WO2012009859A1 - 微波干燥器和微波干燥方法 - Google Patents

微波干燥器和微波干燥方法 Download PDF

Info

Publication number
WO2012009859A1
WO2012009859A1 PCT/CN2010/075418 CN2010075418W WO2012009859A1 WO 2012009859 A1 WO2012009859 A1 WO 2012009859A1 CN 2010075418 W CN2010075418 W CN 2010075418W WO 2012009859 A1 WO2012009859 A1 WO 2012009859A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
dryer
main body
dried
drier according
Prior art date
Application number
PCT/CN2010/075418
Other languages
English (en)
French (fr)
Inventor
林国辉
Original Assignee
Lam Kwok Fai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Kwok Fai filed Critical Lam Kwok Fai
Priority to PCT/CN2010/075418 priority Critical patent/WO2012009859A1/zh
Priority to US13/806,077 priority patent/US9435585B2/en
Publication of WO2012009859A1 publication Critical patent/WO2012009859A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/04Garbage

Definitions

  • the invention belongs to the field of microwave drying technology, in particular to a microwave dryer and a microwave drying method for quickly energy-saving dry materials.
  • the microwave refers to an electromagnetic wave having a frequency of 300 MHz to 300 GHz and a wavelength of 1 mm to 1 m.
  • the drying principle is: the microwave generator radiates the microwave to the material to be dried.
  • the microwave When the microwave is injected into the material, the water molecules in the material to be heated are polar molecules, and the microwave makes the water in the material polar.
  • the molecules rotate and oscillate synchronously according to the microwave frequency; under the action of the rapidly changing high-frequency electromagnetic field, the orientation of the above polar molecules will change with the change of the external electric field, causing the movement and mutual friction effect of the polar molecules.
  • the field energy of the microwave is converted into thermal energy in the polar molecular medium, which causes the internal and surface of the material to simultaneously heat up, resulting in a series of physicochemical processes such as heating and expansion, so that a large amount of water molecules evaporate from the material to reach the microwave. Heat drying purpose.
  • Microwave heating is to make the object to be heated itself a heating element, which is called an integral heating method. It does not require a heat conduction process, so that uniform heating can be achieved in a short time. This feature allows the material with poor heat conduction to be heated and dried in a short time, the utilization of energy is improved, and the size of the heating furnace can be made smaller than that of the conventional heating furnace.
  • the overall temperature of the material rises. At this time, the surface temperature is lowered due to evaporation of the surface moisture of the material; thereby causing a temperature gradient of high internal and external low, and the direction of this gradient coincides with the direction in which the water evaporates. Therefore, the efficiency of microwave heating is extremely high.
  • Chinese Patent Application No. 200610048560.X (Publication No. CN101122440A) discloses a self-flowing, microwave-free microwave heating dryer.
  • the main body of the dryer is a material self-flowing pipe with an inlet at the upper and lower outlets.
  • the inlet of the pipe is equipped with a feeding funnel device.
  • the outlet is equipped with a rotating impeller type anti-microwave leakage discharge device, and at least two sets of microwave drying devices for flowing the microwave through the microwave drying device are also arranged on the pipeline.
  • the dryer of the invention can be used for granular material and powder (heating) drying, and the vertical (inclined) arrangement of the material passage can realize the automatic falling flow of the material in the machine, and has a simple structure and a material flow rate (ie, heat drying). Time) is easy to control and has high (heating) drying uniformity and good energy saving effect.
  • Chinese invention patent application No. 02100566.4 (Publication No. CN1436996) discloses a bubbling microwave drying device comprising a microwave drying furnace, which is coated with a layer of polytetrafluoroethylene on the inner wall of the inner cavity, and is placed on a rotary turntable on the bottom wall of the microwave drying furnace.
  • the bottle-type drying container has an upper bottle neck extending out of the microwave drying furnace through the opening of the upper wall of the microwave drying furnace, and a microwave suppressor, a microwave suppressor, respectively, at the contact between the bottle neck and the upper wall of the microwave drying furnace and the port on the bottle neck a microporous is arranged on the end surface, and a horizontally disposed gas distribution plate with micropores is arranged in the lower part of the bottle drying container, and an inlet pipe sequentially passes through the microwave suppressor and the gas distribution plate to the bottom of the bottle drying container;
  • the power of the microwave drying furnace is 200 ⁇ 700W.
  • the invention eliminates the water vapor and heat generated during the drying process in time, avoids the overheating caused by the accumulation of water vapor and heat inside the material, and ensures the quality of the dried material.
  • Chinese invention patent application No. 200610160006.0 (Publication No. CN101210771) discloses a microwave drying apparatus in which a circular annular box body is arranged on a frame, and a cavity having a large half-circular ring shape therein has a fixing plate, and at least 9 sets of microwaves are arranged on the fixing plate.
  • the waveguide device and the microwave generator assembly, the microwave waveguide device is evenly arranged and arranged on the fixed plate, and the microwave drying chamber is arranged below the fixed plate, and the heating rotating device is arranged below the microwave drying chamber, which is composed of a frequency conversion motor and a heating turntable.
  • a dehumidification mechanism is arranged in the middle of the circular annular box, and left and right microwave suppressors and loading and unloading material areas are arranged in the small semi-annular cavity in the circular annular box.
  • the device can make the microwave radiation uniform, can effectively improve the uniformity of heating, and has strong versatility. And it is compact in structure, small in floor space, convenient in loading and unloading materials, and convenient for continuous production.
  • a disadvantage of the above prior art microwave drying apparatus is that the drying time of the material is still very long, or the material needs to be put into the drying equipment in batches, and the material cannot be continuously fed.
  • the purpose of the dryer and drying method of the present invention is to sufficiently dry a large amount of material in a short time and further reduce the energy consumed, thereby providing energy utilization efficiency. Drying the material in a relatively short period of time can result in less damage to the material and achieve the best drying results.
  • the present invention provides a microwave dryer comprising: a material collection box having an input port, the material to be dried is placed into the material collection box from the input port; the dryer body, the dryer The main body comprises a microwave vibrating head disposed on the inner wall of the main body, and the microwave to vibrate the hair to dry the material to be dried; the auger is connected to the material collecting box and the dryer main body for The material to be dried from the material collection tank is sent to the main body of the dryer; and a blower for feeding air into the main body of the dryer to blow the input material to be dried.
  • the dryer body further includes a power adjustment switch of the microwave vibrating head for adjusting the power of the microwave vibrating head.
  • the auger is driven by an electric motor and a gearbox that changes the rotational speed of the auger using a ratio of gear sizes.
  • the auger is arranged obliquely upwards, and the material to be dried in the material collection box is transported upward from the bottom of the auger to the main body of the dryer, and the auger further extrudes the material when conveying the material.
  • the material is simultaneously subjected to the action of gravity and auger to extrude a portion of the moisture during transport, wherein a strip of paste material is output from the output of the auger to the dryer body.
  • the output of the auger is adjustable in size to deliver strips of different diameters to the material input port of the dryer body.
  • the shape of the dryer body is a cylindrical shape, a rectangular parallelepiped or a square.
  • the dryer body includes a plurality of microwave vibrating heads, wherein the plurality of microwave vibrating heads are uniformly disposed on an inner wall of the main body when viewed from above the dryer main body; and when viewed from a side of the dryer main body
  • the plurality of microwave vibrating heads are disposed at different height positions of the inner wall of the dryer body, thereby enabling uniform distribution of microwave fields in the dryer body.
  • the plurality of microwave vibrating heads are three microwave vibrating heads.
  • the microwave vibrating head has a power of 1800 to 2000 watts and a frequency of 915 MHz to 2450 MHz.
  • the inner wall or the outer wall of the dryer body is coated with one or more layers of aluminum foil, crystallized polyethylene terephthalate (CPET) or polytetrafluoroethylene (PTFE) coating to shield the microwaves from microwaves. Will leak out of the subject.
  • CPET crystallized polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • the dryer body also includes a switch and a booster power source on the outer wall of the body.
  • the dryer body further includes a material discharge port at the top thereof for outputting the dried material.
  • the dryer body further includes a hot gas extraction port connected to the blower, the blower re-sending the hot gas extracted from the main body into the main body.
  • the microwave dryer further includes a water vapor grid adjacent the hot gas extraction port for storing moisture condensed from the hot gas.
  • the dryer body further comprises a conical, elliptical or hood-shaped tube wind screen and a disc-shaped or elliptical base;
  • the tube wind screen has a cone top upward but no bottom surface, and is a hollow cone Forming a gap between the tube wind screen and the base to blow hot air or air.
  • a plurality of microwave vibrating heads in the dryer body are uniformly disposed on an inner wall of the main body when viewed from above the dryer main body; uniformly arranged in the inner body when viewed from a side of the dryer main body Different height positions between the tube screen and the top of the dryer body, such that a uniformly distributed microwave field can be produced in the dryer body.
  • a plurality of legs are disposed on the tapered edge of the tube screen and are respectively mounted to the legs around the base.
  • the base is a disc-shaped body slightly concave in the middle, and has a hole at a central position of the base, the hole is connected to the hot gas input port and the discharge port, and the discharge port is used for discharging the residue and the material after drying.
  • Moisture in the base the hot gas inlet is connected to the blower through a pipe for inputting air sent from the blower to the main body of the dryer; the side of the base is opposite to the side wall or the bottom of the main body connection.
  • the pipe connecting the hot gas inlet to the blower is a straight pipe, a u-shaped pipe or an n-shaped pipe.
  • the invention also provides a microwave drying method for drying materials, comprising the following steps: (1) placing the material to be dried into a material collection box of a microwave dryer; (2) using a screw propeller to remove the material to be dried.
  • the material collection box is sent to the main body of the dryer, and at the same time, part of the moisture of the material to be dried is extruded, wherein the size of the material to be dried sent to the main body of the dryer is controlled by the small hole in the output port of the auger; (3) blowing the material to be dried sent to the main body of the dryer by a wind of a blower and suspending it in the main body of the dryer; (4) using the microwave generated by the microwave vibrating head in the main body of the dryer to suspend the suspension The material to be dried is dried; (5) the dried material is taken out from the material discharge port at the upper part of the dryer main body.
  • the material to be dried is extruded into a strip-like shape upon entering the dryer body.
  • the air blower also extracts hot air from the hot air exhaust vent of the dryer main body, leaves the moisture in the hot air in the water gas grid, and then blows the hot air into the dryer main body, and circulates and heats .
  • the wind After the wind blown by the blower enters the main body of the dryer, the wind is blown to a wind screen through the air inlet position, and after the wind screen is blocked, the wind direction rotates around the horizontal wind screen, and the air flow is from the tube.
  • the air outlet edge position of the edge of the wind screen is lifted upward along the inner wall of the dryer body to rotate in the dryer body, and simultaneously drives the microwave energy in the dryer body to rotate.
  • the microwave dryer of the invention has the following advantages: rapid and uniform omnidirectional heating, suitable heating conditions, no local temperature peak, rapid power cutoff, rapid process control, small size of the microwave reactor compared to the conventional reactor, operation cost and Low loss.
  • the above characteristics determine that the microwave dryer of the present invention has high productivity, high efficiency, small volume, low investment, low operating cost and low loss.
  • microwave drying There are many kinds of materials in microwave drying, and the composition and state are also different. According to the shape, there are liquid, paste, paste, granule, flake and powder; according to the type, vegetables, fruits, grains, medicines, aquatic products and Agricultural and sideline products; in terms of size, it can be as small as rapeseed, as large as ginseng and mushroom.
  • Microwave drying studies have shown that the size, shape, quantity, moisture and position in the cavity of the microwave oven have a certain effect on the drying effect. Therefore, the microwave drying should select the drying process and parameters according to the characteristics of the material, such as dielectric properties, thermophysical properties, moisture content, shape and size.
  • the microwave dryer of the invention can be used for any kind of organic articles and biological materials, especially organic substances in cereal waste, that is, domestic garbage; can also cope with various wastes, processing, recycling, processing and re-engineering; extracting evaporation sterilization Dry storage of agricultural products.
  • FIG. 1 is a schematic view showing the structure of a microwave drier of the present invention.
  • Figure 2 is the top of a hood-shaped wind screen in the microwave dryer of the present invention.
  • Figure 3 is a base of a cover-shaped wind screen in the microwave dryer of the present invention.
  • Figure 4 is a perspective view of the microwave dryer body of the present invention.
  • microwave frequency the corresponding wavelength range, and related laws.
  • wave equation and some related problems are deduced, and then the concept of microwave penetration depth and energy absorption is introduced.
  • the relationship between these two concepts and the thermal effect generated between the microwave and the material is then on the microwave.
  • a general introduction to the application including microwave sources, waveguides, and radiators.
  • Microwave is an electromagnetic wave with a frequency between 300MHz and 300GHz, which is between low-frequency radio waves and high-frequency infrared and visible light, so microwaves are non-ionizing radiation.
  • Microwave systems generally consist of three components, including a microwave source, a waveguide, and a radiator.
  • the magnetron is composed of a vacuum tube.
  • the center of the vacuum tube is a cathode tube with a high radiation source (ie, capable of emitting electrons).
  • An anode having a specific structure is distributed around the cathode tube, and these anodes form a resonant cavity and are coupled with the fringe field to generate a microwave resonant frequency. Due to the strong electric field, the radiated electrons are rapidly accelerated. However, due to the existence of an orthogonal magnetic field, the electrons will deviate, resulting in a spiral motion. Choosing the appropriate electromagnetic field strength allows the cavity to extract energy from the electrons. This phenomenon is similar to a whistling echo to an empty bottle.
  • the stored electromagnetic energy can be transmitted to the waveguide or coaxial line through the resonant cavity by means of a loop antenna.
  • the output power of the magnetron is controlled by the current or magnetic field strength.
  • the maximum power is usually limited by the anode temperature to ensure that the anode is not melted.
  • the power is limited to 1.5 kW and 25 kW, respectively.
  • There is a larger resonant cavity in the magnetron of 915MHz frequency because the low resonant frequency means longer wavelength, so that higher energy can be obtained per unit area, but in the prior art, microwave heating is often caused by unreasonable matching. Less efficient.
  • Waveguide Electromagnetic waves can be propagated using propagation lines (such as coaxial cables) and waveguides. Because waveguides have lower losses when transmitting high-frequency electromagnetic waves (including microwaves), they can be used for microwave energy transmission.
  • a waveguide is a hollow conductor whose cross section is circular or rectangular, the size of its internal size determines the minimum transmission frequency (so-called cutoff frequency), which is determined by the wave equation and the corresponding boundary conditions below which the propagation cannot be propagated.
  • cutoff frequency For rectangular waveguides of width and a and height b, the cutoff frequency fc can be derived.
  • the form of transmission inside the waveguide is called the mode, which determines the distribution of the electromagnetic field within the waveguide.
  • transverse electric field TE
  • TM transverse magnetic field
  • Microwave radiators and tuners When the microwaves travel through the gaps of the material being heated and are eventually blocked, the waveguide itself acts as a microwave-heated radiator. Since the position of the electromagnetic field changes with time, this configuration is called a traveling wave device. Only when there is a wall flow line barrier and the slit exceeds a certain size, microwave radiation is generated at the slit, and this radiation can also be avoided. In the field of microwave utilization equipment, a common standing wave device also has a slit arrangement (cutting the wall surface). In the process of transmission from the radiator to the microwave source, in order to obtain high absorption energy and low reflection microwave, the impedance of the radiator with a certain load must match the impedance of the corresponding wave source and the waveguide. In order to achieve this state, energy is introduced. Reflection, which enables efficient matching of energy and load.
  • a circulator (a device associated with microwave travel) can be used to pass the incident wave while the reflected wave enters an additional load (mostly moisture).
  • the reflected energy can be determined by the heating of the additional load.
  • the radiators are generally classified into three types: near-field radiators, single-mode radiators, and multimode radiators.
  • the penetration depth of the microwave in the material is inversely proportional to the frequency. That is to say, the short wave is shallower than the long wave penetrating material.
  • the penetration depth of electromagnetic waves in materials with high water content is not too deep, because the internal dielectric constant and loss factor of wet materials are relatively high. Penetration depth is an important concept when evaluating whether an electromagnetic field of a certain frequency can uniformly heat a specific material.
  • the moisture in the wet material is usually divided into three categories: 1) free water between cells: 2) a layer of water that is movable between free water and bound water: 3) bound water.
  • the dielectric properties of free water molecules between cells are very similar to those of liquid water, while the dielectric properties of bound water are like ice.
  • the dielectric properties of the material when the moisture content is reduced to a critical value, the dielectric properties of the material also decrease rapidly. At below the critical moisture content, the change has little effect on the loss factor.
  • high temperatures can increase the fluidity of the bound water, thereby reducing this critical moisture value.
