WO2012009656A1 - Improved gas impermeability for injection molded containers - Google Patents
Improved gas impermeability for injection molded containers Download PDFInfo
- Publication number
- WO2012009656A1 WO2012009656A1 PCT/US2011/044222 US2011044222W WO2012009656A1 WO 2012009656 A1 WO2012009656 A1 WO 2012009656A1 US 2011044222 W US2011044222 W US 2011044222W WO 2012009656 A1 WO2012009656 A1 WO 2012009656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- polymeric material
- mold
- flow
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/20—Injection nozzles
- B29C45/22—Multiple nozzle systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/16—Making multilayered or multicoloured articles
- B29C45/1603—Multi-way nozzles specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/16—Making multilayered or multicoloured articles
- B29C45/1642—Making multilayered or multicoloured articles having a "sandwich" structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/76—Measuring, controlling or regulating
- B29C45/77—Measuring, controlling or regulating of velocity or pressure of moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/16—Making multilayered or multicoloured articles
- B29C45/1603—Multi-way nozzles specially adapted therefor
- B29C2045/1614—Multi-way nozzles specially adapted therefor side-by-side flow of materials in the same channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76494—Controlled parameter
- B29C2945/76545—Flow rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76494—Controlled parameter
- B29C2945/76595—Velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76655—Location of control
- B29C2945/76765—Moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2945/00—Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
- B29C2945/76—Measuring, controlling or regulating
- B29C2945/76822—Phase or stage of control
- B29C2945/76859—Injection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/08—Copolymers of ethylene
- B29K2023/086—EVOH, i.e. ethylene vinyl alcohol copolymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/003—PET, i.e. poylethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2269/00—Use of PC, i.e. polycarbonates or derivatives thereof as reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0065—Permeability to gases
- B29K2995/0067—Permeability to gases non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0068—Permeability to liquids; Adsorption
- B29K2995/0069—Permeability to liquids; Adsorption non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/40—Closed containers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1379—Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
- Y10T428/1383—Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
Definitions
- the present invention relates to multi-layer injection molded products.
- the invention relates to multi-layer molded products having gas impermeability or gas scavenger characteristics.
- Plastic injection molded articles are used for a variety of purposes.
- Plastic injection molded products are commonly made from materials such as polyethylene (PET) or polypropylene (PP). These products resist environmental degradation, and are reasonably durable, watertight, and economically produced.
- PET polyethylene
- PP polypropylene
- plastic materials such as PET and PP are gas (e.g., oxygen, nitrogen, etc.) permeable.
- gas e.g., oxygen, nitrogen, etc.
- a barrier material or scavenger material is co-injected with the plastic material.
- the barrier material such as Ethyl Vinyl Alcohol (EVOH)
- EVOH Ethyl Vinyl Alcohol
- the interior barrier layer extend throughout substantially the entire portion of the molded article that is exposed. Even if a very small percentage of the exposed surface area lacks an adequate barrier layer, detrimental amounts of gas permeation may occur.
- Embodiments taught herein address the aforementioned disadvantages of the prior art.
- Exemplary systems, methods and non-transitory computer readable programs are taught herein to cause an inner core of material to flow in a manner that results in a molded plastic article with barrier coverage extending between 95% and 100% of the entire surface area.
- Exemplary systems, methods and non-transitory computer readable programs can achieve the foregoing barrier coverage in production molding using molds that define four or more cavities, each corresponding to a resulting molded article, and even operating at typical commercial cycle times.
- the exemplary systems, methods and computer readable programs taught herein are well suited for use in forming symmetrical molded plastic articles and asymmetrical molded plastic articles with barrier coverage extending between 99% and 100% of the entire surface area of the sealable portion of the article.
- a plurality of multi-layer articles may be formed by a method of molding.
- the method may include injecting a first material into a mold defining a plurality of at least four cavities, each cavity configured to correspond with one of a plurality of at least four resulting multi-layer articles.
- the method may further include injecting a second material into the mold to form an inner layer and an outer layer of the plurality of articles.
- the method may include causing the first material to flow throughout the mold and form an interior layer of each of the plurality of articles, between the inner and outer layers, and extending through at least 95% of the sealable portion of each of the plurality of articles.
- an article may be formed by a method of molding.
- the method may include injecting a first material into a mold defining a cavity.
- the method may further include injecting a second material into the mold to form an inner layer and an outer layer of the article.
- the method may include causing the first material to flow throughout the mold and form an interior layer of the article, between the inner and outer layers, and extending through at least 99% of the sealable portion of the article.
- the mold cavity or cavities and/or the resulting molded article or articles may be symmetric.
- Embodiments of each of the methods of molding may include injecting the first and second materials into the mold cavity simultaneously.
- Embodiments of each of the methods may include injecting the first material into the mold so that it is offset from the zero velocity gradient of the combined flow of the first and second materials.
- a co-injection molding apparatus may include a mold, a plurality of nozzle assemblies, and a processor.
- the mold defines a plurality of at least four cavities, each cavity configured to correspond to one of a plurality of resulting symmetrical multi-layer articles.
- Each of the plurality of nozzle assemblies is configured to inject a first polymeric material into the corresponding one of the plurality of cavities to form an interior layer of one of the plurality of resulting symmetrical multi-layer articles.
- Each of the plurality of nozzle assemblies is further configured to inject a second polymeric material into the corresponding one of the plurality of cavities to form and inner layer and an outer layer of one of the plurality of resulting symmetrical multi-layer articles.
- the processor may be programmed to execute instructions to cause the first polymeric material to flow throughout the mold to provide each of the plurality of resulting multi-layer articles with an interior layer extending through at least 95% of the sealable portion of the article.
- a co-injection molding apparatus may include a mold defining a first cavity, a nozzle assembly, and a processor.
- the nozzle assembly may be configured to inject a first polymeric material into the first mold cavity to form an interior layer of a first resulting multi-layer article.
- the nozzle may be further configured to inject a second polymeric material into the first mold cavity to form an inner layer and an outer layer of the first resulting multi-layer article.
- the processor may be programmed to execute instructions to cause the first material to flow throughout the first mold cavity to provide the first resulting multi-layer article with an interior layer extending through at least 99% of the sealable portion of the article.
- the mold of the foregoing apparatus may further define a plurality of cavities, each corresponding to one of a plurality of resulting symmetrical multi-layer articles.
