WO2012008335A1 - Cylinder liner - Google Patents

Cylinder liner Download PDF

Info

Publication number
WO2012008335A1
WO2012008335A1 PCT/JP2011/065368 JP2011065368W WO2012008335A1 WO 2012008335 A1 WO2012008335 A1 WO 2012008335A1 JP 2011065368 W JP2011065368 W JP 2011065368W WO 2012008335 A1 WO2012008335 A1 WO 2012008335A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinder liner
circumferential groove
cooling
outer peripheral
Prior art date
Application number
PCT/JP2011/065368
Other languages
French (fr)
Japanese (ja)
Inventor
剛 門脇
信幸 國弘
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201180030313.6A priority Critical patent/CN103003543B/en
Priority to KR1020127033108A priority patent/KR101408624B1/en
Publication of WO2012008335A1 publication Critical patent/WO2012008335A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream

Definitions

  • the present invention relates to a cylinder liner applied to an internal combustion engine such as a marine diesel engine.
  • cooling bore As a cylinder liner applied to an internal combustion engine such as a marine diesel engine, a cooling hole (hereinafter referred to as “cooling bore”) inclined with respect to a plane perpendicular to the cylinder axis is provided inside (inside the wall).
  • cooling bore a cooling hole inclined with respect to a plane perpendicular to the cylinder axis
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a cylinder liner capable of reducing the thickness and reducing the weight.
  • the present invention employs the following means in order to solve the above problems.
  • the cylinder liner according to the first aspect of the present invention includes a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and the first liner is provided at the center of the upper end surface in the thickness direction.
  • the outlet of the first cooling bore is provided on the wall surface or the bottom surface forming the first circumferential groove.
  • the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point ( It is provided in the vicinity (point where neither compressive stress nor tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
  • the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
  • the cylinder liner according to the second aspect of the present invention includes a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and the first liner is provided at the center of the upper end surface in the plate thickness direction.
  • the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point ( It is provided in the vicinity (point where neither compressive stress nor tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
  • the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
  • the outlet of the first cooling bore has a plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis.
  • the outlet of the first cooling bore is provided in a place (region) where a thermal stress smaller than the thermal stress in the first circumferential groove acts, and the longitudinal axis (center axis) of the first cooling bore As a result, the crossing angle with the plane perpendicular to the cylinder axis increases, and the stress concentration at the outlet of the first cooling bore is alleviated. Accordingly, the thickness can be further reduced to further reduce the outer diameter, and further weight reduction can be achieved.
  • the cylinder liner according to the third aspect of the present invention includes a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and the first liner is provided at the center of the upper end surface in the thickness direction.
  • the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point ( It is provided in the vicinity (point where neither compressive stress nor tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
  • the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
  • the outlet of the first cooling bore has a plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis.
  • the outlet of the first cooling bore is provided in a place (region) where a thermal stress smaller than the thermal stress in the first circumferential groove acts, and the longitudinal axis (center axis) of the first cooling bore As a result, the crossing angle with the plane perpendicular to the cylinder axis increases, and the stress concentration at the outlet of the first cooling bore is alleviated. Accordingly, the thickness can be further reduced to further reduce the outer diameter, and further weight reduction can be achieved.
  • the communication hole is formed so that the shape in plan view is substantially elliptical, and the stress concentration at the outlet of the first cooling bore is further alleviated. Will be.
  • the thickness can be further reduced, the outer diameter can be further reduced, and the weight can be further reduced.
  • a cooling structure for an internal combustion engine includes any one of the above-described cylinder liners and a plurality of second cooling bores that are opened obliquely upward from the lower end surface toward the inside of the wall.
  • a cooling structure for an internal combustion engine comprising a second circumferential groove on an outer peripheral portion in the plate thickness direction, and a cylinder cover disposed on the cylinder liner and closing an opening located above the cylinder liner.
  • the inlet of the second cooling bore is provided on the wall surface or the bottom surface forming the second circumferential groove.
  • the cooling medium for example, cooling water
  • the second circumferential groove passes through a gap formed between the outer peripheral wall surface (the inner circumferential wall surface that forms the circumferential groove 25) of the convex portion 28 and the outer circumferential wall surface that forms the circumferential groove 16. After flowing into 25, it flows into the second cooling bore 24 from the inlet of the second cooling bore 24.
  • the cooling medium connecting hardware conventionally required to guide the cooling medium flowing out from the outlet of the first cooling bore to the inlet of the second cooling bore. It is possible to simplify the configuration of the joint portion (connection portion). Further, since the cooling medium connection hardware can be eliminated, the outer diameter of the joint portion (connection portion) between the cylinder liner and the cylinder cover can be reduced and the weight can be reduced.
  • the gas vent passage is provided so as to pass through the vicinity of the second circumferential groove.
  • the combustion gas that passes through the gas vent passage is cooled by the cooling medium that passes through the second circumferential groove.
  • the temperature of the combustion gas ejected from the opening provided on the outer peripheral surface of the cylinder cover can be reduced, and the safety of workers working around the internal combustion engine (for example, a ship engineer / engineer) is safe. Can be secured.
  • a cover outer cylinder that fits on an outer peripheral surface of the cylinder cover and forms a gas venting space with the outer peripheral surface of the cylinder cover is provided, and the gas venting space
  • the combustion gas ejected from the outer peripheral surface of the cylinder cover through the gas vent passage is formed to be guided downward along the outer peripheral surface of the cylinder cover.
  • the combustion gas ejected from the opening provided in the outer peripheral surface of the cylinder cover through the gas vent passage is guided downward along the outer peripheral surface of the cylinder cover. It is like that. That is, the combustion gas ejected from the opening provided on the outer peripheral surface of the cylinder cover is not ejected toward an operator (for example, a ship engineer / engineer) working around the internal combustion engine. Yes. Thereby, it is possible to further ensure the safety of a worker (for example, a ship engineer / engineer) working around the internal combustion engine.
  • the heat load of the O-ring housed in the fourth circumferential groove is reduced (about 10 ° C. in temperature) by the air layer staying in the thermal dam. It will be. Thereby, damage to the O-ring due to heat can be prevented, the life of the O-ring can be extended, and the maintenance interval of the O-ring can be extended.
  • An internal combustion engine includes any one of the above-described cylinder liners or any one of the above-described internal combustion engine cooling structures.
  • the engine is provided with the cylinder liner that can reduce the wall thickness and reduce the outer diameter, and can reduce the weight.
  • the overall size and weight can be reduced.
  • the cylinder liner according to the present invention has the effect of reducing the wall thickness and reducing the weight.
  • FIG. 1 It is a perspective view of a cylinder liner concerning a 1st embodiment of the present invention. It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 1st Embodiment of this invention. It is a figure which expands and shows the principal part of FIG. It is a top view which shows a part of upper surface of the cylinder liner which concerns on 1st Embodiment of this invention. It is a figure which expands and shows the principal part of FIG. It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 1st Embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along arrow VII-VII in FIG. 6. It is a perspective view of the important section showing the cylinder liner concerning a 1st embodiment of the present invention. It is a figure for demonstrating the stress which acts on the exit of the cooling bore which concerns on the past and this invention. It is a figure for demonstrating the stress which acts on the exit of the cooling bore which concerns on the past and this invention. It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 2nd Embodiment of this invention. It is a figure which expands and shows the principal part of FIG.
  • FIG. 1 is a perspective view of a cylinder liner according to the present embodiment
  • FIG. 2 is a cross-sectional view of an essential part showing a cooling structure of an internal combustion engine provided with the cylinder liner according to the present embodiment
  • FIG. 3 is an enlarged view of the essential part of FIG.
  • FIG. 4 is a plan view showing a part of the upper surface of the cylinder liner according to the present embodiment
  • FIG. 5 is an enlarged view of the main part of FIG. 2
  • FIG. 6 is a cylinder liner according to the present embodiment.
  • FIG. 7 is a cross-sectional view of the main part showing the cooling structure of the internal combustion engine provided with FIG. 7,
  • FIG. 7 is a cross-sectional view taken along the arrow VII-VII in FIG.
  • FIG. 10 and FIG. 10 are views for explaining the stress acting on the outlet of the cooling bore according to the prior art and the present invention, respectively.
  • the cylinder liner according to the present invention is applied to an internal combustion engine such as a marine diesel engine, and a piston (not shown) is disposed inside the cylinder liner, and the piston slides along an inner peripheral surface thereof.
  • reference numeral 11 denotes a lower water chamber 12 and an upper water chamber 13 that are fitted (attached) to the upper outer peripheral surface of the cylinder liner and between the upper outer peripheral surface of the cylinder liner.
  • Each of the lower water chamber 12 and the upper water chamber 13 is a space (water chamber) formed in a ring shape in plan view along the circumferential direction.
  • the lower water chamber 12 is below the upper water chamber 13 and the upper water chamber 13 is It is provided above the lower water chamber 12.
  • the cylinder liner 10 includes a lower cooling bore 14 and an upper cooling bore (first cooling bore) 15.
  • the lower cooling bore 14 is a straight hole that communicates the lower water chamber 12 and the upper water chamber 13 when the liner outer cylinder 11 is fitted to the upper outer peripheral surface of the cylinder liner 10, and extends along the circumferential direction.
  • a plurality (14 in this embodiment) are provided.
  • the lower cooling bore 14 has an inlet (a throat) provided on the outer peripheral surface of the cylinder liner 10 located on the upper lower side of the cylinder liner 10, and the lower cooling bore 14 has an outlet (a throat) on the upper upper side of the cylinder liner 10.
  • the longitudinal axis (center axis) of the lower cooling bore 14 is inclined with respect to a plane perpendicular to the cylinder axis.
  • the upper cooling bore 15 is provided in the upper water chamber 13 and the upper surface (top surface) of the cylinder liner 10 when the liner outer cylinder 11 is fitted to the upper outer peripheral surface of the cylinder liner 10 (first) circumference. It is a linear hole that communicates with a groove (a groove that has a ring shape in plan view provided continuously along the circumferential direction), and a plurality of holes (14 in this embodiment) are provided along the circumferential direction. ing.
  • the upper cooling bore 15 has an inlet (a mouth) provided on the outer peripheral surface of the cylinder liner 10 above the cylinder liner 10 and above the outlet of the lower cooling bore 14.
  • the circumferential groove 16 has a U-shaped cross-sectional view, and the lower surface of the cylinder liner 10 along the cylinder axis from the upper surface of the cylinder liner 10 ( The groove is carved toward (the bottom surface), and as shown in FIG. 9 and FIG. 10, near the stress 0 (zero) point (point where neither compressive stress nor tensile stress acts) and stress It is provided on the inner periphery side from the 0 point.
  • a circumferential groove 17 that houses an O-ring (not shown) is provided along the circumferential direction on the upper outer circumferential surface of the cylinder liner 10. Yes.
  • an O-ring (not shown) is accommodated along the circumferential direction on the inner peripheral wall surface forming the circumferential groove 16 (fourth). ) Circumferential groove 18 is provided.
  • a cylinder cover 20 is disposed on the cylinder liner 10 so that an opening located above the cylinder liner 10 is closed (sealed). It has become. 2, 3, and 5, reference numeral 21 denotes a cover outer cylinder (water chamber) that fits (attaches) to the outer peripheral surface of the cylinder cover 20 and forms a water chamber 22 between the outer peripheral surface of the cylinder cover 20. Hardware).
  • the water chamber 22 is a space formed in an annular shape in plan view along the circumferential direction, and is provided at a central portion in the axial direction (length direction) of the cylinder cover 20.
  • the cylinder cover 20 includes an upper cooling bore 23 and a lower cooling bore (second cooling bore) 24.
  • the upper cooling bore 23 is a linear hole that communicates the water chamber 22 and the upper (top) center portion of the cylinder cover 20 when the cover outer cylinder 21 is fitted to the outer peripheral surface of the cylinder cover 20.
  • a plurality (ten in this embodiment) are provided along the circumferential direction.
  • the upper cooling bore 23 has an inlet (a throat) provided on the upper (ceiling side) wall surface forming the water chamber 22, and the longitudinal axis (center axis) of the upper cooling bore 23 is a plane perpendicular to the cylinder axis. Leaning against.