  • the loss factor decreases as the moisture content decreases, the ability of the dry article to convert electromagnetic energy into heat energy is reduced.
  • the wet part of the material can convert more microwave energy into heat energy than the dry part. This can solve the problem of uneven water distribution which is common in the hot air drying process, because the interior of the hot air drying material is damp than the surface. This will also significantly shorten the drying time.
  • the change of temperature and humidity during the microwave drying process is beneficial to understand the interaction between the article and the electromagnetic field, and is beneficial to the calculation of the system development, sterilization, disinfection, reheating and drying process control.
  • the rate of microwave heating and heating unevenness are affected by heating device factors and load characteristics such as size, shape, dielectric properties, and the like. Any change in parameters will significantly affect the microwave heating process.
  • the most meaningful and practical mechanisms here include dielectric polarization, dipole polarization, interfacial polarization, conduction effects, and combined effects.
  • the material can be heated by high frequency microwaves, and the thermal effect is produced by the electronic interaction of the materials in the microwave field. These two main effects are caused by the interaction of thermal effects. Taking electrons in carbon atoms as an example, if charged ions can pass through the material without any hindrance, current will form in the electric field.
  • the dipole Under low-frequency wave irradiation, the dipole reacts due to rearrangement, and the molecules acquire energy. Some of the energy is lost from the collision of the molecules, so the total thermal effect is small. Under the action of the high-frequency electric field, the dipole does not have enough time to react to the electric field, the dipole cannot rotate, and the molecular motion cannot be formed, so there is no energy transfer, so there is no heating effect. Between the high and low frequency limits, there is a frequency interval in which the dipole has enough time to respond, which is the microwave frequency. In the microwave frequency interval, the frequency of the microwave is sufficiently low that there is sufficient time for the dipole to rotate. If the frequency is too high, the rotation will not fully follow the frequency change.
  • the molecular dipole in a solid cannot rotate freely like a molecular dipole in a liquid, but is bound to a certain equilibrium position separated by a barrier.
  • the theoretical processing of this behavior in solids is being formulated and similar to the liquid formula, which means that the solid dipole has two possible directions.
  • the Applicant compares it to the prior art air drying method, which is divided into three stages. The first stage is a period of constant drying speed per unit surface area. At this stage, the internal moisture of the particles continuously flows out from the inside due to capillary action, while the surface of the material remains moist.
  • the factors that determine and constrain the drying rate of this "constant speed zone" ie, the factors that describe the state of the airflow
  • the factors that determine and constrain the drying rate of this "constant speed zone" are: temperature, relative humidity, and airflow velocity. Changing any of these parameters can cause significant changes in the drying rate of the material.
  • Second speed reduction zone In the second speed reduction zone, there is not much free water. Moisture can only diffuse slowly through the capillary to the surface of the material by slowly diffusing it into the inner surface (if present).
  • microwave drying mainly produces huge differences in the two deceleration zones.
  • the microwave transmits energy in different ways, the microwave can penetrate the material to be dried, and the whole of the material is heated in all directions.
  • the wetted area of the material absorbs microwaves more readily than the dry area. Therefore, the temperature gradient in the dried material is conventionally inverted in microwave drying to make the material center hotter than the surrounding. This speeds up the conveying speed. If additional hot air is dried in the microwave drying, the overall transport mechanism is completely changed.
  • Electrodes can be heated by a microwave oven.
  • the electrode molecules in the object especially water molecules can respond well to microwaves
  • microwave high-frequency oscillation microwave oven often uses 2.45 GHz microwave.
  • the direction will vibrate (rotate) with the oscillating electric field.
  • the intrinsic electromagnetic field of a molecule is changed and affects adjacent molecules, so the molecules also have translational motion, which is the main source of molecular temperature.
  • non-electrode molecules also produce some displacement polarization due to the electric field, this itself has little contribution to the temperature of the molecular population.
  • Some materials have free electrode molecules, so they can be directly heated by microwaves; other materials can be indirectly heated by microwaves as long as they are uniformly mixed with water.
  • Synchronous heating For opaque solids, the microwave can reach the interior of the material at least a few centimeters from the surface of the material, heating these parts simultaneously. This is different from the infrared or visible light of an electric oven, they can only reach the surface of these solids, so heat can only be transferred from the outside to the outside.
  • the present invention provides a microwave dryer, which is a drying device for extracting moisture by using microwaves, which comprises feeding waste to put the dry material into the container and extracting the material. Moisture.
  • Fig. 1 shows a schematic structural view of a microwave drier of the present invention.
  • the microwave dryer comprises a material collection tank 1 having an input port 1a and a dryer body 6.
  • the material to be dried (for example, garbage) that has been cleaned is placed in the material collection box from the input port 1a, and the material can be chopped, stirred, and the like.
  • the material in the material collection tank 1 is sent to the dryer body 6 through an auger 2.
  • the auger 2 is driven by a motor 3a and a gearbox 3b.
  • the power of the motor 3a is, for example, 3 rpm and 1300 rpm.
  • the gearbox 3b changes the rotational speed of the auger 2 by a ratio of gear sizes, for example, 1 to 70 rpm.
  • the auger 2 is arranged obliquely upward, the material is advanced upward from the bottom of the auger, and is subjected to the action of gravity and the auger 2 to output the strip-shaped material from the outlet 1b. At the same time, some or most of the moisture in the material is extruded to facilitate the drying of the material by microwave.
  • the microwave drier of the present invention can be operated continuously 24 hours a day, 7 days a week, and can be processed up to 20 tons per day (24 hours).
  • the output port 1b of the auger is connected to the input port 7 of the dryer body 6, which may have holes of different sizes to convey strips of different diameters to the input port 7.
  • FIG 4 is a perspective view of the microwave dryer body of the present invention, but for clarity, the various components located in the microwave dryer body 6 are still depicted in solid lines.
  • the dryer body 6 is generally cylindrical in shape and has a diameter of about 1 meter, and may be other suitable shapes such as a rectangular parallelepiped, a cube, and the like.
  • the dryer main body 6 includes a power source 12 disposed outside the main body, and a plurality of microwave vibrating heads 13, that is, microwave sources, disposed on the inner wall of the main body.
  • the main body 6 contains three microwave vibrating heads.
  • the microwave vibrating head used in the microwave drier of the present invention can have a power of up to 1800 to 2000 watts, and the frequency of the microwave vibrating head is preferably 915 MHz to 2450 MHz.
  • the body 6 of the microwave dryer may be made of metal such as aluminum or stainless steel; it may also be made of an insulating material such as plastic or resin.
  • a layer of aluminum foil may be applied to the inner or outer wall of the body 6 to shield the microwave so that the microwave does not leak outside the body.
  • a crystalline polyethylene terephthalate (CPET) or PTFE (polytetrafluoroethylene) coating may be used in place of the aluminum foil.
  • CPET crystalline polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • other types of shielding members such as metal mesh covers, etc., may be mounted on the inner or outer wall of the body 6.
  • a microwave field is formed in a space formed by the top of the duct panel 14 and the main body 6 and the side wall on which the microwave vibrating head is mounted.
  • the plurality of microwave vibrating heads are disposed at different height positions of the inner wall of the main body, preferably at a height position of each of the microwave vibrating heads evenly disposed between the edge of the duct panel 14 and the top of the main body 6, but located at Different radial directions of the body 6.
  • the highest position microwave vibrating head is disposed about 1 foot from the top of the main body 6, and the lowest position microwave vibrating head is arranged at the highest microwave ratio.
  • the height of the third microwave vibrating head is located approximately halfway between the aforementioned minimum and maximum two microwave vibrating heads.
  • the distance between the microwave vibrating heads is also about 1 meter or 3 feet.
  • a switch 11 and a booster power source 12 can also be mounted on the outer wall of the main body 6.
  • the switch 11 includes a main power switch of the microwave dryer, and may further include a power adjustment switch of the microwave vibrating head 13.
  • the boosted power source 12 is used to convert an input mains voltage of, for example, 50 Hz/220 VAC into an appropriate voltage for driving the microwave vibrating head.
  • a material discharge port 10 is included at the top of the main body 6 for outputting the dried material.
  • the dried material is generally in the form of granules or powder.
  • the inside of the main body 6 further contains a hot gas extraction port K connected to a blower 4.
  • a water vapor grid 8 is also contained in the vicinity of the hot gas extraction port K for storing moisture condensed from the hot gas to further improve the drying effect.
  • the blower 4 re-sends the hot air extracted from the main body 6 to the main body 6 after drying, so that the utilization efficiency of the hot air can be improved to increase the drying speed and save energy.
  • FIG. 2 is a top view of a cover-shaped wind screen in the microwave dryer of the present invention
  • FIG. 3 is a base of a cover-shaped wind screen in the microwave dryer of the present invention.
  • a conical or hood-shaped duct screen 14 is mounted at the bottom for moisture barrier, microwave leakage prevention, and additionally directing the airflow added within the body.
  • the cone of the tube screen 14 is upward, and may have no bottom surface and only include a tapered surface.
  • the diameter of the tapered or rim-shaped edge of the tube panel 14 is slightly smaller than the inner diameter of the microwave dryer body 6, i.e., between the edge of the tube panel 14 and the inner wall of the microwave dryer body 6.
  • a small gap is about a few millimeters to a few centimeters, for example 3 to 5 mm.
  • the tube panel 14 may be made of metal such as aluminum foil, or may be made of an insulating material, such as an aluminum foil, a crystallized polyethylene terephthalate (CPET) or a polytetrafluoroethylene coating.
  • CPET crystallized polyethylene terephthalate
  • the purpose of the duct screen 14 in the shape of a cone or a cover is to enable the material falling on the duct panel 14 or its residue to slide down to the edge of the duct panel 14 by its own gravity, and be blown up or dropped by the wind. Go to the base 15. Therefore, there is no particular requirement for the height of the duct panel 14, as long as the duct panel 14 has a conical shape or a cover shape.
  • the tube panel 14 there are a plurality of legs 16 for mounting to the legs 17 around the disc-shaped base 15, respectively.
  • the disc-shaped base 15 is shown in FIG. After installation, there is a certain gap between the duct screen 14 and the disc-shaped base 15 to allow hot air or air to be blown out. The gap may also be on the order of a few millimeters to a few centimeters, for example 3 to 5 mm.
  • the leg 17 and the leg 16 are respectively three, and are evenly distributed on the duct screen 14 or the disc-shaped base 15.
  • the disc-shaped base 15 is a disc-shaped body which is slightly concave in the middle, and has a hole 18 at the approximate center of the base 15, which is connected to the hot gas inlet port 19 and the discharge port 20.
  • the discharge port 20 is for discharging the material residue or moisture accumulated in the main body 6, and is normally closed. When the valve 21 is opened, the material residue or moisture accumulated in the base 15 can be discharged, although it is absolutely large. Part of the dried material is discharged through the material discharge port 10.
  • the base 15 may be made of plastic, resin, fiber material or metal material.
  • edge of the tube screen 14 and the base 15 may also be other suitable shapes other than a circle, such as an elliptical or polygonal shape, or a groove having a tooth shape; or, the tapered surface of the tube panel 14 may have many Holes are provided to allow air to be blown out and to blow the incoming material to be dried.
  • the hot gas inlet port 19 on the base 15 is connected to the blower 4 through the pipe 5, so that the blower 4 can feed air into the main body 6 of the microwave drier to blow off the input material to be dried, while being extracted from the hot gas extraction port K.
  • the hot air is also sent back to the main body 6 from the hot gas inlet port 19 by the blower 4.
  • the conduit 5 is a straight tube or a curved tube, such as a u-shaped or n-shaped tube.
  • One advantage of using a u-shaped or n-shaped tube is that the conduit 5 can be utilized to shield a small amount of microwaves leaking from the body 6.
  • the strip-shaped paste material sent from the input port 7 to the main body 6 is blown off, becomes particles, and is suspended in the main body 6, facilitating drying treatment by microwave. Moreover, the time for drying the strip-shaped material is significantly shortened compared to the processing of large pieces of material.
  • the rotational speed of the blower 4 can be adjusted, for example, by inputting wind power at a rotational speed of 2460 rpm to match the amount of material to be dried by the auger 2 to the main body 6.
  • the main body 6 of the microwave dryer may have the base 15 as a bottom or may have a separate bottom (not shown).
  • the body 6 can be mounted on the ground or floor by an additional bracket (not shown).
  • the microwave dryer of the present invention is a rapid container for extracting moisture by microwave penetration, and a tube wind screen 14 is disposed in the main body, which can be used as a heat storage body for temporarily storing heat energy when the material in the main body generates heat energy, and then The main air is taken out by the exhaust system, and the heat is gradually injected back into the container from the bottom to gradually increase the heat to achieve a quick drying effect.
  • the dry material is pressed to press most of the water, and the material is poured into the main body 6 from the main material input port position 7, and the volume of the material to be poured is controlled by the small hole of the input port. Then, the air to be dried which is injected is blown off by the wind of the blower 4.
  • the microwave uses the penetrating property to penetrate the material suspended in the main body 6 for a short time to penetrate the material to be dried in an all-round manner.
  • the material When the material penetrates through the microwave, it will automatically generate high-speed self-molecular friction to generate heat to volatilize the self-humidity.
  • Hot air is also generated in the main body 6, and its temperature can be as high as 80 °C. The hot air carries the material moisture, and then the hot air is taken out by the hot gas extraction port, and most of the water is left in the water and gas grid from the pipe 5 by using the filtered water gas grid 8, and then the hot air is blown into the main body 6, and the circulation is heated. .
  • the hot air When the hot air is injected into the main body, it will blow from the bottom to the bottom of the cover tube wind screen 14 through the position of the air inlet 19, and the hot air will block the small amount of moisture brought into the main body through the top of the tube wind screen.
  • Water vapor is formed in the base 15, and the water vapor also has a certain heat energy, and can be stored in the base 15 as a short-term heat storage so that the main body 6 has a solid heat position, and a certain heat is maintained in the main body.
  • the screen edge is provided with an air outlet position, and the airflow rises from the edge of the screen along the inner wall of the main body, and after the airflow reaches the top position of the main body, only the pipe of the material outlet port rotates only in the container body.
  • the cycle also drives the microwave energy in the main body to rotate and overflow, thereby enhancing the drying function for high-performance applications.
  • the microwave vibrating head 13 can be closed by itself, and the dryer system does not have thermal runaway.
  • the main body will be converted to use the self-heating energy for dry operation, which can achieve energy-saving effects.
  • the dryer of the invention is constructed by utilizing the physical phenomenon that the material molecules lightly rise and heavier and sink down.
  • the light volume becomes light particles or powder, as long as there is sufficient wind power,
  • the dried material is taken out of the body by the wind, and then the package can be stored.
  • Dry materials do not need to be classified and do not require pre-treatment.
  • the garbage to be treated it only needs to be cleaned with water to remove the odor, and then it can be input into the material collection box and sent to the microwave dryer body by the screw propeller.
  • Any organic material only uses the microwave penetration property to cause the dry matter to generate heat energy to volatilize the water.
  • the volume of the material to be dried is properly utilized for infiltration, the finer the volume of the material, the shorter the time required and the better the effect.
  • about one-third of the main body is enough to rotate the material, and the material to be dried can be continuously injected, and the dried material is continuously discharged from the container, and can be operated at the same time.
  • the microwave dryer according to the present invention can be dried at a rate of 20 tons of material per day (24 hours).
  • the invention also provides a method for drying a fast energy-saving dry material, comprising the following steps:
  • the material to be dried is cleaned and placed in a material collection box of the microwave dryer;
  • Hot air is also generated in the main body, and the hot air contains material moisture, and then the hot air is extracted from the hot air exhaust port by the air blower, and most of the water is left in the water and gas grid by using the filtered water gas grid from the pipeline, and then The hot air is blown into the main body again, and the heating is performed in a cycle;
  • the microwave vibrating head in addition to the main body, it is very important to control the blower that switches the wind and the regulator that can control the amount of the microwave.
  • the microwave vibrating head can be turned off by itself to avoid thermal runaway.
  • the main body will be converted to use the self-heating energy for dry operation to achieve energy-saving effects.
  • the dryer of the invention is formed by utilizing the physical phenomenon that the material molecules lightly rise and heavier to sink the air. When the material is extracted, the self-volume is light, and as long as there is sufficient wind, the dried material is taken out of the main body by the wind. Store the package.
  • the dryer and the drying method of the invention can sufficiently dry a large amount of materials in a short time and consume the least energy; and since the drying method is short-time drying, the drying scheme of the invention has the least damage to the materials, and the best drying effect can be achieved.
  • the microwave dryer of the present invention consumes less energy.
  • the present invention can be used to dry the material regardless of any kind of material.
  • the drying time and drying speed and drying efficiency of the dryer according to the present invention are independent of the type of material, and depend on the size of the strip paste after the material is extruded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Description