- the foregoing apparatus may further include a plurality of nozzle assemblies, each corresponding to one of the plurality of cavities. Each of the plurality of nozzle assemblies is configured to inject the first polymeric material into the corresponding one of the plurality of cavities to form an interior layer of one of the plurality of resulting symmetrical multi-layer articles. Each of the plurality of nozzle assemblies is further configured to inject the second polymeric material into the corresponding one of the plurality of cavities to form an inner layer and an outer layer of one of the plurality of resulting symmetrical multi-layer articles.
- the processor of the foregoing apparatus may further be programmed to execute instructions to cause the first polymeric material to flow throughout the plurality of cavities to provide each of the plurality of resulting multi-layer articles with an interior layer extending through at least 99% of the sealable portion of the article.
- the mold cavity or cavities and/or the molded article or articles may be symmetric.
- Embodiments of each of the molding apparatus may form as many as sixty-four multi-layer articles or more per operating cycle.
- Embodiments of each of the molding apparatus may form multi-layer articles in a thirty-two by thirty-two cavity stack.
- Embodiments of each of the molding apparatus may be configured to inject the inner and outer layer materials into the mold to form the skin of the resulting article or articles.
- Embodiments of the molding apparatus may further be configured to inject the interior layer material simultaneously with the inner and outer layer materials into the mold.
- Embodiments of the molding apparatus may be configured to cause the interior layer material to be injected so that it is offset from the zero velocity gradient of the combined flow of the first and second materials.
- a molded article may have an inner layer, an outer layer, and an interior layer extending between the inner and outer layers to at least 99% of the sealable portion of the article.
- a molded article may have an inner plastic layer, an outer plastic layer, and an interior plastic layer extending between the inner and outer layers to provide a gas permeation rate of less than about 0.05 ppm/day/article when sealed.
- Embodiments of a molded article may exhibit gas permeation rates of less than about 0.005 ppm/day/article, or even less than about 0.0005 ppm/day/article when sealed.
- Embodiments of either of the foregoing articles may be symmetric.
- Embodiments of either of the foregoing articles may have a circular cross-section along any transverse plane extending along a sidewall thereof.
- the interior layer may be offset toward a surface of the molded article.
- the interior layer may be a first material and the inner and outer layers may be a different material.
- the interior layer may have a different composition from the material of the inner and outer layers.
- the inner and outer layers may be a plastic material suitable for injection molding.
- the interior layer may be substantially gas-impermeable relative to the permeability of the inner and outer layer materials.
- the interior layer may be a gas barrier material comprising a desiccant that absorbs moisture to counteract any increase in barrier material permeability caused by increased moisture content.
- the interior layer may be gas-scavenging relative to the scavengability of the inner and outer layer materials.
- FIG. 1 is a schematic graph showing oxygen permeation as a function of barrier coverage.
- FIG. 2A is a cross-sectional view of an exemplary container according to various embodiments taught herein, but with the wall thickness of the container exaggerated for illustrative purposes.
- FIG. 2B is a cross-sectional view along a traverse plane of the exemplary container of FIG. 2A according to various embodiments taught herein.
- FIG. 3 is schematic cross-sectional view of a co-injection molding system according to various embodiments taught herein.
- FIG. 4 is a schematic cross-sectional view of an exemplary material flow according to various embodiments taught herein.
- FIG. 5 is an enlarged view of the flange portion shown in FIG. 1.
- FIG. 6 depicts a cross-sectional view of an exemplary molding system according to various embodiments taught herein.
- FIG. 7 illustrates an exemplary computing environment suitable for practicing exemplary embodiments taught herein.
- FIG. 8 is a cross-sectional view of the fountain flow effect of a combined polymeric stream as it flows along an annular pathway of a mold cavity.
- Figs. 9A and 9B are cross-sectional views of the velocity profile of the combined annular flow of the polymeric stream and the relative velocity differences across the flow gradient of the combined polymeric stream.
- FIG. 9C is a graph illustrating resulting flow fraction and velocity profile curves across the annular channel within a nozzle such as in FIG. 6 for a plastic flow stream— the ordinate plotting the ratio of flow velocity-to-average velocity as a function of the radius of the annulus between the inner and outer flow channel walls, with the central solid line curve 23 plotting the ratio and showing zero gradient for the combined flow stream CF, the curve designated with a circle marker plotting the inner flow IF between the radius and the inner cylindrical wall T from the inner to the outer wall, and the curve marked with a triangle plotting the outer flow OF between the outer cylindrical wall and the annular radius.
- FIG. 10 is a cross-sectional view of an exemplary prior art container with the wall thickness of the container exaggerated for illustrative purposes.
- FIG. 11 is a cross-sectional view of an exemplary container according to various embodiments taught herein, but with the wall thickness of the container exaggerated for illustrative purposes.
- FIG. 12 depicts an exemplary nozzle assembly suitable for practicing embodiments taught herein.
- FIG. 13 depicts a cross-sectional view of an exemplary combined material stream according to various embodiments taught herein.
- FIG. 1 schematically shows an oxygen permeation curve 50 though the wall of a plastic co-injection molded article as a function of coverage of an interior barrier relative to the total exposed wall surface area of the sealable portion of the article.
- FIG. 1 also shows a target permeation rate 60 representing an optimal permeation to prevent undesirable degradation of the substance inside the sealed container.
- the interior layer materials associated with the FIG. 1 graph may consist of EVOH, MXD6 nylon or other passive barrier materials; EVOH, MXD6 nylon or other barrier materials, any of which has an oxygen scavenging component; or EVOH, MXD6 nylon or other barrier materials, any of which has a desiccant component. As can be seen in FIG.
- the illustrated target permeation rate 60 is 0.005 ppm 0 2 /day/container (ppm calculated on the basis of liquid content of the container).
- the target permeation rate 60 may depend upon the particular substance in the container, the container configuration, and desired storage life (as total permeation is a function of rate, exposed area, and time)
- the illustrated target permeation rate 60 is a rate typical of conventional food-containing articles.
- permeation rate is also dependent upon exposure conditions and to some extent, the wall thickness of the container, the permeation curve 50 is typical of conventional food containers under typical, if not favorable, storage conditions. Expected variations in the test parameters produced comparable results.
- the target permeation rate 60 may be an order of magnitude higher or lower than 0.005 ppm 0 2 /day/container, i.e., 0.05 or 0.0005 ppm 0 2 /day/container.