  • the lower cooling bore 24 includes a (second) circumferential groove 25 provided on the lower surface (bottom surface) of the cylinder cover 20 when the cover outer cylinder 21 is fitted to the outer peripheral surface of the cylinder cover 20, A plurality of (in this embodiment, 10) linear holes are provided along the circumferential direction.
  • the lower cooling bore 24 has an inlet (a throat) provided on the bottom surface of the circumferential groove 25 that forms the bottom of the circumferential groove 25, and an outlet (a throat) of the lower cooling bore 24 that is formed on the lower side (the water chamber 22).
  • the longitudinal axis (center axis) of the lower cooling bore 24 is inclined with respect to a plane perpendicular to the cylinder axis.
  • the circumferential groove 25 has a U-shape in cross section, and the upper surface (top surface) of the cylinder cover 20 extends from the lower surface of the cylinder cover 20 along the cylinder axis. And is provided so as to be located outside the circumferential groove 16 when it is put on the cylinder liner 10.
  • a circumferential groove 26 that accommodates an O-ring (not shown) is provided on the outer peripheral surface of the cylinder cover 20 along the circumferential direction.
  • a (third) circumferential groove 27 having a U-shape in sectional view is provided on the inner circumferential side of the circumferential groove 25 along the circumferential direction.
  • the inner circumferential wall surface that forms the circumferential groove 25, the lower surface of the cylinder cover 20 that continues to the wall surface, and the outer circumferential wall surface that continuously forms the circumferential groove 27 on the lower surface fit into the circumferential groove 16.
  • a convex portion 28 is formed.
  • the convex portion 28 has a predetermined gap (for example, 3 mm) between the outer peripheral wall surface (the inner peripheral wall surface that forms the circumferential groove 25) and the outer peripheral wall surface that forms the circumferential groove 16.
  • a predetermined gap is formed between the lower surface (the lower surface of the cylinder cover 20) and the bottom surface forming the bottom of the circumferential groove 16, and the inner circumferential wall surface (the outer circumferential wall surface forming the circumferential groove 27).
  • the outer peripheral wall surface forming the circumferential groove 16 so as to form a predetermined gap (for example, 0.25 mm) and project downward along the cylinder axis.
  • a convex portion 29 that fits into the circumferential groove 25 is formed by a wall surface on the outer peripheral side that forms the circumferential groove 16, an upper surface of the cylinder liner 10 that is continuous with the wall surface, and an outer peripheral surface of the cylinder liner 10 that is continuous with the upper surface. Is formed.
  • the protrusion 29 has a predetermined gap (for example, 3 mm) between the inner peripheral wall surface (the outer peripheral wall surface that forms the peripheral groove 16) and the inner peripheral wall surface that forms the peripheral groove 25.
  • a predetermined gap is formed between the upper surface (the upper surface of the cylinder liner 10) and the bottom surface forming the bottom of the circumferential groove 25, and the outer peripheral wall surface (the outer peripheral surface of the cylinder liner 10)
  • a predetermined gap (for example, 0.45 mm) is formed between the outer peripheral wall surface forming the groove 25 and protrudes upward along the cylinder axis.
  • a gas releasing space 30 is provided along the circumferential direction on the inner peripheral side of the lower end portion of the cover outer cylinder 21.
  • the space 30 and the circumferential groove 27 are communicated with each other through a gas vent passage 31.
  • the gas vent passages 31 are provided radially from the center of the cylinder cover 20 toward the outer peripheral surface at regular intervals (in the present embodiment, 45 ° intervals), and open to the bottom surface forming the bottom of the circumferential groove 27.
  • a first passage 32 extending in the cylinder cover 20 along the cylinder axis toward the upper surface of the cylinder cover 20 and an upper end portion of the first passage 32 and an outer peripheral surface of the cylinder cover 20 are opened.
  • a second passage 33 extending in the cylinder cover 20 along a direction orthogonal to the cylinder axis is provided.
  • a pipe joint 35 for connecting a cooling water supply pipe 34 (see FIGS. 6 and 7) is connected to a lower end portion of the liner outer cylinder 11 via a flange 36 and a bolt 37. Connected (attached).
  • the pipe joints 35 are provided radially from the center of the cylinder cover 20 toward the outer peripheral surface and at equal intervals (in the present embodiment, at intervals of 90 degrees), and one end of the pipe joint 35 is provided at the liner outer cylinder 11.
  • the lower water chamber 12 is inserted into the lower water chamber 12 through a through-hole 38 that is formed at the lower end portion thereof and penetrates in the plate thickness direction.
  • An opening 39 having a rectangular shape in front view (see FIG.
  • opening toward the lower water chamber 12 is provided on both side surfaces of one end of the pipe joint 35, and the cooling water supply pipe 34 and the pipe joint 35 are connected to each other.
  • the cooling water supplied through the cylinder 39 is supplied in the circumferential direction along the outer peripheral surface of the cylinder liner 10 through the opening 39. Note that one end (tip) side of the pipe joint 35 is closed, and cooling water flows out only from the opening 39.
  • the cooling water supply pipe 34 and the pipe joint 35 are formed by a flange 40 provided at one end of the cooling water supply pipe 34, a flange 41 provided at the other end of the pipe joint 35, a bolt 42, and a nut 43. It is connected.
  • a thermal dam 44 is provided on the upper surface of the cylinder liner 10 that faces the bottom surface that forms the bottom of the circumferential groove 27.
  • the thermal dam 44 has a U-shape in cross section, and has a circumferential groove (for example, a width of 11 mm, a depth) carved from the upper surface of the cylinder liner 10 toward the lower surface of the cylinder liner 10 along the cylinder axis. 26 mm U-shaped groove).
  • the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point (the compressive stress is also It is provided in the vicinity (point where no tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
  • the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
  • the cooling water flowing into the circumferential groove 16 from the outlet of the upper cooling bore 15 is the outer periphery of the convex portion 28.
  • the lower cooling After flowing into the circumferential groove 25 through a gap formed between the side wall surface (the inner circumferential wall surface forming the circumferential groove 25) and the outer circumferential wall surface forming the circumferential groove 16, the lower cooling The air flows into the lower cooling bore 24 from the inlet of the bore 24.
  • a circumferential groove 27 is provided in the inner circumferential portion in the plate thickness direction of the lower end surface of the cylinder cover 20 positioned on the side, and flows into the circumferential groove 27 through between the upper end surface of the cylinder liner 10 and the lower end surface of the cylinder cover 20. Since a gas vent passage 31 is provided to guide the combustion gas to an opening (exit of the second passage 33) provided on the outer peripheral surface of the cylinder cover 20, it is conventionally required to release the gas pressure during abnormal combustion. A relief valve can be eliminated, and the configuration around the cylinder cover 20 can be simplified.
  • the gas vent passage 31 is provided so as to pass in the vicinity of the circumferential groove 25,
  • the combustion gas passing through the gas vent passage 31 is cooled by the cooling water passing through the circumferential groove 25.
  • a worker for example, a ship engineer / engineer working around the internal combustion engine Safety can be ensured.
  • a gas is fitted between the outer peripheral surface of the cylinder cover 20 and between the outer peripheral surface of the cylinder cover 20.
  • a cover outer cylinder 21 that forms a venting space 30 is provided.
  • the combustion gas ejected from the opening provided in the outer peripheral surface of the cylinder cover 20 through the gas vent passage 31 is guided downward along the outer peripheral surface of the cylinder cover 20. It is like that.
  • the combustion gas ejected from the opening provided on the outer peripheral surface of the cylinder cover 20 is not ejected toward an operator (for example, a ship engineer / engineer) working around the internal combustion engine. ing. Thereby, it is possible to further ensure the safety of a worker (for example, a ship engineer / engineer) working around the internal combustion engine.
  • the O-ring is provided along the circumferential direction on the inner peripheral wall surface forming the peripheral groove 16. Is provided on the inner circumferential side of the circumferential groove 18 and on the upper surface of the cylinder liner 10 facing the bottom surface forming the bottom of the circumferential groove 27 along the cylinder axis.
  • the thermal dam 44 carved toward the lower surface of the liner 10 is provided, and the heat load of the O-ring accommodated in the circumferential groove 18 is reduced (about 10 ° C. in temperature) by the air layer staying in the thermal dam 44. Will be. Thereby, damage to the O-ring due to heat can be prevented, the life of the O-ring can be extended, and the maintenance interval of the O-ring can be extended.
  • the thickness can be reduced to reduce the outer diameter, and the weight can be reduced. Therefore, the entire engine can be reduced in size and weight.
  • FIGS. 11 is a cross-sectional view of a main part showing a cooling structure of an internal combustion engine provided with a cylinder liner according to the present embodiment
  • FIG. 12 is an enlarged view of the main part of FIG. 11
  • FIG. 13 is a cylinder according to the present embodiment. It is a top view which shows a part of upper surface of a liner.
  • the cylinder liner 50 according to this embodiment is the first embodiment described above in that a communication hole (drill hole: drill hole) 51 is provided below the circumferential groove 16. Different from that. Since other components are the same as those of the first embodiment described above, description of these components is omitted here.
  • symbol is attached
  • the communication hole 51 is a hole (for example, a hole having a diameter of 26 mm and a depth of 50 mm) having a circular shape in plan view extending from the bottom surface forming the bottom of the circumferential groove 16 toward the lower surface of the cylinder liner 50 along the cylinder axis.
  • a plurality (14 in this embodiment) are provided along the circumferential direction.
  • the wall surface (inner peripheral surface) forming the communication hole 51 is provided with an outlet (a throat) of the upper cooling bore 15, and the cooling water flowing out from the outlet of the upper cooling bore 15 passes through the communication hole 51. Then, it flows into the circumferential groove 16.
  • the outlet of the upper cooling bore 15 has the communication hole 51 having a circular shape in plan view extending from the bottom surface forming the circumferential groove 16 along the cylinder axis toward the lower end surface thereof. It will be provided on the wall surface to be formed. That is, the outlet of the upper cooling bore 15 is provided in a place (region) where a thermal stress smaller than the thermal stress in the circumferential groove 16 acts, and the longitudinal axis (center axis) of the upper cooling bore 15 and the cylinder axis As a result, the crossing angle with the plane perpendicular to the angle increases, and the stress concentration at the outlet of the upper cooling bore 15 is relaxed. Accordingly, the thickness can be further reduced to further reduce the outer diameter, and further weight reduction can be achieved. Other functions and effects are the same as those of the above-described first embodiment, and thus description thereof is omitted here.
  • FIGS. 14 is a cross-sectional view of a main part showing a cooling structure of an internal combustion engine provided with a cylinder liner according to the present embodiment
  • FIG. 15 is an enlarged view of the main part of FIG. 14,
  • FIG. 16 is a cylinder according to this embodiment. It is a top view which shows a part of upper surface of a liner.
  • the cylinder liner 60 according to this embodiment is the second embodiment described above in that a communication hole (drill hole: drill hole) 61 is provided instead of the communication hole 51. Different from that. Since other components are the same as those of the second embodiment described above, description of these components is omitted here.
  • symbol is attached
  • the communication hole 61 is a hole (for example, having a diameter of 26 mm, a depth of 26 mm in diameter) extending from the bottom surface forming the bottom of the circumferential groove 16 toward the lower surface of the cylinder liner 60 along the cylinder axis.
  • a plurality of holes (14 holes in the present embodiment) are provided along the circumferential direction.
  • the wall surface (inner peripheral surface) forming the communication hole 61 is provided with an outlet (a throat) of the upper cooling bore 15, and the cooling water flowing out from the outlet of the upper cooling bore 15 passes through the communication hole 61. Then, it flows into the circumferential groove 16.
  • the bottom surface that forms the bottom of the communication hole 61 is formed to have a hemispherical shape in cross section.
  • the communication hole 61 is formed so that the shape in plan view is substantially elliptical, and the stress concentration at the outlet of the upper cooling bore 15 is further alleviated.
  • the thickness can be further reduced, the outer diameter can be further reduced, and the weight can be further reduced.
  • Other functions and effects are the same as those of the above-described second embodiment, and thus description thereof is omitted here.
  • the outlet of the upper cooling bore 15 is formed on the wall surface (inner peripheral surface) of the communication holes 51 and 61, but the outlet of the upper cooling bore 15 is You may make it form in the bottom face of the communicating holes 51 and 61.
  • FIG. 1 the outlet of the upper cooling bore 15 is formed on the wall surface (inner peripheral surface) of the communication holes 51 and 61, but the outlet of the upper cooling bore 15 is You may make it form in the bottom face of the communicating holes 51 and 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Provided is a cylinder liner, the weight of which can be reduced by decreasing the thickness. A cylinder liner (10) is provided with a plurality of first cooling bores (15) extending obliquely upward from the outer peripheral surface to the inside of the wall, and a first peripheral groove (16) formed in the center of the top surface in the thickness direction. The outlets of the first cooling bores (15) are provided in the wall surface or the bottom surface defining the first peripheral groove (16).