微波干燥器和微波干燥方法 技术领域
本发明属于微波干燥技术领域,具体地说,本发明涉及一种快速节能干燥物料的微波干燥器与微波干燥方法。
背景技术
在目前对湿度含量通常为75%~85%的有机废弃物品的处理是个严重的问题,虽然已有各种各样的热处理方法,但这些方法都需要对废弃物进行初步的干燥处理,这样做法需要消耗相当多的能量。在满足环保条件的前提下,利用微波干燥器械中的热辐射能量而处理上述物料可达成节能和减废的情况。
  所述微波是指频率在300MHz~300GHz、波长为1mm~1m的电磁波。它的干燥原理是:微波发生器将微波辐射到待干燥的物料上,当微波射入物料内部时,由于被加热介质物料中的水分子是极性分子,微波使物料内的水等极性分子按微波频率作同步旋转和摆动;在快速变化的高频电磁场作用下,上述极性分子的取向将随着外电场的变化而变化,造成极性分子的运动和相互摩擦效应。此时微波的场能转化为极性分子介质内的热能,导致物料内部和表面同时升温,产生热化和膨化等一系列物化过程,使大量的水分子从物料中蒸发逸出,从而达到微波加热干燥的目的。
  微波加热是使被加热物体本身成为发热体,称之为整体加热方式,它不需要热传导的过程,因此能在短时间内达到均匀加热。这一特点可使热传导较差的物质在短时间内得到加热干燥,能量的利用率得到提高,还可以使加热炉的尺寸比常规加热炉要小。同时,当物料在微波电磁场作用下,物料整体温度上升。此时,由于物料表面水分蒸发,致使表面温度降低;从而造成一个内高外低的温度梯度,这个梯度的方向正好与水分蒸发的方向一致。所以微波加热的效率极高。
  中国专利申请No. 200610048560.X (公开号为CN101122440A),公开了一种自流无微波泄漏微波加热干燥器,该干燥器的主体为一入口在上、出口在下的物料自流管道,管道的入口处装配有加料漏斗装置,管道的出口处装配有旋转叶轮式防微波泄漏排料装置,在管道上还串装有至少两套对流过的物料进行微波照射干燥的微波干燥装置。可见,该发明的干燥器可用于颗粒物料和粉状的(加热)干燥,其物料通道的垂直(倾斜)布置可以实现物料在机内的自动下落流动,具有结构简单、物料流速(即加热干燥时间)便于控制等特点,并具有较高的(加热)干燥均匀性和较好的节能效果。
  中国发明专利申请No. 02100566.4 (公开号CN1436996)公开了一种鼓气式微波干燥装置,包括一微波干燥炉,其内腔四壁上喷涂一层聚四氟乙烯,位于微波干燥炉底壁上的旋转式转盘上放置一瓶式干燥容器,其上部瓶颈穿过微波干燥炉上壁开孔伸出微波干燥炉外,在瓶颈与微波干燥炉上壁的接触处及瓶颈上端口部分别设有微波抑制器,微波抑制器的端面上设有微孔,瓶式干燥容器内下部安装一水平放置的带有微孔的气体分布板,一进气管依次穿过微波抑制器和气体分布板至瓶式干燥容器底部;所述微波干燥炉的功率为200~700W,该发明对干燥过程中产生的水蒸气及热量及时排除,避免物料内部因水蒸气、热量积聚所导致的过热现象,保证干燥物料品质。
  中国发明专利申请No. 200610160006.0 (公开号为CN101210771)公开了一种微波干燥设备,其中在机架上设置有圆环形箱体,其内呈大半扇环形的腔体中有固定板,固定板上设置有至少9套微波波导装置和微波发生器总成,微波波导装置均布且相错布置在固定板上,固定板下方为微波干燥腔,微波干燥腔的下方设置有加热旋转装置,它由变频电机及加热转盘组成,在圆环形箱体的中部设置有排湿机构,而在圆环形箱体内呈小半扇环形的腔体中设置有左、右微波抑制器及装卸物料区。该设备能使微波辐射均匀,可有效地提高加热的均匀性,且通用性强。并且它结构紧凑,占地面积小,且物料装卸方便,便于连续生产。
  上述现有技术微波干燥设备的缺点是物料的干燥时间仍然很长,或者需要将物料分批放入干燥设备中,不能连续地送入物料。
发明内容
因此,本发明的干燥器及干燥方法的目的是在短时间内充分地干燥大量物料并且进一步降低所消耗的能量,提供能量的利用效率。以相对短的时间干燥物料可以使对物料的损害较小,并且可达到最良好的干燥效果。
为了实现上述目的,本发明提供了一种微波干燥器,包括:具有输入口的物料收集箱,待干燥的物料从所述输入口放入到物料收集箱中;干燥器主体,所述干燥器主体中含有在主体内壁上设置的微波振动头,利用微波振动头发出的微波将待干燥的物料进行干燥处理;螺旋推进器,连接到所述物料收集箱和所述干燥器主体,用于将来自物料收集箱的待干燥物料送到所述干燥器主体中;和鼓风机,用于向干燥器主体中送入空气以将输入的待干燥物料吹散。
所述干燥器主体还包括微波振动头的功率调节开关,用于调整微波振动头的功率。
所述螺旋推进器由电动机和变速箱驱动,所述变速箱利用齿轮大小的比例而改变螺旋推进器的转动速度。
所述螺旋推进器是斜向上布置的,将物料收集箱中的待干燥物料从螺旋推进器的底部向上输送到干燥器主体中,所述螺旋推进器在输送物料时还对物料进行挤压,使物料同时受到重力和螺旋推进器的挤压作用,以在输送过程中挤出部分水分,其中从螺旋推进器的输出口中向干燥器主体输出条形膏状的物料。
所述螺旋推进器的输出口的尺寸是可调整的,以便向干燥器主体的物料输入口输送不同直径的条形膏状物料。
所述干燥器主体的形状为圆柱形、长方体或正方体。
所述干燥器主体中含有多个微波振动头,其中在从干燥器主体的上方俯视时,所述多个微波振动头被均匀布置在主体的内壁上;而在从干燥器主体的侧面看时,所述多个微波振动头布置在干燥器主体内壁的不同高度位置,从而使干燥器主体中能够产生均匀分布的微波场。优选地,所述多个微波振动头是三个微波振动头。
所述微波振动头的功率为1800~2000瓦特,频率为915MHz~2450MHz。
所述干燥器主体的内壁或外壁上涂有一或多层铝箔片、晶化聚对苯二甲酸乙二醇酯(CPET)或聚四氟乙烯(PTFE)涂层,以屏蔽微波,使微波不会泄露到主体以外。
所述干燥器主体还包括在主体外壁上的开关和增压电源。
所述干燥器主体还包括位于其顶部的物料排出口,用于输出被干燥后的物料。
所述干燥器主体还包括热气抽取口,该热气抽取口连接到所述鼓风机,所述鼓风机将从主体中抽取的热气重新送到主体中。
所述微波干燥器还包括在所述热气抽取口附近的水汽格,用于储存从热气中凝结的水分。
所述干燥器主体还包括一个圆锥形、椭圆锥形或罩形的管风屏以及一个圆盘形或椭圆形的底座;所述管风屏的锥顶向上,但没有底面,是空心的锥形;所述管风屏与所述底座之间具有一定的间隙,以使热气或空气吹出。
优选地,所述干燥器主体中多个微波振动头,在从干燥器主体的上方俯视时,被均匀布置在主体的内壁上;在从干燥器主体的侧面看时,被均匀布置在所述管风屏与所述干燥器主体顶部之间的不同高度位置,从而使干燥器主体中能够产生均匀分布的微波场。
在所述管风屏的锥形边缘含有多个支脚,分别安装到所述底座周围的柱脚上。
所述底座是一个中间稍向下凹的圆盘状物体,在底座的中心位置有一个孔,该孔连接到热气输入口和排放口,所述排放口用于排出物料干燥后的残渣和所述底座中的水分,所述热气输入口通过管道与鼓风机相连接,用于输入从所述鼓风机送到干燥器主体中的空气;所述底座的侧边与所述主体的侧壁或底部相连接。
其中,将所述热气输入口与所述鼓风机相连接的所述管道是直管、u形管或n形管。
本发明还提供了一种干燥物料的微波干燥方法,包括以下步骤:(1)将待干燥物料后放入微波干燥器的物料收集箱中;(2)使用螺旋推进器将待干燥物料从所述物料收集箱送到干燥器主体中,同时挤压出所述待干燥物料的部分水分,其中利用螺旋推进器输出口中的小孔控制送到所述干燥器主体中的待干燥物料的尺寸;(3)使用鼓风机的风力把送到所述干燥器主体中的待干燥物料吹散,悬浮在干燥器主体中;(4)利用所述干燥器主体中的微波振动头产生的微波对悬浮的待干燥物料进行干燥处理;(5)将干燥后的物料从干燥器主体上部的物料排出口取出。
所述待干燥物料在进入所述干燥器主体时被挤压为条形膏状的形状。
所述鼓风机还从所述干燥器主体的热气排风口抽出热空气,将所述热空气中的水分留在水气格内,然后将热空气再吹进所述干燥器主体内,循环加热。
当所述鼓风机吹入的风进入所述干燥器主体之后,经进风口位置吹向一个管风屏,经所述管风屏阻挡后,风向会横向管风屏四周作旋转,气流从在管风屏边缘的出风边位置沿干燥器主体的内壁向上引升,在所述干燥器主体内作旋转,同时带动干燥器主体内的微波能旋转。
本发明的微波干燥器有以下优点:快速均匀的全方位加热、适宜的加热条件、无局部温度峰、电源切断迅速,实现快速过程控制、微波反应器比传统反应器体积小、运行操作费用及损耗低。上述特性决定了本发明的微波干燥器生产率高、功效大、体积小、投资小、运行费用及损耗低。
微波干燥的物料种类繁多,成分和状态也各不相同,按形状分有液状、糊状、浆状、粒状、片状、粉状;按类型分有蔬菜、水果、谷物、药品、水产品和农副产品;就尺寸而言可以小到菜籽,大到人参、蘑菇。微波干燥的研究表明,物料的大小、形状、数量、水分和在微波炉谐振腔中的位置对干燥效果均有一定影响。因此微波干燥应根据物料的特性,例如介电特性、热物理特性、含水率和形状、大小等,选择干燥工艺和参数。
本发明的微波干燥器可以用于任何有机物品种类和生物物料,尤其是谷类食物垃圾中的有机物质,即生活垃圾;亦可以应付有多种废物,处理、回收、加工再造;提取蒸发消毒杀菌;对农产品干燥储存。
附图说明
图1是本发明的微波干燥器的结构示意图。
图2是本发明的微波干燥器中的罩形风屏的顶部。
图3是本发明的微波干燥器中的罩形风屏的底座。
图4是本发明的微波干燥器主体的透视图。
具体实施方式
下面先简单描述微波频率的定义、相应的波长范围和有关法则。在基本方程的基础上,推导出波动方程和一些相关问题的解决,进而介绍微波穿透深度和能量吸收的概念,这两个概念与在微波和材料之间产生的热效应的关系,然后对微波应用的一般装置,包括微波源、波导、辐射器进行简单的介绍。
微波是一种频率在300MHz到300GHz的电磁波,介乎低频的无线电波和高频的红外线及可见光之间,因而微波属于非电离辐射。微波系统一般主要包括三个组成部分,包括微波源、波导和辐射器。