- the slope of the permeation curve 50 will differ with different types and thicknesses of interior layer materials, but one skilled in the art will appreciate that a significant increase in the permeation rate will occur with each 1 % decrease in the barrier coverage of the container surface area.
- a container 100 has a bottom 105, a sidewall 110 extending from the periphery of the bottom 105 to form a chamber 106, in this embodiment generally cup-shaped or U-shaped, having an open end 107, and a flange 115 extending from the periphery of the sidewall 110 at the open end 107 of the container.
- the container 100 in FIG. 2A is symmetrical, meaning that the cross-section of the container 100 along any transverse plane (i.e., extending horizontally in FIG. 2A) is either circular, i.e., through the bottom 105 or flange 115, or annular, i.e., through the sidewall 110.
- FIG. 2B illustrates an exemplary symmetrical cross-section, through the bottom 105 of the container 100 of FIG. 2A.
- the container 100 includes a sealing zone 180 with a sealable surface.
- the sealing zone 180 and its surface extends circumferentially about the open end 107.
- the sealing zone 180 and surface are formed in the flange 115.
- a closure 120 which may be of a conventional type, may be sealed to the flange 115 at the surface of sealing zone 180 by conventional methods, such as by heat-sealing, crimping, threading, and other known methods.
- the illustrative embodiment has a cup-like shape, the invention contemplates containers having alternative shapes or configurations in which the sealing zone 180 can be used to seal a portion of the container, which should be appreciated by those in the art.
- the lip could alternatively include the sealing zone and its surface.
- the embodiment of FIG. 2 A has an open end 107 that may be closed by a closure 120, alternative embodiments with different open ends are contemplated.
- the surface area of the sealable portion of the molded article comprises the surface area of the base 105, the surface area of the sidewall 110, and the surface area of the portion of the flange 115 extending radially under the sealing zone 180 of the closure 120.
- the surface area of the sealable portion of alternative molded articles may be defined differently depending on their shapes or configurations and where they are sealed or intended to be sealed.
- the surface area of the sealable portion of alternative container embodiments may not extend to a flange, but may instead, for example, extend only to the sealing zone in a lip of the sidewall.
- the container 100 may be formed by co-injecting a first plastic material such as, for example, PET or PP and a second plastic material, such as, for example, EVOH, into a mold cavity configured to form a molded plastic article.
- the first plastic material forms an inner layer 130 and an outer layer 132, which together generally conform to the desired end shape of the container or article, accounting for manufacturing requirements (e.g., thermal expansion/contraction) as is known.
- the second plastic material forms an interior core layer 150.
- the interior core layer 150 may be a barrier layer, a gas scavenging layer, and/or a desiccant layer.
- PET, PP and EVOH are commonly used materials, it should be understood what other suitable materials may be used, and that the various embodiments are suitable for use with other polymeric materials.
- the interior layer 150 extends substantially entirely throughout the container 100, but is substantially fully surrounded by the inner layer 130 and the outer layer 132.
- the inner layer 130 and the outer layer 132 are known as the skin.
- the term “substantially” or “substantially fully” means 95 -100 coverage of the interior layer across the entire surface area of the container 100.
- the gas barrier material of interior layer 150 may be EVOH or other suitable materials, which are known or may become known, that sufficiently prevent gases, for example, oxygen, from permeating through the container, i.e., from the outside to the inside and vice versa. As can be seen in the particular embodiment of FIG. 2A, the inner layer 150 extends into the flange 115.
- the interior layer 150 in FIG. 2A does not extend to the end of the flange 115.
- the exposed portion of the flange that does not contain the interior layer is an extremely small portion of overall exposed surface area of the container 100 (the thickness of the flange 115 in FIG. 1 being greatly exaggerated for illustration purposes).
- the desired degree of coverage including high degrees of coverage (e.g., 99% or more), may be obtained without the interior layer 150 extending to the outer periphery of the flange 115.
- the degree of coverage is most relevant to the sealable portion of the container 100 that is within the location where the closure 120 is sealed to the container, e.g., the seal contact surface.
- the interior layer 150 extends to or beyond the margin of the seal contact surface (in this container configuration the radially inward margin of the flange 115), and adequate coverage is obtained without the interior layer extending beyond that point. Nonetheless, the invention also may be utilized to provide the interior layer 150 to or nearly to the end of flange 115, beyond the seal contact surface margin, as depicted in dashed lines in FIG. 2A.
- the interior layer 150 may be created by co-injecting an interior layer material with an inner and outer layer material. Such methods are generally known, such as described in U.S. Patent No. 6,908,581 and the documents incorporated therein, each of which is also incorporated by reference herein in its entirety.
- a mold 200 has mold portions 210a, 210b that form a mold cavity 220 therebetween.
- a combined flow 300 from a nozzle assembly is injected into the mold cavity 220 through an injection gate at gate injection location 140, and the combined flow 300, which in certain configurations may be an annular flow, flows from the injection location 140 through the mold cavity 220.
- the combined flow 300 is formed in the nozzle assembly.
- the nozzle assembly forms the combined flow 300 from the inner material, the outer material, and the interior material.
- the inner material forms an inner flow
- the interior material forms an interior flow
- the outer material forms an outer flow of the combined flow 300.
- the flow of the combined flow 300 forms a flow front 330 that moves through the mold cavity 220.
- the combined flow 300 may consist of two (inner and outer) materials or three (inner, outer, and interior) materials.
- the volumetric flow volume ratio of the inner flow to the outer flow forming the combined flow 300 is selected to cause the interior layer flow stream to flow along a streamline offset from the zero velocity gradient 340 (V max ) of the combined flow 300, yet on a streamline having a greater velocity than the average flow velocity (V ave ) 360. This prevents the interior layer material flow 150a from breaking through the flow front 330. Rather, as shown in Fig. 4, the interior layer material flow 150a folds over to form a fold over portion 150b behind the flow front 330 and remains encased by the inner and outer flows of the combined flow 300.
- the interior layer can "catch up" to the fountain flow and fold over, creating a barrier or scavenger layer that extends through and provides barrier or scavenger protection over a range of between 95% and 100% coverage, or even between 99% and 100% coverage, throughout the sealable portion of the resulting molded plastic article.
- the interior layer may be located either inside or outside the location of the zero-velocity gradient creating fold over toward the inside or outside of the part, respectively.
- FIG. 6 illustrates an exemplary system suitable for practicing exemplary embodiments.
- Co-injection molding system 1000 is configured to inject at least two materials into a mold cavity.
