrate holding unit 21 detachably holds the substrate W by a vacuum suction mechanism (not shown). The substrate drive mechanism 22 includes a Y-axis table 23, a Y-axis feed mechanism 24, an X-axis table 25, an X-axis feed mechanism 26, and a Z-tilt adjustment mechanism 27 below the substrate holder 21.
 Y軸送り機構24は、図2に示すように、リニアガイド28と送り駆動機構29とを備えて構成され、Y軸テーブル23の裏面に取り付けられたスライダ30が、装置ベース50上に延びる2本の案内レール31に転動体(図示せず)を介して跨架されると共に、モータ32とボールねじ装置33とによってY軸テーブル23を案内レール31に沿って駆動する。 As shown in FIG. 2, the Y-axis feed mechanism 24 includes a linear guide 28 and a feed drive mechanism 29, and a slider 30 attached to the back surface of the Y-axis table 23 extends 2 on the apparatus base 50. The Y-axis table 23 is driven along the guide rail 31 by a motor 32 and a ball screw device 33 while straddling the guide rail 31 through a rolling element (not shown).
 なお、X軸送り機構26もY軸送り機構24と同様の構成を有し、X軸テーブル25をY軸テーブル23に対してX方向に駆動する。また、Z-チルト調整機構27は、くさび状の移動体34,35と送り駆動機構36とを組み合わせてなる可動くさび機構をX方向の一端側に1台、他端側に2台配置することで構成される。なお、送り駆動機構29,36は、モータとボールねじ装置とを組み合わせた構成であってもよく、固定子と可動子とを有するリニアモータであってもよい。また、Z-チルト調整機構27の設置数は任意である。 The X-axis feed mechanism 26 has the same configuration as the Y-axis feed mechanism 24, and drives the X-axis table 25 in the X direction with respect to the Y-axis table 23. The Z-tilt adjustment mechanism 27 has one movable wedge mechanism, which is a combination of the wedge-shaped moving bodies 34 and 35 and the feed drive mechanism 36, arranged at one end in the X direction and two at the other end. Consists of. The feed drive mechanisms 29 and 36 may be a combination of a motor and a ball screw device, or may be a linear motor having a stator and a mover. Further, the number of Z-tilt adjustment mechanisms 27 installed is arbitrary.
 これにより、基板駆動機構22は、基板保持部21をX方向及びY方向に送り駆動するとともに、マスクMと基板Wとの対向面間のギャップを微調整するように、基板保持部21をZ軸方向に微動且つチルト調整する。 Thereby, the substrate driving mechanism 22 feeds and drives the substrate holding unit 21 in the X direction and the Y direction, and moves the substrate holding unit 21 to Z so as to finely adjust the gap between the opposing surfaces of the mask M and the substrate W. Fine movement and tilt adjustment in the axial direction.
 基板保持部21のX方向側部とY方向側部にはそれぞれバーミラー61,62が取り付けられ、また、装置ベース50のY方向端部とX方向端部には、計3台のレーザー干渉計63,64,65が設けられている。これにより、レーザー干渉計63,64,65からレーザー光をバーミラー61,62に照射し、バーミラー61、62により反射されたレーザー光を受光して、レーザー光とバーミラー61,62により反射されたレーザー光との干渉を測定して基板ステージ20の位置を検出する。 Bar mirrors 61 and 62 are respectively attached to the X-direction side and Y-direction side of the substrate holding unit 21, and a total of three laser interferometers are installed at the Y-direction end and the X-direction end of the apparatus base 50. 63, 64, 65 are provided. As a result, the laser light is applied to the bar mirrors 61 and 62 from the laser interferometers 63, 64 and 65, the laser light reflected by the bar mirrors 61 and 62 is received, and the laser light and the laser reflected by the bar mirrors 61 and 62 are received. The position of the substrate stage 20 is detected by measuring interference with light.
 図2及び図4に示すように、照明光学系70は、複数の光源部73を備えた光照射装置80と、複数の光源部73から射出された光束が入射されるインテグレータレンズ74と、各光源部73のランプ71に電圧が調整された直流電流を供給する光学制御部76と、インテグレータレンズ74の出射面から出射された光路の向きを変える凹面鏡77と、複数の光源部73とインテグレータレンズ74との間に配置されて照射された光を透過・遮断するように開閉制御する露光制御用シャッター78と、を備える。なお、インテグレータレンズ74と露光面との間には、DUVカットフィルタ、偏光フィルタ、バンドパスフィルタが配置されてもよく、また、凹面鏡77には、ミラーの曲率を手動または自動で変更可能なデクリネーション角補正手段が設けられてもよい。 As shown in FIGS. 2 and 4, the illumination optical system 70 includes a light irradiation device 80 including a plurality of light source units 73, an integrator lens 74 into which light beams emitted from the plurality of light source units 73 are incident, An optical control unit 76 that supplies a direct current with a regulated voltage to the lamp 71 of the light source unit 73, a concave mirror 77 that changes the direction of the optical path emitted from the exit surface of the integrator lens 74, a plurality of light source units 73, and an integrator lens And an exposure control shutter 78 that controls opening and closing so as to transmit and block the irradiated light. A DUV cut filter, a polarization filter, and a band pass filter may be disposed between the integrator lens 74 and the exposure surface. The concave mirror 77 has a mirror whose curvature can be changed manually or automatically. A clearance angle correction unit may be provided.
 図4から図8に示すように、光照射装置80は、発光部としての超高圧水銀ランプ71と、このランプ71から発生された光に指向性をもたせて射出する反射光学系としての反射鏡72と、をそれぞれ含む複数の光源部73と、複数の光源部73のうち、所定数の光源部73をそれぞれ取り付け可能な複数のカセット81と、複数のカセット81を取り付け可能な支持体82と、を備える。 As shown in FIGS. 4 to 8, the light irradiation device 80 includes an ultra-high pressure mercury lamp 71 as a light emitting unit and a reflecting mirror as a reflecting optical system that emits light with directivity emitted from the lamp 71. 72, a plurality of light source units 73 including a plurality of light source units 73, a plurality of cassettes 81 to which a predetermined number of light source units 73 can be respectively mounted, and a support body 82 to which a plurality of cassettes 81 can be mounted. .
 なお、照明光学系70において、160Wの超高圧水銀ランプ71を使用した場合、第6世代のフラットパネルを製造する露光装置では374個の光源部、第7世代のフラットパネルを製造する露光装置では572個の光源部、第8世代のフラットパネルを製造する露光装置では、774個の光源部が必要とされる。但し、本実施形態では、説明を簡略化するため、図4に示すように、α方向に3段、β方向に2列の計6個の光源部73が取り付けられたカセット81を、3段×3列の計9個配した、54個の光源部73を有するものとして説明する。なお、カセット81や支持体82は、光源部73の配置をα、β方向に同数とした正方形形状も考えられるが、α、β方向に異なる数とした長方形形状が適用される。また、本実施形態の光源部73では、反射鏡72の開口部72bが略矩形形状に形成されており、四辺がα、β方向に沿うように配置されている。なお、略矩形形状の開口部72bとは、図7(a)に示す隅部72cが直角に交差する正方形形状や略長方形形状のものに限らず、図7(b)に示す隅部72cが曲面状に面取りされたものや、図7(c)に示す隅部72cが直線状に面取りされたものでもよい。また、図7(d)に示すように、開口部72bは、対向する2辺の両端部が円弧で接続された形状であってもよい。 In the illumination optical system 70, when a 160 W ultrahigh pressure mercury lamp 71 is used, an exposure apparatus that manufactures a 6th generation flat panel has 374 light source units, and an exposure apparatus that manufactures a 7th generation flat panel. In an exposure apparatus that manufactures 572 light source units and 8th generation flat panels, 774 light source units are required. However, in this embodiment, in order to simplify the description, as shown in FIG. 4, a cassette 81 having a total of six light source sections 73 mounted in three rows in the α direction and two rows in the β direction is arranged in three rows. A description will be given assuming that there are 54 light source units 73 arranged in a total of 9 rows of 3 rows. The cassette 81 and the support 82 may have a square shape with the same number of light source portions 73 arranged in the α and β directions, but a rectangular shape with a different number in the α and β directions is applied. Moreover, in the light source part 73 of this embodiment, the opening part 72b of the reflective mirror 72 is formed in the substantially rectangular shape, and it arrange | positions so that four sides may follow an (alpha) and (beta) direction. Note that the substantially rectangular opening 72b is not limited to a square shape or a substantially rectangular shape in which the corner 72c shown in FIG. 7A intersects at a right angle, but the corner 72c shown in FIG. The surface may be chamfered, or the corner 72c shown in FIG. 7C may be chamfered linearly. Moreover, as shown in FIG.7 (d), the opening part 72b may be the shape where the both ends of 2 sides which oppose were connected by the circular arc.
 図5に示すように、超高圧水銀ランプ71の発光管(石英ガラス球)94の内部には、2つの電極等が設けられ、所定の水銀蒸気圧、例えば10~数10パスカルの水銀が封入されている。直流電流が供給される超高圧水銀ランプ71の場合、電極は、放電プラズマに電子を放出する陰極95と、放電プラズマから電子が流入する陽極96からなり、陰極95と陽極96間のアーク放電により発光する。発光管94は、陰極95と陽極96との中点が反射鏡72の焦点に略位置するように固定されている。 As shown in FIG. 5, inside the arc tube (quartz glass sphere) 94 of the ultra-high pressure mercury lamp 71, two electrodes and the like are provided, and mercury with a predetermined mercury vapor pressure, for example, 10 6 to several 10 7 Pascal. Is enclosed. In the case of the ultra-high pressure mercury lamp 71 to which a direct current is supplied, the electrode includes a cathode 95 that emits electrons into the discharge plasma and an anode 96 into which electrons flow from the discharge plasma, and arc discharge between the cathode 95 and the anode 96 is performed. Emits light. The arc tube 94 is fixed so that the midpoint between the cathode 95 and the anode 96 is substantially located at the focal point of the reflecting mirror 72.
 反射鏡72は、反射光が焦点に集中する放物面又は楕円面を有する形状であってもよく、反射光が平行光となるパラボラミラーであってもよい。反射鏡72は、例えば、硼珪酸ガラスや結晶化ガラスの成形体からなり、その内表面には反射コーティング膜が形成されている。反射コーティング膜は、300~590nmの紫外領域から可視領域の光を反射させ、不要な可視領域や赤外領域の光を反射鏡72の背後に透過させる、例えば、SiOとNbとからなる誘電体多層膜である。 The reflecting mirror 72 may have a parabolic surface or an elliptical surface where the reflected light is concentrated on the focal point, or may be a parabolic mirror in which the reflected light becomes parallel light. The reflecting mirror 72 is made of, for example, a molded body of borosilicate glass or crystallized glass, and a reflective coating film is formed on the inner surface thereof. The reflective coating film reflects light in the visible region from the ultraviolet region of 300 to 590 nm, and transmits unnecessary light in the visible region and infrared region behind the reflecting mirror 72. For example, SiO 2 and Nb 2 O 5 A dielectric multilayer film comprising:
 図5から図8に示すように、各カセット81は、所定数の光源部73を支持する光源支持部83と、光源支持部83に支持された光源部73を押さえて、該光源支持部83に取り付けられる凹状のランプ押さえカバー(カバー部材)84と、を備えた略直方体形状に形成されており、それぞれ同一構成を有する。なお、略直方体形状とは、面取部を含む形状であってもよい。 As shown in FIG. 5 to FIG. 8, each cassette 81 presses the light source support part 83 that supports a predetermined number of light source parts 73 and the light source part 73 supported by the light source support part 83, and the light source support part 83. Are formed in a substantially rectangular parallelepiped shape including a concave lamp pressing cover (cover member) 84 attached to each other. Note that the substantially rectangular parallelepiped shape may be a shape including a chamfered portion.
 光源支持部83には、光源部73の数に対応して設けられ、光源部73からの光を発光する複数の窓部83aと、該窓部83aのカバー側に設けられ、反射鏡72の開口部72a(又は、反射鏡72が取り付けられる反射鏡取り付け部の開口部)を囲うランプ用凹部83bと、が形成される。また、該窓部83aの反カバー側には、複数のカバーガラス85がそれぞれ取り付けられている。なお、カバーガラス85の取り付けは任意であり、設けられなくてもよい。 The light source support portion 83 is provided corresponding to the number of the light source portions 73 and is provided on the cover side of the window portions 83 a that emit light from the light source portion 73. A lamp recess 83b that surrounds the opening 72a (or the opening of the reflecting mirror mounting portion to which the reflecting mirror 72 is mounted) is formed. A plurality of cover glasses 85 are attached to the window 83a on the side opposite to the cover. In addition, attachment of the cover glass 85 is arbitrary and does not need to be provided.
 各ランプ用凹部83bの底面は、後述する光軸角度調整機構99が作動していない状態において、光源部73の光を照射する照射面(ここでは、反射鏡72の開口面72b)と、光源部73の光軸LAとの交点pが、各α、β方向において単一の曲面、例えば、球面r上に位置するように、平面又は曲面(本実施形態では、平面)に形成される。 The bottom surface of each lamp recess 83b includes an irradiation surface (here, an opening surface 72b of the reflecting mirror 72) for irradiating light from the light source unit 73 in a state where an optical axis angle adjusting mechanism 99 described later is not operating, and a light source. The intersection point p with the optical axis LA of the portion 73 is formed in a flat surface or a curved surface (in this embodiment, a flat surface) so as to be positioned on a single curved surface, for example, the spherical surface r, in each α and β direction.
 ランプ押さえカバー84の底面には、光源部73の後部に当接する当接部86が設けられており、各当接部86には、モータやシリンダのようなアクチュエータ、ばね押さえ、ねじ止め等によって構成されるランプ押さえ機構87が設けられている。これにより、各光源部73は、反射鏡72の開口部72aを光源支持部83のランプ用凹部83bに嵌合させ、ランプ押さえカバー84を光源支持部83に取り付け、ランプ押さえ機構87によって光源部73の後部を押さえつけることで、カセット81に位置決めされる。 A contact portion 86 that contacts the rear portion of the light source portion 73 is provided on the bottom surface of the lamp pressing cover 84. Each contact portion 86 is provided with an actuator such as a motor or a cylinder, a spring press, screwing, or the like. A configured lamp holding mechanism 87 is provided. As a result, each light source unit 73 fits the opening 72 a of the reflecting mirror 72 into the lamp recess 83 b of the light source support unit 83 and attaches the lamp pressing cover 84 to the light source support unit 83. By pressing the rear part 73, the cassette 81 is positioned.
 従って、図8に示すように、カセット81に位置決めされた所定数の光源部73の光がインテグレータレンズ74の入射面に入射され、所定数の光源部73の各照射面から照射された光が、インテグレータレンズ74の入射面に到達する照射量は70%~100%となる。 Therefore, as shown in FIG. 8, the light of the predetermined number of light source units 73 positioned in the cassette 81 is incident on the incident surface of the integrator lens 74, and the light irradiated from each irradiation surface of the predetermined number of light source units 73. The irradiation amount reaching the incident surface of the integrator lens 74 is 70% to 100%.
 また、支持体82は、複数のカセット81を取り付ける複数のカセット取り付け部90を有する支持体本体91と、該支持体本体91に取り付けられ、各カセット81の後部を覆う支持体カバー92と、を有する。 The support 82 includes a support body 91 having a plurality of cassette mounting portions 90 to which a plurality of cassettes 81 are attached, and a support cover 92 that is attached to the support body 91 and covers the rear portion of each cassette 81. Have.
 図9に示すように、支持体82は、光照射装置80に装着される際、カセット81を取り付けた支持体82の重心を考慮して、一番下方に位置するカセット81の前面と支持体82の設置面との間の角度ΨをΨ≦90°にして取り付けられることが好ましい。これにより、光照射装置80が倒れるのを防止することができる。なお、図9は、Ψ=90°にした場合を示している。 As shown in FIG. 9, when the support 82 is mounted on the light irradiation device 80, considering the center of gravity of the support 82 to which the cassette 81 is attached, the front surface of the cassette 81 and the support located at the lowermost position. It is preferable that the angle Ψ with respect to the installation surface 82 is set to Ψ ≦ 90 °. Thereby, it can prevent that the light irradiation apparatus 80 falls down. FIG. 9 shows a case where Ψ = 90 °.
 図6に示すように、各カセット取り付け部90には、光源支持部83が臨む開口部90aが形成され、該開口部90aの周囲には、光源支持部83の周囲の矩形平面が対向する平面90bを底面としたカセット用凹部90cが形成される。また、支持体本体91のカセット用凹部90cの周囲には、カセット81を固定するためのカセット固定手段93が設けられており、本実施形態では、カセット81に形成された凹部81aに係合されて、カセット81を固定する。 As shown in FIG. 6, each cassette mounting portion 90 is formed with an opening 90 a that faces the light source support portion 83, and a plane around which the rectangular plane around the light source support portion 83 is opposed. A cassette recess 90c having a bottom surface 90b is formed. A cassette fixing means 93 for fixing the cassette 81 is provided around the cassette concave portion 90c of the support body 91. In this embodiment, the cassette fixing means 93 is engaged with the concave portion 81a formed in the cassette 81. Then, the cassette 81 is fixed.
 なお、図10に示すように、カセット81は、カセット固定手段93によって固定される際、カセット81の一部を傾けた状態でカセット取り付け部90に組み付けたほうが、光照射装置80が後方へ倒れにくく組み付けやすい。 As shown in FIG. 10, when the cassette 81 is fixed by the cassette fixing means 93, the light irradiation device 80 falls backward when the cassette 81 is assembled to the cassette mounting portion 90 with a part of the cassette 81 tilted. It is difficult and easy to assemble.
 α方向或いはβ方向に並ぶカセット用凹部90cの各平面90bは、各カセット81の全ての光源部73の光を照射する照射面と、光源部73の光軸LAとの交点pが、各α、β方向において単一の曲面、例えば、球面r上に位置するように、所定の角度γで交差するように形成される(図8参照。)。 Each plane 90b of the cassette recess 90c arranged in the α direction or the β direction has an intersection point p between the irradiation surface that irradiates the light of all the light source parts 73 of each cassette 81 and the optical axis LA of the light source part 73. , Β are formed so as to intersect at a predetermined angle γ so as to be positioned on a single curved surface, for example, a spherical surface r (see FIG. 8).
 従って、各カセット81は、これら光源支持部83を各カセット取り付け部90のカセット用凹部90cに嵌合させて位置決めした状態で、カセット固定手段93をカセット81の凹部81aに係合させることで、支持体82にそれぞれ固定される。そして、これら各カセット81が支持体本体91に取り付けられた状態で、該支持体本体91に支持体カバー92が取り付けられる。従って、図8に示すように、各カセット81に位置決めされた全ての光源部73の光がインテグレータレンズ74の入射面に入射され、全ての光源部73の各照射面から照射された光が、インテグレータレンズ74の入射面に到達する照射量は70%~100%となる。 Therefore, each cassette 81 is engaged with the cassette fixing means 93 in the recess 81a of the cassette 81 in a state where the light source support 83 is fitted and positioned in the cassette recess 90c of each cassette mounting portion 90. Each is fixed to the support 82. Then, a support cover 92 is attached to the support body 91 in a state where each cassette 81 is attached to the support body 91. Therefore, as shown in FIG. 8, the light of all the light source units 73 positioned in each cassette 81 is incident on the incident surface of the integrator lens 74, and the light irradiated from each irradiation surface of all the light source units 73 is The amount of irradiation reaching the incident surface of the integrator lens 74 is 70% to 100%.
 なお、図6に示すようなカセット固定手段93の代わりに、図11に示すように、カセット81の対向する二辺に貫通孔83cを設け、カセット固定手段としての円柱状のシャフト部材93aを、貫通孔83cを介して支持体本体91の凹部91bに挿入することで、カセット81が固定されてもよい。なお、貫通孔やカセット固定手段は、対向する二辺の中間部に設けられているが、例えば、カセット81の四隅に設けられてもよい。また、カセット81には、図12に示すように、貫通孔83cの代わりに、カセット81の側面に臨む溝部83dを設けて、円柱状のシャフト部材93aを、溝部83dを介して支持体本体91の凹部91bに挿入することで、カセット81が固定されてもよい。また、カセット固定手段は、円柱状のシャフト部材93aの代わりに、図13に示すような、多角形状のシャフト部材93eであってもよく、それに応じて貫通孔83cや凹部91bの形状を変更すればよい。特に、カセット固定手段を円柱状のシャフト部材93aと多角形状のシャフト部材93eとの組合せとすることで、カセット81を間違えることなく、支持体82の正規の位置に取り付けることができる。また、図11及び図12に示すようなカセット固定手段は、図6に示すカセット固定手段93と共に用いることができる。 In place of the cassette fixing means 93 as shown in FIG. 6, as shown in FIG. 11, through holes 83c are provided on two opposite sides of the cassette 81, and a cylindrical shaft member 93a as the cassette fixing means is provided. The cassette 81 may be fixed by being inserted into the concave portion 91b of the support body 91 through the through hole 83c. In addition, although the through hole and the cassette fixing means are provided in the middle part of the two opposite sides, they may be provided in the four corners of the cassette 81, for example. Further, as shown in FIG. 12, the cassette 81 is provided with a groove portion 83d facing the side surface of the cassette 81 instead of the through hole 83c, and the columnar shaft member 93a is connected to the support body 91 via the groove portion 83d. The cassette 81 may be fixed by being inserted into the recess 91b. Further, the cassette fixing means may be a polygonal shaft member 93e as shown in FIG. 13 instead of the columnar shaft member 93a, and the shape of the through hole 83c and the recess 91b can be changed accordingly. That's fine. In particular, by using a combination of the cylindrical shaft member 93a and the polygonal shaft member 93e as the cassette fixing means, the cassette 81 can be attached to the regular position of the support 82 without making a mistake. Further, the cassette fixing means as shown in FIGS. 11 and 12 can be used together with the cassette fixing means 93 shown in FIG.
 或いは、図14(a)に示すように、カセット81の四隅にカセット固定手段としての円柱突起93bまたは多角形突起を設け、図14(b)に示すように、支持体本体91側に形成された穴部または溝部91cと嵌合させてアライメントするようにしてもよい。または、図15(a)に示すように、カセット81の対向する二辺にホゾ93cを形成し、図15(b)に示すように、支持体本体91側に形成された穴部または溝部91dと嵌合させてアライメントするようにしてもよい。なお、ホゾ93cは、組付け性から二辺に設けられることが好ましいが、図15(a)の一点鎖線に示すように、ホゾ93cは、残りの対向する二辺にも設けられても良い。また、図14(a)に示す円柱突起93bや図15(a)に示すホゾ93cを支持体本体91側に設け、穴部や溝部をカセット81側に設ける構成であってもよい。さらに、図14(a)及び図15(a)に示すカセット固定手段も、図8に示すカセット固定手段93と共に用いることができる。 Alternatively, as shown in FIG. 14A, cylindrical projections 93b or polygonal projections as cassette fixing means are provided at the four corners of the cassette 81, and as shown in FIG. You may make it align by fitting with the hole or groove part 91c. Alternatively, as shown in FIG. 15 (a), tenons 93c are formed on two opposite sides of the cassette 81, and as shown in FIG. 15 (b), a hole or groove 91d formed on the support body 91 side. And may be aligned with each other. In addition, although the tenon 93c is preferably provided on two sides for ease of assembly, the tenon 93c may be provided on the other two opposite sides as shown by the one-dot chain line in FIG. . Moreover, the structure which provides the cylindrical protrusion 93b shown to Fig.14 (a) and the boss 93c shown to Fig.15 (a) in the support body 91 side, and provides a hole part and a groove part in the cassette 81 side may be sufficient. Furthermore, the cassette fixing means shown in FIGS. 14A and 15A can also be used together with the cassette fixing means 93 shown in FIG.
 図6に示すように、枠状の光源支持部83の裏面には、隣接する光源部73の間から後方に延びる長尺の雄ねじ97aが固定されており、この雄ねじ97aの先端が、ランプ押さえカバー84の底部に固定されるモータ98により回転駆動されるナット97bに螺合している。モータ98が作動してナット97bが回転すると、螺合する雄ねじ97aを介して光源支持部83が引張られまたは押圧されて弾性変形し、これにより、光源支持部83に固定される光源部73の光軸角度が調整される。換言すれば、雄ねじ97a、ナット97b及びモータ98は、インテグレータレンズ74に対する各光源部73の光軸角度を調整する光軸角度調整機構99を構成する。 As shown in FIG. 6, a long male screw 97a extending backward from between adjacent light source portions 73 is fixed to the back surface of the frame-shaped light source support portion 83, and the tip of the male screw 97a is connected to the lamp retainer. The nut is engaged with a nut 97b that is rotationally driven by a motor 98 fixed to the bottom of the cover 84. When the motor 98 is actuated to rotate the nut 97 b, the light source support portion 83 is pulled or pressed via the threaded male screw 97 a to be elastically deformed, and thereby the light source portion 73 fixed to the light source support portion 83. The optical axis angle is adjusted. In other words, the male screw 97a, the nut 97b, and the motor 98 constitute an optical axis angle adjusting mechanism 99 that adjusts the optical axis angle of each light source unit 73 with respect to the integrator lens 74.
 尚、光軸角度調整機構99による調整される各光源部73の光軸角度は、光源部73の照射時間の経過に伴って生じる光の拡散を修正可能な角度、例えば、1°以下の微小角度で十分であるので、光源支持部83の弾性変形の範囲内で調整可能である。また、光軸角度調整機構99は、上記した雄ねじ97a、ナット97b、及びモータ98からなる機構に限定されず、任意の機構が採用可能であり、光源部73の後部を押さえつけるランプ押さえ機構87に配設するようにしてもよい。 The optical axis angle of each light source unit 73 adjusted by the optical axis angle adjusting mechanism 99 is an angle that can correct the diffusion of light that occurs with the lapse of the irradiation time of the light source unit 73, for example, a minute value of 1 ° or less. Since the angle is sufficient, the light source support 83 can be adjusted within the range of elastic deformation. Further, the optical axis angle adjusting mechanism 99 is not limited to the mechanism including the male screw 97a, the nut 97b, and the motor 98 described above, and any mechanism can be adopted, and the lamp pressing mechanism 87 that presses the rear portion of the light source unit 73 can be used. It may be arranged.
 また、図8に示すように、インテグレータレンズ74に隣接して、例えば、照度計などの光検出装置101が配設されている。光検出装置101は、照射時間の経過に伴って生じる光源部73の光の拡散によって、インテグレータレンズ74に入射されずにインテグレータレンズ74外に照射される漏れ光量を検出する。また、光検出装置101及び光軸角度調整機構99のモータ98は、それぞれ電線103によって制御装置102に接続されている。 Further, as shown in FIG. 8, adjacent to the integrator lens 74, for example, a light detection device 101 such as an illuminance meter is disposed. The light detection apparatus 101 detects the amount of light leaked outside the integrator lens 74 without being incident on the integrator lens 74 due to the diffusion of the light of the light source unit 73 that occurs as the irradiation time elapses. Further, the light detection device 101 and the motor 98 of the optical axis angle adjustment mechanism 99 are connected to the control device 102 by electric wires 103, respectively.
 そして、光検出装置101が漏れ光量を検出すると、モータ98を作動させて70~100%の照射量の光がインテグレータレンズ74に入射するように光源部73の光軸角度を調整して、光の拡散分を補正する。より具体的には、光検出装置101が、設定された所定の閾値を越える光量を検出すると、制御装置102がモータ98に作動指令を伝達して作動させ、ナット97bを回転させる。これにより、ナット97bに螺合する雄ねじ97aをモータ98方向に引き込んで、光源支持部83を曲率半径が小さくなる方向に弾性変形させることで各光源部73の光軸角度を内側に向け、光の拡散分を補正する。これにより、光検出装置101が検出する光量が、初期値以下に低減すると、即ち、70~100%の照射量の光が初期状態と同じようにインテグレータレンズ74に入射されるようになると、モータ98の作動が停止する。 When the light detection device 101 detects the amount of light leaked, the motor 98 is operated to adjust the optical axis angle of the light source unit 73 so that 70 to 100% of the amount of light is incident on the integrator lens 74. Correct the amount of diffusion. More specifically, when the light detection device 101 detects a light amount exceeding a predetermined threshold value, the control device 102 transmits an operation command to the motor 98 to operate, and rotates the nut 97b. As a result, the male screw 97a that is screwed into the nut 97b is pulled in the direction of the motor 98, and the light source support portion 83 is elastically deformed in a direction in which the radius of curvature decreases, so that the optical axis angle of each light source portion 73 is directed inward. Correct the amount of diffusion. As a result, when the amount of light detected by the light detection device 101 is reduced to an initial value or less, that is, when 70 to 100% of light is incident on the integrator lens 74 as in the initial state, the motor The operation of 98 stops.
 尚、光検出装置101は、照射時間による光源部73の光拡散を検出可能なものであれば光検出装置101に限定されず、インテグレータレンズ74の入射面に配置される光量検出装置や、照射時間をカウントするタイマーなどであってもよい。光量検出装置がインテグレータレンズ74に配置される場合は、光量検出装置によって検出される光量が、所定の閾値より少なくなったとき、光軸角度調整機構99により各光源部73の光軸角度を調整して光をインテグレータレンズ74の中心側に入射させる。そして、検出光量が、初期値に戻った時、作動を停止する。一方、光軸角度調整機構99によって各光源部73の光軸角度を調整しても所定の閾値より少ない場合には、ランプ71自体の照度が低下したと判断して、ランプ71の交換を行う。
 また、タイマー制御される場合は、予め、光源部73の照射時間と光の拡散角度との関係を調査しておき、所定の照射時間が経過したとき、各光源部73の光軸角度を調整する。
 また、ランプ71を交換後にも照度をチェックするが、照度が戻らない場合がある。例えば、カバーガラス85が汚れている場合には、カバーガラス85を交換する。カバーガラス85の汚れは、目視で確認してもよく、センサで確認してもよい。センサとしては、透過型の光検出センサ、反射型の光検出センサ、渦電流式のセンサを適用することができる。
The light detection device 101 is not limited to the light detection device 101 as long as it can detect the light diffusion of the light source unit 73 depending on the irradiation time, and the light amount detection device disposed on the incident surface of the integrator lens 74 or the irradiation A timer that counts time may be used. When the light amount detection device is arranged on the integrator lens 74, the optical axis angle of each light source unit 73 is adjusted by the optical axis angle adjustment mechanism 99 when the light amount detected by the light amount detection device becomes smaller than a predetermined threshold. Then, the light is incident on the center side of the integrator lens 74. Then, when the detected light amount returns to the initial value, the operation is stopped. On the other hand, if the optical axis angle of each light source unit 73 is adjusted by the optical axis angle adjusting mechanism 99 to be less than a predetermined threshold value, it is determined that the illuminance of the lamp 71 itself has decreased, and the lamp 71 is replaced. .
When the timer control is performed, the relationship between the irradiation time of the light source unit 73 and the light diffusion angle is investigated in advance, and the optical axis angle of each light source unit 73 is adjusted when a predetermined irradiation time has elapsed. To do.
Also, the illuminance is checked after the lamp 71 is replaced, but the illuminance may not return. For example, when the cover glass 85 is dirty, the cover glass 85 is replaced. Contamination of the cover glass 85 may be confirmed visually or by a sensor. As the sensor, a transmission type light detection sensor, a reflection type light detection sensor, or an eddy current sensor can be used.
 このように構成された露光装置PEでは、照明光学系70において、露光時に露光制御用シャッター78が開制御されると、超高圧水銀ランプ71から照射された光が、インテグレータレンズ74の入射面に入射される。そして、インテグレータレンズ74の出射面から発せられた光は、凹面鏡77によってその進行方向が変えられるとともに平行光に変換される。そして、この平行光は、マスクステージ10に保持されるマスクM、さらには基板ステージ20に保持される基板Wの表面に対して略垂直にパターン露光用の光として照射され、マスクMのパターンPが基板W上に露光転写される。 In the exposure apparatus PE configured as described above, when the exposure control shutter 78 is controlled to be opened during exposure in the illumination optical system 70, the light emitted from the ultrahigh pressure mercury lamp 71 is incident on the incident surface of the integrator lens 74. Incident. The light emitted from the exit surface of the integrator lens 74 is changed in its traveling direction by the concave mirror 77 and converted into parallel light. The parallel light is irradiated as pattern exposure light substantially perpendicularly to the surface of the mask M held on the mask stage 10 and the surface of the substrate W held on the substrate stage 20. Is transferred onto the substrate W by exposure.
 ここで、超高圧水銀ランプ71から照射される光は、超高圧水銀ランプ71が未使用のランプであっても、例えば、2°程度の光の広がり角を持っているが、高出力を得るために電極95、96間に大電流を供給すると、使用時間の経過と共に発光管94内で徐々にタングステンの電極95、96が蒸発して両電極95、96の間隔が広がり、光源の基点が大きくなり、光が拡散して照射角度が、例えば、2.2°に広がる。直流が供給される超高圧水銀ランプ71におけるこの摩耗現象は、電流が一方向に流れるので、交流が供給される超高圧水銀ランプより顕著となる傾向がある。 Here, the light irradiated from the ultra high pressure mercury lamp 71 has a light spread angle of about 2 °, for example, even if the ultra high pressure mercury lamp 71 is an unused lamp, but obtains a high output. For this reason, when a large current is supplied between the electrodes 95 and 96, the tungsten electrodes 95 and 96 gradually evaporate in the arc tube 94 as the usage time elapses, and the distance between the electrodes 95 and 96 is widened. It becomes larger, the light diffuses, and the irradiation angle spreads to, for example, 2.2 °. This wear phenomenon in the ultra-high pressure mercury lamp 71 supplied with direct current tends to become more prominent than the ultra-high pressure mercury lamp supplied with alternating current because the current flows in one direction.
 光の利用効率の観点から、照明光学系70の組み付け時点では、全光源部73からの70~100%の照射量の光がインテグレータレンズ74の入射面に入射するように調整されている。しかし、上記した超高圧水銀ランプ71の使用時間に伴う光の拡散により、光検出装置101が漏れ光量(光の拡散)を検出すると、制御装置102がモータ98を作動させ、雄ねじ97aを介して光源支持部83を引き込んで弾性変形させる。これにより、光源支持部83に固定される各光源部73を内側に向けて、光の拡散を修正するように光軸角度を調整する。 From the viewpoint of light use efficiency, at the time of assembling the illumination optical system 70, adjustment is made so that light of 70 to 100% from all the light source units 73 is incident on the incident surface of the integrator lens 74. However, when the light detection device 101 detects the amount of leakage light (diffusion of light) due to the light diffusion associated with the use time of the ultrahigh pressure mercury lamp 71 described above, the control device 102 operates the motor 98 via the male screw 97a. The light source support 83 is pulled in and elastically deformed. As a result, the optical axis angle is adjusted so as to correct the light diffusion with the light source portions 73 fixed to the light source support portion 83 facing inward.
 上記したように、第1実施形態の露光装置用光照射装置80によれば、発光部71と反射光学系72を含む複数の光源部73と、所定数の光源部73の光がインテグレータレンズ74の入射面に入射されるように、光源部73を光源支持部83で支持する複数のカセット81と、全ての光源部73の光がインテグレータレンズ74の入射面に入射されるように、複数のカセット81を取り付ける複数のカセット取り付け部90を有する支持体82と、各光源部73の光軸角度を調整可能な光軸角度調整機構99と、を備えるので、光源部73の照射時間の経過に伴って生じる光の拡散を修正して、各光源部73からの70~100%の照射量の光をインテグレータレンズ74に入射させることができ、これによって光利用効率を高め、照度低下を抑制することができる。 As described above, according to the light irradiation device 80 for an exposure apparatus of the first embodiment, the light from the light source units 73 including the light emitting unit 71 and the reflection optical system 72 and the light from the predetermined number of light source units 73 are integrated into the integrator lens 74. The plurality of cassettes 81 that support the light source unit 73 with the light source support unit 83 and the light of all the light source units 73 are incident on the incident surface of the integrator lens 74. Since a support body 82 having a plurality of cassette attaching portions 90 for attaching the cassette 81 and an optical axis angle adjusting mechanism 99 capable of adjusting the optical axis angle of each light source portion 73 are provided, the irradiation time of the light source portion 73 is elapsed. The accompanying light diffusion can be corrected so that 70 to 100% of the amount of light from each light source unit 73 can be incident on the integrator lens 74, thereby improving the light utilization efficiency and illuminance. It is possible to suppress the bottom.
 また、各光源部73の照射時間の経過に伴って生じる光の拡散を検出し、光軸角度調整機構99によって、検出された光の拡散を修正するように光照射装置80を制御するので、各光源部73からの70~100%の照射量の光を、確実にインテグレータレンズ74に入射させることができ、照度低下が防止される。尚、上記の実施形態においては、光の拡散を検出して自動的に光源部73の光軸角度を調整するようにしたが、寿命照射時間と光の拡散との関係を予測して、予め各光源部73をその角度分だけ内側に向けて調整しておくことによっても、ある程度光の利用効率を改善することができる。 Further, since the light diffusion generated with the lapse of the irradiation time of each light source unit 73 is detected and the light irradiation device 80 is controlled by the optical axis angle adjustment mechanism 99 so as to correct the detected light diffusion, Light with a dose of 70 to 100% from each light source unit 73 can be reliably incident on the integrator lens 74, and a reduction in illuminance is prevented. In the above-described embodiment, the light diffusion is detected and the optical axis angle of the light source unit 73 is automatically adjusted. However, the relationship between the lifetime irradiation time and the light diffusion is predicted in advance. The light use efficiency can be improved to some extent by adjusting each light source unit 73 inward by the angle.
 (第2実施形態)
 次に、本発明の第2実施形態に係る分割逐次近接露光装置について、図16~19を参照して説明する。なお、本実施形態の分割逐次露光装置は、第1実施形態の分割逐次近接露光装置と基本的構成を同一とするので、同一部分には同一符号を付してその説明を省略し、相違部分について詳述する。
(Second Embodiment)
Next, a divided successive proximity exposure apparatus according to the second embodiment of the present invention will be described with reference to FIGS. Since the divided sequential exposure apparatus of the present embodiment has the same basic configuration as the divided sequential proximity exposure apparatus of the first embodiment, the same parts are denoted by the same reference numerals, and the description thereof is omitted. Will be described in detail.
 図17、18に示すように、本実施形態の分割逐次露光装置PEにおいては、カセット81に、所望のランプ71に対応する前面に、波長カットフィルタ186が配置されている。波長カットフィルタ186としては、ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタのいずれであってもよく、所望の波長の強度を落とすND(減光)フィルタであってもよい。なお、波長カットフィルタ186は、点対称に設置することが好ましく、この実施形態では、上段の6個のランプと下段の6個のランプに取り付けられている(図17、18の斜線部分)。これにより、カセット81には、分光特性が異なる2種類の光源部73が構成される。以下、波長カットフィルタ186が取り付けられた光源部73をフィルタ付き光源部73A、波長カットフィルタ186を有しない光源部73をフィルタ無し光源部73Bと称す。 17 and 18, in the divided sequential exposure apparatus PE of the present embodiment, a wavelength cut filter 186 is disposed in the cassette 81 on the front surface corresponding to the desired lamp 71. The wavelength cut filter 186 may be any of a low-pass filter, a high-pass filter, and a band-pass filter, and may be an ND (dimming) filter that reduces the intensity of a desired wavelength. The wavelength cut filter 186 is preferably installed point-symmetrically. In this embodiment, the wavelength cut filter 186 is attached to the upper six lamps and the lower six lamps (shaded portions in FIGS. 17 and 18). As a result, the cassette 81 includes two types of light source units 73 having different spectral characteristics. Hereinafter, the light source unit 73 to which the wavelength cut filter 186 is attached is referred to as a light source unit 73A with a filter, and the light source unit 73 without the wavelength cut filter 186 is referred to as a light source unit 73B without a filter.
 また、図16に示すように、凹面鏡77の一部には、開口77aが形成されており、開口77aの後方には、g線、h線、i線、j線、k線等における各波長の照度を測定する各照度計79が設置されている。 Further, as shown in FIG. 16, an opening 77a is formed in a part of the concave mirror 77, and each wavelength of g-line, h-line, i-line, j-line, k-line, etc. is behind the opening 77a. Each illuminance meter 79 for measuring the illuminance is provided.
 また、光学制御部76では、フィルタ付き光源部73Aとフィルタ無し光源部73Bの各分光特性、特に、各波長のピーク高さをあらかじめ測定しておき、データベースとして保存しておく。なお、光源部73A,73Bは、ランプ71を使用し続けると分光特性が変化するので、露光を行っていない状態で、各光源部73A,73Bの各波長における照度を測定しておく。 Further, the optical control unit 76 measures in advance the spectral characteristics of the light source unit 73A with filter and the light source unit 73B without filter, particularly the peak height of each wavelength, and stores it as a database. Since the spectral characteristics of the light source units 73A and 73B change when the lamp 71 is continuously used, the illuminance at each wavelength of the light source units 73A and 73B is measured in a state where exposure is not performed.
 このように構成された光照射装置80では、照度計79で測定した結果を元に、データベースを参照し、各光源部73A,73Bの点灯するランプ71のパワー、個数を決定する。ここで、点灯するランプ71の個数が多い場合には、ランプ71の消し方が点対称でなくとも露光面照度分布には影響が小さいが、点灯するランプ71の個数が少ない場合、例えば、216灯のランプ71の50%程度を消灯するような場合には、ランプ71の消し方が点対称でないと露光面照度分布が悪くなる可能性がある。このため、フィルタ付き光源部73A、フィルタ無し光源部73Bは、それぞれ点対称となるようにランプ71を点灯することが好ましい。 The light irradiation device 80 configured in this manner determines the power and number of the lamps 71 to be turned on by referring to the database based on the result measured by the illuminance meter 79. Here, when the number of lamps 71 to be lit is large, the influence on the exposure surface illuminance distribution is small even if the method of turning off the lamps 71 is not point-symmetric, but when the number of lamps 71 to be lit is small, for example, 216 lamps When about 50% of the lamp 71 is turned off, the illumination intensity distribution on the exposed surface may be deteriorated unless the lamp 71 is turned off in a point-symmetric manner. For this reason, it is preferable that the light source part 73A with a filter and the light source part 73B without a filter light the lamp 71 so that each may become point-symmetric.
 水銀ランプ71から出射される光は、一般的にインコヒーレント光であり、インテグレータレンズ74、凹面鏡77などからなる照明光学系を通過して露光面に到達したとき、その強度は、波長ごとに和として与えられる。フィルタ付き光源部73Aとフィルタ無し光源部73Bを設けることにより、各波長における分光強度比をある程度コントロールすることができる。 The light emitted from the mercury lamp 71 is generally incoherent light. When the light passes through the illumination optical system including the integrator lens 74 and the concave mirror 77 and reaches the exposure surface, the intensity is summed for each wavelength. As given. By providing the light source part with filter 73A and the light source part without filter 73B, the spectral intensity ratio at each wavelength can be controlled to some extent.
 ここで、分光特性の異なる2種類のランプを用いた場合と、分光特性の同じランプに波長カットフィルタを設けた場合とで、照度の測定試験を行った。具体的に、分光特性の異なる2種類のランプを用いた試験では、4灯の第1のランプを用いた場合、該第1のランプより短波長側の強度が強い4灯の第2のランプを用いた場合、2灯の第1のランプ及び2灯の第2のランプを用いた場合で照度を測定した。また、波長カットフィルタを設ける試験では、4灯の第2のランプを使用し、波長カットフィルタを取り付けない場合、波長カットフィルタを2灯のランプに取り付けた場合、波長カットフィルタを4灯のランプに取り付けた場合で照度を測定した。2種類のランプを用いた場合の結果を表1に、波長カットフィルタを設けた場合の結果を表2に示す。 Here, an illuminance measurement test was performed when two types of lamps having different spectral characteristics were used and when a wavelength cut filter was provided on a lamp having the same spectral characteristics. Specifically, in a test using two types of lamps having different spectral characteristics, when the four first lamps are used, the four second lamps having a stronger intensity on the short wavelength side than the first lamp. The illuminance was measured when two first lamps and two second lamps were used. In addition, in a test in which a wavelength cut filter is provided, when four second lamps are used and the wavelength cut filter is not attached, when the wavelength cut filter is attached to the two lamps, the wavelength cut filter is the four lamps. The illuminance was measured when it was attached. The results when two types of lamps are used are shown in Table 1, and the results when a wavelength cut filter is provided are shown in Table 2.
 なお、本試験で使用される照度計としては、ウシオ電機株式会社製の紫外線積算光量計UIT-250と、受光部に365nm測定用受光器UVD-S365,313nm測定用受光器UVD-S313を使用し、これら受光部で200mm×200mmの露光面の中心部におけるi線(365nm)とj線(313nm)の強度を測定した。 As the illuminance meter used in this test, a UV integrated light meter UIT-250 manufactured by Ushio Electric Co., Ltd. and a 365 nm measuring light receiver UVD-S365 and 313 nm measuring light receiver UVD-S313 are used in the light receiving part. Then, the i-line (365 nm) and j-line (313 nm) intensities at the center of the exposure surface of 200 mm × 200 mm were measured at these light receiving parts.
 この結果、表1及び表2に示すように、DUVフィルタの個数を変更することで、ランプの種類を変更する場合と同様に、各波長における強度を変更できることがわかる。 As a result, as shown in Tables 1 and 2, it can be seen that by changing the number of DUV filters, the intensity at each wavelength can be changed as in the case of changing the type of lamp.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 上記したように、第2実施形態の露光装置用光照射装置80及び露光装置PEによれば、発光部71と反射光学系72を含む所定数の光源部73と、所定数の光源部73の光がインテグレータレンズ74の入射面に入射されるように、光源部73を支持するカセット81と、を備え、所定数の光源部73は、分光特性が異なる2種類の光源部73によって構成される。これにより、光源部73を交換せず、波長ごとの強度を自在に設定することができる。特に、所定数の光源部73の各ランプ71は、分光特性が同じであり、所定数の光源部73は、その一部に波長カットフィルタ186を配置することで、分光特性が異なる2種類の光源部73を構成している。これにより、光源部73を交換せず、また、分光特性の異なる光源部を用いることなく、波長ごとの強度を自在に設定することができる。 As described above, according to the exposure apparatus light irradiation device 80 and the exposure device PE of the second embodiment, the predetermined number of light source units 73 including the light emitting unit 71 and the reflective optical system 72, and the predetermined number of light source units 73. A cassette 81 that supports the light source unit 73 so that the light is incident on the incident surface of the integrator lens 74, and the predetermined number of light source units 73 are configured by two types of light source units 73 having different spectral characteristics. . Thereby, the intensity | strength for every wavelength can be set freely, without replacing | exchanging the light source part 73. FIG. Particularly, the lamps 71 of the predetermined number of light source units 73 have the same spectral characteristics, and the predetermined number of light source units 73 are provided with two types of spectral characteristics different from each other by disposing the wavelength cut filter 186 in a part thereof. A light source unit 73 is configured. Thereby, the intensity | strength for every wavelength can be set freely, without replacing | exchanging the light source part 73 and using the light source part from which spectral characteristics differ.
 また、カセット81を複数備えるとともに、全ての光源部73の光がインテグレータレンズ74の入射面に入射されるように、複数のカセット81が取り付けられる支持体82をさらに備えることで、ランプ71をユニット化して管理でき、ランプ71の交換時間及び装置のダウンタイムを短縮し、且つ、ランプ71の取り付け部品に大きな曲面加工を行わずに、全ての光源部73を単一の曲面上に配置することができる。 In addition, a plurality of cassettes 81 are provided, and a lamp 82 is provided as a unit by further including a support 82 to which a plurality of cassettes 81 are attached so that light from all the light source units 73 is incident on the incident surface of the integrator lens 74. All the light source parts 73 are arranged on a single curved surface without shortening the replacement time of the lamp 71 and the downtime of the apparatus, and without performing a large curved surface processing on the mounting part of the lamp 71. Can do.
 さらに、本実施形態の露光装置用光照射装置の制御方法及び露光方法によれば、光照射装置80は、上述した複数の光源部73と、複数のカセット81と、支持体82に加え、インテグレータレンズ74の下流側に配置され、各波長に対応した照度を計測する照度計79と、各ランプ71の点灯・消灯、及び照度を制御する光学制御部76と、を備える。そして、光学制御部76は、照度計79で計測された各波長に対応した照度に基づいて、所定の波長において所望の照度が得られるように、カセット81内の各光源部73を制御する。これにより、必要なランプ71を点灯させて、露光に必要な波長成分における強度を自在に設定することができ、ランプ71の寿命を延ばすことができる。 Furthermore, according to the control method and the exposure method of the light irradiation apparatus for an exposure apparatus of this embodiment, the light irradiation apparatus 80 includes an integrator in addition to the plurality of light source units 73, the plurality of cassettes 81, and the support 82 described above. An illuminance meter 79 that is disposed on the downstream side of the lens 74 and measures illuminance corresponding to each wavelength, and an optical control unit 76 that controls lighting / extinction of each lamp 71 and illuminance. Then, the optical control unit 76 controls each light source unit 73 in the cassette 81 based on the illuminance corresponding to each wavelength measured by the illuminance meter 79 so that a desired illuminance is obtained at a predetermined wavelength. As a result, the necessary lamp 71 can be turned on, the intensity of the wavelength component necessary for exposure can be freely set, and the life of the lamp 71 can be extended.
 なお、上記実施形態では、1種類の波長カットフィルタ186を用いて分光特性の異なる2種類の光源部73A,73Bを構成しているが、図19(a)及び(b)に示すように、2種類の波長カットフィルタ186a,186bを用いて分光特性の異なる3種類の光源部73A1,73A2,73Bを構成するようにしてもよい。例えば、3種類の光源部73A1,73A2,73Bを、図19(a)に示すように8:8:8で構成してもよく、図19(b)に示すように、10:10:4で構成してもよい。これらの場合にも、3種類の光源部73A1,73A2,73Bを点対称に構成することが好ましく、また、光学制御部76によって図19(a)のランプ71を消灯させる場合には、図19(c)の網掛け部分に示すように点対称に消灯させればよい。 In the above embodiment, two types of light source units 73A and 73B having different spectral characteristics are configured by using one type of wavelength cut filter 186, but as shown in FIGS. 19A and 19B, You may make it comprise three types of light source parts 73A1, 73A2, and 73B from which a spectral characteristic differs using two types of wavelength cut filters 186a and 186b. For example, the three types of light source units 73A1, 73A2, and 73B may be configured at 8: 8: 8 as shown in FIG. 19A, and 10: 10: 4 as shown in FIG. 19B. You may comprise. Also in these cases, it is preferable that the three types of light source units 73A1, 73A2, and 73B are configured to be point-symmetric, and when the lamp 71 in FIG. 19A is turned off by the optical control unit 76, FIG. What is necessary is just to make it light-off point-symmetrically as shown to the shaded part of (c).
(第3実施形態)
 次に、本発明の第3実施形態に係る近接スキャン露光装置について、図20~図25を参照して説明する。
(Third embodiment)
Next, a proximity scan exposure apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
 近接スキャン露光装置200は、図23に示すように、マスクMに近接しながら所定方向に搬送される略矩形状の基板Wに対して、パターンPを形成した複数のマスクMを介して露光用光Lを照射し、基板WにパターンPを露光転写する。即ち、該露光装置200は、基板Wを複数のマスクMに対して相対移動しながら露光転写が行われるスキャン露光方式を採用している。なお、本実施形態で使用されるマスクのサイズは、350mm×250mmに設定されており、パターンPのX方向長さは、有効露光領域のX方向長さに対応する。 As shown in FIG. 23, the proximity scan exposure apparatus 200 is used for exposure via a plurality of masks M on which patterns P are formed on a substantially rectangular substrate W that is transported in a predetermined direction while approaching the mask M. The pattern L is exposed and transferred onto the substrate W by irradiating the light L. That is, the exposure apparatus 200 employs a scan exposure method in which exposure transfer is performed while the substrate W is moved relative to the plurality of masks M. Note that the size of the mask used in the present embodiment is set to 350 mm × 250 mm, and the X-direction length of the pattern P corresponds to the X-direction length of the effective exposure region.
 近接スキャン露光装置200は、図20及び図21に示すように、基板Wを浮上させて支持すると共に、基板Wを所定方向(図において、X方向)に搬送する基板搬送機構120と、複数のマスクMをそれぞれ保持し、所定方向と交差する方向(図において、Y方向)に沿って千鳥状に二列配置される複数のマスク保持部171を有するマスク保持機構170と、複数のマスク保持部171の上部にそれぞれ配置され、露光用光Lを照射する照明光学系としての複数の照射部180と、複数の照射部180と複数のマスク保持部171との間にそれぞれ配置され、照射部180から出射された露光用光Lを遮光する複数の遮光装置190と、を備える。 As shown in FIGS. 20 and 21, the proximity scan exposure apparatus 200 floats and supports the substrate W, and also transports the substrate W in a predetermined direction (X direction in the figure), and a plurality of substrate transport mechanisms 120. A mask holding mechanism 170 having a plurality of mask holding portions 171 each holding the mask M and arranged in two rows in a staggered manner along a direction (Y direction in the figure) intersecting with a predetermined direction, and a plurality of mask holding portions 171 is disposed above each of the plurality of irradiation units 180 as an illumination optical system that irradiates the exposure light L, and is disposed between the plurality of irradiation units 180 and the plurality of mask holding units 171. And a plurality of light shielding devices 190 that shield the exposure light L emitted from the light source.
 これら基板搬送機構120、マスク保持機構170、複数の照射部180、及び、遮光装置190は、レベルブロック(図示せず)を介して地面に設置される装置ベース201上に配置されている。ここで、図21に示すように、基板搬送機構120が基板Wを搬送する領域のうち、上方にマスク保持機構170が配置される領域をマスク配置領域EA、マスク配置領域EAに対して上流側の領域を基板搬入側領域IA、露光領域EAに対して下流側の領域を基板搬出側領域OAと称す。 The substrate transport mechanism 120, the mask holding mechanism 170, the plurality of irradiation units 180, and the light shielding device 190 are disposed on a device base 201 installed on the ground via a level block (not shown). Here, as shown in FIG. 21, among the areas where the substrate transport mechanism 120 transports the substrate W, the area where the mask holding mechanism 170 is disposed is located upstream of the mask layout area EA and the mask layout area EA. This area is referred to as a substrate carry-in area IA, and an area downstream of the exposure area EA is referred to as a substrate carry-out area OA.
 基板搬送機構120は、装置ベース201上に他のレベルブロック(図示せず)を介して設置された搬入フレーム105、精密フレーム106、搬出フレーム107上に配置され、エアで基板Wを浮上させて支持する基板保持部としての浮上ユニット121と、浮上ユニット121のY方向側方で、装置ベース201上にさらに他のレベルブロック108を介して設置されたフレーム109上に配置され、基板Wを把持すると共に、基板WをX方向に搬送する基板駆動ユニット140と、を備える。 The substrate transport mechanism 120 is disposed on the carry-in frame 105, the precision frame 106, and the carry-out frame 107 installed on the apparatus base 201 via another level block (not shown), and floats the substrate W with air. A floating unit 121 as a substrate holding unit to be supported, and a frame 109 installed on the apparatus base 201 via another level block 108 on the side of the floating unit 121 in the Y direction, and holds the substrate W And a substrate driving unit 140 for transporting the substrate W in the X direction.
 浮上ユニット121は、図22に示すように、搬入出及び精密フレーム105,106,107の上面から上方に延びる複数の連結棒122が下面にそれぞれ取り付けられる長尺状の複数の排気エアパッド123(図21参照),124及び長尺状の複数の吸排気エアパッド125a,125bと、各エアパッド123,124,125a,125bに形成された複数の排気孔126からエアを排出するエア排出系130及びエア排出用ポンプ131と、吸排気エアパッド125a,125bに形成された吸気孔127からエアを吸引するためのエア吸引系132及びエア吸引用ポンプ133と、を備える。 As shown in FIG. 22, the levitation unit 121 includes a plurality of long exhaust air pads 123 (see FIG. 22) to which a plurality of connecting rods 122 extending upward from the upper surface of the carry-in / out and precision frames 105, 106, 107 are respectively attached. 21), 124 and a plurality of elongated air intake / exhaust air pads 125a, 125b, and an air exhaust system 130 and air exhaust for exhausting air from a plurality of exhaust holes 126 formed in each of the air pads 123, 124, 125a, 125b. And an air suction system 132 and an air suction pump 133 for sucking air from the intake holes 127 formed in the intake / exhaust air pads 125a and 125b.
 また、吸排気エアパッド125a,125bは、複数の排気孔126及び複数の吸気孔127を有しており、エアパッド125a,125bの支持面134と基板Wとの間のエア圧をバランス調整し、所定の浮上量に高精度で設定することができ、安定した高さで水平支持することができる。 The intake / exhaust air pads 125a and 125b have a plurality of exhaust holes 126 and a plurality of intake holes 127, and balance the air pressure between the support surfaces 134 of the air pads 125a and 125b and the substrate W to obtain a predetermined value. The flying height can be set with high accuracy and can be horizontally supported at a stable height.
 基板駆動ユニット140は、図21に示すように、真空吸着により基板Wを把持する把持部材141と、把持部材141をX方向に沿って案内するリニアガイド142と、把持部材141をX方向に沿って駆動する駆動モータ143及びボールねじ機構144と、フレーム109の上面から突出するように、基板搬入領域IAにおけるフレーム109の側方にZ方向に移動可能且つ回転自在に取り付けられ、マスク保持機構170への搬送待ちの基板Wの下面を支持する複数のワーク衝突防止ローラ145と、を備える。 As shown in FIG. 21, the substrate driving unit 140 includes a gripping member 141 that grips the substrate W by vacuum suction, a linear guide 142 that guides the gripping member 141 along the X direction, and a gripping member 141 along the X direction. And a drive motor 143 and a ball screw mechanism 144 that are driven in the manner described above, and are attached to the side of the frame 109 in the substrate carry-in area IA so as to be movable in the Z direction and to be rotatable so as to protrude from the upper surface of the frame 109. And a plurality of work collision prevention rollers 145 that support the lower surface of the substrate W waiting to be conveyed to.
 また、基板搬送機構120は、基板搬入側領域IAに設けられ、この基板搬入側領域IAで待機される基板Wのプリアライメントを行う基板プリアライメント機構150と、基板Wのアライメントを行う基板アライメント機構160と、を有している。 In addition, the substrate transport mechanism 120 is provided in the substrate carry-in side area IA, and the substrate pre-alignment mechanism 150 that performs pre-alignment of the substrate W waiting in the substrate carry-in side area IA, and the substrate alignment mechanism that performs alignment of the substrate W 160.
 マスク保持機構170は、図21及び図22に示すように、上述した複数のマスク保持部171と、マスク保持部171毎に設けられ、マスク保持部171をX,Y,Z,θ方向、即ち、所定方向、交差方向、所定方向及び交差方向との水平面に対する鉛直方向、及び、該水平面の法線回りに駆動する複数のマスク駆動部172と、を有する。 As shown in FIGS. 21 and 22, the mask holding mechanism 170 is provided for each of the plurality of mask holding portions 171 and the mask holding portions 171, and the mask holding portion 171 is moved in the X, Y, Z, and θ directions, that is, , A predetermined direction, a crossing direction, a vertical direction with respect to the horizontal plane of the predetermined direction and the crossing direction, and a plurality of mask driving units 172 that drive around a normal line of the horizontal plane.
 Y方向に沿って千鳥状に二列配置される複数のマスク保持部171は、上流側に配置される複数の上流側マスク保持部171a(本実施形態では、6個)と、下流側に配置される複数の下流側マスク保持部171b(本実施形態では、6個)と、で構成され、装置ベース201のY方向両側に立設した柱部112(図20参照。)間で上流側と下流側に2本ずつ架設されたメインフレーム113にマスク駆動部172を介してそれぞれ支持されている。各マスク保持部171は、Z方向に貫通する開口177を有すると共に、その周縁部下面にマスクMが真空吸着されている。 The plurality of mask holding portions 171 arranged in two rows in a staggered manner along the Y direction are arranged on the upstream side with a plurality of upstream mask holding portions 171a (six in this embodiment) arranged on the upstream side. A plurality of downstream mask holding portions 171b (six in this embodiment), and the upstream side between the column portions 112 (see FIG. 20) erected on both sides in the Y direction of the apparatus base 201. Two main frames 113 installed on the downstream side are respectively supported via a mask driving unit 172. Each mask holding portion 171 has an opening 177 penetrating in the Z direction, and the mask M is vacuum-sucked on the lower surface of the peripheral edge portion.
 マスク駆動部172は、メインフレーム113に取り付けられ、X方向に沿って移動するX方向駆動部173と、X方向駆動部173の先端に取り付けられ、Z方向に駆動するZ方向駆動部174と、Z方向駆動部174に取り付けられ、Y方向に駆動するY方向駆動部175と、Y方向駆動部175に取り付けられ、θ方向に駆動するθ方向駆動部176と、を有し、θ方向駆動部176の先端にマスク保持部171が取り付けられている。 The mask drive unit 172 is attached to the main frame 113 and moves along the X direction. The X direction drive unit 173 moves along the X direction. The Z direction drive unit 174 is attached to the tip of the X direction drive unit 173 and drives in the Z direction. A Y-direction drive unit 175 attached to the Z-direction drive unit 174 and driven in the Y-direction, and a θ-direction drive unit 176 attached to the Y-direction drive unit 175 and driven in the θ-direction. A mask holding portion 171 is attached to the tip of 176.
 複数の照射部180は、図24及び図25に示すように、筐体181内に、第1実施形態と同様に構成される光照射装置80A、インテグレータレンズ74、光学制御部76、凹面鏡77、及び、露光制御用シャッター78、を備えると共に、光源部73Aと露光制御用シャッター78間、及びインテグレータレンズ74と凹面鏡77間に配置される平面ミラー280,281,282を備える。なお、凹面鏡77または折り返しミラーとしての平面ミラー282には、ミラーの曲率を手動または自動で変更可能なデクリネーション角補正手段が設けられてもよい。 As shown in FIGS. 24 and 25, the plurality of irradiation units 180 are provided in the housing 181 in the same manner as in the first embodiment, the light irradiation device 80 </ b> A, the integrator lens 74, the optical control unit 76, the concave mirror 77, And an exposure control shutter 78, and plane mirrors 280, 281, and 282 disposed between the light source unit 73 A and the exposure control shutter 78, and between the integrator lens 74 and the concave mirror 77. The concave mirror 77 or the flat mirror 282 as the folding mirror may be provided with a declination angle correcting means capable of changing the curvature of the mirror manually or automatically.
 光照射装置80Aは、超高圧水銀ランプ71と反射鏡72とをそれぞれ含む、例えば、4段2列の8個の光源部73を含むカセット81Aを直線状に3個並べた支持体82Aを有している。第1実施形態と同様、カセット81Aでは、8個の光源部73が支持された光源支持部83にカセット押さえカバー84を取り付けることで、各光源部73からの70%~100%の照射量の光をインテグレータレンズ74に入射させることができるように、各光源部73が位置決めされる。また、支持体82Aの複数のカセット取り付け部90に各カセット81Aが取り付けられることで、各光源部73からの70%~100%の照射量の光をインテグレータレンズ74に入射させることができるように、各カセット81Aが位置決めされる。 The light irradiation device 80A includes a support 82A that includes an ultra-high pressure mercury lamp 71 and a reflecting mirror 72, each of which includes, for example, three cassettes 81A including eight light source sections 73 arranged in four rows and two rows. is doing. As in the first embodiment, in the cassette 81A, the cassette pressing cover 84 is attached to the light source support portion 83 on which the eight light source portions 73 are supported, so that the irradiation amount of 70% to 100% from each light source portion 73 can be obtained. Each light source unit 73 is positioned so that light can enter the integrator lens 74. Further, by attaching each cassette 81A to the plurality of cassette attaching portions 90 of the support 82A, it is possible to allow 70% to 100% irradiation light from each light source portion 73 to enter the integrator lens 74. Each cassette 81A is positioned.
 枠状の光源支持部83とランプ押さえカバー84の底部との間には、長尺の雄ねじ97、ナット97b及びモータ98からなる光軸角度調整機構99が配設されている。また、インテグレータレンズ74に隣接して配設される光検出装置101及び光軸角度調整機構99は、電線103によって制御装置102が接続されているのは、第1実施形態と同様である。 Between the frame-shaped light source support portion 83 and the bottom of the lamp pressing cover 84, an optical axis angle adjusting mechanism 99 including a long male screw 97, a nut 97b, and a motor 98 is disposed. Further, the light detection device 101 and the optical axis angle adjustment mechanism 99 arranged adjacent to the integrator lens 74 are connected to the control device 102 by the electric wire 103 as in the first embodiment.
 複数の遮光装置190は、図22に示すように、傾斜角度を変更する一対の板状のブラインド部材208,209を有し、ブラインド駆動ユニット192によって一対のブラインド部材208,209の傾斜角度を変更する。これにより、マスク保持部171に保持されたマスクMの近傍で、照射部180から出射された露光用光Lを遮光するとともに、露光用光Lを遮光する所定方向における遮光幅、即ち、Z方向から見た投影面積を可変とすることができる。 As shown in FIG. 22, the plurality of light shielding devices 190 include a pair of plate-shaped blind members 208 and 209 that change the inclination angle, and the blind drive unit 192 changes the inclination angle of the pair of blind members 208 and 209. To do. Thus, in the vicinity of the mask M held by the mask holding unit 171, the exposure light L emitted from the irradiation unit 180 is shielded, and the light shielding width in a predetermined direction for shielding the exposure light L, that is, the Z direction. The projected area viewed from the above can be made variable.
 なお、近接スキャン露光装置200には、マスクMを保持する一対のマスクトレー部221をY方向に駆動することで、上流側及び下流側マスク保持部171a,171bに保持されたマスクMを交換するマスクチェンジャー220が設けられると共に、マスク交換の前に、マスクトレー部221に対して浮上支持されるマスクMを押さえつけながら、位置決めピン(図示せず)をマスクMに当接させることでプリアライメントを行うマスクプリアライメント機構240が設けられている。 In the proximity scan exposure apparatus 200, the pair of mask trays 221 that hold the mask M is driven in the Y direction, thereby exchanging the masks M held by the upstream and downstream mask holding units 171a and 171b. A mask changer 220 is provided, and pre-alignment is performed by bringing a positioning pin (not shown) into contact with the mask M while pressing the mask M that is levitated and supported against the mask tray 221 before mask replacement. A mask pre-alignment mechanism 240 is provided.
 さらに、図22に示すように、近接スキャン露光装置200には、レーザー変位計260、マスクアライメント用カメラ(図示せず)、追従用カメラ(図示せず)、追従用照明273等の各種検出手段が配置されている。 Furthermore, as shown in FIG. 22, the proximity scanning exposure apparatus 200 includes various detection means such as a laser displacement meter 260, a mask alignment camera (not shown), a tracking camera (not shown), and a tracking illumination 273. Is arranged.
 次に、以上のように構成される近接スキャン露光装置200を用いて、基板Wの露光転写について説明する。なお、本実施形態では、下地パターン(例えば、ブラックマトリクス)が描画されたカラーフィルタ基板Wに対して、R(赤)、G(緑)、B(青)のいずれかのパターンを描画する場合について説明する。 Next, exposure transfer of the substrate W will be described using the proximity scan exposure apparatus 200 configured as described above. In the present embodiment, when a pattern of R (red), G (green), or B (blue) is drawn on the color filter substrate W on which a base pattern (for example, a black matrix) is drawn. Will be described.
 近接スキャン露光装置200は、図示しないローダ等によって、基板搬入領域IAに搬送された基板Wを排気エアパッド123からのエアによって浮上させて支持し、基板Wのプリアライメント作業、アライメント作業を行った後、基板駆動ユニット140の把持部材141にてチャックされた基板Wをマスク配置領域EAに搬送する。 After the proximity scan exposure apparatus 200 supports the substrate W transported to the substrate carry-in area IA by air from the exhaust air pad 123 by a loader or the like (not shown) and performs pre-alignment work and alignment work for the substrate W. Then, the substrate W chucked by the gripping member 141 of the substrate driving unit 140 is transferred to the mask arrangement area EA.
 その後、基板Wは、基板駆動ユニット140の駆動モータ143を駆動させることで、リニアガイド142に沿ってX方向に移動する。そして、基板Wがマスク配置領域EAに設けられた排気エアパッド124及び吸排気エアパッド125a,125b上に移動させ、振動を極力排除した状態で浮上させて支持される。そして、照射部180内の光源から露光用光Lを出射すると、かかる露光用光Lは、マスク保持部171に保持されたマスクMを通過し、パターンを基板Wに露光転写する。 Thereafter, the substrate W is moved in the X direction along the linear guide 142 by driving the drive motor 143 of the substrate drive unit 140. Then, the substrate W is moved onto the exhaust air pad 124 and the intake / exhaust air pads 125a and 125b provided in the mask arrangement area EA, and is lifted and supported with vibrations eliminated as much as possible. When the exposure light L is emitted from the light source in the irradiation unit 180, the exposure light L passes through the mask M held by the mask holding unit 171 and exposes and transfers the pattern onto the substrate W.
 また、当該露光装置200は追従用カメラ(図示せず)やレーザー変位計260を有しているので、露光動作中、マスクMと基板Wとの相対位置ズレを検出し、検出された相対位置ズレに基づいてマスク駆動部172を駆動させ、マスクMの位置を基板Wにリアルタイムで追従させる。同時に、マスクMと基板Wとのギャップを検出し、検出されたギャップに基づいてマスク駆動部172を駆動させ、マスクMと基板Wのギャップをリアルタイムで補正する。 Further, since the exposure apparatus 200 includes a follow-up camera (not shown) and a laser displacement meter 260, the relative position deviation between the mask M and the substrate W is detected during the exposure operation, and the detected relative position is detected. Based on the deviation, the mask driving unit 172 is driven to cause the position of the mask M to follow the substrate W in real time. At the same time, the gap between the mask M and the substrate W is detected, the mask driving unit 172 is driven based on the detected gap, and the gap between the mask M and the substrate W is corrected in real time.
 以上、同様にして、連続露光することで、基板W全体にパターンの露光を行うことができる。マスク保持部171に保持されたマスクMは、千鳥状に配置されているので、上流側或いは下流側のマスク保持部171a,171bに保持されるマスクMが離間して並べられていても、基板Wに隙間なくパターンを形成することができる。 As described above, pattern exposure can be performed on the entire substrate W by performing continuous exposure in the same manner. Since the masks M held by the mask holding part 171 are arranged in a staggered manner, even if the masks M held by the upstream or downstream mask holding parts 171a and 171b are arranged apart from each other, the substrate A pattern can be formed in W without a gap.
 また、基板Wから複数のパネルを切り出すような場合には、隣接するパネル同士の間に対応する領域に露光用光Lを照射しない非露光領域を形成する。このため、露光動作中、一対のブラインド部材208,209を開閉して、非露光領域にブラインド部材208,209が位置するように、基板Wの送り速度に合わせて基板Wの送り方向と同じ方向にブラインド部材208,209を移動させる。 Further, when a plurality of panels are cut out from the substrate W, a non-exposure area where the exposure light L is not irradiated is formed in a corresponding area between adjacent panels. For this reason, during the exposure operation, the pair of blind members 208 and 209 are opened and closed so that the blind members 208 and 209 are positioned in the non-exposure region in the same direction as the substrate W feed direction in accordance with the feed speed of the substrate W. The blind members 208 and 209 are moved.
 本実施形態においても、露光動作中は、超高圧水銀ランプ71の両電極95、96間に大電流を供給するので、使用時間の経過と共に電極95、96が蒸発して光の拡散が生じるが、第1実施形態と同様に、光の拡散を光検出装置101で検出し、光軸角度調整機構99により各光源部73の光軸LAを内側に向けて光軸角度を調整する。 Also in the present embodiment, during the exposure operation, a large current is supplied between the electrodes 95 and 96 of the ultra-high pressure mercury lamp 71, so that the electrodes 95 and 96 evaporate with the passage of use time and light diffusion occurs. Similarly to the first embodiment, light diffusion is detected by the light detection device 101, and the optical axis angle is adjusted by the optical axis angle adjustment mechanism 99 with the optical axis LA of each light source unit 73 facing inward.
 従って、本実施形態のような近接スキャン露光装置においても、各光源部73の照射時間の経過に伴って生じる光の拡散を光検出装置101で検出し、光軸角度調整機構99によって、検出された光の拡散を修正するように光照射装置80を制御することで、各光源部73からの70~100%の照射量の光を、確実にインテグレータレンズ74に入射させることができ、照度低下を抑制することができる。 Therefore, also in the proximity scanning exposure apparatus as in the present embodiment, the light detection device 101 detects the diffusion of light that occurs with the lapse of the irradiation time of each light source unit 73, and is detected by the optical axis angle adjustment mechanism 99. By controlling the light irradiation device 80 so as to correct the diffused light, 70 to 100% of light from each light source unit 73 can be reliably incident on the integrator lens 74, resulting in a decrease in illuminance. Can be suppressed.
 (第4実施形態)
 次に、本発明の第4実施形態に係る近接スキャン露光装置について、図26~27を参照して説明する。なお、本実施形態の近接スキャン露光装置は、第3実施形態の近接スキャン露光装置と基本的構成を同一とするので、同一部分には同一符号を付すことでその説明を省略し、相違部分について詳述する。
(Fourth embodiment)
Next, a proximity scan exposure apparatus according to a fourth embodiment of the present invention will be described with reference to FIGS. The proximity scan exposure apparatus of this embodiment has the same basic configuration as that of the proximity scan exposure apparatus of the third embodiment. Detailed description.
 本実施形態の近接スキャン露光装置200は、図26に示すように、複数の照射部180の筐体181内において、凹面鏡77の一部に開口77aが形成されており、開口77aの後方には、g線、h線、i線、j線、k線等における各波長の照度を測定する各照度計79が設置されている。なお、図26中、符号195は点灯電源であり、符号196は制御回路である。 As shown in FIG. 26, in the proximity scan exposure apparatus 200 of the present embodiment, an opening 77a is formed in a part of the concave mirror 77 in the housing 181 of the plurality of irradiation units 180, and behind the opening 77a. Each illuminance meter 79 for measuring the illuminance at each wavelength in the g-line, h-line, i-line, j-line, k-line, etc. is installed. In FIG. 26, reference numeral 195 denotes a lighting power source, and reference numeral 196 denotes a control circuit.
 光照射装置80Aは、超高圧水銀ランプ71と反射鏡72とをそれぞれ含む、例えば、6段4列の24個の光源部73を含むカセット81を直線状に3個並べた支持体82Aを有している。第1実施形態と同様、カセット81では、24個の光源部73が支持された光源支持部83にカセット押さえカバー84を取り付けることで、各光源部73からの70%~100%の照射量の光をインテグレータレンズ74に入射させることができるように、各光源部73が位置決めされる。また、支持体82Aに各カセット81が取り付けられることで、各光源部73からの70%~100%の照射量の光をインテグレータレンズ74に入射させることができるように、各カセット81が位置決めされる。 The light irradiation device 80A includes a support 82A that includes three ultra-high pressure mercury lamps 71 and a reflecting mirror 72, each including, for example, three cassettes 81 that include 24 light source sections 73 in six rows and four rows. is doing. As in the first embodiment, in the cassette 81, the cassette pressing cover 84 is attached to the light source support portion 83 on which the 24 light source portions 73 are supported, so that the irradiation amount of 70% to 100% from each light source portion 73 can be obtained. Each light source unit 73 is positioned so that light can enter the integrator lens 74. Further, by attaching each cassette 81 to the support 82A, each cassette 81 is positioned so that light with an irradiation amount of 70% to 100% from each light source unit 73 can enter the integrator lens 74. The
 また、本実施形態の光照射装置80Aにおいても、所定数の光源部73の各発光部71は、分光特性が同じであり、所定数の光源部73は、その一部に波長カットフィルタ186を配置することで、分光特性が異なる2種類の光源部73を構成する。 Also in the light irradiation device 80A of the present embodiment, the light emitting units 71 of the predetermined number of light source units 73 have the same spectral characteristics, and the predetermined number of light source units 73 have the wavelength cut filter 186 as a part thereof. By arranging, two types of light source units 73 having different spectral characteristics are configured.
 従って、本実施形態のような近接スキャン露光装置200においても、発光部71と反射光学系72を含む所定数の光源部73と、所定数の光源部73の光がインテグレータレンズ74の入射面に入射されるように、光源部73を支持するカセット81と、を備え、所定数の光源部73の各ランプ71は、分光特性が同じであり、所定数の光源部73は、その一部に波長カットフィルタ186を配置することで、分光特性が異なる2種類の光源部73を構成する。これにより、ランプ71を交換せず、また、分光特性の異なる光源部を用いることなく、波長ごとの強度を自在に設定することができる。 Therefore, also in the proximity scan exposure apparatus 200 as in the present embodiment, a predetermined number of light source units 73 including the light emitting unit 71 and the reflective optical system 72 and light of the predetermined number of light source units 73 are incident on the entrance surface of the integrator lens 74. A cassette 81 that supports the light source unit 73 so as to be incident, the lamps 71 of the predetermined number of light source units 73 have the same spectral characteristics, and the predetermined number of light source units 73 are included in a part thereof. By disposing the wavelength cut filter 186, two types of light source units 73 having different spectral characteristics are configured. Thereby, the intensity | strength for every wavelength can be set freely, without replacing | exchanging the lamp | ramp 71 and using the light source part from which spectral characteristics differ.
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記実施形態では、露光装置として分割逐次近接露光装置と走査式近接露光装置とを説明したが、これに限定されず、本発明は、ミラープロジェクション式露光装置、レンズ投影式露光装置、密着式露光装置にも適用することができる。また、本発明は、一括式、逐次式、走査式等のいずれの露光方法にも適用することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. can be made as appropriate. For example, in the above-described embodiment, the divided sequential proximity exposure apparatus and the scanning proximity exposure apparatus have been described as the exposure apparatus. However, the present invention is not limited to this, and the present invention can be applied to a mirror projection exposure apparatus, a lens projection exposure apparatus, a close contact The present invention can also be applied to a type exposure apparatus. Further, the present invention can be applied to any exposure method such as a batch method, a sequential method, and a scanning method.
 本出願は、2010年7月22日出願の日本特許出願2010-165163、2010年8月27日出願の日本特許出願2010-191288、2011年7月13日出願の日本特許出願2011-154669に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application 2010-165163 filed on July 22, 2010, Japanese Patent Application 2010-191288 filed on August 27, 2010, and Japanese Patent Application 2011-154669 filed on July 13, 2011. The contents of which are incorporated herein by reference.
12    マスク保持枠(マスク保持部)
21    基板保持部
70    照明光学系
71    超高圧水銀ランプ(発光部)
72    反射鏡(反射光学系)
73,73A,73B    光源部
74    インテグレータレンズ
80,80A    露光装置用光照射装置
81,81A    カセット
82,82A    支持体
83    光源支持部
90    カセット取り付け部
99    光軸角度調整機構
171   マスク保持部
171a  上流側マスク保持部
171b  下流側マスク保持部
180   照射部(照明光学系)
186   波長カットフィルタ
200   近接スキャン露光装置(露光装置)
LA    光軸
M     マスク
P     パターン
PE    分割逐次近接露光装置(露光装置)
W     基板、ガラス基板、カラーフィルタ基板(被露光材)
12 Mask holding frame (mask holding part)
21 Substrate holding part 70 Illumination optical system 71 Super high pressure mercury lamp (light emitting part)
72 Reflector (reflective optical system)
73, 73A, 73B Light source 74 Integrator lens 80, 80A Light irradiation device 81 for exposure apparatus, 81A Cassette 82, 82A Support 83 Light source support 90 Cassette mounting part 99 Optical axis angle adjustment mechanism 171 Mask holding part 171a Upstream mask Holding unit 171b Downstream mask holding unit 180 Irradiation unit (illumination optical system)
186 Wavelength cut filter 200 Proximity scanning exposure apparatus (exposure apparatus)
LA Optical axis M Mask P Pattern PE Split sequential proximity exposure equipment (exposure equipment)
W substrate, glass substrate, color filter substrate (material to be exposed)

Claims (8)

  1.  発光部と該発光部から発生された光に指向性をもたせて射出する反射光学系をそれぞれ含む複数の光源部と、
     前記所定数の光源部の光がインテグレータレンズの入射面に入射されるように、前記光源部をそれぞれ支持する光源支持部を有する複数のカセットと、
     前記全ての光源部の光がインテグレータレンズの入射面に入射されるように、前記複数のカセットがそれぞれ取り付けられる複数のカセット取り付け部を有する支持体と、
     前記各光源部の照射時間の経過に伴って生じる前記光の拡散を修正するように、前記各光源部の前記インテグレータレンズに対する光軸角度を調整可能な光軸角度調整機構と、を備えることを特徴とする露光装置用光照射装置。
    A plurality of light source units each including a light emitting unit and a reflection optical system that emits light with directivity emitted from the light emitting unit;
    A plurality of cassettes each having a light source support part for supporting the light source part so that the light of the predetermined number of light source parts is incident on an incident surface of the integrator lens;
    A support body having a plurality of cassette mounting portions to which the plurality of cassettes are respectively mounted so that light of all the light source portions is incident on an incident surface of the integrator lens;
    An optical axis angle adjustment mechanism capable of adjusting an optical axis angle of each light source unit with respect to the integrator lens so as to correct the diffusion of the light that occurs as the irradiation time of each light source unit elapses. A light irradiation apparatus for an exposure apparatus.
  2.  前記所定数の光源部は、分光特性が異なる複数種類の光源部によって構成されることを特徴とする請求項1に記載の露光装置用光照射装置。 2. The light irradiation apparatus for an exposure apparatus according to claim 1, wherein the predetermined number of the light source units includes a plurality of types of light source units having different spectral characteristics.
  3.  前記所定数の光源部の各発光部は、分光特性が同じであり、
     前記所定数の光源部は、その一部に波長カットフィルタを配置することで、分光特性が異なる複数種類の光源部を構成することを特徴とする請求項2に記載の露光装置用光照射装置。
    Each light emitting unit of the predetermined number of light source units has the same spectral characteristics,
    3. The light irradiation apparatus for an exposure apparatus according to claim 2, wherein the predetermined number of light source units includes a plurality of types of light source units having different spectral characteristics by disposing a wavelength cut filter in a part thereof. .
  4.  被露光材としての基板を保持する基板保持部と、
     前記基板と対向するようにマスクを保持するマスク保持部と、
     請求項1~3の何れか1項に記載の前記光照射装置と、該光照射装置の複数の光源部から出射された光が入射されるインテグレータレンズと、を有する照明光学系と、
    を備え、
    前記基板に対して前記照明光学系からの光を前記マスクを介して照射することを特徴とする露光装置。
    A substrate holder for holding a substrate as an exposed material;
    A mask holding unit for holding a mask so as to face the substrate;
    An illumination optical system comprising: the light irradiation device according to any one of claims 1 to 3; and an integrator lens into which light emitted from a plurality of light source units of the light irradiation device is incident;
    With
    An exposure apparatus that irradiates the substrate with light from the illumination optical system through the mask.
  5.  発光部と該発光部から発生された光に指向性をもたせて射出する反射光学系をそれぞれ含む複数の光源部と、
     前記所定数の光源部の光がインテグレータレンズの入射面に入射されるように、前記光源部をそれぞれ支持する光源支持部を有する複数のカセットと、
     前記全ての光源部の光がインテグレータレンズの入射面に入射されるように、前記複数のカセットがそれぞれ取り付けられる複数のカセット取り付け部を有する支持体と、
     前記各光源部の照射時間の経過に伴って生じる前記光の拡散を修正するように、前記各光源部の前記インテグレータレンズに対する光軸角度を調整可能な光軸角度調整機構と、を備える露光装置用光照射装置の制御方法であって、
     前記各光源部の照射時間の経過に伴って生じる前記光の拡散を検出する工程と、
    前記光軸角度調整機構によって、前記光の拡散を修正する工程と、
    を有することを特徴とする露光装置用光照射装置の制御方法。
    A plurality of light source units each including a light emitting unit and a reflection optical system that emits light with directivity emitted from the light emitting unit;
    A plurality of cassettes each having a light source support part for supporting the light source part so that the light of the predetermined number of light source parts is incident on an incident surface of the integrator lens;
    A support body having a plurality of cassette mounting portions to which the plurality of cassettes are respectively mounted so that light of all the light source portions is incident on an incident surface of the integrator lens;
    An exposure apparatus comprising: an optical axis angle adjustment mechanism capable of adjusting an optical axis angle of each light source unit with respect to the integrator lens so as to correct the diffusion of the light that occurs as the irradiation time of each light source unit elapses. A method for controlling a light irradiation device for a vehicle,
    Detecting the diffusion of the light that occurs with the lapse of the irradiation time of each light source unit;
    Correcting the diffusion of the light by the optical axis angle adjusting mechanism;
    A method of controlling a light irradiation apparatus for an exposure apparatus, comprising:
  6.  前記インテグレータレンズの下流側に配置され、各波長に対応した照度を計測する照度計と、
     前記各発光部の点灯・消灯、及び照度を制御する制御部と、
    をさらに備え、
     前記所定数の光源部は、分光特性が異なる複数種類の光源部によって構成され、
     前記制御部は、前記照度計で計測された各波長に対応した照度に基づいて、所定の波長において所望の照度が得られるように、前記カセット内の各光源部を制御することを特徴とする請求項5に記載の露光装置用光照射装置の制御方法。
    An illuminometer that is disposed downstream of the integrator lens and measures illuminance corresponding to each wavelength;
    A control unit for controlling lighting and extinction of each light emitting unit and illuminance;
    Further comprising
    The predetermined number of light source units is constituted by a plurality of types of light source units having different spectral characteristics,
    The control unit controls each light source unit in the cassette so that desired illuminance can be obtained at a predetermined wavelength based on illuminance corresponding to each wavelength measured by the illuminometer. The control method of the light irradiation apparatus for exposure apparatuses of Claim 5.
  7.  前記所定数の光源部の各発光部は、分光特性が同じであり、
     前記所定数の光源部は、その一部に波長カットフィルタを配置することで、分光特性が異なる複数種類の光源部を構成することを特徴とする請求項6に記載の露光装置用光照射装置の制御方法。
    Each light emitting unit of the predetermined number of light source units has the same spectral characteristics,
    7. The light irradiation apparatus for an exposure apparatus according to claim 6, wherein the predetermined number of light source units constitute a plurality of types of light source units having different spectral characteristics by disposing a wavelength cut filter in a part thereof. Control method.
  8.  被露光材としての基板を保持する基板保持部と、
     前記基板と対向するようにマスクを保持するマスク保持部と、
     請求項5~7の何れか1項に記載の前記光照射装置と、該光照射装置の複数の光源部から出射された光が入射されるインテグレータレンズと、を有する照明光学系と、
    を備え、
     請求項5~7の何れか1項に記載の前記光照射装置の制御方法を行いながら、前記基板に対して前記照明光学系からの光を前記マスクを介して照射して、前記マスクに形成されるパターンを前記基板に露光転写することを特徴とする露光方法。
    A substrate holder for holding a substrate as an exposed material;
    A mask holding unit for holding a mask so as to face the substrate;
    An illumination optical system comprising: the light irradiation device according to any one of claims 5 to 7; and an integrator lens into which light emitted from a plurality of light source units of the light irradiation device is incident;
    With
    A light is emitted from the illumination optical system to the substrate through the mask while performing the method of controlling the light irradiation apparatus according to any one of claims 5 to 7, and is formed on the mask. An exposure method comprising exposing and transferring a pattern to be exposed to the substrate.
PCT/JP2011/066467 2010-07-22 2011-07-20 Light irradiation device for exposure apparatus, method for controlling light irradiation device, exposure apparatus, and exposure method WO2012011497A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001999.6A CN102483587B (en) 2010-07-22 2011-07-20 Light irradiation device for exposure apparatus, method for controlling light irradiation device, exposure apparatus, and exposure method
KR1020117027227A KR101443431B1 (en) 2010-07-22 2011-07-20 Light irradiation device for exposure device, control method of light irradiation device, exposure device, and exposure method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010165163 2010-07-22
JP2010-165163 2010-07-22
JP2010191288 2010-08-27
JP2010-191288 2010-08-27
JP2011154669A JP5799306B2 (en) 2010-07-22 2011-07-13 Method of controlling light irradiation apparatus for exposure apparatus and exposure method
JP2011-154669 2011-07-13

Publications (1)

Publication Number Publication Date
WO2012011497A1 true WO2012011497A1 (en) 2012-01-26

Family

ID=45496916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066467 WO2012011497A1 (en) 2010-07-22 2011-07-20 Light irradiation device for exposure apparatus, method for controlling light irradiation device, exposure apparatus, and exposure method

Country Status (1)

Country Link
WO (1) WO2012011497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107841A (en) * 2019-03-13 2019-08-09 赣州市众恒光电科技有限公司 A kind of protection bulkhead lamp that beam angle is variable

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039871A (en) * 2002-07-03 2004-02-05 Hitachi Ltd Illuminating method, exposure method and equipment for the methods
JP2004342633A (en) * 2003-05-13 2004-12-02 Nikon Corp Aligner, lighting device, and aligning method
JP2004361746A (en) * 2003-06-05 2004-12-24 Mejiro Genossen:Kk Lighting system for exposure
JP2005092137A (en) * 2003-09-19 2005-04-07 Nikon Corp Aligner and exposure method
JP2005292316A (en) * 2004-03-31 2005-10-20 Ushio Inc Light irradiating apparatus
JP2006019412A (en) * 2004-06-30 2006-01-19 Canon Inc Exposure device and manufacturing method of device
JP2006324435A (en) * 2005-05-18 2006-11-30 Ushio Inc Light-irradiator
JP2007115817A (en) * 2005-10-19 2007-05-10 Ushio Inc Light irradiation device
JP2008241877A (en) * 2007-03-26 2008-10-09 Phoenix Denki Kk Light source device and exposure device using same
JP2010040343A (en) * 2008-08-05 2010-02-18 Ushio Inc Light irradiation device
WO2011096365A1 (en) * 2010-02-05 2011-08-11 日本精工株式会社 Light irradiation device for exposure devices, method for controlling turn-on of same, exposure device, exposure method, and substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039871A (en) * 2002-07-03 2004-02-05 Hitachi Ltd Illuminating method, exposure method and equipment for the methods
JP2004342633A (en) * 2003-05-13 2004-12-02 Nikon Corp Aligner, lighting device, and aligning method
JP2004361746A (en) * 2003-06-05 2004-12-24 Mejiro Genossen:Kk Lighting system for exposure
JP2005092137A (en) * 2003-09-19 2005-04-07 Nikon Corp Aligner and exposure method
JP2005292316A (en) * 2004-03-31 2005-10-20 Ushio Inc Light irradiating apparatus
JP2006019412A (en) * 2004-06-30 2006-01-19 Canon Inc Exposure device and manufacturing method of device
JP2006324435A (en) * 2005-05-18 2006-11-30 Ushio Inc Light-irradiator
JP2007115817A (en) * 2005-10-19 2007-05-10 Ushio Inc Light irradiation device
JP2008241877A (en) * 2007-03-26 2008-10-09 Phoenix Denki Kk Light source device and exposure device using same
JP2010040343A (en) * 2008-08-05 2010-02-18 Ushio Inc Light irradiation device
WO2011096365A1 (en) * 2010-02-05 2011-08-11 日本精工株式会社 Light irradiation device for exposure devices, method for controlling turn-on of same, exposure device, exposure method, and substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107841A (en) * 2019-03-13 2019-08-09 赣州市众恒光电科技有限公司 A kind of protection bulkhead lamp that beam angle is variable
CN110107841B (en) * 2019-03-13 2023-11-10 赣州市众恒光电科技有限公司 Protection industrial and mining lamp with changeable light emitting angle

Similar Documents

Publication Publication Date Title
JP6206997B2 (en) Light irradiation apparatus for exposure apparatus and lighting control method thereof
JP5799306B2 (en) Method of controlling light irradiation apparatus for exposure apparatus and exposure method
WO2011105461A1 (en) Optical projection device for exposure apparatus, exposure apparatus, method for exposure, method for fabricating substrate, mask, and exposed substrate
JP2006351586A (en) Lighting device, projection aligner, and method of manufacturing microdevice
US11221563B2 (en) Lens control for lithography tools
KR101443431B1 (en) Light irradiation device for exposure device, control method of light irradiation device, exposure device, and exposure method
JP5057382B2 (en) Exposure apparatus and substrate manufacturing method
JP5598789B2 (en) Light irradiation apparatus for exposure apparatus and exposure apparatus
KR101725542B1 (en) Light irradiating apparatus for exposure apparatus, lighting control method thereof, exposure apparatus, and substrate
WO2012011497A1 (en) Light irradiation device for exposure apparatus, method for controlling light irradiation device, exposure apparatus, and exposure method
JP5825546B2 (en) Light irradiation device for exposure equipment
JP2013097310A (en) Proximity exposure apparatus and proximity exposure method
TWI725565B (en) An LED lighting device and exposure machine
KR101138681B1 (en) Light irradiation apparatus for exposure apparatus, exposure apparatus, and exposure method
JP2023530849A (en) Precision vacuum window viewport and pellicle for fast measurement recovery
JP2010192674A (en) Holding device, optical system, exposure device, and method for manufacturing device
TW201734654A (en) Discharge lamp and method for exchanging same, and exposure method and device
TW201107891A (en) Light irradiation apparatus for exposure apparatus, exposure apparatus, and exposure method
JP2012113268A (en) Light irradiation device for exposure device, and exposure device
JP2016148811A (en) Exposure device and luminaire
KR20140098011A (en) Proximity exposure device, proximity exposure method and illumination optical system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001999.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117027227

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809667

Country of ref document: EP

Kind code of ref document: A1