微波源:即磁控管,由一个真空管所组成,真空管中心是一个具有高辐射源(即能够发射出电子)的阴极管。在阴极管周围分布着具有特定结构的阳极,这些阳极形成了谐振腔,并与边缘场耦合而产生微波谐振频率。由于强电场作用,使辐射的电子被迅速加速。但由于存在正交的磁场,电子会发生偏离,结果产生螺旋运动。选择适宜的电磁场强度,可使谐振腔从电子中获得能量。该现象类似于对着空瓶吹口哨获得悦耳的回声。储存的电磁能量可以借助圆环天线,通过谐振腔传输到波导或同轴线中。磁控管的输出功率由电流或磁场强度来控制。最大功率通常受到阳极温度的限制,要确保阳极不被熔化。对于频率为2~45GHz的微波,采用空气或水冷却电极时,功率分别限制为1.5kW和25kW。在915MHz频率的磁控管中有更大的谐振腔,因为低谐振频率意味着更长的波长,这样单位面积可获得更高的能量,但现有技术中常常由于匹配不合理而使得微波加热效率较低。
波导:电磁波可以利用传播线路(如同轴电缆)和波导来传播,由于波导在传输高频电磁波(包括微波)时有较低的损耗,因而可用于微波能的传输。原则上波导是横截面为圆形或矩形的中空导体,其内部尺寸的大小决定最小传输频率(所谓的截止频率),由波动方程和相应的边界条件(低于该条件不能传播)确定。对于宽度和a和高度b的矩形波导,可推导出截止频率fc。在波导内波的传输形式称为模式,它决定电磁场在波导内的分布。这些模式可分为横向电场(TE)和横向磁场(TM),分别来描述电场和磁场的传播方向。最常用的波导是矩形相交场,其宽度a为高度b的两倍,用TE10来表示。
微波辐射器和调谐器:当微波在被加热材料的缝隙中穿行,并最终被阻止时,波导本身就可以作为微波加热的辐射器。由于电磁场的位置随时间而变化,因而这种构造被称为行波装置。只有当有壁流线阻隔,且狭缝超过一定尺寸时,狭缝处才会产生微波辐射,这一辐射也是可以避免的。在微波利用设备的领域内,常见的驻波设备还有狭缝排列(切断壁面)。在从辐射器到微波源的传输过程之中,为了获得高吸收能和低反射的微波,具有一定负荷的辐射器的阻抗必须与相应波源和波导阻抗相匹配,为达到这种状态,引入能量反射,使得能量与负载达到高效匹配。
由于在加工过程中负荷的变化,要求不断控制这种匹配或对平均载荷优化。因此要阻止剩余反射能的返回,并防止微波源过热。可使用环行器(与微波穿行有关的装置),使得入射波通过,而反射波进入附加载荷(多数是水分)。另外通过附加载荷的加热情况,可以确定反射能量。
根据电磁场的结构,一般将辐射器分为三类:近场辐射器、单模辐射器和多模辐射器。
微波在材料中的穿透深度与频率成反比例。也就是说,短波比长波穿透物料的深度要浅。另外,电磁波在含水量高的物料中穿透深度不会太深,因为湿物料内部介电常数和损耗因子相对都很高。在评估一定频率的电磁场是否能对具体物料进行均匀加热时,穿透深度是一个很重要的概念。
湿物料中的水分通常被分成三类:1)细胞间的自由水:2)处于自由水和结合水之间可移动的水层:3)结合水。细胞间的自由水分子的介电性与液态水的介电性很相似,而结合水的介电性却像冰一样。一般说当水分含量降低到一个临界值时,物料介电性也迅速降低。在低于临界水分含量时,变化对损耗因子影响不大。然而高温能提高结合水的流动性,从而减小这一临界水分值。
因为损耗因子随水分含量降低而减小,所以干燥物品将电磁能转化为热能的能力降低。在微波烘干过程中则恰恰相反,物料的潮湿部分比干燥部分能将更多微波能转化为热能。这可以解决热风烘干过程中普遍存在的水分分配不均匀问题,因为热风烘干物料的内部比表面要潮湿些。这也会显著缩短烘干时间。在微波烘干过程中温湿度变化有利于理解物品和电磁场间的相互作用,有利于计算产品开发,杀菌、消毒、再加热和干燥过程系统的控制。
微波加热的速率和加热不均匀性受加热设备因素和负载特性(如大小、形状、介电性能等)的影响。任意一种参数的改变都会显著影响微波加热过程,这里最有意义也是最实用的机理包括电介质极化、偶极子极化、界面极化、传导效应和组合效应。利用高频微波可以对材料进行加热,热效应由微波场中材料的电子相互作用产生的。这两种主要效应都是由热效应的互相作用引起的。以碳原子中的电子为例,如果带电离子能够毫无阻碍地穿过材料的话,这个电场中就会有电流形成,如果被束缚在材料的某一区域的话,电场就会驱使它们运动直至与场力平衡,这种运动最终会引起材料中偶极子偏振。在微波辐射下,电子传导和偶极子极化都可以产生热效应。微波加热和微波光谱学是截然不同的。另外,具有特殊能量(特殊的频率)的光子会激起气相分子旋转程度的改变,从而引起量子化现象;而固体和液体中物质对微波的吸收则要依赖于微波的频率,这个吸收过程无法量子化,不是依靠直接对光子的吸收来完成加热。而材料在加热过程中似乎是由于高频电场的作用,所以可以用经典分析方法分析。
在低频波辐照下,受电场的作用,偶极子因重新排列而做出反应,同时分子也因而获得能量,其中的一些能量从分子的碰撞损失了,所以总的热效应很小。在高频电场的作用下,偶极子没有充足的时间对电场做出反应,偶极子也就无法产生旋转,无法形成分子运动,从而没有能量传递,所以也就没有加热效应。在高低两个频率极限之间,存在着偶极子有足够时间做出响应的频率区间,就是微波频率。在微波频率区间内,微波的频率足够低,从而有足够的时间使偶极子旋转。如果频率过高,旋转就不能完全跟上频率变化。当偶极子刚刚适应在电场中的排列时,电场就改变了方向,于是电场力和偶极子之间刚刚达到的平衡随即被打破。这种稳定性的改变导致偶极子随机碰撞,从而完成了电介质加热这过程。
固体中分子偶极子不能像液体中的分子偶极子一样自由地旋转,而是被束缚在一定的由势垒分开的平衡位置上。固体中这种行为的理论处理正在被公式化,而且和液体的公式相似,这就是说固体偶极子有两个可能的方向。为了理解微波干燥的独特优点,申请人将它与现有技术的气流干燥法相比较,气流干燥操作分为三个阶段。第一阶段是一个单位表面积上干燥速度恒定的时期。在此阶段,颗粒内部水分因毛细作用从内部连续不断地流出,而物料表面保持湿润。决定和制约这个“恒速区”干燥速度的因素(即表述气流状态的因素)有:温度、相对湿度和气流速度,改变其中任何一项参数,都可以使物料的干燥速度产生显著的变化。
在下一个阶段,形势发生了急剧的变化。这个阶段需要处理两个同时存在的输送问题:在水分(水蒸气)必须从物料内部移动到表面以被气流带出的同时,蒸发水分所需的热量也必须从物料表面传导到内部。在这个过程中,蒸发面不断向物料的中心移动,这使得上述两种输送中的传输距离越来越短,而且蒸发表面积不断减少,结果干燥速度迅速下降。这一阶段称为“一次降速区”。这种情况下,提高干燥速度是不容易的。
如果希望传递更多的能量(热),则不得不采取更大的温度梯度。这就意味物料的表面会过热或过早被完全干燥,导致变质的情况(变黑或成碳质)。这称为“二次降速区”。在二次降速区中,已经没有多少自由水。水分只能通过缓慢扩散到内表层(如果存在的话),在此处解吸后通过毛细管扩散到物料表面。
与气流干燥法相比,微波干燥主要是在两个降速区产生巨大差异。微波以不同的方式传递能量,微波可以穿透待干燥物料,并且对物料的整体作全方位加热。物料的湿润区域比干燥区域更容易吸收微波。因此,传统情况下干燥物料中的温度梯度在微波干燥中被倒置,使物料中心比周边更热。这加速了输送速度。如果在微波干燥中再附加热气流干燥,则整体运作的输送机理就完全改变了。
如果一些物体(比如液态水)含有电极性分子并且这些分子可自由振荡,那么他们可被微波炉加热。当这些物体被置于微波传播空间中,在微波高频振荡(微波炉常采用2.45GHz的微波)的电磁场作用下,物体中的电极性分子(尤其是水分子,可出色地对微波作出响应)的方向会随振荡电场一起振动(转动),一个分子的固有电磁场被改变并影响邻近分子,于是分子们也会有平动,这种平动是分子群体温度的主要来源。虽然非电极性分子也会因电场产生一些位移极化,但这本身对分子群体的温度几乎没有贡献。有的物料本身就有自由的电极性分子,因此可以被微波直接加热;其他物料只要与水均匀混合,也可以通过水间接地被微波加热。
同步加热:对不透明固体来说,微波可以达到离物料表面至少几厘米的物料内部,对这些部位同时加热。这不同于电烤箱的红外线或可见光,它们只能到达这些固体的表面,因此只能从外向里传输热量加热物料。
以上所述是本发明的微波干燥器的工作原理。
根据以上原理,如图1所示,本发明提供了一种微波干燥器,它是一种利用微波加速提取水分的干燥设备,其中包括入料糟以将要干燥物料放进容器,提取物料中的水分。
图1显示了本发明的微波干燥器的结构示意图。该微波干燥器包括一个具有输入口1a的物料收集箱1和一个干燥器主体6。已被清洁后的待干燥处理的物料(例如垃圾)从输入口1a放入物料收集箱,其中可以对物料进行切碎、搅拌等处理。物料收集箱1中的物料通过一个螺旋推进器2送到干燥器主体6中。螺旋推进器2由电动机3a和变速箱3b驱动,电动机3a的功率例如是3匹和1300转,变速箱3b利用齿轮大小的比例而改变螺旋推进器2的转动速度,例如1比70转。
优选地,螺旋推进器2是斜向上布置的,物料从螺旋推进器的底部向上推进,同时受到重力和螺旋推进器2的挤压作用,以便使从输出口1b中输出条形膏状的物料,同时挤出物料中的一些或大部分水分,便于物料被微波干燥。
本发明的微波干燥器可以每天24小时、每周7天不停地工作,其处理量可高达20吨/天(24小时)。
螺旋推进器的输出口1b与干燥器主体6的输入口7相连接,所述输出口1b可以具有不同尺寸的孔,以便向输入口7输送不同直径的条形膏状物料。
图4是本发明的微波干燥器主体的透视图,但为了清楚起见,位于微波干燥器主体6中的各个部件仍然以实线绘出。如图1和图4所示,所述干燥器主体6一般为圆柱形,其直径约为1米,也可以是其它适合的形状,如长方体、正方体等。所述干燥器主体6包括在主体外设置的电源12、在主体内壁上设置的多个微波振动头13,即微波源。优选地,所述主体6中含有3个微波振动头。如果从主体6的上方俯视,可以看到三个微波振动头被均匀布置在主体的内壁上;而从主体6的侧面来看,三个微波振动头布置在主体内壁的不同高度位置,从而使主体6中能够产生均匀分布的微波场。本发明的微波干燥器中使用的微波振动头的功率可以高达1800~2000瓦特,微波振动头的频率优选为915MHz~2450MHz。