- Materials suitable for use with the present invention include polymer based materials such as, Polyethylene Terephthalate (PET), ethylene vinyl alcohol (EVOH), MXD6 nylon, polypropylene (PP), and polycarbonates (PC).
- Co-injection molding system 1000 includes a first material source 1200, a second material source 1400, and a manifold 1600.
- Manifold 1600 may consist of separate manifolds for each polymeric material.
- Co-injection molding system 1000 further includes nozzle assemblies 18A, 18B, 18C, 18D and mold 2400.
- Mold 2400 includes gates 20A, 20B, 20C, 20D, and cavities 22A, 22B, 22C, 22D.
- each nozzle assembly (18A, 18B, 18C, and 18D) has a corresponding gate and cavity.
- nozzle assembly 18A corresponds to gate 20A and cavity 22A.
- a first polymeric material is extruded from the first material source 1200 and a second polymeric material is extruded from the second material source 1400 into the manifold 1600 for combining in nozzles 18A-18D before being injected into mold cavities 22A, 22B, 22C, 22D.
- the first and second polymeric streams are combined to form an annular combined polymeric stream such that the first polymeric material forms an interior core stream in the combined polymeric stream while the second polymeric material forms the inner and outer streams in the combined stream.
- the inner and outer streams encase the interior core stream as the annular combined polymeric stream is injected from the nozzle.
- FIG. 7 illustrates an exemplary computing environment suitable for practicing exemplary embodiments taught herein.
- the environment may include a co-injection control device 900 coupled, wired, wirelessly or a hybrid of wired and wirelessly, to co-injection system 1000.
- the co-injection control device 900 is programmable to implement executable Barrier Coverage Code 950 for forming a barrier layer and/or scavenger layer that provides coverage over a range of between 95% and 100%, or even between 99% and 100%, of a symmetric container or symmetric cap surface area as taught herein.
- Co- injection control device 900 includes one or more computer-readable media for storing one or more computer-executable instructions or software for implementing exemplary embodiments.
- the computer-readable media may include, but are not limited to, one or more types of hardware memory, non-transitory tangible media, etc.
- memory 906 included in the co-injection control device 900 may store computer-executable instructions or software, e.g., instructions for implementing and processing every module of the executable Barrier Coverage Code 950.
- Co-injection control device 900 also includes processor 902 and, one or more processor(s) 902' for executing software stored in the memory 906, and other programs for controlling system hardware.
- Processor 902 and processor(s) 902' each can be a single core processor or multiple core (904 and 904') processor.
- Virtualization may be employed in co-injection control device 900 so that infrastructure and resources in the computing device can be shared dynamically.
- Virtualized processors may also be used with the executable Barrier Coverage Code 950 and other software in storage 916.
- a virtual machine 914 may be provided to handle a process running on multiple processors so that the process appears to be using only one computing resource rather than multiple. Multiple virtual machines can also be used with one processor.
- Memory 906 may comprise a computer system memory or random access memory, such as DRAM, SRAM, EDO RAM, etc. Memory 906 may comprise other types of memory as well, or combinations thereof.
- a user may interact with co-injection control device 900 through a visual display device 922, such as a computer monitor, which may display the user interfaces 924 or any other interface.
- the visual display device 922 may also display other aspects or elements of exemplary embodiments, e.g. the databases, the enrollment forms, the medication guide, etc.
- Co-injection control device 900 may include other I/O devices such a keyboard or a multi-point touch interface 908 and a pointing device 910, for example a mouse, for receiving input from a user.
- the keyboard 908 and the pointing device 910 may be connected to the visual display device 922.
- Co-injection control device 900 may include other suitable conventional I/O peripherals.
- Co-injection control device 900 may further comprise a storage device 916, such as a hard-drive, CD-ROM, or other non-transitory computer readable media, for storing an operating system 918 and other related software, and for storing executable Barrier Coverage Code 950.
- a storage device 916 such as a hard-drive, CD-ROM, or other non-transitory computer readable media, for storing an operating system 918 and other related software, and for storing executable Barrier Coverage Code 950.
- Co-injection control device 900 may include a network interface 912 to interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet through a variety of connections including, but not limited to, standard telephone lines, LAN or WAN links (e.g., 802.11, Tl, T3, 56kb, X.25), broadband connections (e.g., ISDN, Frame Relay, ATM), wireless connections, controller area network (CAN), or some combination of any or all of the above.
- LAN Local Area Network
- WAN Wide Area Network
- the network interface 912 may comprise a built-in network adapter, network interface card, PCMCIA network card, card bus network adapter, wireless network adapter, USB network adapter, modem or any other device suitable for interfacing authorization computing device 900 to any type of network capable of communication and performing the operations described herein.
- co-injection control device 900 may be any computer system such as a workstation, desktop computer, server, laptop, handheld computer or other form of computing or telecommunications device that is capable of communication and that has sufficient processor power and memory capacity to perform the operations described herein.
- Co-injection control device 900 can be running any operating system such as any of the versions of the Microsoft® Windows® operating systems, the different releases of the Unix and Linux operating systems, any version of the MacOS® for Macintosh computers, any embedded operating system, any real-time operating system, any open source operating system, any proprietary operating system, any operating systems for mobile computing devices, or any other operating system capable of running on the computing device and performing the operations described herein.
- the operating system may be running in native mode or emulated mode.
- Barrier Coverage Code 950 includes executable code executable by the processor 902 to control the co-injection system 1000 to selectively control a volumetric flow volume of the inner and outer polymeric streams, control a position of the interior core material stream 150a relative to a velocity flow front of the combined polymeric stream and control extrusion start time of the interior core stream relative to the extrusion start time of the inner and outer polymeric streams as taught herein. That is, Barrier Coverage Code 950 includes executable code executable by the processor 902 to control the co-injection system 1000 to place the interior core material flow stream 150a on a flow streamline that has a velocity that is greater that the average velocity of the combined annular flow 300.
- the interior layer material flow 150a can "catch up" to the fountain flow and fold over, creating coverage of a barrier layer or scavenger layer in the resulting molded article in a range of between 95% and 100%, or even between 99% and 100%, of the sealable portion.
- Execution of the Barrier Coverage Code 950 by the processor 902 allows the co-injection system 1000 to place the interior layer material flow 150a either inside or outside the location of the zero-velocity gradient creating fold over toward the inside or outside of the resulting article, respectively.