Description

シリンダライナCylinder liner
 本発明は、船用ディーゼル機関等の内燃機関に適用されるシリンダライナに関するものである。 The present invention relates to a cylinder liner applied to an internal combustion engine such as a marine diesel engine.
 船用ディーゼル機関等の内燃機関に適用されるシリンダライナとしては、その内部(壁内)に、シリンダ軸に垂直な平面に対して傾いた冷却穴(以下、「クーリングボア」という。)を備えたものが知られている(例えば、特許文献1参照)。 As a cylinder liner applied to an internal combustion engine such as a marine diesel engine, a cooling hole (hereinafter referred to as “cooling bore”) inclined with respect to a plane perpendicular to the cylinder axis is provided inside (inside the wall). Those are known (for example, see Patent Document 1).
特開平5-214933号公報JP-A-5-214933
 しかしながら、上記特許文献1に開示されたシリンダライナでは、図9および図10に示すように、内周面で圧縮応力が最大となり、外周面で引張応力が最大となる。また、上記特許文献1に開示されたシリンダライナでは、最上部外周面に位置するクーリングボア(ドリル穴:キリ穴)の出口(木口)周縁部において熱応力が高くなる。そのため、上記特許文献1に開示されたシリンダライナでは、肉厚を低減させて軽量化を図ることは困難であった。 However, in the cylinder liner disclosed in Patent Document 1, the compressive stress is maximized on the inner peripheral surface and the tensile stress is maximized on the outer peripheral surface, as shown in FIGS. 9 and 10. Further, in the cylinder liner disclosed in Patent Document 1, the thermal stress is increased at the peripheral edge of the outlet (woodhole) of the cooling bore (drill hole: drill hole) located on the uppermost outer peripheral surface. Therefore, in the cylinder liner disclosed in Patent Document 1, it has been difficult to reduce the wall thickness and reduce the weight.
 本発明は、上記の事情に鑑みてなされたもので、肉厚を低減させて軽量化を図ることができるシリンダライナを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a cylinder liner capable of reducing the thickness and reducing the weight.
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明の第1の態様に係るシリンダライナは、外周面から壁内に向かって斜め上方にあけられた第1のクーリングボアを複数本備え、上端面の、板厚方向における中央部に第1の周溝を備えたシリンダライナであって、前記第1のクーリングボアの出口を、前記第1の周溝を形成する壁面または底面に設けるようにした。
The present invention employs the following means in order to solve the above problems.
The cylinder liner according to the first aspect of the present invention includes a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and the first liner is provided at the center of the upper end surface in the thickness direction. In this cylinder liner, the outlet of the first cooling bore is provided on the wall surface or the bottom surface forming the first circumferential groove.
 本発明の第1の態様に係るシリンダライナによれば、例えば、図9に示すように、第1のクーリングボア15の出口が、板厚方向における中央部、すなわち、応力0(ゼロ)点(圧縮応力も引張応力も作用しない点)近傍で、かつ、最上部外周面における熱応力よりも小さい熱応力が作用する場所(領域)に設けられることになる。
 これにより、肉厚を低減させて外径の小径化を図ることができるとともに、軽量化を図ることができる。
According to the cylinder liner according to the first aspect of the present invention, for example, as shown in FIG. 9, the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point ( It is provided in the vicinity (point where neither compressive stress nor tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
As a result, the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
 本発明の第2の態様に係るシリンダライナは、外周面から壁内に向かって斜め上方にあけられた第1のクーリングボアを複数本備え、上端面の、板厚方向における中央部に第1の周溝を備えたシリンダライナであって、前記第1のクーリングボアの出口を、前記第1の周溝を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視円形状を呈する連通穴を形成する壁面または底面に設けるようにした。 The cylinder liner according to the second aspect of the present invention includes a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and the first liner is provided at the center of the upper end surface in the plate thickness direction. A cylinder liner having a circumferential groove having a circular shape in plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis from the bottom surface forming the first circumferential groove. It was made to provide in the wall surface or bottom face which forms the communicating hole to exhibit.
 本発明の第2の態様に係るシリンダライナによれば、例えば、図9に示すように、第1のクーリングボア15の出口が、板厚方向における中央部、すなわち、応力0(ゼロ)点(圧縮応力も引張応力も作用しない点)近傍で、かつ、最上部外周面における熱応力よりも小さい熱応力が作用する場所(領域)に設けられることになる。
 これにより、肉厚を低減させて外径の小径化を図ることができるとともに、軽量化を図ることができる。
 また、本発明の第2の態様に係るシリンダライナによれば、第1のクーリングボアの出口は、第1の周溝を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視円形状を呈する連通穴を形成する壁面または底面に設けられることになる。すなわち、第1のクーリングボアの出口が、第1の周溝における熱応力よりも小さい熱応力が作用する場所(領域)に設けられ、かつ、第1のクーリングボアの長手方向軸線(中心軸線)と、シリンダ軸に垂直な平面との交差角が大きくなり、第1のクーリングボアの出口における応力集中が緩和させられることになる。
 これにより、肉厚をさらに低減させて外径の小径化をさらに図ることができるとともに、さらなる軽量化を図ることができる。
According to the cylinder liner according to the second aspect of the present invention, for example, as shown in FIG. 9, the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point ( It is provided in the vicinity (point where neither compressive stress nor tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
As a result, the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
Further, according to the cylinder liner according to the second aspect of the present invention, the outlet of the first cooling bore has a plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis. It will be provided on the wall surface or bottom surface forming the communication hole having a circular shape. That is, the outlet of the first cooling bore is provided in a place (region) where a thermal stress smaller than the thermal stress in the first circumferential groove acts, and the longitudinal axis (center axis) of the first cooling bore As a result, the crossing angle with the plane perpendicular to the cylinder axis increases, and the stress concentration at the outlet of the first cooling bore is alleviated.
Accordingly, the thickness can be further reduced to further reduce the outer diameter, and further weight reduction can be achieved.
 本発明の第3の態様に係るシリンダライナは、外周面から壁内に向かって斜め上方にあけられた第1のクーリングボアを複数本備え、上端面の、板厚方向における中央部に第1の周溝を備えたシリンダライナであって、前記第1のクーリングボアの出口を、前記第1の周溝を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視略楕円形状を呈する連通穴を形成する壁面または底面に設けるようにした。 The cylinder liner according to the third aspect of the present invention includes a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and the first liner is provided at the center of the upper end surface in the thickness direction. A cylinder liner provided with a circumferential groove, wherein the outlet of the first cooling bore has a substantially elliptical shape in plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis. It was made to provide on the wall surface or bottom surface which forms the communication hole which exhibits.
 本発明の第3の態様に係るシリンダライナによれば、例えば、図9に示すように、第1のクーリングボア15の出口が、板厚方向における中央部、すなわち、応力0(ゼロ)点(圧縮応力も引張応力も作用しない点)近傍で、かつ、最上部外周面における熱応力よりも小さい熱応力が作用する場所(領域)に設けられることになる。
 これにより、肉厚を低減させて外径の小径化を図ることができるとともに、軽量化を図ることができる。
 また、本発明の第3の態様に係るシリンダライナによれば、第1のクーリングボアの出口は、第1の周溝を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視円形状を呈する連通穴を形成する壁面または底面に設けられることになる。すなわち、第1のクーリングボアの出口が、第1の周溝における熱応力よりも小さい熱応力が作用する場所(領域)に設けられ、かつ、第1のクーリングボアの長手方向軸線(中心軸線)と、シリンダ軸に垂直な平面との交差角が大きくなり、第1のクーリングボアの出口における応力集中が緩和させられることになる。
 これにより、肉厚をさらに低減させて外径の小径化をさらに図ることができるとともに、さらなる軽量化を図ることができる。
 さらに、本発明の第3の態様に係るシリンダライナによれば、連通穴は、平面視形状が略楕円を呈するように形成されており、第1のクーリングボアの出口における応力集中がさらに緩和させられることになる。
 これにより、肉厚をより一層低減させて外径の小径化をより一層図ることができるとともに、より一層の軽量化を図ることができる。
According to the cylinder liner according to the third aspect of the present invention, for example, as shown in FIG. 9, the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point ( It is provided in the vicinity (point where neither compressive stress nor tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
As a result, the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
Further, according to the cylinder liner according to the third aspect of the present invention, the outlet of the first cooling bore has a plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis. It will be provided on the wall surface or bottom surface forming the communication hole having a circular shape. That is, the outlet of the first cooling bore is provided in a place (region) where a thermal stress smaller than the thermal stress in the first circumferential groove acts, and the longitudinal axis (center axis) of the first cooling bore As a result, the crossing angle with the plane perpendicular to the cylinder axis increases, and the stress concentration at the outlet of the first cooling bore is alleviated.
Accordingly, the thickness can be further reduced to further reduce the outer diameter, and further weight reduction can be achieved.
Further, according to the cylinder liner according to the third aspect of the present invention, the communication hole is formed so that the shape in plan view is substantially elliptical, and the stress concentration at the outlet of the first cooling bore is further alleviated. Will be.
As a result, the thickness can be further reduced, the outer diameter can be further reduced, and the weight can be further reduced.
 本発明の第4の態様に係る内燃機関の冷却構造は、上記いずれかのシリンダライナと、下端面から壁内に向かって斜め上方にあけられた第2のクーリングボアを複数本備え、下端面の、板厚方向における外周部に第2の周溝を備えるとともに、前記シリンダライナの上に配置されて、前記シリンダライナの上方に位置する開口を塞ぐシリンダカバーとを具備した内燃機関の冷却構造であって、前記第2のクーリングボアの入口を、前記第2の周溝を形成する壁面または底面に設けるようにした。 A cooling structure for an internal combustion engine according to a fourth aspect of the present invention includes any one of the above-described cylinder liners and a plurality of second cooling bores that are opened obliquely upward from the lower end surface toward the inside of the wall. A cooling structure for an internal combustion engine comprising a second circumferential groove on an outer peripheral portion in the plate thickness direction, and a cylinder cover disposed on the cylinder liner and closing an opening located above the cylinder liner. The inlet of the second cooling bore is provided on the wall surface or the bottom surface forming the second circumferential groove.
 本発明の第4の態様に係る内燃機関の冷却構造によれば、第1のクーリングボアの出口から第1の周溝内に流入した冷却媒体(例えば、冷却水)は、例えば、図3に示す凸部28の外周側の壁面(周溝25を形成する内周側の壁面)と、周溝16を形成する外周側の壁面との間に形成された隙間を通って第2の周溝25内に流入した後、第2のクーリングボア24の入口から第2のクーリングボア24内に流入することになる。
 これにより、第1のクーリングボアの出口から流出した冷却媒体を第2のクーリングボアの入口に導くために従来必要とされた冷却媒体連絡金物を不要とすることができ、シリンダライナとシリンダカバーとの接合部(接続部)における構成の簡略化を図ることができる。
 また、冷却媒体連絡金物を不要とすることができることにより、シリンダライナとシリンダカバーとの接合部(接続部)における外径の小径化を図ることができるとともに、軽量化を図ることができる。
According to the cooling structure for an internal combustion engine according to the fourth aspect of the present invention, the cooling medium (for example, cooling water) flowing into the first circumferential groove from the outlet of the first cooling bore is, for example, in FIG. The second circumferential groove passes through a gap formed between the outer peripheral wall surface (the inner circumferential wall surface that forms the circumferential groove 25) of the convex portion 28 and the outer circumferential wall surface that forms the circumferential groove 16. After flowing into 25, it flows into the second cooling bore 24 from the inlet of the second cooling bore 24.
As a result, it is possible to eliminate the need for the cooling medium connecting hardware conventionally required to guide the cooling medium flowing out from the outlet of the first cooling bore to the inlet of the second cooling bore. It is possible to simplify the configuration of the joint portion (connection portion).
Further, since the cooling medium connection hardware can be eliminated, the outer diameter of the joint portion (connection portion) between the cylinder liner and the cylinder cover can be reduced and the weight can be reduced.
 上記第4の態様に係る内燃機関の冷却構造が、前記シリンダライナの上に被せた際に、前記第1の周溝および前記第2の周溝の内周側に位置する前記下端面の、板厚方向における内周部に第3の周溝を備えるとともに、前記シリンダライナの上端面と前記シリンダカバーの下端面との間を通って前記第3の周溝内に流入した燃焼ガスを前記シリンダカバーの外周面に設けられた開口に導くガス抜き通路が設けられている構成であるとさらに好適である。 When the cooling structure of the internal combustion engine according to the fourth aspect is put on the cylinder liner, the lower end surface located on the inner peripheral side of the first circumferential groove and the second circumferential groove, A third circumferential groove is provided in the inner circumferential portion in the plate thickness direction, and the combustion gas flowing into the third circumferential groove through the space between the upper end surface of the cylinder liner and the lower end surface of the cylinder cover is It is more preferable that a gas vent passage leading to an opening provided on the outer peripheral surface of the cylinder cover is provided.
 このような構成に係る内燃機関の冷却構造によれば、異常燃焼時におけるガス圧を逃がすために従来必要とされた逃がし弁を不要とすることができ、シリンダカバー周りの構成の簡略化を図ることができる。 According to the cooling structure for an internal combustion engine according to such a configuration, a relief valve that is conventionally required for releasing the gas pressure at the time of abnormal combustion can be eliminated, and the configuration around the cylinder cover can be simplified. be able to.
 上記構成に係る内燃機関の冷却構造において、前記ガス抜き通路が、前記第2の周溝の近傍を通るようにして設けられている構成であるとさらに好適である。 In the internal combustion engine cooling structure according to the above configuration, it is further preferable that the gas vent passage is provided so as to pass through the vicinity of the second circumferential groove.
 このような構成に係る内燃機関の冷却構造によれば、第2の周溝内を通過する冷却媒体によりガス抜き通路を通過する燃焼ガスが冷却されることになる。
 これにより、シリンダカバーの外周面に設けられた開口から噴出する燃焼ガスの温度を低下させることができ、内燃機関の周りで作業をする作業員(例えば、船舶の機関士・機関員)の安全を確保することができる。
According to the cooling structure of the internal combustion engine according to such a configuration, the combustion gas that passes through the gas vent passage is cooled by the cooling medium that passes through the second circumferential groove.