所述微波干燥器的主体6可以是金属制成的,如铝或不锈钢;也可以是绝缘材料如塑料或树脂制成的。在主体6的内壁或外壁上可以涂上一层铝箔片,以屏蔽微波,使微波不会泄露到主体以外。另外,还可以用晶化聚对苯二甲酸乙二醇酯(CPET)或PTFE(聚四氟乙烯)涂层来代替所述铝箔片。替换地,主体6的内壁或外壁上也可以安装其它类型的屏蔽部件,如金属网罩等。
根据本发明,微波场形成在由所述管风屏14与主体6的顶部以及上述安装有微波振动头的侧壁所形成的空间中。如上所述,多个微波振动头布置在主体内壁的不同高度位置,优选地,在各个微波振动头的高度位置均匀布置在所述管风屏14的边缘与主体6的顶部之间,但位于主体6的不同径向方向上。
在包含三个微波振动头且所述主体6的直径为1米时,最高位置的微波振动头布置在距离主体6顶部约1英尺的地方,而最低位置的微波振动头布置在比最高的微波振动头低约2.5英尺的地方,第三个微波振动头的高度位于前述最低和最高的两个微波振动头之间约一半的地方。各微波振动头之间的距离也约为1米或3英尺。
在主体6的外壁上还可以安装开关11和增压电源12。开关11上包括微波干燥器的主电源开关,还可以包括微波振动头13的功率调节开关。增压电源12用于将输入的例如50HZ/220VAC的市电电压转换为驱动微波振动头的适当电压。在主体6的顶部包括一个物料排出口10,用于输出被干燥后的物料。干燥后的物料一般是颗粒状或粉末状的。
主体6的内部还含有一个热气抽取口K,该热气抽取口K连接到一个鼓风机4。在热气抽取口K的附近还含有一个水汽格8,用于储存从热气中凝结的水分,以进一步改善干燥效果。鼓风机4将从主体6中抽取的热气在干燥后重新送到主体6中,可以提高热气的利用效率,以提高干燥速度和节省能量。
图2是本发明的微波干燥器中的罩形风屏的顶部,而图3是本发明的微波干燥器中的罩形风屏的底座。
在主体6的内部,在底部安装有圆锥形或罩形的管风屏14,用于隔水气、防微波泄漏、且另外对在主体内加进的气流作定向。管风屏14的锥顶向上,可以没有底面,只包括锥形面。所述管风屏14的锥形或罩形边缘的直径略小于所述微波干燥器主体6的内径,即在所述管风屏14的边缘与所述微波干燥器主体6的内壁之间具有很小的间隙,约为几个毫米至几个厘米,例如3~5mm。
所述管风屏14可以用金属如铝箔片制成,也可以用绝缘材料制成再涂覆铝箔片、晶化聚对苯二甲酸乙二醇酯(CPET)或聚四氟乙烯涂层,以阻隔电磁波的泄漏。所述管风屏14呈圆锥形或罩形的目的是使落在管风屏14上的物料或其残渣能够在自身重力的作用下滑落到管风屏14的边缘,被风吹起或落到底座15中。因此,对所述管风屏14的高度没有特别的要求,只要管风屏14呈圆锥形或罩形即可。
在管风屏14的锥形边缘含有多个支脚16,用于分别安装到圆盘状底座15周围的柱脚17上。圆盘状底座15在图3中示出。在安装后,管风屏14与圆盘状底座15之间具有一定的间隙,以使热气或空气吹出。所述间隙也可以是约为几个毫米至几个厘米,例如3~5mm。优选地,所述柱脚17和支脚16分别是3个,且均匀分布在管风屏14或圆盘状底座15上。
圆盘状底座15是一个中间稍向下凹的圆盘状物体,在底座15的大约中心的位置有一个孔18,它连接到热气输入口19和排放口20。排放口20用于排放主体6中积聚的物料残渣或水分,它平时是关闭的,在需要排放时,将阀门21打开,就可以排放积聚在底座15中的物料残渣或水分了,虽然绝大部分的干燥后物料是经由物料排出口10排出的。所述底座15可以由塑料、树脂、纤维材料或者金属材料制成。
另外,管风屏14和底座15的边缘也可以是圆形以外的其它合适形状,例如椭圆形或多边形等,或者具有齿形的凹槽;或者,管风屏14的锥面上可以具有多个孔,以便于让空气吹出和将输入的待干燥物料吹散。
底座15上的热气输入口19通过管道5与鼓风机4相连接,使得鼓风机4可以向微波干燥器的主体6中送入空气以将输入的待干燥物料吹散,同时从热气抽取口K抽出的热气也被鼓风机4从热气输入口19送回到主体6中。优选地,所述管道5是直管或弯管,例如u形或n形管。使用u形或n形管的一个优点是可以利用所述管道5来屏蔽从主体6泄漏的微量微波。在鼓风机4的作用下,从输入口7送到主体6中的条形膏状的物料被吹散,成为颗粒,悬浮在主体6中,便于用微波进行干燥处理。并且,与处理大块的物料相比,对条形膏状的物料进行干燥处理的时间显著缩短了。
鼓风机4的转速可以调整,例如以2460转/分的转速输入风力,以与由螺旋推进器2送到主体6中准备干燥的物料数量相适应。
所述微波干燥器的主体6可以将所述底座15作为底部,也可以另外具有单独的底部(图中未画出)。所述主体6可以通过另外的支架(图中未画出)安装在地面或地板上。
因此,本发明的微波干燥器是一种利用微波穿透性提取水分的快速容器,主体内设有管风屏14,其可以在主体内物料产生热能时作暂储热能的寄热体,再用排风系统将主体热风抽出,转从底部注回容器内,将热量渐渐增加,达成快速干燥效果。
从螺旋推进器2将要干燥物料压榨大部分水,以及把物料从主体物料输入口位置7灌进主体6内,利用输入口的小孔控制被灌入的物料体积。然后,利用鼓风机4的风力把进注的需干燥物料吹散。
微波利用穿透性把进入主体6内而悬浮的物料以短时间作全方位穿透待干燥物料,物料经微波穿透时会自行产生高速自体分子磨擦而产生热力去挥发自体水分。而主体6内亦产生热空气,其温度可高达80℃。热空气中带有物料水分,再利用热气抽取口抽出热空气,从管道5中利用过滤水气格8将大部分水留在水气格内,继而再将热风吹进主体6内,循环加热。
当热风进注到主体内时,会经进风口19的位置从底部吹向罩形管风屏14的底部,而热风会将带进主体内的小量湿气经管风屏的顶部阻档,在底座15形成水蒸气,水蒸气亦带有一定热能,可储存于底座15中作为短暂储热而令主体6中存有固热位置,保持主体内有一定热度。
因风力经管风屏顶部阻挡,风向会成一定阻力,会横向管风屏四周作旋转。而屏边设有出风位置,气流从屏边沿主体内壁向上升,而气流到达主体顶部位置后,除物料输出口的管道外,只会在容器体内作旋转。循环亦会带动主体内微波能旋转充溢转动,因而加强干燥功能,作高效能应用。
要达到高能作干燥效果,除主体容器外,可控制切换调教的鼓风机与可操控微波量大小的调节器是非常重要的。在主体内温度达到所要求的温度时,可令微波振动头13自行关闭,干燥器系统不会有热失控情况。主体内会转为利用自体热能作干燥运行,可达成节能效应。
本发明的干燥器是利用物料分子对空气比重轻上升重向下沉的物理现象作结构而成,当物料水分被提取后,自体积轻,变成颗粒或粉末,只要有足够风力,可将已干燥物料用风力带出主体外,之后可以储存包装。
干燥物料不需分类,无需预先处理。对于待处理的垃圾来说,只需用水进行清洁处理,使其去除异味,即可输入物料收集箱,在由螺旋推进器送入微波干燥器主体。任何有机物料只是利用微波穿透特性令干燥物产生热能而挥发水分,只要适当利用要干燥物料体积大小去进行渗透,物料体积越微细,需时越短,效果越佳。只要容器内有足够空间给物料悬浮,约主体三分之一就足够物料旋转飞舞,可以不断注入要干燥物料,而已干燥物料亦从容器内不断排出干燥物,可同时以流水式操作。根据本发明的微波干燥器可以按照每天(24小时)处理20吨物料的速度进行干燥处理。
本发明还提供了一种快速节能干燥物料的干燥方法,包括以下步骤:
(1)将需干燥的物料清洁处理后放入微波干燥器的物料收集箱中;
(2)使用螺旋推进器将要干燥物料压榨大部分水,以及把物料从主体物料输入口位置灌进主体内,其中利用小孔控制物料的体积和形状;
(3)使用鼓风机的可风量切换的风力把进注的需干燥物料吹散,悬浮在主体中;
(4)主体中亦产生热空气,热空气中带有物料水分,再利用鼓风机从热气排风口抽出热空气,从管道中利用过滤水气格将大部分水留在水气格内,继而将热风再吹进主体内,循环加热;
(5)当热风进注到主体内,会经进风口位置吹向罩形管风屏,而在热风中带进主体内的小量湿气经罩形管风屏阻档,在罩形管风屏的底座中形成水蒸气,水蒸气亦带有一定热能,可储存于底座作为短暂储热,从而可令主体内含有存热位置,保持主体内有一定热度;
(6)风力经罩形管风屏阻挡后,风向会横向罩形管风屏四周作旋转,而罩形管风屏边缘设有出风边位置,气流从屏边沿主体内壁向上引升,气流到达主体顶部位置,除了物料排出口位置的管道外,气流只会在容器体内作旋转,亦会带动主体内微波能旋转,充溢转动,因而加强干燥功能,作高效能应用。
根据本发明的方案,要达到高能的干燥效果,除了主体外,可控制切换风力的鼓风机与可操控微波量大小的调节器是非常重要的。而在主体内温度达到要求时,可令微波振动头自行关闭,以免有热失控情况。主体内会转为利用自体热能作干燥运行,达成节能效应。
本发明的干燥器是利用物料分子对空气比重轻上升、重下沉的物理现象作结构而成,当物料水分提取后自体积轻,只要有足够风力将已干燥物料用风力带出主体外,储存包装。
本发明的干燥器及干燥方法可以将大量物料在短时间内充分干燥、损耗能源最少;并且由于以短时间干燥,本发明的干燥方案对物料的损害最小,可达到最良好的干燥效果。
根据本发明,在物料被干燥处理之前,先通过螺旋推进器将物料中的大部分水分挤压出,并且将物料挤压成为条形膏状的物体;然后在利用热风将条形膏状的物料吹散,形成细小的物料颗粒悬浮在微波干燥器主体中;这时就可以在短时间内以较低能量的微波将物料颗粒干燥。因此,本发明的微波干燥器消耗的能量较少。
另一方面,由于物料在干燥之前被挤压为条形膏状的形状,因此,不论是任何种类的物料,都可以使用本发明来对物料进行干燥处理。根据本发明的干燥器的干燥时间和干燥速度以及干燥效率与物料的种类无关,而依赖于物料被挤压后的条形膏状的尺寸大小。
虽然以上描述的优选实施例已经相当详细地描述了本发明的构思,但本领域普通技术人员可以在本发明构思的指导下进行适当的修改和/或调整。因此,本发明的精神和范围不应局限于上文所述的本发明的优选形式。