- Methods and co-injection systems taught herein facilitate the co-injection molding of food or beverage containers whereby the interior core stream forms a structural element that secures the interior core layer to the inner layer or the outer layer to prevent delamination of the resulting molded plastic article and create visual effects in the resulting molded plastic article without the need for adhesive compounded into the polymeric materials used to form the resulting molded plastic article.
- FIG. 8 depicts the fountain flow effects whereby flowing material upstream of the flow-front 23 has a velocity gradient 350 such that the flow velocity is fastest in the middle and slowest at or near the interface of the polymeric stream and the walls of the channels of the mold cavity.
- FIGS. 9 A and 9B depict the velocity gradient 350, where the combined stream is fastest at point "A" and slower at points "B” or “C”.
- the zero-velocity gradient 340 occurs at the point where the velocity of the flow is greatest. Because the flow velocity at the zero- velocity gradient streamline is greater than the average velocity of the flow-front, the interior material injected at or near the zero velocity gradient point can, under some circumstances "catch up” to and pass the flow-front and break through the skin, even if injection of the interior material begins after injection of the inner and outer layers (PET, PC, or PP). The interior core stream material will breakthrough when the interior material reaches the flow-front of the polymeric stream.
- PET inner and outer layers
- FIG. 9B shows that as the particles initially at points A, B, and C respectively move downstream, they move farther apart from each other due to velocity gradient 350. After a first period of time elapses, the particles will have moved to new locations designated as A 1; B 1; and Ci respectively. After a second period of time elapses, the particles will have moved from locations designated as A 1; B 1; and Ci to new locations designated as A 2 , B 2 , and C 2 respectively.
- the relative location of the particles at the successive times demonstrates the effect of the velocity gradient 350 over time. Since flow velocity at point A is greater than the velocity at point B, the particle starting at point A will move farther over time than the particle starting at point B. Similarly, since flow velocity at point B is greater than the velocity at point C, the particle starting at point B will move farther over time than the particle starting at point C.
- the hatched area shows the acceptable location for interior layer placement that is both greater than the average velocity and off the zero velocity gradient 340. This area will wrap the layer to the inside of the part. From the graph we can see that the flow fraction of the inside layer can be in a range from 0.1 to 0.45.
- the flow fraction of the outside layer can be from 0.9 to 0.55.
- the interior layer thickness can be as thick as about 25% of the thickness of the flowing layer which is about 35% of the flow fraction, 0.1 to 0.45.
- FIG. 10 is a cross-section of a container 500 with the leading edge 151 of the interior layer having a position typically achieved by the prior art.
- the leading edge 151 of interior layer 150 has an advanced portion 151c and a lagging portion 151d.
- the leading edge 151 of interior layer 150 does not reach a portion of the sealing area of the molded container 500, which may be significant.
- the interior layer 150 of a prior art container 500 formed under typical production conditions, such as in a mold defining four or more cavities, does not extend to 95%, and often much less than 95%, of the surface area of the sealable portion of the container.
- the sealable portion of the container 500 includes the base 105, the sidewall 110, and the sealing zone within the flange 115.
- the portion of the surface area lacking an interior layer is even greater.
- the highest interior layer coverage in the prior art was only achieved under the best conditions including, for example, the use of a mold defining a single symmetrical cavity operating at longer cycle times.
- the coverage of the interior layer 150 of a prior art container 500 formed under the best conditions still does not match that of containers in accordance with embodiments taught herein. As shown in FIG. 1, the typical position of interior layer 150 of the prior art container will allow high permeation into the sealed container.
- FIG. 11 is a cross-section of a container 501 with a leading edge 151 of an interior layer 150 having a position consistent with embodiments taught herein.
- FIG. 11 shows the beneficial effect of using an offset in accordance with embodiments taught herein to create a foldover 151b when molding parts with the same non-uniformities as described with respect to the prior art.
- This foldover 151b of the advanced portion 151c of the interior leading edge will allow the lagging portion 15 Id to reach the flange and provide sufficient radial coverage of the interior layer 150 with respect to the sealing area of the closure 120.
- Embodiments taught herein overcome the problem of different sums of non-uniformity by creating more or less foldover in any one cavity such that the lagging portion of the interior layer's leading edge in the most lagging cavity will reach the required radial position with respect to closure 120.
- Embodiments taught herein enable production with molds including four or more cavities, and at cycle times substantially as fast as monolayer molding, while achieving the interior layer leading edge position needed to provide the target percentage barrier coverage, for example, for food containers.
- FIG. 12 illustrates an exemplary nozzle assembly suitable for practicing the embodiment taught herein.
- Nozzle assembly 18 includes an inner combining means 30, a middle combining means 32, and an outer combining means 34.
- Nozzle assembly 18 further includes nozzle body 36 and nozzle tip 38.
- Inner combining means 30, middle combining means 32, outer combining means 34, nozzle body 36, and nozzle tip 38 cooperatively combine to form a number of conical, annular, and axial passages and channels in nozzle assembly 18.
- the nozzle assembly 18 is well suited for use in a co- injecting system, for example system 1000, for forming a plastic object having two or more layers.
- Inner combining means 30 includes a first inlet 46 to receive a first polymeric material 64, such as a skin material (i.e., inner and outer layer material), and a second inlet 44 to receive a second polymeric material 66, such as a core material (i.e., interior layer material).
- the inner combining means 30 further includes a through bore 40 configured to receive a valve pin 42.
- the through bore 40 extends through the middle combining means 32, and through a portion of the outer combining means 34 to allow the valve pin 42 to move in an axial direction along a longitudinal axis of the nozzle assembly 18.
- Through bore 40 has an inner wall diameter that varies along a central longitudinal axis of the nozzle assembly 18.
- Valve pin 42 is movable in an axial direction along the central longitudinal axis of nozzle assembly 18 to assist in controlling the flow of the first polymeric material 64 and second polymeric material 66 through nozzle assembly 18 and into mold 24.
- Middle combining means 32 cooperatively engages with the inner combining means 30 form a portion of the plurality of annular flow channels in nozzle assembly 18.
- Middle combining means 32 receives from channel 37 the first polymeric material 64 and receives from channel 41 the second polymeric material 66 to manipulate the flow of each of the polymeric materials through a plurality of annular fluid carrying passages or channels.
- the flow manipulation carried out by middle combining means 32 initiates the creation of an outer material stream 58 and an inner material stream 56 that together encapsulate an interior material stream 60.