As a result, the temperature of the combustion gas ejected from the opening provided on the outer peripheral surface of the cylinder cover can be reduced, and the safety of workers working around the internal combustion engine (for example, a ship engineer / engineer) is safe. Can be secured.
 上記構成に係る内燃機関の冷却構造において、前記シリンダカバーの外周面に嵌って前記シリンダカバーの外周面との間にガス抜き用の空間を形成するカバー外筒を備え、前記ガス抜き用の空間が、前記ガス抜き通路を通って前記シリンダカバーの外周面から噴き出した燃焼ガスを、前記シリンダカバーの外周面に沿って下方に導くように形成されている構成であるとさらに好適である。 In the cooling structure for an internal combustion engine according to the above configuration, a cover outer cylinder that fits on an outer peripheral surface of the cylinder cover and forms a gas venting space with the outer peripheral surface of the cylinder cover is provided, and the gas venting space However, it is further preferable that the combustion gas ejected from the outer peripheral surface of the cylinder cover through the gas vent passage is formed to be guided downward along the outer peripheral surface of the cylinder cover.
 このような構成に係る内燃機関の冷却構造によれば、ガス抜き通路を通ってシリンダカバーの外周面に設けられた開口から噴き出した燃焼ガスは、シリンダカバーの外周面に沿って下方に導かれるようになっている。すなわち、シリンダカバーの外周面に設けられた開口から噴出する燃焼ガスが、内燃機関の周りで作業をする作業員(例えば、船舶の機関士・機関員)に向かって噴き出されないようになっている。
 これにより、内燃機関の周りで作業をする作業員(例えば、船舶の機関士・機関員)の安全をさらに確保することができる。
According to the cooling structure for an internal combustion engine having such a configuration, the combustion gas ejected from the opening provided in the outer peripheral surface of the cylinder cover through the gas vent passage is guided downward along the outer peripheral surface of the cylinder cover. It is like that. That is, the combustion gas ejected from the opening provided on the outer peripheral surface of the cylinder cover is not ejected toward an operator (for example, a ship engineer / engineer) working around the internal combustion engine. Yes.
Thereby, it is possible to further ensure the safety of a worker (for example, a ship engineer / engineer) working around the internal combustion engine.
 上記構成に係る内燃機関の冷却構造において、前記第1の周溝を形成する内周側の壁面に、周方向に沿ってOリングを収容する第4の周溝が設けられている場合に、該第4の周溝の内周側で、かつ、前記第3の周溝の底部を形成する底面と対向する前記シリンダライナの上面に、シリンダ軸に沿って前記シリンダライナの下面に向かって彫り込まれた熱ダムを設ける構成にするとさらに好適である。 In the internal combustion engine cooling structure according to the above configuration, when the fourth circumferential groove that accommodates the O-ring along the circumferential direction is provided on the inner circumferential wall surface that forms the first circumferential groove, Engraved into the upper surface of the cylinder liner facing the bottom surface forming the bottom of the third circumferential groove on the inner circumferential side of the fourth circumferential groove along the cylinder axis toward the lower surface of the cylinder liner It is more preferable to provide a thermal dam.
 このような構成に係る内燃機関の冷却構造によれば、熱ダム内に滞留する空気層により第4の周溝に収容されたOリングの熱負荷が(温度にして約10℃)低減されることになる。
 これにより、Oリングの熱による損傷を防止することができ、Oリングの長寿命化を図ることができて、Oリングのメンテナンス間隔を長期化させることができる。
According to the cooling structure for an internal combustion engine having such a configuration, the heat load of the O-ring housed in the fourth circumferential groove is reduced (about 10 ° C. in temperature) by the air layer staying in the thermal dam. It will be.
Thereby, damage to the O-ring due to heat can be prevented, the life of the O-ring can be extended, and the maintenance interval of the O-ring can be extended.
 本発明の第5の態様に係る内燃機関は、上記いずれかのシリンダライナまたは上記いずれかの内燃機関の冷却構造を具備している。 An internal combustion engine according to a fifth aspect of the present invention includes any one of the above-described cylinder liners or any one of the above-described internal combustion engine cooling structures.
 本発明の第5の態様に係る内燃機関によれば、肉厚を低減させて外径の小径化を図ることができるとともに、軽量化を図ることができるシリンダライナを具備しているので、機関全体の小型化および軽量化を図ることができる。 According to the internal combustion engine of the fifth aspect of the present invention, the engine is provided with the cylinder liner that can reduce the wall thickness and reduce the outer diameter, and can reduce the weight. The overall size and weight can be reduced.
 本発明に係るシリンダライナによれば、肉厚を低減させて軽量化を図ることができるという効果を奏する。 The cylinder liner according to the present invention has the effect of reducing the wall thickness and reducing the weight.
本発明の第1実施形態に係るシリンダライナの斜視図である。It is a perspective view of a cylinder liner concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 1st Embodiment of this invention. 図2の要部を拡大して示す図である。It is a figure which expands and shows the principal part of FIG. 本発明の第1実施形態に係るシリンダライナの上面の一部を示す平面図である。It is a top view which shows a part of upper surface of the cylinder liner which concerns on 1st Embodiment of this invention. 図2の要部を拡大して示す図である。It is a figure which expands and shows the principal part of FIG. 本発明の第1実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 1st Embodiment of this invention. 図6のVII-VII矢視断面図である。FIG. 7 is a cross-sectional view taken along arrow VII-VII in FIG. 6. 本発明の第1実施形態に係るシリンダライナを示す要部の斜視図である。It is a perspective view of the important section showing the cylinder liner concerning a 1st embodiment of the present invention. 従来および本発明に係るクーリングボアの出口に作用する応力を説明するための図である。It is a figure for demonstrating the stress which acts on the exit of the cooling bore which concerns on the past and this invention. 従来および本発明に係るクーリングボアの出口に作用する応力を説明するための図である。It is a figure for demonstrating the stress which acts on the exit of the cooling bore which concerns on the past and this invention. 本発明の第2実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 2nd Embodiment of this invention. 図11の要部を拡大して示す図である。It is a figure which expands and shows the principal part of FIG. 本発明の第2実施形態に係るシリンダライナの上面の一部を示す平面図である。It is a top view which shows a part of upper surface of the cylinder liner which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the cooling structure of the internal combustion engine provided with the cylinder liner which concerns on 3rd Embodiment of this invention. 図14の要部を拡大して示す図である。It is a figure which expands and shows the principal part of FIG. 本発明の第3実施形態に係るシリンダライナの上面の一部を示す平面図である。It is a top view which shows a part of upper surface of the cylinder liner which concerns on 3rd Embodiment of this invention.
〔第1実施形態〕
 以下、本発明の第1実施形態に係るシリンダライナについて、図1から図10を参照しながら説明する。
 図1は本実施形態に係るシリンダライナの斜視図、図2は本実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図、図3は図2の要部を拡大して示す図、図4は本実施形態に係るシリンダライナの上面の一部を示す平面図、図5は図2の要部を拡大して示す図、図6は本実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図、図7は図6のVII-VII矢視断面図、図8は本実施形態に係るシリンダライナを示す要部の斜視図、図9および図10はそれぞれ従来および本発明に係るクーリングボアの出口に作用する応力を説明するための図である。
[First Embodiment]
Hereinafter, a cylinder liner according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
FIG. 1 is a perspective view of a cylinder liner according to the present embodiment, FIG. 2 is a cross-sectional view of an essential part showing a cooling structure of an internal combustion engine provided with the cylinder liner according to the present embodiment, and FIG. 3 is an enlarged view of the essential part of FIG. FIG. 4 is a plan view showing a part of the upper surface of the cylinder liner according to the present embodiment, FIG. 5 is an enlarged view of the main part of FIG. 2, and FIG. 6 is a cylinder liner according to the present embodiment. FIG. 7 is a cross-sectional view of the main part showing the cooling structure of the internal combustion engine provided with FIG. 7, FIG. 7 is a cross-sectional view taken along the arrow VII-VII in FIG. FIG. 10 and FIG. 10 are views for explaining the stress acting on the outlet of the cooling bore according to the prior art and the present invention, respectively.
 本発明に係るシリンダライナは、船用ディーゼル機関等の内燃機関に適用されるものであり、その内部にはピストン(図示せず)が配置され、このピストンがその内周面に沿って摺動することになる。
 図2、図3、図5から図8中の符号11は、シリンダライナの上部外周面に嵌って(取り付けられて)シリンダライナの上部外周面との間に下部水室12および上部水室13を形成するライナ外筒(水室金物)である。下部水室12および上部水室13はそれぞれ、周方向に沿って平面視環状に形成された空間(水室)であり、下部水室12は上部水室13の下方に、上部水室13は下部水室12の上方に設けられている。
The cylinder liner according to the present invention is applied to an internal combustion engine such as a marine diesel engine, and a piston (not shown) is disposed inside the cylinder liner, and the piston slides along an inner peripheral surface thereof. It will be.
2, 3, and 5 to 8, reference numeral 11 denotes a lower water chamber 12 and an upper water chamber 13 that are fitted (attached) to the upper outer peripheral surface of the cylinder liner and between the upper outer peripheral surface of the cylinder liner. Is a liner outer cylinder (water chamber hardware). Each of the lower water chamber 12 and the upper water chamber 13 is a space (water chamber) formed in a ring shape in plan view along the circumferential direction. The lower water chamber 12 is below the upper water chamber 13 and the upper water chamber 13 is It is provided above the lower water chamber 12.
 さて、本実施形態に係るシリンダライナ10は、下部クーリングボア14と、上部クーリングボア(第1のクーリングボア)15とを備えている。
 下部クーリングボア14は、シリンダライナ10の上部外周面にライナ外筒11が嵌められた際に、下部水室12と上部水室13とを連通する直線状の穴であり、周方向に沿って複数本(本実施形態では14本)設けられている。下部クーリングボア14の入口(木口)は、シリンダライナ10の上部下側に位置するシリンダライナ10の外周面に設けられており、下部クーリングボア14の出口(木口)は、シリンダライナ10の上部上側に位置するシリンダライナ10の外周面に設けられており、下部クーリングボア14の長手方向軸線(中心軸線)は、シリンダ軸に垂直な平面に対して傾いている。
The cylinder liner 10 according to the present embodiment includes a lower cooling bore 14 and an upper cooling bore (first cooling bore) 15.
The lower cooling bore 14 is a straight hole that communicates the lower water chamber 12 and the upper water chamber 13 when the liner outer cylinder 11 is fitted to the upper outer peripheral surface of the cylinder liner 10, and extends along the circumferential direction. A plurality (14 in this embodiment) are provided. The lower cooling bore 14 has an inlet (a throat) provided on the outer peripheral surface of the cylinder liner 10 located on the upper lower side of the cylinder liner 10, and the lower cooling bore 14 has an outlet (a throat) on the upper upper side of the cylinder liner 10. The longitudinal axis (center axis) of the lower cooling bore 14 is inclined with respect to a plane perpendicular to the cylinder axis.
 上部クーリングボア15は、シリンダライナ10の上部外周面にライナ外筒11が嵌められた際に、上部水室13と、シリンダライナ10の上面(頂面)に設けられた(第1の)周溝(周方向に沿って連続して設けられた平面視環形状を呈する溝)16とを連通する直線状の穴であり、周方向に沿って複数本(本実施形態では14本)設けられている。上部クーリングボア15の入口(木口)は、シリンダライナ10の上部上側で、下部クーリングボア14の出口よりも上方に位置するシリンダライナ10の外周面に設けられており、上部クーリングボア15の出口(木口)は、周溝16の底部を形成する周溝16の底面に設けられており、上部クーリングボア15の長手方向軸線(中心軸線)は、シリンダ軸に垂直な平面に対して傾いている。 The upper cooling bore 15 is provided in the upper water chamber 13 and the upper surface (top surface) of the cylinder liner 10 when the liner outer cylinder 11 is fitted to the upper outer peripheral surface of the cylinder liner 10 (first) circumference. It is a linear hole that communicates with a groove (a groove that has a ring shape in plan view provided continuously along the circumferential direction), and a plurality of holes (14 in this embodiment) are provided along the circumferential direction. ing. The upper cooling bore 15 has an inlet (a mouth) provided on the outer peripheral surface of the cylinder liner 10 above the cylinder liner 10 and above the outlet of the lower cooling bore 14. (Kiguchi) is provided on the bottom surface of the circumferential groove 16 that forms the bottom of the circumferential groove 16, and the longitudinal axis (center axis) of the upper cooling bore 15 is inclined with respect to a plane perpendicular to the cylinder axis.
 図2、図3、図5、図6、図9に示すように、周溝16は、断面視U字形状を呈するとともに、シリンダライナ10の上面からシリンダ軸に沿ってシリンダライナ10の下面(底面)に向かって彫り込まれた(掘り下げられた)溝であり、図9および図10に示すように、応力0(ゼロ)点(圧縮応力も引張応力も作用しない点)近傍で、かつ、応力0点よりも内周側に設けられている。
 なお、図1から図3、図5、図6に示すように、シリンダライナ10の上部外周面には、周方向に沿ってOリング(図示せず)を収容する周溝17が設けられている。また、図2、図3、図5、図6に示すように、周溝16を形成する内周側の壁面には、周方向に沿ってOリング(図示せず)を収容する(第4の)周溝18が設けられている。
As shown in FIGS. 2, 3, 5, 6, and 9, the circumferential groove 16 has a U-shaped cross-sectional view, and the lower surface of the cylinder liner 10 along the cylinder axis from the upper surface of the cylinder liner 10 ( The groove is carved toward (the bottom surface), and as shown in FIG. 9 and FIG. 10, near the stress 0 (zero) point (point where neither compressive stress nor tensile stress acts) and stress It is provided on the inner periphery side from the 0 point.
As shown in FIGS. 1 to 3, 5, and 6, a circumferential groove 17 that houses an O-ring (not shown) is provided along the circumferential direction on the upper outer circumferential surface of the cylinder liner 10. Yes. As shown in FIGS. 2, 3, 5, and 6, an O-ring (not shown) is accommodated along the circumferential direction on the inner peripheral wall surface forming the circumferential groove 16 (fourth). ) Circumferential groove 18 is provided.
 図2、図3、図5、図6に示すように、シリンダライナ10の上にはシリンダカバー20が配置され、シリンダライナ10の上方に位置する開口が塞がれる(密封される)ようになっている。
 図2、図3、図5中の符号21は、シリンダカバー20の外周面に嵌って(取り付けられて)シリンダカバー20の外周面との間に水室22を形成するカバー外筒(水室金物)である。水室22は、周方向に沿って平面視環状に形成された空間であり、シリンダカバー20の軸方向(長さ方向)における中央部に設けられている。
As shown in FIGS. 2, 3, 5, and 6, a cylinder cover 20 is disposed on the cylinder liner 10 so that an opening located above the cylinder liner 10 is closed (sealed). It has become.
2, 3, and 5, reference numeral 21 denotes a cover outer cylinder (water chamber) that fits (attaches) to the outer peripheral surface of the cylinder cover 20 and forms a water chamber 22 between the outer peripheral surface of the cylinder cover 20. Hardware). The water chamber 22 is a space formed in an annular shape in plan view along the circumferential direction, and is provided at a central portion in the axial direction (length direction) of the cylinder cover 20.
 シリンダカバー20は、上部クーリングボア23と、下部クーリングボア(第2のクーリングボア)24とを備えている。
 上部クーリングボア23は、シリンダカバー20の外周面にカバー外筒21が嵌められた際に、水室22と、シリンダカバー20の上部(頂部)中央部とを連通する直線状の穴であり、周方向に沿って複数本(本実施形態では10本)設けられている。上部クーリングボア23の入口(木口)は、水室22を形成する上側(天井側)の壁面に設けられており、上部クーリングボア23の長手方向軸線(中心軸線)は、シリンダ軸に垂直な平面に対して傾いている。
The cylinder cover 20 includes an upper cooling bore 23 and a lower cooling bore (second cooling bore) 24.
The upper cooling bore 23 is a linear hole that communicates the water chamber 22 and the upper (top) center portion of the cylinder cover 20 when the cover outer cylinder 21 is fitted to the outer peripheral surface of the cylinder cover 20. A plurality (ten in this embodiment) are provided along the circumferential direction. The upper cooling bore 23 has an inlet (a throat) provided on the upper (ceiling side) wall surface forming the water chamber 22, and the longitudinal axis (center axis) of the upper cooling bore 23 is a plane perpendicular to the cylinder axis. Leaning against.
 下部クーリングボア24は、シリンダカバー20の外周面にカバー外筒21が嵌められた際に、シリンダカバー20の下面(底面)に設けられた(第2の)周溝25と、水室22とを連通する直線状の穴であり、周方向に沿って複数本(本実施形態では10本)設けられている。下部クーリングボア24の入口(木口)は、周溝25の底部を形成する周溝25の底面に設けられており、下部クーリングボア24の出口(木口)は、水室22を形成する下側(底側)の壁面に設けられており、下部クーリングボア24の長手方向軸線(中心軸線)は、シリンダ軸に垂直な平面に対して傾いている。 The lower cooling bore 24 includes a (second) circumferential groove 25 provided on the lower surface (bottom surface) of the cylinder cover 20 when the cover outer cylinder 21 is fitted to the outer peripheral surface of the cylinder cover 20, A plurality of (in this embodiment, 10) linear holes are provided along the circumferential direction. The lower cooling bore 24 has an inlet (a throat) provided on the bottom surface of the circumferential groove 25 that forms the bottom of the circumferential groove 25, and an outlet (a throat) of the lower cooling bore 24 that is formed on the lower side (the water chamber 22). The longitudinal axis (center axis) of the lower cooling bore 24 is inclined with respect to a plane perpendicular to the cylinder axis.
 図2、図3、図5、図6に示すように、周溝25は、断面視U字形状を呈するとともに、シリンダカバー20の下面からシリンダ軸に沿ってシリンダカバー20の上面(頂面)に向かって彫り込まれた(掘り下げられた)溝であり、シリンダライナ10の上に被せられた際に、周溝16の外側に位置するように設けられている。
 なお、シリンダカバー20の外周面には、周方向に沿ってOリング(図示せず)を収容する周溝26が設けられている。また、周溝25の内周側には、断面視U字形状を呈する(第3の)周溝27が周方向に沿って設けられている。
As shown in FIGS. 2, 3, 5, and 6, the circumferential groove 25 has a U-shape in cross section, and the upper surface (top surface) of the cylinder cover 20 extends from the lower surface of the cylinder cover 20 along the cylinder axis. And is provided so as to be located outside the circumferential groove 16 when it is put on the cylinder liner 10.
In addition, a circumferential groove 26 that accommodates an O-ring (not shown) is provided on the outer peripheral surface of the cylinder cover 20 along the circumferential direction. In addition, a (third) circumferential groove 27 having a U-shape in sectional view is provided on the inner circumferential side of the circumferential groove 25 along the circumferential direction.
 周溝25を形成する内周側の壁面と、この壁面に連続するシリンダカバー20の下面と、この下面に連続して周溝27を形成する外周側の壁面とで、周溝16に嵌り込む凸部28が形成されている。凸部28は、その外周側の壁面(周溝25を形成する内周側の壁面)と、周溝16を形成する外周側の壁面との間に所定の隙間(例えば、3mm)が形成され、その下面(シリンダカバー20の下面)と、周溝16の底部を形成する底面との間に所定の隙間が形成されて、その内周側の壁面(周溝27を形成する外周側の壁面)と、周溝16を形成する外周側の壁面との間に所定の隙間(例えば、0.25mm)が形成されるようにして、シリンダ軸に沿って下方に突出している。  The inner circumferential wall surface that forms the circumferential groove 25, the lower surface of the cylinder cover 20 that continues to the wall surface, and the outer circumferential wall surface that continuously forms the circumferential groove 27 on the lower surface fit into the circumferential groove 16. A convex portion 28 is formed. The convex portion 28 has a predetermined gap (for example, 3 mm) between the outer peripheral wall surface (the inner peripheral wall surface that forms the circumferential groove 25) and the outer peripheral wall surface that forms the circumferential groove 16. A predetermined gap is formed between the lower surface (the lower surface of the cylinder cover 20) and the bottom surface forming the bottom of the circumferential groove 16, and the inner circumferential wall surface (the outer circumferential wall surface forming the circumferential groove 27). ) And the outer peripheral wall surface forming the circumferential groove 16 so as to form a predetermined gap (for example, 0.25 mm) and project downward along the cylinder axis. *
 また、周溝16を形成する外周側の壁面と、この壁面に連続するシリンダライナ10の上面と、この上面に連続するシリンダライナ10の外周面とで、周溝25に嵌り込む凸部29が形成されている。凸部29は、その内周側の壁面(周溝16を形成する外周側の壁面)と、周溝25を形成する内周側の壁面との間に所定の隙間(例えば、3mm)が形成され、その上面(シリンダライナ10の上面)と、周溝25の底部を形成する底面との間に所定の隙間が形成されて、その外周側の壁面(シリンダライナ10の外周面)と、周溝25を形成する外周側の壁面との間に所定の隙間(例えば、0.45mm)が形成されるようにして、シリンダ軸に沿って上方に突出している。 Further, a convex portion 29 that fits into the circumferential groove 25 is formed by a wall surface on the outer peripheral side that forms the circumferential groove 16, an upper surface of the cylinder liner 10 that is continuous with the wall surface, and an outer peripheral surface of the cylinder liner 10 that is continuous with the upper surface. Is formed. The protrusion 29 has a predetermined gap (for example, 3 mm) between the inner peripheral wall surface (the outer peripheral wall surface that forms the peripheral groove 16) and the inner peripheral wall surface that forms the peripheral groove 25. A predetermined gap is formed between the upper surface (the upper surface of the cylinder liner 10) and the bottom surface forming the bottom of the circumferential groove 25, and the outer peripheral wall surface (the outer peripheral surface of the cylinder liner 10) A predetermined gap (for example, 0.45 mm) is formed between the outer peripheral wall surface forming the groove 25 and protrudes upward along the cylinder axis.
 図2、図3、図5に示すように、カバー外筒21の下端部内周側には、周方向に沿ってガス抜き用の空間30が設けられており、図5に示すように、この空間30と周溝27とは、ガス抜き通路31を介して連通されている。
 ガス抜き通路31は、シリンダカバー20の中心から外周面に向かって放射状に、かつ、等間隔(本実施形態では45度間隔)で設けられており、周溝27の底部を形成する底面に開口してシリンダカバー20内をシリンダ軸に沿ってシリンダカバー20の上面に向かって延びる第1の通路32と、第1の通路32の上端部に開口するとともにシリンダカバー20の外周面に開口してシリンダカバー20内をシリンダ軸と直交する方向に沿って延びる第2の通路33とを備えている。
As shown in FIGS. 2, 3, and 5, a gas releasing space 30 is provided along the circumferential direction on the inner peripheral side of the lower end portion of the cover outer cylinder 21. The space 30 and the circumferential groove 27 are communicated with each other through a gas vent passage 31.
The gas vent passages 31 are provided radially from the center of the cylinder cover 20 toward the outer peripheral surface at regular intervals (in the present embodiment, 45 ° intervals), and open to the bottom surface forming the bottom of the circumferential groove 27. A first passage 32 extending in the cylinder cover 20 along the cylinder axis toward the upper surface of the cylinder cover 20 and an upper end portion of the first passage 32 and an outer peripheral surface of the cylinder cover 20 are opened. A second passage 33 extending in the cylinder cover 20 along a direction orthogonal to the cylinder axis is provided.
 図6から図8に示すように、ライナ外筒11の下端部には、冷却水供給管34(図6および図7参照)を接続するための管継手35が、フランジ36およびボルト37を介して接続されている(取り付けられている)。
 管継手35は、シリンダカバー20の中心から外周面に向かって放射状に、かつ、等間隔(本実施形態では90度間隔)で設けられており、管継手35の一端部は、ライナ外筒11の下端部に形成されて、板厚方向に貫通する貫通穴38を介して下部水室12内に挿入されている。管継手35の一端部両側面にはそれぞれ、下部水室12に向かって開口する正面視長方形状(図6参照)を呈する開口39が設けられており、冷却水供給管34および管継手35を介して供給された冷却水が、開口39を介してシリンダライナ10の外周面に沿って周方向に供給されるようになっている。
 なお、管継手35の一端(先端)側は閉塞されており、開口39からのみ冷却水が流出するようになっている。また、冷却水供給管34と管継手35とは、冷却水供給管34の一端部に設けられたフランジ40、管継手35の他端部に設けられたフランジ41、およびボルト42、ナット43により接続されている。
As shown in FIGS. 6 to 8, a pipe joint 35 for connecting a cooling water supply pipe 34 (see FIGS. 6 and 7) is connected to a lower end portion of the liner outer cylinder 11 via a flange 36 and a bolt 37. Connected (attached).
The pipe joints 35 are provided radially from the center of the cylinder cover 20 toward the outer peripheral surface and at equal intervals (in the present embodiment, at intervals of 90 degrees), and one end of the pipe joint 35 is provided at the liner outer cylinder 11. The lower water chamber 12 is inserted into the lower water chamber 12 through a through-hole 38 that is formed at the lower end portion thereof and penetrates in the plate thickness direction. An opening 39 having a rectangular shape in front view (see FIG. 6) opening toward the lower water chamber 12 is provided on both side surfaces of one end of the pipe joint 35, and the cooling water supply pipe 34 and the pipe joint 35 are connected to each other. The cooling water supplied through the cylinder 39 is supplied in the circumferential direction along the outer peripheral surface of the cylinder liner 10 through the opening 39.
Note that one end (tip) side of the pipe joint 35 is closed, and cooling water flows out only from the opening 39. The cooling water supply pipe 34 and the pipe joint 35 are formed by a flange 40 provided at one end of the cooling water supply pipe 34, a flange 41 provided at the other end of the pipe joint 35, a bolt 42, and a nut 43. It is connected.
 一方、図2、図3、図5、図6に示すように、周溝27の底部を形成する底面と対向するシリンダライナ10の上面には、熱ダム44が設けられている。熱ダム44は、断面視U字形状を呈するとともに、シリンダライナ10の上面からシリンダ軸に沿ってシリンダライナ10の下面に向かって彫り込まれた(掘り下げられた)周溝(例えば、幅11mm、深さ26mmのU字溝)である。 On the other hand, as shown in FIGS. 2, 3, 5, and 6, a thermal dam 44 is provided on the upper surface of the cylinder liner 10 that faces the bottom surface that forms the bottom of the circumferential groove 27. The thermal dam 44 has a U-shape in cross section, and has a circumferential groove (for example, a width of 11 mm, a depth) carved from the upper surface of the cylinder liner 10 toward the lower surface of the cylinder liner 10 along the cylinder axis. 26 mm U-shaped groove).
 本実施形態に係るシリンダライナ10によれば、例えば、図9に示すように、第1のクーリングボア15の出口が、板厚方向における中央部、すなわち、応力0(ゼロ)点(圧縮応力も引張応力も作用しない点)近傍で、かつ、最上部外周面における熱応力よりも小さい熱応力が作用する場所(領域)に設けられることになる。
 これにより、肉厚を低減させて外径の小径化を図ることができるとともに、軽量化を図ることができる。
According to the cylinder liner 10 according to the present embodiment, for example, as shown in FIG. 9, the outlet of the first cooling bore 15 is the central portion in the plate thickness direction, that is, the stress 0 (zero) point (the compressive stress is also It is provided in the vicinity (point where no tensile stress acts) and in a place (region) where thermal stress smaller than the thermal stress on the outermost peripheral surface acts.
As a result, the thickness can be reduced to reduce the outer diameter, and the weight can be reduced.
 本実施形態に係るシリンダライナ10とシリンダカバー20とを具備してなる内燃機関の冷却構造によれば、上部クーリングボア15の出口から周溝16内に流入した冷却水は、凸部28の外周側の壁面(周溝25を形成する内周側の壁面)と、周溝16を形成する外周側の壁面との間に形成された隙間を通って周溝25内に流入した後、下部クーリングボア24の入口から下部クーリングボア24内に流入することになる。
 これにより、上部クーリングボア15の出口から流出した冷却水を下部クーリングボア24の入口に導くために従来必要とされた冷却媒体連絡金物を不要とすることができ、シリンダライナ10とシリンダカバー20との接合部(接続部)における構成の簡略化を図ることができる。
 また、冷却媒体連絡金物を不要とすることができることにより、シリンダライナ10とシリンダカバー20との接合部(接続部)における外径の小径化を図ることができるとともに、軽量化を図ることができる。
According to the cooling structure of the internal combustion engine including the cylinder liner 10 and the cylinder cover 20 according to the present embodiment, the cooling water flowing into the circumferential groove 16 from the outlet of the upper cooling bore 15 is the outer periphery of the convex portion 28. After flowing into the circumferential groove 25 through a gap formed between the side wall surface (the inner circumferential wall surface forming the circumferential groove 25) and the outer circumferential wall surface forming the circumferential groove 16, the lower cooling The air flows into the lower cooling bore 24 from the inlet of the bore 24.
As a result, it is possible to eliminate the need for the cooling medium communication hardware conventionally required to guide the cooling water flowing out from the outlet of the upper cooling bore 15 to the inlet of the lower cooling bore 24, and the cylinder liner 10, the cylinder cover 20, It is possible to simplify the configuration of the joint portion (connection portion).
Further, since the cooling medium communication hardware can be eliminated, the outer diameter of the joint portion (connection portion) between the cylinder liner 10 and the cylinder cover 20 can be reduced, and the weight can be reduced. .
 また、本実施形態に係るシリンダライナ10とシリンダカバー20とを具備してなる内燃機関の冷却構造によれば、シリンダライナ10の上に被せた際に、周溝16および周溝25の内周側に位置するシリンダカバー20下端面の、板厚方向における内周部に周溝27を備えるとともに、シリンダライナ10上端面とシリンダカバー20下端面との間を通って周溝27内に流入した燃焼ガスをシリンダカバー20の外周面に設けられた開口(第2の通路33の出口)に導くガス抜き通路31が設けられているので、異常燃焼時におけるガス圧を逃がすために従来必要とされた逃がし弁を不要とすることができ、シリンダカバー20周りの構成の簡略化を図ることができる。 Further, according to the cooling structure for an internal combustion engine including the cylinder liner 10 and the cylinder cover 20 according to the present embodiment, the inner circumferences of the circumferential groove 16 and the circumferential groove 25 when covered on the cylinder liner 10. A circumferential groove 27 is provided in the inner circumferential portion in the plate thickness direction of the lower end surface of the cylinder cover 20 positioned on the side, and flows into the circumferential groove 27 through between the upper end surface of the cylinder liner 10 and the lower end surface of the cylinder cover 20. Since a gas vent passage 31 is provided to guide the combustion gas to an opening (exit of the second passage 33) provided on the outer peripheral surface of the cylinder cover 20, it is conventionally required to release the gas pressure during abnormal combustion. A relief valve can be eliminated, and the configuration around the cylinder cover 20 can be simplified.
 さらに、本実施形態に係るシリンダライナ10とシリンダカバー20とを具備してなる内燃機関の冷却構造によれば、ガス抜き通路31が、周溝25の近傍を通るようにして設けられており、周溝25内を通過する冷却水によりガス抜き通路31を通過する燃焼ガスが冷却されることになる。
 これにより、シリンダカバー20の外周面に設けられた開口から噴出する燃焼ガスの温度を低下させることができ、内燃機関の周りで作業をする作業員(例えば、船舶の機関士・機関員)の安全を確保することができる。
Further, according to the cooling structure of the internal combustion engine including the cylinder liner 10 and the cylinder cover 20 according to the present embodiment, the gas vent passage 31 is provided so as to pass in the vicinity of the circumferential groove 25, The combustion gas passing through the gas vent passage 31 is cooled by the cooling water passing through the circumferential groove 25.
Thereby, the temperature of the combustion gas which ejects from the opening provided in the outer peripheral surface of the cylinder cover 20 can be reduced, and a worker (for example, a ship engineer / engineer) working around the internal combustion engine Safety can be ensured.
 さらにまた、本実施形態に係るシリンダライナ10とシリンダカバー20とを具備してなる内燃機関の冷却構造によれば、シリンダカバー20の外周面に嵌ってシリンダカバー20の外周面との間にガス抜き用の空間30を形成するカバー外筒21を備え、ガス抜き用の空間30が、ガス抜き通路31を通ってシリンダカバー20の外周面から噴き出した燃焼ガスを、シリンダカバー20の外周面に沿って下方に導くように形成されており、ガス抜き通路31を通ってシリンダカバー20の外周面に設けられた開口から噴き出した燃焼ガスは、シリンダカバー20の外周面に沿って下方に導かれるようになっている。すなわち、シリンダカバー20の外周面に設けられた開口から噴出する燃焼ガスが、内燃機関の周りで作業をする作業員(例えば、船舶の機関士・機関員)に向かって噴き出されないようになっている。
 これにより、内燃機関の周りで作業をする作業員(例えば、船舶の機関士・機関員)の安全をさらに確保することができる。
Furthermore, according to the cooling structure for an internal combustion engine including the cylinder liner 10 and the cylinder cover 20 according to the present embodiment, a gas is fitted between the outer peripheral surface of the cylinder cover 20 and between the outer peripheral surface of the cylinder cover 20. A cover outer cylinder 21 that forms a venting space 30 is provided. Combustion gas ejected from the outer peripheral surface of the cylinder cover 20 through the gas venting passage 31 through the venting passage 31 to the outer peripheral surface of the cylinder cover 20. The combustion gas ejected from the opening provided in the outer peripheral surface of the cylinder cover 20 through the gas vent passage 31 is guided downward along the outer peripheral surface of the cylinder cover 20. It is like that. That is, the combustion gas ejected from the opening provided on the outer peripheral surface of the cylinder cover 20 is not ejected toward an operator (for example, a ship engineer / engineer) working around the internal combustion engine. ing.
Thereby, it is possible to further ensure the safety of a worker (for example, a ship engineer / engineer) working around the internal combustion engine.
 さらにまた、本実施形態に係るシリンダライナ10とシリンダカバー20とを具備してなる内燃機関の冷却構造によれば、周溝16を形成する内周側の壁面に、周方向に沿ってOリングを収容する周溝18が設けられている場合に、周溝18の内周側で、かつ、周溝27の底部を形成する底面と対向するシリンダライナ10の上面に、シリンダ軸に沿ってシリンダライナ10の下面に向かって彫り込まれた熱ダム44が設けられ、熱ダム44内に滞留する空気層により周溝18に収容されたOリングの熱負荷が(温度にして約10℃)低減されることになる。
 これにより、Oリングの熱による損傷を防止することができ、Oリングの長寿命化を図ることができて、Oリングのメンテナンス間隔を長期化させることができる。
Furthermore, according to the cooling structure of the internal combustion engine including the cylinder liner 10 and the cylinder cover 20 according to the present embodiment, the O-ring is provided along the circumferential direction on the inner peripheral wall surface forming the peripheral groove 16. Is provided on the inner circumferential side of the circumferential groove 18 and on the upper surface of the cylinder liner 10 facing the bottom surface forming the bottom of the circumferential groove 27 along the cylinder axis. The thermal dam 44 carved toward the lower surface of the liner 10 is provided, and the heat load of the O-ring accommodated in the circumferential groove 18 is reduced (about 10 ° C. in temperature) by the air layer staying in the thermal dam 44. Will be.
Thereby, damage to the O-ring due to heat can be prevented, the life of the O-ring can be extended, and the maintenance interval of the O-ring can be extended.
 本実施形態に係るシリンダライナ10または本実施形態に係る内燃機関の冷却構造を具備してなる内燃機関によれば、肉厚を低減させて外径の小径化を図ることができるとともに、軽量化を図ることができるシリンダライナを具備しているので、機関全体の小型化および軽量化を図ることができる。 According to the cylinder liner 10 according to the present embodiment or the internal combustion engine cooling structure according to the present embodiment, the thickness can be reduced to reduce the outer diameter, and the weight can be reduced. Therefore, the entire engine can be reduced in size and weight.
〔第2実施形態〕
 本発明の第2実施形態に係るシリンダライナについて、図11から図13を参照しながら説明する。図11は本実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図、図12は図11の要部を拡大して示す図、図13は本実施形態に係るシリンダライナの上面の一部を示す平面図である。
 図11から図13に示すように、本実施形態に係るシリンダライナ50は、周溝16の下方に連通穴(ドリル穴:キリ穴)51が設けられているという点で上述した第1実施形態のものと異なる。その他の構成要素については上述した第1実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
 なお、上述した第1実施形態と同一の部材には同一の符号を付している。
[Second Embodiment]
A cylinder liner according to a second embodiment of the present invention will be described with reference to FIGS. 11 is a cross-sectional view of a main part showing a cooling structure of an internal combustion engine provided with a cylinder liner according to the present embodiment, FIG. 12 is an enlarged view of the main part of FIG. 11, and FIG. 13 is a cylinder according to the present embodiment. It is a top view which shows a part of upper surface of a liner.
As shown in FIGS. 11 to 13, the cylinder liner 50 according to this embodiment is the first embodiment described above in that a communication hole (drill hole: drill hole) 51 is provided below the circumferential groove 16. Different from that. Since other components are the same as those of the first embodiment described above, description of these components is omitted here.
In addition, the same code | symbol is attached | subjected to the member same as 1st Embodiment mentioned above.
 連通穴51は、周溝16の底部を形成する底面からシリンダ軸に沿ってシリンダライナ50の下面に向かって延びる平面視円形状を呈する穴(例えば、直径26mm、深さ50mmの穴)であり、周方向に沿って複数本(本実施形態では14本)設けられている。また、連通穴51を形成する壁面(内周面)には、上部クーリングボア15の出口(木口)が設けられており、上部クーリングボア15の出口から流出した冷却水は、連通穴51を通って周溝16内に流入するようになっている。 The communication hole 51 is a hole (for example, a hole having a diameter of 26 mm and a depth of 50 mm) having a circular shape in plan view extending from the bottom surface forming the bottom of the circumferential groove 16 toward the lower surface of the cylinder liner 50 along the cylinder axis. A plurality (14 in this embodiment) are provided along the circumferential direction. Further, the wall surface (inner peripheral surface) forming the communication hole 51 is provided with an outlet (a throat) of the upper cooling bore 15, and the cooling water flowing out from the outlet of the upper cooling bore 15 passes through the communication hole 51. Then, it flows into the circumferential groove 16.
 本実施形態に係るシリンダライナ50によれば、上部クーリングボア15の出口は、周溝16を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視円形状を呈する連通穴51を形成する壁面に設けられることになる。すなわち、上部クーリングボア15の出口が、周溝16における熱応力よりも小さい熱応力が作用する場所(領域)に設けられ、かつ、上部クーリングボア15の長手方向軸線(中心軸線)と、シリンダ軸に垂直な平面との交差角が大きくなり、上部クーリングボア15の出口における応力集中が緩和させられることになる。
 これにより、肉厚をさらに低減させて外径の小径化をさらに図ることができるとともに、さらなる軽量化を図ることができる。
 その他の作用効果は、上述した第1実施形態のものと同じであるので、ここではその説明を省略する。
According to the cylinder liner 50 according to the present embodiment, the outlet of the upper cooling bore 15 has the communication hole 51 having a circular shape in plan view extending from the bottom surface forming the circumferential groove 16 along the cylinder axis toward the lower end surface thereof. It will be provided on the wall surface to be formed. That is, the outlet of the upper cooling bore 15 is provided in a place (region) where a thermal stress smaller than the thermal stress in the circumferential groove 16 acts, and the longitudinal axis (center axis) of the upper cooling bore 15 and the cylinder axis As a result, the crossing angle with the plane perpendicular to the angle increases, and the stress concentration at the outlet of the upper cooling bore 15 is relaxed.
Accordingly, the thickness can be further reduced to further reduce the outer diameter, and further weight reduction can be achieved.
Other functions and effects are the same as those of the above-described first embodiment, and thus description thereof is omitted here.
〔第3実施形態〕
 本発明の第3実施形態に係るシリンダライナについて、図14から図16を参照しながら説明する。図14は本実施形態に係るシリンダライナを備えた内燃機関の冷却構造を示す要部の断面図、図15は図14の要部を拡大して示す図、図16は本実施形態に係るシリンダライナの上面の一部を示す平面図である。
 図14から図16に示すように、本実施形態に係るシリンダライナ60は、連通穴51の代わりに連通穴(ドリル穴:キリ穴)61が設けられているという点で上述した第2実施形態のものと異なる。その他の構成要素については上述した第2実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
 なお、上述した実施形態と同一の部材には同一の符号を付している。
[Third Embodiment]
A cylinder liner according to a third embodiment of the present invention will be described with reference to FIGS. 14 is a cross-sectional view of a main part showing a cooling structure of an internal combustion engine provided with a cylinder liner according to the present embodiment, FIG. 15 is an enlarged view of the main part of FIG. 14, and FIG. 16 is a cylinder according to this embodiment. It is a top view which shows a part of upper surface of a liner.
As shown in FIGS. 14 to 16, the cylinder liner 60 according to this embodiment is the second embodiment described above in that a communication hole (drill hole: drill hole) 61 is provided instead of the communication hole 51. Different from that. Since other components are the same as those of the second embodiment described above, description of these components is omitted here.
In addition, the same code | symbol is attached | subjected to the member same as embodiment mentioned above.
 連通穴61は、周溝16の底部を形成する底面からシリンダ軸に沿ってシリンダライナ60の下面に向かって延びる平面視(略)楕円(長円)形状を呈する穴(例えば、直径26mm、深さ50mmの穴)であり、周方向に沿って複数本(本実施形態では14本)設けられている。また、連通穴61を形成する壁面(内周面)には、上部クーリングボア15の出口(木口)が設けられており、上部クーリングボア15の出口から流出した冷却水は、連通穴61を通って周溝16内に流入するようになっている。さらに、連通穴61の底部を形成する底面は、断面視半球形状を呈するように形成されている。 The communication hole 61 is a hole (for example, having a diameter of 26 mm, a depth of 26 mm in diameter) extending from the bottom surface forming the bottom of the circumferential groove 16 toward the lower surface of the cylinder liner 60 along the cylinder axis. A plurality of holes (14 holes in the present embodiment) are provided along the circumferential direction. Further, the wall surface (inner peripheral surface) forming the communication hole 61 is provided with an outlet (a throat) of the upper cooling bore 15, and the cooling water flowing out from the outlet of the upper cooling bore 15 passes through the communication hole 61. Then, it flows into the circumferential groove 16. Furthermore, the bottom surface that forms the bottom of the communication hole 61 is formed to have a hemispherical shape in cross section.
 本実施形態に係るシリンダライナ60によれば、連通穴61は、平面視形状が略楕円を呈するように形成されており、上部クーリングボア15の出口における応力集中がさらに緩和させられることになる。
 これにより、肉厚をより一層低減させて外径の小径化をより一層図ることができるとともに、より一層の軽量化を図ることができる。
 その他の作用効果は、上述した第2実施形態のものと同じであるので、ここではその説明を省略する。
According to the cylinder liner 60 according to the present embodiment, the communication hole 61 is formed so that the shape in plan view is substantially elliptical, and the stress concentration at the outlet of the upper cooling bore 15 is further alleviated.
As a result, the thickness can be further reduced, the outer diameter can be further reduced, and the weight can be further reduced.
Other functions and effects are the same as those of the above-described second embodiment, and thus description thereof is omitted here.
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で各種変更・変形が可能である。
 例えば、上述した第2実施形態および第3実施形態では、上部クーリングボア15の出口が、連通穴51,61の壁面(内周面)に形成されているが、上部クーリングボア15の出口は、連通穴51,61の底面に形成するようにしてもよい。
The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the gist of the present invention.
For example, in the second embodiment and the third embodiment described above, the outlet of the upper cooling bore 15 is formed on the wall surface (inner peripheral surface) of the communication holes 51 and 61, but the outlet of the upper cooling bore 15 is You may make it form in the bottom face of the communicating holes 51 and 61. FIG.
10 シリンダライナ
15 上部クーリングボア(第1のクーリングボア)
16 (第1の)周溝
18 (第4の)周溝
20 シリンダカバー
21 カバー外筒
24 下部クーリングボア(第2のクーリングボア)
25 (第2の)周溝
27 (第3の)周溝
30 ガス抜き用の空間
31 ガス抜き通路
44 熱ダム
50 シリンダライナ
51 連通穴
60 シリンダライナ
61 連通穴
10 Cylinder liner 15 Upper cooling bore (first cooling bore)
16 (first) circumferential groove 18 (fourth) circumferential groove 20 cylinder cover 21 cover outer cylinder 24 lower cooling bore (second cooling bore)
25 (second) circumferential groove 27 (third) circumferential groove 30 Degassing space 31 Degassing passage 44 Thermal dam 50 Cylinder liner 51 Communication hole 60 Cylinder liner 61 Communication hole

Claims (9)

  1.  外周面から壁内に向かって斜め上方にあけられた第1のクーリングボアを複数本備え、上端面の、板厚方向における中央部に第1の周溝を備えたシリンダライナであって、
     前記第1のクーリングボアの出口を、前記第1の周溝を形成する壁面または底面に設けたシリンダライナ。
    A cylinder liner provided with a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and provided with a first peripheral groove at the center of the upper end surface in the thickness direction,
    A cylinder liner in which an outlet of the first cooling bore is provided on a wall surface or a bottom surface forming the first circumferential groove.
  2.  外周面から壁内に向かって斜め上方にあけられた第1のクーリングボアを複数本備え、上端面の、板厚方向における中央部に第1の周溝を備えたシリンダライナであって、
     前記第1のクーリングボアの出口を、前記第1の周溝を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視円形状を呈する連通穴を形成する壁面または底面に設けたシリンダライナ。
    A cylinder liner provided with a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and provided with a first peripheral groove at the center of the upper end surface in the thickness direction,
    The outlet of the first cooling bore is provided on the wall surface or bottom surface forming a communication hole having a circular shape in plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis. Cylinder liner.
  3.  外周面から壁内に向かって斜め上方にあけられた第1のクーリングボアを複数本備え、上端面の、板厚方向における中央部に第1の周溝を備えたシリンダライナであって、
     前記第1のクーリングボアの出口を、前記第1の周溝を形成する底面からシリンダ軸に沿ってその下端面に向かって延びる平面視略楕円形状を呈する連通穴を形成する壁面または底面に設けたシリンダライナ。
    A cylinder liner provided with a plurality of first cooling bores that are opened obliquely upward from the outer peripheral surface toward the inside of the wall, and provided with a first peripheral groove at the center of the upper end surface in the thickness direction,
    The outlet of the first cooling bore is provided on a wall surface or bottom surface forming a communication hole having a substantially elliptical shape in plan view extending from the bottom surface forming the first circumferential groove toward the lower end surface along the cylinder axis. Cylinder liner.
  4.  請求項1から3のいずれか一項に記載のシリンダライナと、
     下端面から壁内に向かって斜め上方にあけられた第2のクーリングボアを複数本備え、下端面の、板厚方向における外周部に第2の周溝を備えるとともに、前記シリンダライナの上に配置されて、前記シリンダライナの上方に位置する開口を塞ぐシリンダカバーとを具備した内燃機関の冷却構造であって、
     前記第2のクーリングボアの入口を、前記第2の周溝を形成する壁面または底面に設けた内燃機関の冷却構造。
    Cylinder liner according to any one of claims 1 to 3,
    Provided with a plurality of second cooling bores obliquely upward from the lower end surface toward the inside of the wall, provided with a second circumferential groove in the outer peripheral portion of the lower end surface in the plate thickness direction, and on the cylinder liner A cooling structure for an internal combustion engine comprising a cylinder cover disposed and closing an opening located above the cylinder liner,
    A cooling structure for an internal combustion engine, wherein an inlet of the second cooling bore is provided on a wall surface or a bottom surface forming the second circumferential groove.
  5.  前記シリンダライナの上に被せた際に、前記第1の周溝および前記第2の周溝の内周側に位置する前記下端面の、板厚方向における内周部に第3の周溝を備えるとともに、前記シリンダライナの上端面と前記シリンダカバーの下端面との間を通って前記第3の周溝内に流入した燃焼ガスを前記シリンダカバーの外周面に設けられた開口に導くガス抜き通路が設けられている請求項4に記載の内燃機関の冷却構造。 When covering the cylinder liner, a third circumferential groove is formed on the inner circumferential portion in the plate thickness direction of the lower end surface located on the inner circumferential side of the first circumferential groove and the second circumferential groove. A gas vent that guides the combustion gas that has flowed into the third circumferential groove through the gap between the upper end surface of the cylinder liner and the lower end surface of the cylinder cover to an opening provided in the outer peripheral surface of the cylinder cover. The cooling structure for an internal combustion engine according to claim 4, wherein a passage is provided.
  6.  前記ガス抜き通路は、前記第2の周溝の近傍を通るようにして設けられている請求項5に記載の内燃機関の冷却構造。 The cooling structure for an internal combustion engine according to claim 5, wherein the gas vent passage is provided so as to pass through the vicinity of the second circumferential groove.
  7.  前記シリンダカバーの外周面に嵌って前記シリンダカバーの外周面との間にガス抜き用の空間を形成するカバー外筒を備え、前記ガス抜き用の空間が、前記ガス抜き通路を通って前記シリンダカバーの外周面から噴き出した燃焼ガスを、前記シリンダカバーの外周面に沿って下方に導くように形成されている請求項5または6に記載の内燃機関の冷却構造。 A cover outer cylinder that fits on an outer peripheral surface of the cylinder cover and forms a gas venting space between the cylinder cover and the outer peripheral surface of the cylinder cover, the gas venting space passing through the gas vent passage and the cylinder; The cooling structure for an internal combustion engine according to claim 5 or 6, wherein the combustion gas ejected from the outer peripheral surface of the cover is formed so as to guide downward along the outer peripheral surface of the cylinder cover.
  8.  前記第1の周溝を形成する内周側の壁面に、周方向に沿ってOリングを収容する第4の周溝が設けられているとともに、該第4の周溝の内周側で、かつ、前記第3の周溝の底部を形成する底面と対向する前記シリンダライナの上面に、シリンダ軸に沿って前記シリンダライナの下面に向かって彫り込まれた熱ダムが設けられている請求項5から7のいずれか一項に記載の内燃機関の冷却構造。 On the inner peripheral side of the fourth peripheral groove, the inner peripheral wall surface that forms the first peripheral groove is provided with a fourth peripheral groove that accommodates the O-ring along the circumferential direction. 6. A thermal dam engraved toward the lower surface of the cylinder liner along the cylinder axis is provided on the upper surface of the cylinder liner facing the bottom surface forming the bottom of the third circumferential groove. The cooling structure for an internal combustion engine according to any one of claims 1 to 7.
  9.  請求項1から3のいずれか一項に記載のシリンダライナまたは請求項4から8のいずれか一項に記載の内燃機関の冷却構造を具備している内燃機関。 An internal combustion engine comprising the cylinder liner according to any one of claims 1 to 3 or the cooling structure for the internal combustion engine according to any one of claims 4 to 8.
PCT/JP2011/065368 2010-07-12 2011-07-05 Cylinder liner WO2012008335A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180030313.6A CN103003543B (en) 2010-07-12 2011-07-05 Cylinder sleeve
KR1020127033108A KR101408624B1 (en) 2010-07-12 2011-07-05 Cylinder liner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-157714 2010-07-12
JP2010157714A JP2012021406A (en) 2010-07-12 2010-07-12 Cylinder liner