Claims (26)

  1. 一种微波干燥器,包括:
      具有输入口(1a)的物料收集箱(1),待干燥的物料从所述输入口(1a)放入到物料收集箱中;
      干燥器主体(6),所述干燥器主体中含有在主体内壁上设置的微波振动头(13),利用微波振动头产生的微波将待干燥的物料进行干燥处理;
      螺旋推进器(2),连接到所述物料收集箱(1)和所述干燥器主体(6),用于将来自物料收集箱的待干燥物料送到所述干燥器主体(6)中;和
      鼓风机(4),用于向干燥器主体(6)中送入空气以将输入的待干燥物料吹散,悬浮在干燥器主体中。
  2. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)还包括微波振动头的功率调节开关(11),用于调整微波振动头的功率。
  3. 根据权利要求1的微波干燥器,特征在于所述螺旋推进器(2)由电动机(3a)和变速箱(3b)驱动,所述变速箱(3b)利用齿轮大小的比例而改变螺旋推进器(2)的转动速度。
  4. 根据权利要求1的微波干燥器,特征在于所述螺旋推进器(2)是斜向上布置的,将物料收集箱中的待干燥物料从螺旋推进器的底部向上输送到干燥器主体中,所述螺旋推进器在输送物料时还对物料进行挤压,使物料同时受到重力和螺旋推进器的挤压作用,以在输送过程中挤出部分水分,其中从螺旋推进器的输出口(1b)中向干燥器主体输出条形膏状的物料。
  5. 根据权利要求4的微波干燥器,特征在于所述螺旋推进器的输出口(1b)的尺寸是可调整的,以便向干燥器主体(6)的物料输入口(7)输送不同直径的条形膏状物料。
  6. 根据权利要求1的微波干燥器,特征在于所述干燥器主体的形状为空心的圆柱体、长方体或正方体。
  7. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)中含有三个微波振动头,其中在从干燥器主体的上方俯视时,所述三个微波振动头被均匀布置在主体的内壁上;而在从干燥器主体的侧面看时,所述三个微波振动头布置在干燥器主体内壁的不同高度位置,从而使干燥器主体中能够产生均匀分布的微波场。
  8. 根据权利要求7的微波干燥器,特征在于所述干燥器主体(6)的直径是1米,在所述三个微波振动头中,最高位置的微波振动头布置在距离主体6顶部约1英尺的地方,而最低位置的微波振动头布置在比最高的微波振动头低约2.5英尺的地方,第三个微波振动头的高度位于前述最低和最高的两个微波振动头之间约一半的地方,各微波振动头之间的距离也约为1米或3英尺。
  9. 根据权利要求1的微波干燥器,特征在于所述微波振动头的功率为1800~2000瓦特,频率为915MHz~2450MHz。
  10. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)的内壁或外壁上涂有一或多层铝箔片、晶化聚对苯二甲酸乙二醇酯(CPET)或聚四氟乙烯(PTFE)涂层,以屏蔽微波,使微波不会泄露到主体以外。
  11. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)还包括在主体外壁上的开关(11)和增压电源(12)。
  12. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)还包括位于其顶部的物料排出口(10),用于输出被干燥后的物料。
  13. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)还包括热气抽取口(K),该热气抽取口连接到所述鼓风机(4),所述鼓风机将从主体中抽取的热气重新送到主体中。
  14. 根据权利要求13的微波干燥器,特征在于还包括在所述热气抽取口附近的水汽格(8),用于储存从热气中凝结的水分。
  15. 根据权利要求1的微波干燥器,特征在于所述干燥器主体(6)还包括一个圆锥形、椭圆锥形或罩形的管风屏(14)以及一个圆盘形或椭圆形的底座(15);所述管风屏的锥顶向上,所述管风屏14的边缘与所述微波干燥器主体6的内壁之间的间隙约为几个毫米至几个厘米;所述管风屏与所述底座之间的间隙也约为几个毫米至几个厘米,以使热气或空气吹出。
  16. 根据权利要求15的微波干燥器,特征在于在所述管风屏的锥形边缘含有多个支脚(16),分别安装到所述底座周围的柱脚(17)上。
  17. 根据权利要求15的微波干燥器,特征在于所述底座(15)是一个中间稍向下凹的圆盘状物体,在底座的中心位置有一个孔(18),该孔连接到热气输入口(19)和排放口(20),所述排放口用于排出物料干燥后的残渣和所述底座中的水分,所述热气输入口(19)通过管道(5)与鼓风机(4)相连接,用于输入从所述鼓风机送到干燥器主体中的空气;所述底座的侧边与所述主体的侧壁或底部相接。
  18. 根据权利要求17的微波干燥器,特征在于将所述热气输入口(19)与所述鼓风机(4)相连接的所述管道是直管、u形管或n形管。
  19. 根据权利要求15的微波干燥器,特征在于所述干燥器主体(6)中含有多个微波振动头,其中在从干燥器主体的上方俯视时,所述多个微波振动头被均匀布置在主体的内壁上;而在从干燥器主体的侧面看时,所述多个微波振动头均匀布置在所述管风屏与所述干燥器主体顶部之间的不同高度位置,从而使干燥器主体中能够产生均匀分布的微波场。
  20. 根据权利要求1的微波干燥器,特征在于所述待干燥物料包括任何有机物品种类和生物物料。
  21. 根据权利要求1的微波干燥器,特征在于所述待干燥物料包括谷类食物垃圾中的有机物质,即生活垃圾。
  22. 一种干燥物料的微波干燥方法,包括以下步骤:
      (1)将待干燥物料放入微波干燥器的物料收集箱中;
      (2)使用螺旋推进器将待干燥物料从所述物料收集箱送到干燥器主体中,同时挤压出所述待干燥物料的部分水分,其中利用螺旋推进器输出口中的小孔控制送到所述干燥器主体中的待干燥物料的尺寸;
      (3)使用鼓风机的风力把送到所述干燥器主体中的待干燥物料吹散,悬浮在干燥器主体中;
      (4)利用所述干燥器主体中的微波振动头产生的微波对悬浮的待干燥物料进行干燥处理;
      (5)将干燥后的物料从干燥器主体上部的物料排出口取出。
  23. 根据权利要求22的微波干燥方法,特征在于所述待干燥物料在进入所述干燥器主体时被挤压为条形膏状的形状。
  24. 根据权利要求22的微波干燥方法,特征在于所述鼓风机还从所述干燥器主体的热气排风口抽出热空气,将所述热空气中的水分留在水气格内,然后将热空气再吹进所述干燥器主体内,循环加热。
  25. 根据权利要求22的微波干燥方法,特征在于当所述鼓风机吹入的风进入所述干燥器主体之后,经进风口位置吹向一个管风屏,经所述管风屏阻挡后,风向会横向管风屏四周作旋转,气流从在管风屏边缘的出风边位置沿干燥器主体的内壁向上引升,在所述干燥器主体内作旋转,同时带动干燥器主体内的微波能旋转。
  26. 根据权利要求25的微波干燥方法,特征在于所述管风屏(14)是圆锥形、椭圆锥形或罩形的形状。
PCT/CN2010/075418 2010-07-23 2010-07-23 微波干燥器和微波干燥方法 WO2012009859A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/075418 WO2012009859A1 (zh) 2010-07-23 2010-07-23 微波干燥器和微波干燥方法
US13/806,077 US9435585B2 (en) 2010-07-23 2010-07-23 Microwave dryer and microwave drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075418 WO2012009859A1 (zh) 2010-07-23 2010-07-23 微波干燥器和微波干燥方法

Publications (1)

Publication Number Publication Date
WO2012009859A1 true WO2012009859A1 (zh) 2012-01-26

Family

ID=45496451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075418 WO2012009859A1 (zh) 2010-07-23 2010-07-23 微波干燥器和微波干燥方法

Country Status (2)

Country Link
US (1) US9435585B2 (zh)
WO (1) WO2012009859A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692116A (zh) * 2012-05-08 2012-09-26 济南东方伟民太阳能科技有限公司 一种高效节能太阳能真空集热管微波干燥装置
WO2014075193A1 (en) * 2012-11-16 2014-05-22 Greg Stromotich Apparatus and method for dehydration using microwave radiation
CN108981365A (zh) * 2018-08-24 2018-12-11 苏州苏丰机械科技有限公司 一种微波干燥窑
CN111486692A (zh) * 2020-04-17 2020-08-04 深圳市伊乐农贸有限公司 一种具有温控和除渣功能的茶叶烘干机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010007658A1 (de) * 2010-02-10 2012-05-10 Case Tech Gmbh Verfahren zum Trocknen von Schlauchhüllen durch Mikrowellen
BR102013031782A2 (pt) * 2013-12-10 2015-07-14 Merlino Junior Prestes Processo e equipamento para secagem de resíduos urbanos, industriais e de saúde e transformação em combustível para caldeiras e fornalhas industriais
RU2572033C1 (ru) * 2014-07-22 2015-12-27 Закрытое акционерное общество "Научно-производственное предприятие "Магратеп" (ЗАО "НПП "Магратеп") Способ обработки зерновых продуктов и устройство для его осуществления
US10361423B2 (en) * 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
CN110530114B (zh) * 2019-09-25 2024-01-02 深圳星河环境股份有限公司 一种基于微波热脱水的pcb膜渣减量化处理系统和方法
CN112815628A (zh) * 2019-11-15 2021-05-18 上海愚石科技发展有限公司 一种微波干燥器
CN113602772A (zh) * 2021-09-07 2021-11-05 上海功澄科技有限公司 一种垃圾转运处理用环保高效除湿仓

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200594U (zh) * 1985-06-04 1986-12-16
JPH0571871A (ja) * 1991-09-10 1993-03-23 Micro Denshi Kk マイクロ波による浮遊加熱乾燥法
US5467694A (en) * 1994-04-11 1995-11-21 Meiji Seika Kaisha, Ltd. Apparatus for controlling water content of fried food using microwave heating
EP0814311A1 (de) * 1996-06-20 1997-12-29 Colortronic GmbH Verfahren und Vorrichtung zum Trocknen
JP2000234857A (ja) * 1999-02-17 2000-08-29 Masayuki Makita 生ゴミ処理機
JP2002272445A (ja) * 2001-03-22 2002-09-24 Miharu Fukumoto 焼酎粕の処理方法及び処理装置
US6524539B1 (en) * 1999-07-07 2003-02-25 Helmut Katschnig Microwave sterilization device
CN1172151C (zh) * 2002-02-05 2004-10-20 中国科学院过程工程研究所 鼓气式微波干燥装置

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE475232A (zh) * 1941-12-27
US2714453A (en) * 1951-08-10 1955-08-02 James F Miller Apparatus for fractionating finely divided material
US3285157A (en) * 1962-10-04 1966-11-15 Hupp Corp Roasting and heating apparatus
US3312342A (en) * 1964-03-27 1967-04-04 Du Pont Process and apparatus for impacting and elutriating solid particles
NL6807096A (zh) * 1968-05-20 1969-11-24
US3545093A (en) * 1968-12-23 1970-12-08 Exxon Research Engineering Co Microwave vibrating resonating cavity and drying process
US3843457A (en) * 1971-10-14 1974-10-22 Occidental Petroleum Corp Microwave pyrolysis of wastes
GB1430592A (en) * 1972-03-29 1976-03-31 Watford Eng Ltd Treatment of slurries and the like
JPS5428783B2 (zh) * 1974-02-14 1979-09-19
US3849900A (en) * 1973-07-02 1974-11-26 Universal Foods Corp Fluid bed air distribution apparatus and drying method
US3877365A (en) * 1973-07-09 1975-04-15 Krima Maskinfabrik Ab Adjustable pressure worm press
US4323312A (en) * 1977-08-26 1982-04-06 Werner Glatt Fluidized bed apparatus
US4229886A (en) * 1979-03-09 1980-10-28 Mcdonnell Douglas Corporation Microwave heated vacuum dryer for powders
US4330946A (en) * 1980-09-23 1982-05-25 Ralph S. Tillitt High efficiency material drying
US4640020A (en) * 1985-11-27 1987-02-03 Mcdonnell Douglas Corporation Zoned microwave drying apparatus and process
US4771156A (en) * 1986-10-20 1988-09-13 Micro Dry Incorporated Method and apparatus for heating and drying moist articles
US4795871A (en) * 1986-10-20 1989-01-03 Micro Dry, Inc. Method and apparatus for heating and drying fabrics in a drying chamber having dryness sensing devices
EP0312741A3 (en) * 1987-08-29 1990-01-31 Nissui Kako Co., Ltd. Method and apparatus for the microwave drying of plastic material
ES2020551B3 (es) * 1987-09-10 1991-08-16 Hosokawa Micron Europe B V Aparato para dirigir material que es mezclado con un solvente
US4759300A (en) * 1987-10-22 1988-07-26 Balboa Pacific Corporation Method and apparatus for the pyrolysis of waste products
DK159488A (da) * 1988-03-23 1989-09-24 Danske Sukkerfab Fremgangsmaade til kontinuerlig toerring eller inddampning af et materiale og et apparat til udoevelse af fremgangsmaaden
US4905918A (en) * 1988-05-27 1990-03-06 Ergon, Inc. Particle pulverizer apparatus
FR2644154B1 (fr) * 1989-03-09 1991-06-14 Lataillade Maurice Dispositif de traitement des dejections humaines ou animales par micro-ondes systeme electrique, et systeme mecanique de transfert
US5270000A (en) * 1989-04-19 1993-12-14 Abb Sanitec, Inc. Apparatus and process for treating medical hazardous wastes
FR2660147A1 (fr) * 1990-03-20 1991-09-27 Transitube Sa Installation pour proceder en continu au sechage, a la deshydratation ou a la cuisson par micro-ondes de produits granuleux ou pulverulents.
US5052313A (en) * 1990-04-19 1991-10-01 Combustion Design Corporation Waste treatment system and method
US5397551A (en) * 1992-07-09 1995-03-14 Daesung Industrial Co., Ltd. Incinerator
JP2798856B2 (ja) * 1992-09-16 1998-09-17 動力炉・核燃料開発事業団 連続脱硝装置
AU681596B2 (en) * 1992-09-26 1997-09-04 Robin Hamilton Compaction methods and apparatus
IT230653Y1 (it) * 1993-10-20 1999-06-09 Econos Srl Impianto per la sterilizzazione di rifiuti ospedalieri
US6398921B1 (en) * 1995-03-15 2002-06-04 Microgas Corporation Process and system for wastewater solids gasification and vitrification
US5977528A (en) * 1997-10-10 1999-11-02 Eet Corporation Rectangular microwave applicator and waste treatment method
US5904885A (en) * 1997-12-04 1999-05-18 Illinois Institute Of Technology Process for recycling of rubber materials
TW394749B (en) * 1998-03-05 2000-06-21 Deng Jian Lang Method of manufacturing active carbon by using carbon black
GB9915247D0 (en) * 1999-07-01 1999-09-01 Amat Limited Improvements relating to tyre degradation
US6653517B2 (en) * 2001-04-03 2003-11-25 Billy P Bullock Hydrocarbon conversion apparatus and method
US20020174562A1 (en) * 2001-05-23 2002-11-28 Pearcy Timothy E. Microwave lyophilization method
US7621225B2 (en) * 2002-06-26 2009-11-24 International Environmental Solutions Corporation Method and apparatus for treatment of waste
DE10309989A1 (de) * 2003-02-28 2004-09-16 Hüttlin, Herbert, Dr.h.c. Tunnelförmige Vorrichtung zum Behandeln von partikelförmigem Gut
US20050029174A1 (en) * 2003-08-08 2005-02-10 Collins Carol Ann Hybrid magnetohydrodynamo (MHD) field sanitation generator for treating wastewater, sewages & sludge and recovering potable water
JP2007514044A (ja) * 2003-12-12 2007-05-31 コールテク コーポレイション 固形燃料特性を向上させるための前加熱の乾燥プロセスの方法およびシステム
US20050274035A1 (en) * 2004-06-04 2005-12-15 Wastech International, Inc. Waste handling system
US8354005B2 (en) * 2005-02-02 2013-01-15 Kjell Ivar Kasin Microwave gasification, pyrolysis and recycling of waste and other organic materials
BRPI0520541A2 (pt) * 2005-04-06 2009-05-19 Daniel Irisarri Navalporto processo para a obtenção de restos de alambique sob a forma de pó, restos alambique sob a forma de pó e instalação para a produção de restos de alambique sob a forma de pó
WO2007081493A2 (en) * 2005-12-14 2007-07-19 Mobilestream Oil, Inc. Microwave-based recovery of hydrocarbons and fossil fuels
DE102006007458B4 (de) * 2006-02-17 2010-07-08 Native Power Solutions Gmbh & Co. Kg Verfahren und Vorrichtung zum Vergasen von kohlenstoffhaltigem Material sowie Vorrichtung zur Erzeugung von elektrischer Energie
US8839527B2 (en) * 2006-02-21 2014-09-23 Goji Limited Drying apparatus and methods and accessories for use therewith
CN100570255C (zh) 2006-08-08 2009-12-16 河南科技大学 自流微波加热干燥机
US7908765B2 (en) * 2006-12-22 2011-03-22 Collette Nv Continuous granulating and drying apparatus
CN100543392C (zh) 2006-12-29 2009-09-23 河南农业大学 微波干燥设备
DE202007001123U1 (de) * 2007-01-25 2007-06-06 KRÜGER, Günter Anlage zum Trocknen von organischen Massen
WO2010001137A2 (en) * 2008-07-04 2010-01-07 University Of York Microwave torrefaction of biomass
WO2010138767A2 (en) * 2009-05-27 2010-12-02 Sanitec Industries, Inc. Medical waste processing including densification
US20110224474A1 (en) * 2010-03-09 2011-09-15 Kurion, Inc. Advanced Microwave System for Treating Radioactive Waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200594U (zh) * 1985-06-04 1986-12-16
JPH0571871A (ja) * 1991-09-10 1993-03-23 Micro Denshi Kk マイクロ波による浮遊加熱乾燥法
US5467694A (en) * 1994-04-11 1995-11-21 Meiji Seika Kaisha, Ltd. Apparatus for controlling water content of fried food using microwave heating
EP0814311A1 (de) * 1996-06-20 1997-12-29 Colortronic GmbH Verfahren und Vorrichtung zum Trocknen
JP2000234857A (ja) * 1999-02-17 2000-08-29 Masayuki Makita 生ゴミ処理機
US6524539B1 (en) * 1999-07-07 2003-02-25 Helmut Katschnig Microwave sterilization device
JP2002272445A (ja) * 2001-03-22 2002-09-24 Miharu Fukumoto 焼酎粕の処理方法及び処理装置
CN1172151C (zh) * 2002-02-05 2004-10-20 中国科学院过程工程研究所 鼓气式微波干燥装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692116A (zh) * 2012-05-08 2012-09-26 济南东方伟民太阳能科技有限公司 一种高效节能太阳能真空集热管微波干燥装置
WO2014075193A1 (en) * 2012-11-16 2014-05-22 Greg Stromotich Apparatus and method for dehydration using microwave radiation
US9585419B2 (en) 2012-11-16 2017-03-07 Nuwave Research Inc. Apparatus and method for dehydration using microwave radiation
CN108981365A (zh) * 2018-08-24 2018-12-11 苏州苏丰机械科技有限公司 一种微波干燥窑
CN111486692A (zh) * 2020-04-17 2020-08-04 深圳市伊乐农贸有限公司 一种具有温控和除渣功能的茶叶烘干机

Also Published As

Publication number Publication date
US9435585B2 (en) 2016-09-06
US20130091722A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
WO2012009859A1 (zh) 微波干燥器和微波干燥方法
CN201266007Y (zh) 连续式微波热风联合干燥设备
CN102338547B (zh) 微波干燥器和微波干燥方法
CN101581534A (zh) 连续式微波热风联合干燥设备
CN205655646U (zh) 微波低温干燥设备
CN104180627A (zh) 多段式间歇微波热风耦合干燥设备
KR102183573B1 (ko) 슬러지 건조장치
CN213931919U (zh) 连续清洗、自动调节的矩形微波连续真空干燥杀菌设备
CN101487660A (zh) 垃圾干燥机
CN106738435A (zh) 一种塑料挤出造粒后的快速干燥装置和干燥方法
CN1952570A (zh) 一种热敏性物料的干燥设备
CN202909142U (zh) 连续型微波干燥杀菌专用设备
CN106720293A (zh) 一种谷物干燥装置
KR100884786B1 (ko) 밀폐형 다단식(多段式) 건조 장치
CN202286157U (zh) 一种杂粮复合米微波烘干机
CN206335733U (zh) 一种塑料挤出造粒后的快速干燥装置
CN112197563A (zh) 连续清洗、自动调节的矩形微波连续真空干燥杀菌设备
CN205980711U (zh) 一种微波热泵混合干燥减水剂设备
CN1792994A (zh) 陶瓷墙地砖连续干燥处理装置
CN210374470U (zh) 一种烘干生产线
CN212778485U (zh) 一种微波干燥装置
CN202452793U (zh) 一种连续式振动强化微波真空干燥机
RU2242906C2 (ru) Способ и устройство для обработки сельскохозяйственной продукции
CN103884155A (zh) 多腔体连续微波真空喷动干燥设备
CN214415291U (zh) 一种药物制备用多功能消毒装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13806077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: "NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 15.05.2013."

122 Ep: pct application non-entry in european phase

Ref document number: 10854889

Country of ref document: EP

Kind code of ref document: A1