- the middle combining means 32 when coupled with the inner combining means 30 forms a wrapped-coat-hanger die 31 that circumferentially extends around the through bore 40 and valve pin 42. Wrapped-coat-hanger die 31 provides annular fluid flow passage 48 with a uniform melt distribution of the first polymeric material 64.
- Annular fluid flow passage 48 channels an annular flow stream of the inner material stream 56 into stream combination area 54 through an orifice.
- Outer combining means 34 cooperatively engages with middle combining means 32 to form one or more fluid carrying passages or channels to manipulate the second polymeric material 66 forming an interior layer of the resulting plastic object.
- the outer combining means 34 when coupled with the middle combining means 32 forms a wrapped- coat-hanger die 33 that circumferentially extends around inner material stream 56, through bore 40, and valve pin 42. Wrapped-coat-hanger die 33 provides conical fluid flow passage 52 with a uniform melt distribution of the second polymeric material 66. Conical flow passage 52 feeds an annular stream of the second polymeric material 66 into stream combination area 54 through another orifice.
- the outer combining means 34 cooperatively engages with nozzle body 36.
- the outer combining means 34 when coupled with the nozzle body 36 forms wrapped-coat- hanger die 35 that circumferentially extends around the interior layer stream 52, the inner layer stream 56, the through bore 40, and the valve pin 42.
- Wrapped-coat-hanger die 35 provides radial fluid flow passage 50 with a uniform melt distribution of the first polymeric material 64.
- Radial fluid flow passage 50 feeds stream combination area 54 with a flow of first polymeric material 64 through an orifice.
- the first polymeric material 64 fed into the stream combination area 54 through the orifice forms the outer layer of a resulting molded object.
- Fluid flow passages 48, 50, and 52 feed stream combination area 54 with the outer material stream 58, the inner material stream 56, and the interior material stream 60.
- a portion of the nozzle tip 38, a portion of the outer combining means 34, a portion of the middle combining means 32, and a portion of the valve pin 42, in combination form the stream combination area 54.
- Stream combination area 54 has an inner passageway diameter of between about 6.7 mm and about 17.2 mm.
- Stream combination area 54 combines in a simultaneous or near simultaneous manner the outer material stream 58 received from the fluid flow passage 50, the inner material stream 56 received from the fluid flow passage 48, and the interior material stream 60 received from the fluid flow passage 52 to form annular output stream.
- the channels, bores and passageways of the inner combining means 30, the middle combining means 32 and the outer combining means 34 and more specifically the channels, bores and passageways associated with the formation and the flow of inner and outer layer material in the nozzle assembly 18 may be sized, defined, adapted and configured to control or produce a desired volumetric flow ratio as discussed above.
- the valve pin 42 may remain in a fixed position and does not need to be moved to control or form a particular volumetric flow ratio.
- the nozzle assembly 18 has a channel configuration and structure to output a desired or selected volumetric flow ratio without the need of an associated controller or microprocessor.
- the valve pin 42 may be controlled by a controller or microprocessor to control the volumetric flow ratio.
- the annular output stream 49 flows from the stream combination area 54 through fluid flow passage 62 to output portion 39 of nozzle assembly 18.
- Fluid flow passage 62 has an annular inner passage that radially extends about through bore 40 and axially extends from the stream combination area 54 to the output portion 39.
- the output portion 39 communicates with a gate of a mold, such as one of gates 20A-20D.
- the annular output stream 49 formed by the stream combination area 54 has an outer annular skin layer and an inner annular skill) layer formed of the first polymeric material 64, and an interior or core annular layer formed of the second polymeric material 66.
- the inner and outer skin layers of the first polymeric material 64 each have a substantially like cross sectional area as the materials flow through the fluid flow passage 62 to the output portion 39.
- the inner and outer skin layers of the first polymeric material 64 encapsulate the interior layer of the second polymeric material 66, which forms a core portion of a resulting plastic object.
- the combined polymeric stream 49 Upon injection from the nozzle assembly 18, the combined polymeric stream 49, as depicted in FIG. 13, comprises an interior stream 55 that flows along concentric or annular streamlines between the inner 53 and outer 51 polymeric streams.
- the combined polymeric stream 49 As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, numerous changes and modifications may be made to the above-described and other embodiments of the present disclosure without departing from the spirit of the invention as defined in the appended claims. Accordingly, this detailed description of embodiments is to be taken in an illustrative, as opposed to a limiting, sense.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013519854A JP2013534483A (ja) | 2010-07-16 | 2011-07-15 | 射出成形容器のための改善されたガス不透過性 |
| PL11738358T PL2593285T3 (pl) | 2010-07-16 | 2011-07-15 | Ulepszona nieprzepuszczalność gazowa pojemników formowanych wtryskowo |
| EP11738358.8A EP2593285B1 (en) | 2010-07-16 | 2011-07-15 | Improved gas impermeability for injection molded containers |
| CN201180035035.3A CN103003048B (zh) | 2010-07-16 | 2011-07-15 | 改进不透气性的注射成型容器 |
| ES11738358T ES2717885T3 (es) | 2010-07-16 | 2011-07-15 | Mejora de la impermeabilidad a los gases para los contenedores moldeados por inyección |