Publications (1)

Publication Number Publication Date
WO2012008335A1 true WO2012008335A1 (en) 2012-01-19

Family

ID=45469338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065368 WO2012008335A1 (en) 2010-07-12 2011-07-05 Cylinder liner

Country Status (4)

Country Link
JP (1) JP2012021406A (en)
KR (1) KR101408624B1 (en)
CN (1) CN103003543B (en)
WO (1) WO2012008335A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703630A1 (en) * 2012-08-31 2014-03-05 Wärtsilä Schweiz AG Cylinder liner for a stroke piston combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576420U (en) * 1978-11-13 1980-05-26
JPH094452A (en) * 1995-06-19 1997-01-07 Yanmar Diesel Engine Co Ltd Engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU431319A1 (en) * 1972-02-25 1974-06-05
JPS62243944A (en) * 1986-04-14 1987-10-24 Mitsubishi Heavy Ind Ltd Cylinder liner and cylinder cover structure
JPH0532756U (en) * 1991-08-20 1993-04-30 ダイハツデイーゼル株式会社 Cylinder liner cooling structure in a diesel engine
JPH0742611A (en) * 1993-07-27 1995-02-10 Mitsubishi Heavy Ind Ltd Cylinder liner cooling passage
JP2004360603A (en) 2003-06-05 2004-12-24 Mitsubishi Motors Corp Cooling device for internal combustion engine
JP4276128B2 (en) * 2004-05-24 2009-06-10 本田技研工業株式会社 Cylinder liner cooling structure
EP1600621B1 (en) * 2004-05-24 2014-09-03 Honda Motor Co., Ltd. Cylinder liner cooling structure
JP2009197698A (en) 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Cylinder liner cooling structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576420U (en) * 1978-11-13 1980-05-26
JPH094452A (en) * 1995-06-19 1997-01-07 Yanmar Diesel Engine Co Ltd Engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703630A1 (en) * 2012-08-31 2014-03-05 Wärtsilä Schweiz AG Cylinder liner for a stroke piston combustion engine

Also Published As

Publication number Publication date
JP2012021406A (en) 2012-02-02
CN103003543B (en) 2016-11-09
CN103003543A (en) 2013-03-27
KR101408624B1 (en) 2014-06-17
KR20130029780A (en) 2013-03-25

Similar Documents

Publication Publication Date Title
KR20150034084A (en) Arrangement comprising a cylinder head and a prechamber system
US8146544B2 (en) Engine cylinder head cooling features and method of forming
US9353701B2 (en) Cylinder block and manufacturing method thereof
JP5781332B2 (en) piston ring
EP2224119A1 (en) Ccoling structure of cylinder liner
JP2006342799A (en) Internal combustion engine
JP5656506B2 (en) Cylinder liner
US11035319B2 (en) Sealing assembly comprising a cylinder head, a cylinder head gasket and a crankcase
WO2012008335A1 (en) Cylinder liner
US9188080B2 (en) Gasket and engine with the gasket
JP5721595B2 (en) Internal combustion engine cooling structure
JP2014114852A (en) Gasket and cylinder head gasket
WO2012105290A1 (en) Cooling structure for internal combustion engine
US9631579B1 (en) Seal assemblies and methods for removable precombustion chamber tip
KR20090063993A (en) Cylinder head and cylinder head gasket
JP6261857B2 (en) Cylinder cover, cylinder head gasket and internal combustion engine
US20080191425A1 (en) Planar Seal
JP2021169798A (en) Cylinder head, cylinder block, internal combustion engine and method for manufacturing cylinder head
GB2511136A (en) Engine cooling
JP2007182811A (en) Cylinder liner, cylinder block and its manufacturing method
KR20130044307A (en) Cylinder head and internal combustion engine equipped therewith
KR101928109B1 (en) A CLEAN Engine With Easy to Assemble and Disassemble Structure of Exhaust Pipe
JP5940642B2 (en) piston ring
CN102797432A (en) Pierce preventing pup joint for choke manifold
BR102018002165B1 (en) INTERNAL COMBUSTION ENGINE, CYLINDER HEAD GASKET, CYLINDER HEAD, ENGINE BLOCK, VEHICLE AND METHOD FOR DISCHARGE OF LEAK GAS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127033108

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806665

Country of ref document: EP

Kind code of ref document: A1