| CA2802328A CA2802328C (en) | 2010-07-16 | 2011-07-15 | Improved gas impermeability for injection molded containers |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US36530310P | 2010-07-16 | 2010-07-16 | |
| US61/365,303 | 2010-07-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012009656A1 true WO2012009656A1 (en) | 2012-01-19 |
Family
ID=44513138
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2011/044222 Ceased WO2012009656A1 (en) | 2010-07-16 | 2011-07-15 | Improved gas impermeability for injection molded containers |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US9227349B2 (enExample) |
| EP (1) | EP2593285B1 (enExample) |
| JP (2) | JP2013534483A (enExample) |
| CN (1) | CN103003048B (enExample) |
| CA (1) | CA2802328C (enExample) |
| ES (1) | ES2717885T3 (enExample) |
| HU (1) | HUE044467T2 (enExample) |
| PL (1) | PL2593285T3 (enExample) |
| PT (1) | PT2593285T (enExample) |
| WO (1) | WO2012009656A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3030503B1 (en) | 2013-12-03 | 2017-11-22 | Biserkon Holdings Ltd. | Capsule and device for preparing beverages and method for producing capsules |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| HUE044467T2 (hu) * | 2010-07-16 | 2019-10-28 | Milacron Llc | Javított gáz-záró képesség fröccsöntött tárolók számára |
| WO2013028933A1 (en) | 2011-08-23 | 2013-02-28 | Kortec, Inc. | Methods and systems for the preparation of molded plastic articles having a structural barrier layer |
| US8491290B2 (en) * | 2011-10-21 | 2013-07-23 | Kortec, Inc. | Apparatus for producing non-symmetric multiple layer injection molded products |
| US9221204B2 (en) | 2013-03-14 | 2015-12-29 | Kortec, Inc. | Techniques to mold parts with injection-formed aperture in gate area |
| US9701047B2 (en) | 2013-03-15 | 2017-07-11 | Milacron Llc | Methods and systems for the preparation of molded plastic articles having a structural barrier layer |
| JP6786397B2 (ja) | 2014-01-24 | 2020-11-18 | ミラクロン エルエルシー | ゲートエリアと周縁部との間に射出成形孔を有する、共射出成形される多層製品 |
| ES2987452T3 (es) | 2014-05-07 | 2024-11-14 | Milacron Llc | Recipiente de plástico con parte de base flexible |
| US9809370B2 (en) * | 2014-08-14 | 2017-11-07 | Scholle Ipn Corporation | Barrier spout for a flexible bag and a flexible bag having a barrier spout |
| USD768510S1 (en) | 2015-05-01 | 2016-10-11 | Milacron Llc | Container |
| US10807298B2 (en) | 2015-12-29 | 2020-10-20 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
| CA3017353A1 (en) * | 2016-03-11 | 2017-09-14 | Ring Container Technologies, Llc | Method of manufacture of a container |
| MX2018012014A (es) | 2016-04-07 | 2019-05-30 | Nestec Sa | Capsula cerrada con medios de apertura y capa de barrera integral. |
| US11298861B2 (en) | 2017-11-21 | 2022-04-12 | Silgan Specialty Packaging Llc | Multi-layer injection molded container |
| US11673731B2 (en) * | 2018-08-02 | 2023-06-13 | Boveda, Inc. | Method of making an injection molded product packaging having a humidity control material |
| CN116340790B (zh) * | 2023-03-01 | 2025-06-27 | 浪潮云信息技术股份公司 | 一种面向数据不均衡的联邦聚合方法及装置 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020192404A1 (en) * | 2001-04-06 | 2002-12-19 | Kortec, Inc. | Method of and apparatus for molding multi-layer polymer plastic articles having inner, outer and interior or core layers with control of relative volumetric flow rates of the inner and outer layers, enabling relative shifting of the position of the core layer and control of the relative thickness of the inner and outer layers in the molded articles |
| WO2005018909A1 (en) * | 2003-08-18 | 2005-03-03 | Kortec, Inc. | Automatic process control for a multilayer injection molding apparatus |
| US6908581B2 (en) | 2001-04-06 | 2005-06-21 | Kortec, Inc. | Optimized flow to prevent core layer breakthrough |
| WO2007006163A1 (de) * | 2005-07-08 | 2007-01-18 | Sig Technology Ltd. | Sauerstoffdichter ausgiesser mit stutzen und flansch für kartonverbund-packungen |
| US20100044916A1 (en) * | 2001-10-24 | 2010-02-25 | Ball Corporation | Polypropylene Container and Process for Making the Same |
Family Cites Families (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2418856A (en) | 1939-06-20 | 1947-04-15 | French Oil Mill Machinery | Method of and apparatus for injection molding |
| US3339240A (en) | 1965-07-29 | 1967-09-05 | Nat Distillers Chem Corp | Apparatus for laminar injection molding |
| US3679119A (en) | 1970-06-01 | 1972-07-25 | Keith Philip Copping | Injection moulded plastic cup-like article |
| CH540822A (de) | 1971-07-28 | 1973-08-31 | Schmalbach Lubeca | Einendig offener Behälter aus Kunststoff |
| US3894823A (en) * | 1971-09-07 | 1975-07-15 | Robert Hanning | Apparatus for injection molding of parts of synthetic material |
| US4174413A (en) | 1976-07-27 | 1979-11-13 | Asahi-Dow Limited | Multi-layered molded articles |
| US4568261A (en) | 1979-07-20 | 1986-02-04 | American Can Company | Apparatus for making a multi-layer injection blow molded container |
| US4554190A (en) | 1983-04-13 | 1985-11-19 | American Can Company | Plastic containers with folded-over internal layers and methods for making same |
| US4751035A (en) | 1983-04-13 | 1988-06-14 | American National Can Company | Plastic containers with folded-over internal layers and methods for making same |
| US4946365A (en) | 1983-04-13 | 1990-08-07 | American National Can Company | Apparatus for injection molding and injection blow molding multi-layer articles |
| US4511528A (en) * | 1983-04-13 | 1985-04-16 | American Can Company | Flow stream channel splitter devices for multi-coinjection nozzle injection molding machines |
| EP0125787B2 (en) | 1983-04-13 | 2000-03-22 | American National Can Company | Injection molding methods, injection molding apparatus and injection nozzle devices for use in molding multiple-layer articles, and multiple-layer injection molded articles |
| US4990301A (en) | 1989-01-25 | 1991-02-05 | Continental Pet Technologies, Inc. | Method and apparatus for injection molding of multilayer preforms |
| DE3932047A1 (de) | 1989-09-26 | 1991-04-11 | Kloeckner Ferromatik Desma | Verfahren und vorrichtung zum herstellen von behaeltern fuer lebensmittel u. dgl. |
| JPH03153327A (ja) * | 1989-11-10 | 1991-07-01 | Dainippon Printing Co Ltd | 容器本体およびその製造方法 |
| US5433910A (en) | 1991-05-14 | 1995-07-18 | Toyoda Gosei Co., Ltd. | Method of producing molding |
| JP3136420B2 (ja) | 1991-09-27 | 2001-02-19 | 旭化成工業株式会社 | 中空射出成形用金型 |
| JP2894132B2 (ja) | 1992-12-26 | 1999-05-24 | トヨタ車体株式会社 | サンドイッチ射出成形装置 |
| JP3339097B2 (ja) | 1993-03-25 | 2002-10-28 | 凸版印刷株式会社 | 非円対称多層射出容器 |
| JP3367135B2 (ja) * | 1993-04-02 | 2003-01-14 | 凸版印刷株式会社 | 多層射出成形方法 |
| JP3497301B2 (ja) | 1995-11-08 | 2004-02-16 | 本田技研工業株式会社 | 合成樹脂成形体の製造方法 |
| US6063325A (en) * | 1996-08-22 | 2000-05-16 | Continental Pet Technologies, Inc. | Method for preventing uncontrolled polymer flow in preform neck finish during packing and cooling stage |
| US5914138A (en) * | 1996-09-27 | 1999-06-22 | Kortec, Inc. | Apparatus for throttle-valving control for the co-extrusion of plastic materials as interior core streams encased by outer and inner streams for molding and the like |
| JP4202473B2 (ja) | 1998-09-08 | 2008-12-24 | 大日本印刷株式会社 | パ−ル光沢を有する多層射出成形品 |
| JP2004532756A (ja) * | 2001-06-18 | 2004-10-28 | ベクトン・ディキンソン・アンド・カンパニー | 多層容器および多層容器の形成方法 |
| US20030127765A1 (en) * | 2001-08-16 | 2003-07-10 | Weiland Richard A. | Extrusion composite compression injection process and apparatus |
| EP1478501A1 (en) | 2002-01-31 | 2004-11-24 | Kortec, Inc. | Optimized flow to prevent core layer breakthrough |
| JP4096308B2 (ja) * | 2003-05-09 | 2008-06-04 | 株式会社吉野工業所 | 射出成形用ホットランナー金型 |
| WO2004103670A2 (en) | 2003-05-20 | 2004-12-02 | Kortec, Inc. | Apparatus and method for fluid distribution |
| US6787097B1 (en) | 2003-06-20 | 2004-09-07 | Lear Corporation | Multiple cavity gas assisted plastic injection molding |
| JP2008307846A (ja) | 2007-06-18 | 2008-12-25 | Dainippon Printing Co Ltd | 共射出成形容器およびその製造方法 |
| US8256640B2 (en) | 2007-12-13 | 2012-09-04 | Ropak Corporation | Container apparatus and related methods |
| CA2631762A1 (en) | 2008-05-14 | 2009-11-14 | Stackteck Systems Limited | Reduced thickness injection moulded part design |
| FR2956466B1 (fr) * | 2010-02-17 | 2012-06-08 | Vallourec Mannesmann Oil & Gas | Joint filete expansible et procede de realisation |
| JP5906199B2 (ja) | 2010-03-08 | 2016-04-20 | コルテック,インコーポレーテッド | コア層のブレイクスルーを制御する多層ポリマー製品の成形方法 |
| HUE044467T2 (hu) * | 2010-07-16 | 2019-10-28 | Milacron Llc | Javított gáz-záró képesség fröccsöntött tárolók számára |
-
2011
- 2011-07-15 HU HUE11738358 patent/HUE044467T2/hu unknown
- 2011-07-15 PL PL11738358T patent/PL2593285T3/pl unknown
- 2011-07-15 ES ES11738358T patent/ES2717885T3/es active Active
- 2011-07-15 US US13/184,137 patent/US9227349B2/en active Active
- 2011-07-15 PT PT11738358T patent/PT2593285T/pt unknown
- 2011-07-15 CA CA2802328A patent/CA2802328C/en active Active
- 2011-07-15 EP EP11738358.8A patent/EP2593285B1/en active Active
- 2011-07-15 WO PCT/US2011/044222 patent/WO2012009656A1/en not_active Ceased
- 2011-07-15 JP JP2013519854A patent/JP2013534483A/ja not_active Withdrawn
- 2011-07-15 CN CN201180035035.3A patent/CN103003048B/zh active Active
-
2015
- 2015-12-28 US US14/980,142 patent/US20160250789A1/en not_active Abandoned
-
2016
- 2016-02-08 JP JP2016021894A patent/JP6242926B2/ja active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020192404A1 (en) * | 2001-04-06 | 2002-12-19 | Kortec, Inc. | Method of and apparatus for molding multi-layer polymer plastic articles having inner, outer and interior or core layers with control of relative volumetric flow rates of the inner and outer layers, enabling relative shifting of the position of the core layer and control of the relative thickness of the inner and outer layers in the molded articles |
| US6908581B2 (en) | 2001-04-06 | 2005-06-21 | Kortec, Inc. | Optimized flow to prevent core layer breakthrough |
| US20100044916A1 (en) * | 2001-10-24 | 2010-02-25 | Ball Corporation | Polypropylene Container and Process for Making the Same |
| WO2005018909A1 (en) * | 2003-08-18 | 2005-03-03 | Kortec, Inc. | Automatic process control for a multilayer injection molding apparatus |
| WO2007006163A1 (de) * | 2005-07-08 | 2007-01-18 | Sig Technology Ltd. | Sauerstoffdichter ausgiesser mit stutzen und flansch für kartonverbund-packungen |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3030503B1 (en) | 2013-12-03 | 2017-11-22 | Biserkon Holdings Ltd. | Capsule and device for preparing beverages and method for producing capsules |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2013534483A (ja) | 2013-09-05 |
| CN103003048A (zh) | 2013-03-27 |
| PT2593285T (pt) | 2019-04-18 |
| ES2717885T3 (es) | 2019-06-26 |
| CA2802328A1 (en) | 2012-01-19 |
| HUE044467T2 (hu) | 2019-10-28 |
| CA2802328C (en) | 2019-06-04 |
| PL2593285T3 (pl) | 2019-08-30 |
| US20160250789A1 (en) | 2016-09-01 |
| JP2016155374A (ja) | 2016-09-01 |
| US20120015122A1 (en) | 2012-01-19 |
| JP6242926B2 (ja) | 2017-12-06 |
| EP2593285A1 (en) | 2013-05-22 |
| CN103003048B (zh) | 2016-06-15 |
| EP2593285B1 (en) | 2019-03-13 |
| US9227349B2 (en) | 2016-01-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2802328C (en) | Improved gas impermeability for injection molded containers | |
| US10688748B2 (en) | Techniques to mold parts with injection-formed aperture in gate area | |
| US10213944B2 (en) | Methods of molding multi-layer polymeric articles having control over the breakthrough of the core layer | |
| JP6568901B2 (ja) | 非対称多層射出成形製品及び射出方法 | |
| JP2017035890A (ja) | ヒートシール欠陥の防止方法および製品 | |
| US20170144345A1 (en) | Methods and systems for the preparation of molded plastic articles having a structural barrier layer | |
| CA2937317C (en) | Co-injection molded multi-layer article with injection-formed aperture between gate area and peripheral edge |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11738358 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2802328 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011738358 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2013519854 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |