WO2012008050A1 - エンジンの始動装置およびエンジンの始動方法 - Google Patents

エンジンの始動装置およびエンジンの始動方法 Download PDF

Info

Publication number
WO2012008050A1
WO2012008050A1 PCT/JP2010/062092 JP2010062092W WO2012008050A1 WO 2012008050 A1 WO2012008050 A1 WO 2012008050A1 JP 2010062092 W JP2010062092 W JP 2010062092W WO 2012008050 A1 WO2012008050 A1 WO 2012008050A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
actuator
gear
motor
starter
Prior art date
Application number
PCT/JP2010/062092
Other languages
English (en)
French (fr)
Inventor
守屋 孝紀
淳平 筧
ハシム ハスルル サニー ビン
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/144,999 priority Critical patent/US8573174B2/en
Priority to PCT/JP2010/062092 priority patent/WO2012008050A1/ja
Priority to CN2010800302139A priority patent/CN102472230B/zh
Priority to EP10844306.0A priority patent/EP2514960A4/en
Priority to JP2011544530A priority patent/JP5056988B2/ja
Publication of WO2012008050A1 publication Critical patent/WO2012008050A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0806Air condition state

Definitions

  • the present invention relates to an engine starting device and an engine starting method, and in particular, an actuator that moves a pinion gear to engage with a ring gear provided on the outer periphery of an engine flywheel or a drive plate, and a motor that rotates the pinion gear.
  • the present invention relates to a technique for controlling a starter that is individually controlled.
  • the engine may be restarted while the engine speed is relatively high.
  • the engine in the conventional starter in which the push-out of the pinion gear for rotating the engine and the rotation of the pinion gear are performed by one drive command, the engine is designed to facilitate the engagement between the pinion gear and the engine ring gear.
  • the starter is driven after the rotational speed of the motor has sufficiently decreased. If it does so, time delay will generate
  • Patent Document 1 uses a starter having a configuration in which the engagement operation of the pinion gear and the rotation operation of the pinion gear can be performed independently.
  • a restart request is generated during the engine rotation drop period immediately after the stop request is generated, the pinion gear is rotated prior to the engagement operation of the pinion gear, and when the rotation speed of the pinion gear is synchronized with the engine rotation speed, Disclosed is a technique for restarting an engine by engaging a pinion gear.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an engine starter and an engine start method that suppress deterioration of engine startability.
  • An engine starter includes a starter that starts the engine, a device that is connected to the crankshaft of the engine and varies the engine load, and a starter control device.
  • the starter includes a second gear that can be engaged with the first gear coupled to the crankshaft of the engine, an actuator that moves the second gear to a position that engages with the first gear in the driving state, And a motor for rotating the second gear.
  • the control device can individually drive each of the actuator and the motor.
  • the control device has a rotation mode in which the motor is driven prior to driving the actuator. When executing the rotation mode, the control device suppresses load fluctuations of the engine and the device before driving the actuator.
  • control device releases the suppression of the fluctuation of the load when the engagement between the first gear and the second gear is completed.
  • the device includes at least one of an air conditioner compressor and an alternator.
  • the control device holds the operating state of the device from the first time after the start request to the second time when the actuator is operated.
  • control device holds the operating state of the engine from the first time after the start request to the second time when the actuator is operated.
  • control device controls any one of the engine and the device so as to prohibit the fluctuation of the engine load from the first time after the start request to the second time when the actuator is operated.
  • the device includes at least one of an air conditioner compressor and an alternator.
  • the control device prohibits the operation of the device from the first time after the start request to the second time when the actuator is operated.
  • control device prohibits a change in the control value for the engine from the first time after the start request to the second time when the actuator is operated.
  • control device controls the actuator and the motor so as to start the engine by selecting any one of a plurality of control modes based on the rotational speed of the engine.
  • the plurality of control modes include a first control mode for operating the actuator so that the second gear moves toward the first gear after execution of the rotation mode, and operating the motor after starting the operation of the actuator. For the second control mode.
  • the engine in the engine starting method is provided with a starter for starting the engine, a device that is connected to the crankshaft of the engine and varies the engine load, and a starter control device.
  • the starter includes a second gear that can be engaged with the first gear coupled to the crankshaft of the engine, an actuator that moves the second gear to a position that engages with the first gear in the driving state, And a motor for rotating the second gear.
  • Each of the actuator and the motor can be driven individually.
  • the starting method includes a step of driving the actuator and the motor in a rotation mode for driving the motor prior to the driving of the actuator, and a step of suppressing load fluctuations of the engine and equipment before the actuator is driven when the rotation mode is executed. Is provided.
  • the engine 100 or the device When there is an engine start request, the engine 100 or the device is controlled so as to suppress the fluctuation of the engine load before the time when the actuator is operated, thereby suppressing the rapid fluctuation of the engine rotation speed. . Therefore, when the actuator is operated after the motor is driven, the rotational speed of the engine can be accurately predicted. As a result, the motor drive start timing for synchronizing the engine rotation speed and the motor rotation speed can be accurately set. Therefore, it is possible to provide an engine starter and an engine start method that suppress deterioration of engine startability.
  • 1 is an overall block diagram of a vehicle. It is a functional block diagram of ECU. It is a figure for demonstrating the transition of the operation mode of a starter. It is a figure for demonstrating the drive mode at the time of engine starting operation
  • FIG. 1 is an overall block diagram of the vehicle 10.
  • vehicle 10 includes an engine 100, a battery 120, a starter 200, a control device (hereinafter also referred to as an ECU (Electronic Control Unit)) 300, and relays RY1 and RY2.
  • Starter 200 includes a motor 220, an actuator 232, a connecting portion 240, an output member 250, and a pinion gear 260.
  • the actuator 232 includes a plunger 210 and a solenoid 230.
  • Engine 100 generates a driving force for traveling vehicle 10.
  • a crankshaft 111 that is an output shaft of the engine 100 is connected to drive wheels via a power transmission device that includes a clutch, a speed reducer, and the like.
  • the engine 100 is provided with an intake passage 166 for supplying air to the engine 100.
  • the intake passage 166 is provided with a throttle valve 164 for adjusting the flow rate of air flowing through the intake passage 166.
  • the throttle valve 164 is operated by a throttle motor 160.
  • Throttle motor 160 is driven based on control signal THC from ECU 300.
  • the position of the throttle valve 164, that is, the throttle opening is detected by a throttle position sensor 162.
  • Throttle position sensor 162 outputs detected value TH to ECU 300.
  • the engine 100 may be provided with a valve driving actuator 172 for driving the intake valve and the exhaust valve.
  • the valve driving actuator 172 may be, for example, an actuator that adjusts each valve opening amount by directly driving the intake valve and the exhaust valve, or for changing the closing timing and the lift amount of the intake valve and the exhaust valve.
  • the actuator may be used.
  • the valve driving actuator 172 is driven based on a control signal VB from the ECU.
  • the engine 100 is provided with a rotation speed sensor 115.
  • the rotational speed sensor 115 detects the rotational speed Ne of the engine 100 and outputs the detection result to the ECU 300.
  • the battery 120 is a power storage element configured to be chargeable / dischargeable.
  • the battery 120 includes a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead battery.
  • the battery 120 may be comprised by electrical storage elements, such as an electric double layer capacitor.
  • the engine 100 is provided with an alternator 132 and an air conditioner compressor 134 as devices for changing the load of the engine 100.
  • a pulley 136 is provided on the input shaft of the alternator 132.
  • a pulley 138 is provided on the input shaft of the air conditioner compressor 134.
  • a pulley 168 is provided on the crankshaft 111 of the engine 100.
  • the pulleys 136, 138 and 168 are connected using a belt 170. Therefore, the rotational force of crankshaft 111 of engine 100 is transmitted to pulleys 136 and 138 via pulley 168 and belt 170.
  • the alternator 132 generates electric power using the rotational force transmitted to the pulley 136 by exciting a built-in electromagnetic coil based on a control signal ALT from the ECU 300.
  • the alternator 132 charges the battery 120 by supplying the generated power to the battery 120 via an inverter, converter, or the like (not shown).
  • the alternator 132 may charge the battery 120 by supplying the power generated by the alternator 132 to the battery 120 via an inverter and a DC / DC converter 127 (not shown).
  • the amount of power generated by the alternator 132 is controlled by the ECU 300.
  • the air conditioner compressor 134 operates based on a control signal AC from the ECU 300.
  • the air conditioner compressor 134 incorporates an electromagnetic clutch 142.
  • the electromagnetic clutch 142 is engaged or released based on a control signal AC from the ECU 300.
  • the air conditioner compressor 134 is operated by the integral rotation of the pulley 138 and the input shaft of the air conditioner compressor 134.
  • a starter for engine 100 includes a starter 200 for starting engine 100, devices connected to engine crankshaft 111 and changing the load of engine 100 (alternator 132, air conditioner compressor 134), and the like. And an ECU 300 that is a control device of the starter 200.
  • the battery 120 is connected to the starter 200 via relays RY1 and RY2 controlled by the ECU 300.
  • the battery 120 supplies the drive power supply voltage to the starter 200 by closing the relays RY1 and RY2.
  • the negative electrode of battery 120 is connected to the body ground of vehicle 10.
  • the battery 120 is provided with a voltage sensor 125.
  • Voltage sensor 125 detects output voltage VB of battery 120 and outputs the detected value to ECU 300.
  • the voltage of the battery 120 is supplied via the DC / DC converter 127 to the ECU 300 and auxiliary equipment such as an inverter of the air conditioner.
  • the DC / DC converter 127 is controlled by the ECU 300 so as to maintain the voltage supplied to the ECU 300 and the like. For example, in consideration of the fact that the voltage of the battery 120 is temporarily reduced by driving the motor 220 and cranking the engine 100, the voltage is controlled to increase when the motor 220 is driven.
  • the DC / DC converter 127 increases the voltage when the start request signal of the engine 100 is output. To be controlled.
  • the control method of the DC / DC converter 127 is not limited to this.
  • relay RY1 The one end of relay RY1 is connected to the positive electrode of battery 120, and the other end of relay RY1 is connected to one end of solenoid 230 in starter 200.
  • the relay RY1 is controlled by a control signal SE1 from the ECU 300, and switches between supply and interruption of the power supply voltage from the battery 120 to the solenoid 230.
  • the one end of the relay RY2 is connected to the positive electrode of the battery 120, and the other end of the relay RY2 is connected to the motor 220 in the starter 200.
  • Relay RY ⁇ b> 2 is controlled by a control signal SE ⁇ b> 2 from ECU 300, and switches between supply and interruption of power supply voltage from battery 120 to motor 220.
  • a voltage sensor 130 is provided on a power line connecting relay RY2 and motor 220. Voltage sensor 130 detects motor voltage VM and outputs the detected value to ECU 300.
  • starter 200 is engaged with a second gear that can be engaged with a first gear coupled to crankshaft 111 of engine 100, and in a driving state, second gear is engaged with first gear. It includes an actuator 232 that moves to a matching position, and a motor 220 that rotates the second gear.
  • first gear is ring gear 110 coupled to crankshaft 111 of engine 100
  • second gear is pinion gear 260.
  • the supply of the power supply voltage to the motor 220 and the solenoid 230 in the starter 200 can be independently controlled by the relays RY1 and RY2.
  • the output member 250 is coupled to a rotating shaft of a rotor (not shown) inside the motor by, for example, a linear spline.
  • a pinion gear 260 is provided at the end of the output member 250 opposite to the motor 220.
  • solenoid 230 As described above, one end of the solenoid 230 is connected to the relay RY1, and the other end of the solenoid 230 is connected to the body ground.
  • relay RY1 When relay RY1 is closed and solenoid 230 is excited, solenoid 230 attracts plunger 210 in the direction of the arrow.
  • the plunger 210 is coupled to the output member 250 through the connecting portion 240.
  • the solenoid 230 is excited and the plunger 210 is attracted in the direction of the arrow.
  • the output member 250 moves away from the standby position shown in FIG. 1 in the direction opposite to the operation direction of the plunger 210, that is, the pinion gear 260 moves away from the main body of the motor 220 by the connecting portion 240 to which the fulcrum 245 is fixed. Moved in the direction.
  • the plunger 210 is biased by a spring mechanism (not shown) in the direction opposite to the arrow in FIG. 1, and is returned to the standby position when the solenoid 230 is de-energized.
  • the pinion gear 260 is attached to the outer periphery of the flywheel or drive plate attached to the crankshaft 111 of the engine 100. Engage with. Then, with the pinion gear 260 and the ring gear 110 engaged, the pinion gear 260 rotates, whereby the engine 100 is cranked and the engine 100 is started.
  • actuator 232 that moves pinion gear 260 to engage with ring gear 110 provided on the outer periphery of flywheel or drive plate of engine 100, and motor 220 that rotates pinion gear 260, are controlled individually.
  • a one-way clutch may be provided between the output member 250 and the rotor shaft of the motor 220 so that the rotor of the motor 220 is not rotated by the rotation operation of the ring gear 110.
  • the actuator 232 in FIG. 1 is a mechanism that can transmit the rotation of the pinion gear 260 to the ring gear 110 and can switch between a state in which the pinion gear 260 and the ring gear 110 are engaged and a state in which both are not engaged.
  • the mechanism is not limited to the above-described mechanism.
  • a mechanism in which the pinion gear 260 and the ring gear 110 are engaged by moving the shaft of the output member 250 in the radial direction of the pinion gear 260 may be used.
  • ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer, and inputs each sensor and outputs a control command to each device.
  • CPU Central Processing Unit
  • storage device e.g., a hard disk drive
  • input / output buffer e.g., a hard disk drive
  • ECU 300 receives a signal ACC representing an operation amount of accelerator pedal 140 from a sensor (not shown) provided on accelerator pedal 140.
  • ECU 300 receives a signal BRK representing the operation amount of brake pedal 150 from a sensor (not shown) provided on brake pedal 150.
  • ECU 300 also receives a start operation signal IG-ON due to an ignition operation by the driver. Based on these pieces of information, ECU 300 generates a start request signal and a stop request signal for engine 100, and outputs control signals SE1 and SE2 in accordance therewith to control the operation of starter 200.
  • ECU 300 can drive each of actuator 232 and motor 220 individually.
  • ECU 300 has a rotation mode in which motor 220 is driven prior to driving actuator 232.
  • ECU 300 suppresses load fluctuations of engine 100 and the above-described devices (that is, alternator 132 and air conditioner compressor 134) before driving actuator 232 when the rotation mode is executed.
  • ECU 300 The function of ECU 300 will be described with reference to FIG.
  • the functions of ECU 300 described below may be realized by software, may be realized by hardware, or may be realized by cooperation of software and hardware.
  • ECU 300 includes a determination unit 302, a starter control unit 304, and a fluctuation suppression control unit 306.
  • Determination unit 302 determines whether or not there is a request to start engine 100. For example, when the amount of operation of brake pedal 150 by the driver decreases to zero, determination unit 302 determines that there is a request to start engine 100. More specifically, determination unit 302 determines that there is a request to start engine 100 when the amount of operation of brake pedal 150 by the driver decreases to zero while engine 100 and vehicle 10 are stopped. The method for determining whether or not the determination unit 302 has a request to start the engine 100 is not limited to this. When ECU 300 determines that there is a request to start engine 100, ECU 300 generates a start request signal for engine 100 and outputs control signals SE1 and SE2 accordingly.
  • starter control unit 304 when a start request signal for engine 100 is generated, that is, when it is determined that there is a start request for engine 100, a plurality of starter control units 304 are based on the rotational speed Ne of engine 100.
  • the actuator 232 and the motor 220 are controlled so that the engine 100 is started by selecting any one of the control modes.
  • the plurality of control modes are a first mode in which the actuator 232 and the motor 220 are controlled so that the pinion gear 260 starts rotating after the pinion gear 260 moves toward the ring gear 110, and after the pinion gear 260 starts rotating.
  • a second mode in which the actuator 232 and the motor 220 are controlled so that the pinion gear 260 moves toward the ring gear 110.
  • the starter control unit 304 starts the rotation of the pinion gear 260 without selecting any one of the plurality of control modes.
  • the actuator 232 and the motor 220 may be controlled to move toward the ring gear 110.
  • the starter control unit 304 controls the actuator 232 so that the pinion gear 260 moves toward the ring gear 110 when the determination unit 302 determines that there is a request to start the engine 100. Then, after the pinion gear 260 moves toward the ring gear 110, the motor 220 is controlled so that the pinion gear 260 rotates.
  • the starter control unit 304 selects the second mode
  • the motor 220 is controlled so that the pinion gear 260 starts to rotate when the determination unit 302 determines that there is a request to start the engine 100, and the pinion gear
  • the actuator 232 is controlled so that the pinion gear 260 moves toward the ring gear 110 after the rotation starts.
  • the starter control unit 304 selects the first mode when the rotational speed Ne of the engine 100 is equal to or less than a predetermined first reference value ⁇ 1.
  • the starter control unit 304 selects the second mode when the rotational speed Ne of the engine 100 is larger than the first reference value ⁇ 1.
  • the fluctuation suppression control unit 306 includes the engine 100 and the engine 100 so as to suppress fluctuations in the load of the engine 100 before the time when the starter control unit 304 operates the actuator 232. And controls at least one of the devices that change the load of the engine 100 by operation.
  • the fluctuation suppression control unit 306 selects the first time point after the start request when the starter control unit 304 selects the second mode and the determination unit 302 determines that there is a start request for the engine 100.
  • the starter control unit 304 controls the engine 100 or a device that changes the load of the engine 100 by the operation so as to suppress the change of the load of the engine 100 until the second time point when the actuator 232 is operated.
  • the first time point may be a time point when it is determined that there is a start request, or may be a time point when the operation of the motor 220 is started.
  • the rotational speed Ne of the engine 100 is determined. This is the time when it is set so that it does not fluctuate suddenly.
  • the device that varies the load of engine 100 will be described as being either one of alternator 132 and air conditioner compressor 134, but in addition to alternator 132 and air conditioner compressor 134, a belt
  • the device is not particularly limited as long as the device is connected to 170.
  • the device may be a pump for generating hydraulic pressure of power steering that operates using the power of engine 100 in response to a control signal from ECU 300.
  • the fluctuation suppression control unit 306 maintains the operating state of the device from the first time point after the start request until the second time point at which the actuator 232 is operated to load the engine 100. To suppress fluctuations.
  • the fluctuation suppression control unit 306 is from the first time point to the second time point.
  • the alternator 132 is controlled so as to maintain the power generation amount in the intermediate alternator 132.
  • the fluctuation suppression control unit 306 is, for example, when the second mode is selected, and the electromagnetic clutch 142 is in the engaged state at the first time point after the start request, and the air conditioner compressor 134 is When operating, the air conditioner compressor 134 is controlled so that the engagement state of the electromagnetic clutch 142 and the operation amount of the air conditioner compressor 134 are maintained from the first time point to the second time point.
  • the fluctuation suppression control unit 306 is, for example, when the second mode is selected and when both the alternator 132 and the air conditioner compressor 134 are operating at the first time point after the start request.
  • the alternator 132 and the air conditioner compressor 134 are controlled so as to maintain the operation amount of the alternator 132, the engagement state of the electromagnetic clutch 142, and the operation amount of the air conditioner compressor 134 from the first time point to the second time point.
  • the fluctuation suppression control unit 306 holds the operating state of the engine 100 from the first time after the start request until the second time when the actuator 232 is operated.
  • the fluctuation suppression control unit 306 controls, for example, the throttle motor 160 so as to hold the opening degree of the throttle valve, and holds each opening amount or lift amount and closing timing of each intake valve and exhaust valve.
  • the valve driving actuator 172 may be controlled.
  • the fluctuation suppression control unit 306 prohibits the fluctuation of the load of the engine 100 from the first time after the start request until the second time when the actuator 232 is operated. Any one of 100 and the device may be controlled.
  • the fluctuation suppression control unit 306 prohibits the operation of the device from the first time after the start request until the second time when the actuator 232 is operated.
  • the fluctuation suppression control unit 306 prohibits the electromagnetic clutch 142 from being engaged even when there is an operation for operating the air conditioner or a request for operating the air conditioner to automatically adjust the indoor temperature. To do.
  • the fluctuation suppression control unit 306 prohibits the operation of the alternator 132 when there is a request for operation of the alternator 132.
  • the fluctuation suppression control unit 306 prohibits a change in the control value for the engine 100 from the first time after the start request until the second time when the actuator 232 is operated.
  • the control value for engine 100 is, for example, a control value for throttle opening, a control value for each opening amount of intake valves and exhaust valves, or a control value for each lift amount and closing timing of intake valves and exhaust valves.
  • the fluctuation suppression control unit 306 prohibits, for example, the throttle valve 164 from being fully closed between the first time after the start request and the second time when the actuator 232 is operated. Alternatively, the intake valve and the exhaust valve are prohibited from being fully closed.
  • the fluctuation suppression control unit 306 releases the suppression or prohibition of load fluctuation when the engagement between the ring gear 110 and the pinion gear 260 is completed.
  • the fluctuation suppression control unit 306 may determine that the engagement between the ring gear 110 and the pinion gear 260 is completed when the current value to the solenoid 230 is a value indicating that the solenoid 230 is driven.
  • the fluctuation suppression control unit 306 determines the absolute value of the difference between the rotational speed Nm of the motor 220 and the rotational speed Ne of the engine 100 until a predetermined time elapses after the motor 220 and the actuator 232 are operated. When the state below the predetermined value continues, it may be determined that the engagement between the ring gear 110 and the pinion gear 260 is completed.
  • FIG. 3 is a diagram for explaining the transition of the operation mode of starter 200 in the present embodiment.
  • the operation modes of the starter 200 in the present embodiment include a standby mode 410, an engagement mode 420, a rotation mode 430, and a full drive mode 440.
  • the first mode described above is a mode for shifting to the full drive mode 440 through the engagement mode 420.
  • the second mode described above is a mode in which the mode is shifted to the full drive mode 440 through the rotation mode 430.
  • Standby mode 410 is a mode that stops driving of both actuator 232 and motor 220 of starter 200, and is a mode that is selected when there is no request for starting engine 100.
  • the standby mode 410 corresponds to the initial state of the starter 200, and driving of the starter 200 becomes unnecessary before the start operation of the engine 100, after the start of the engine 100, or when the start of the engine 100 fails. Selected when.
  • the all drive mode 440 is a mode in which both the actuator 232 and the motor 220 of the starter 200 are driven.
  • full drive mode 440 motor 220 and actuator 232 are controlled to rotate pinion gear 260 with pinion gear 260 and ring gear 110 engaged. As a result, the engine 100 is actually cranked and the starting operation is started.
  • the starter 200 in the present embodiment can drive each of the actuator 232 and the motor 220 independently as described above. Therefore, in the process of transition from the standby mode 410 to the full drive mode 440, when the actuator 232 is driven prior to the driving of the motor 220 (ie, equivalent to the engagement mode 420), the motor 220 prior to the driving of the actuator 232 is performed. Is driven (that is, corresponding to the rotation mode 430).
  • the selection of the engagement mode 420 and the rotation mode 430 is basically performed based on the rotation speed Ne of the engine 100 when a restart request of the engine 100 is generated.
  • Engagement mode 420 is a state in which only actuator 232 out of actuator 232 and motor 220 is driven, and motor 220 is not driven. This mode is selected when the pinion gear 260 and the ring gear 110 can be engaged even when the pinion gear 260 is stopped. Specifically, the engagement mode 420 is selected when the engine 100 is stopped or when the rotational speed Ne of the engine 100 is sufficiently reduced (Ne ⁇ first reference value ⁇ 1). .
  • the engagement mode 420 for the actuator 232 and the motor 220 is selected.
  • the operation mode transitions from the engagement mode 420 to the full drive mode 440. That is, the full drive mode 440 is selected and the actuator 232 and the motor 220 are controlled. That is, in the present embodiment, it is determined that the engagement between pinion gear 260 and ring gear 110 has been completed based on the elapse of a predetermined time from the start of driving of actuator 232.
  • the rotation mode 430 is a state in which only the motor 220 of the actuator 232 and the motor 220 is driven and the actuator 232 is not driven.
  • the rotational speed Ne of the engine 100 is relatively high ( ⁇ 1 ⁇ Ne ⁇ second reference). The value ⁇ 2) is selected.
  • the actuator 232 and the motor 220 are controlled in the rotation mode 430.
  • the determination of establishment of synchronization in the present embodiment is as follows.
  • Ne ⁇ Nm is performed depending on whether or not it is within a predetermined threshold range (0 ⁇ ⁇ 1 ⁇ Ndiff ⁇ 2). It is possible to determine whether synchronization is established by determining whether the absolute value of the relative rotational speed Ndiff is smaller than the threshold value ⁇ (
  • the operation mode is returned from the full drive mode 440 to the standby mode 410 in response to the completion of the start of the engine 100 and the start of the engine 100.
  • the actuator 232 and the motor 220 are controlled in any one of the second modes that shift to the full drive mode 440.
  • FIG. 4 shows, in the present embodiment, fluctuations executed in parallel with engine start control and engine start control in two drive modes (first mode and second mode) selected during engine start operation. It is a figure for demonstrating suppression control.
  • the horizontal axis represents time
  • the vertical axis represents the rotational speed Ne of the engine 100 and the driving state of the actuator 232 and the motor 220 in the first mode and the second mode.
  • a stop request for the engine 100 is generated and the combustion of the engine 100 is stopped.
  • the rotational speed Ne of the engine 100 gradually decreases as indicated by a solid curve W0, and finally the rotation of the engine 100 stops.
  • the first region (region 1) is a case where the rotational speed Ne of the engine 100 is higher than the second reference value ⁇ 2, for example, in a state where a restart request is generated at a point P0 in FIG. is there.
  • This region 1 is a region where the engine 100 can be started without using the starter 200 by fuel injection and ignition operation because the rotational speed Ne of the engine 100 is sufficiently high. That is, region 1 is a region where engine 100 can return independently. Therefore, in region 1, driving of starter 200 is prohibited.
  • the second reference value ⁇ 2 may be limited by the maximum rotation speed of the motor 220.
  • the second region (region 2) is a case where the rotational speed Ne of the engine 100 is between the first reference value ⁇ 1 and the second reference value ⁇ 2, and a restart request is made at a point P1 in FIG. It is as if it was created.
  • This region 2 is a region where the engine 100 cannot return independently but the rotational speed Ne of the engine 100 is relatively high. In this region, as described with reference to FIG. 3, the rotation mode (second mode) is selected.
  • the starter control unit 304 When a restart request for the engine 100 is generated at time t2, the starter control unit 304 first drives the motor 220. As a result, the pinion gear 260 starts to rotate. Further, the fluctuation suppression control unit 306 performs fluctuation suppression control as the motor 220 is driven. Since fluctuation suppression control is as described above, detailed description thereof will not be repeated. By executing the fluctuation suppression control, sudden fluctuations in the rotational speed Ne of the engine 100 are suppressed.
  • the actuator 232 is driven.
  • the engagement between the ring gear 110 and the pinion gear 260 is completed by driving the actuator 232 at time t4, the execution of the fluctuation suppression control is released.
  • the ring gear 110 and the pinion gear 260 are engaged, the engine 100 is cranked, and the rotational speed Ne of the engine 100 increases as indicated by a dashed curve W1. Thereafter, when engine 100 resumes self-sustaining operation, driving of actuator 232 and motor 220 is stopped.
  • the third region (region 3) is a case where the rotational speed Ne of the engine 100 is lower than the first reference value ⁇ 1, for example, in a state where a restart request is generated at a point P2 in FIG. is there.
  • This region 3 is a region where the rotation speed Ne of the engine 100 is low and the pinion gear 260 and the ring gear 110 can be engaged without synchronizing the pinion gear 260.
  • the engagement mode is selected as described with reference to FIG.
  • the starter control unit 304 first drives the actuator 232. Thereby, the pinion gear 260 is pushed out to the ring gear 110 side. When the engagement between the ring gear 110 and the pinion gear 260 is completed after the actuator 232 is driven at time t6, the motor 220 is driven. As a result, the engine 100 is cranked, and the rotational speed Ne of the engine 100 increases as indicated by a dashed curve W2. Thereafter, when engine 100 resumes self-sustaining operation, driving of actuator 232 and motor 220 is stopped.
  • the conventional starter cannot rotate the engine 100 independently.
  • the restart operation of the engine 100 is prohibited during the period (Tinh) from the speed (time t1 in FIG. 4) until the engine 100 stops (time t7 in FIG. 4)
  • the engine 100 can be restarted. Thereby, it is possible to reduce a sense of incongruity caused by a delay in engine restart for the driver.
  • FIG. 5 is a flowchart for illustrating the details of the operation mode setting control process executed by starter control unit 304 of ECU 300 in the present embodiment.
  • the flowchart shown in FIG. 5 is realized by executing a program stored in advance in the memory of ECU 300 at a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
  • step (hereinafter, step is abbreviated as S) 100 starter control unit 304 determines whether or not there is a request for starting engine 100.
  • starter control unit 304 does not need to start engine 100, so the process proceeds to S190 to select the standby mode.
  • starter control unit 304 next determines whether rotation speed Ne of engine 100 is equal to or smaller than second reference value ⁇ 2. Determine.
  • rotation speed Ne of engine 100 is greater than second reference value ⁇ 2 (NO in S110), this corresponds to region 1 in FIG. 4 where engine 100 can return independently, and starter control unit 304 performs the process. Proceeding to S190, the standby mode is selected.
  • starter control unit 304 determines whether rotation speed Ne of engine 100 is equal to or smaller than first reference value ⁇ 1. Determine.
  • the starter control unit 304 determines whether or not the engine 100 has been started in S180.
  • the determination of the completion of the start of the engine 100 is made, for example, by determining whether or not the engine rotation speed is greater than a threshold value ⁇ indicating a self-sustained operation after a predetermined time has elapsed from the start of driving the motor 220. Good.
  • ECU 300 selects all drive modes in S170. As a result, the actuator 232 is driven, the pinion gear 260 and the ring gear 110 are engaged, and the engine 100 is cranked.
  • FIG. 6 is a flowchart for illustrating the details of the process of the fluctuation suppression control executed by fluctuation suppression control unit 306 of ECU 300 in the present embodiment.
  • the flowchart shown in FIG. 6 is realized by executing a program stored in advance in the memory of ECU 300 at a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
  • fluctuation suppression control unit 306 determines whether or not there is a request for starting engine 100.
  • the fluctuation suppression control unit 306 determines that the full drive mode is selected when both the motor 220 and the actuator 232 are operating, for example. Further, for example, when the motor 220 is operating with the actuator 232 stopped operating, or when both the motor 220 and the actuator 232 are operating stopped, the fluctuation suppression control unit 306 It is determined that the drive mode is not selected.
  • the fluctuation suppression control unit 306 executes fluctuation suppression control. That is, the fluctuation suppression control unit 306 suppresses fluctuations in the load of the engine 100 by maintaining the operating state of at least one of the engine 100, the alternator 132, and the air conditioner compressor 134.
  • the fluctuation suppression control unit 306 ends this process.
  • the engine 100 when the rotation mode is selected in response to a start request of engine 100, the engine 100 is controlled so as to suppress fluctuations in the load of engine 100 before the time point when actuator 232 is operated.
  • the rotational speed Nm of the motor 220 cannot be synchronized with the rotational speed Ne of the engine 100 due to the fluctuation of the rotational speed Ne of the engine 100 during driving of the motor 220 when the rotational mode is selected. can do. That is, when the actuator 232 is operated after the motor 220 is driven, the rotational speed Ne of the engine 100 can be accurately predicted.
  • the drive start timing of the motor 220 for synchronizing the rotational speed Ne of the engine 100 and the rotational speed Nm of the motor 220 can be accurately set. Therefore, it is possible to provide an engine starter and an engine start method that suppress deterioration of engine startability.
  • the operating state of the device (the air conditioner compressor 134 or the alternator 132) that varies the load of the engine 100 is maintained from the first time after the start request of the engine 100 to the second time when the actuator 232 is operated. Since it can suppress that the load of the engine 100 fluctuates until the actuator 232 is actuated, it is possible to suppress deterioration in startability.
  • the engine 100 is operated until the actuator 232 is operated. Since it can suppress that a load fluctuates, startability can be prevented from deteriorating.
  • ECU 300 selects actuator one of the first mode and the second mode based on the rotational speed of engine 100 so that engine 100 is started. And the motor 220 are controlled. Thereby, an appropriate mode is selected according to the rotational speed of engine 100. Therefore, when the second mode is selected, engine 100 can be started more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 ECUは、エンジンの始動要求がある場合であって(S200にてYES)、回転モードが選択されている場合のモータの駆動中に(S210にてNO,S220にてYES)、変動抑制制御を実行するステップ(S230)と、全駆動モードが選択されている場合であって(S210にてYES)、かつ、ピニオンギヤとリングギヤとの係合が完了している場合(S240にてYES)、変動抑制制御の実行を解除するステップ(S250)とを含む、プログラムを実行する。

Description

エンジンの始動装置およびエンジンの始動方法
 本発明は、エンジンの始動装置およびエンジンの始動方法に関し、特に、エンジンのフライホイールまたはドライブプレートの外周に設けられたリングギヤと係合するようにピニオンギヤを移動させるアクチュエータと、ピニオンギヤを回転させるモータとが個別に制御されるスタータを制御する技術に関する。
 近年、エンジンなどの内燃機関を有する自動車においては、燃費削減や排気エミッション低減などを目的として、車両が停止し、かつ運転者によりブレーキペダルが操作された状態においてエンジンの自動停止を行なうとともに、たとえば、ブレーキペダルの操作量が零まで減少されるなどの、運転者による再発進の動作によって自動再始動をする、いわゆるアイドリングストップ機能を搭載したものがある。
 このアイドリングストップにおいて、エンジンの回転速度が比較的高い状態で、エンジンの再始動が行なわれる場合がある。このような場合において、エンジンを回転させるためのピニオンギヤの押出しとピニオンギヤの回転とが1つの駆動指令によって行なわれる従来のスタータでは、ピニオンギヤとエンジンのリングギヤとの係合が容易となるように、エンジンの回転速度が十分に低下するのを待ってスタータが駆動される。そうすると、エンジンの再始動要求から実際のエンジンのクランキングまでに時間遅れが発生してしまい、運転者に違和感を与えてしまうおそれがあった。
 特開2005-330813号公報(特許文献1)には、このような課題を解決するために、ピニオンギヤの係合動作およびピニオンギヤの回転動作が独立して実行可能な構成を有するスタータを用いて、停止要求発生直後のエンジン回転降下期間中に再始動要求が発生した場合に、ピニオンギヤの係合動作に先立ってピニオンギヤの回転動作を行なうとともに、ピニオンギヤの回転速度がエンジン回転速度に同期したときに、ピニオンギヤの係合動作を行なうことによってエンジンの再始動を行なう技術を開示する。
特開2005-330813号公報
 しかしながら、特開2005-330813号公報に記載の技術のように、ピニオンギヤの回転速度とエンジン回転速度とが同期したときに、ピニオンギヤの係合動作を行なう場合において、ピニオンギヤの係合動作前にエンジンの回転速度が急変動するとピニオンギヤの回転速度とエンジン回転速度とを同期させることが困難となるという問題がある。そのため、エンジンの始動性が悪化する場合がある。
 本発明は、上述の課題を解決するためになされたものであって、その目的は、エンジンの始動性の悪化を抑制するエンジンの始動装置およびエンジンの始動方法を提供することである。
 この発明のある局面に係るエンジンの始動装置は、エンジンを始動させるスタータと、エンジンのクランク軸に連結され、エンジンの負荷を変動する機器と、スタータの制御装置とを備える。スタータは、エンジンのクランク軸に連結された第1のギヤと係合可能な第2のギヤと、駆動状態において、第2のギヤを第1のギヤと係合する位置まで移動させるアクチュエータと、第2のギヤを回転させるモータとを含む。制御装置は、アクチュエータおよびモータの各々を個別に駆動可能である。制御装置は、アクチュエータの駆動に先立ってモータを駆動させる回転モードを有する。制御装置は、回転モードの実行時に、アクチュエータの駆動より前にエンジンおよび機器の負荷変動を抑制する。
 好ましくは、制御装置は、第1のギヤと第2のギヤとの係合が完了した場合に負荷の変動の抑制を解除する。
 さらに好ましくは、機器は、エアコンディショナコンプレッサおよびオルタネータのうちの少なくともいずれか一方を含む。制御装置は、始動要求後の第1時点からアクチュエータを作動させる第2時点までの間機器の作動状態を保持する。
 さらに好ましくは、制御装置は、始動要求後の第1時点からアクチュエータを作動させる第2時点までの間エンジンの作動状態を保持する。
 さらに好ましくは、制御装置は、始動要求後の第1時点からアクチュエータを作動させる第2時点までの間エンジンの負荷の変動を禁止するようにエンジンおよび機器のうちのいずれか一方を制御する。
 さらに好ましくは、機器は、エアコンディショナコンプレッサおよびオルタネータのうちの少なくともいずれか一方を含む。制御装置は、始動要求後の第1時点からアクチュエータを作動させる第2時点までの間機器の作動を禁止する。
 さらに好ましくは、制御装置は、始動要求後の第1時点からアクチュエータを作動させる第2時点までの間エンジンに対する制御値の変化を禁止する。
 さらに好ましくは、制御装置は、エンジンの回転速度に基づいて複数の制御モードのうちのいずれか一つを選択してエンジンが始動するようにアクチュエータとモータとを制御する。複数の制御モードは、回転モードの実行後に第1のギヤに向けて第2のギヤが移動するようにアクチュエータを作動させるための第1制御モードと、アクチュエータの作動を開始した後にモータを作動させるための第2制御モードとを含む。
 この発明の他の局面に係るエンジンの始動方法におけるエンジンには、エンジンを始動させるスタータと、エンジンのクランク軸に連結され、エンジンの負荷を変動する機器と、スタータの制御装置とが設けられる。スタータは、エンジンのクランク軸に連結された第1のギヤと係合可能な第2のギヤと、駆動状態において、第2のギヤを第1のギヤと係合する位置まで移動させるアクチュエータと、第2のギヤを回転させるモータとを含む。アクチュエータおよびモータの各々は、個別に駆動可能である。この始動方法は、アクチュエータの駆動に先立ってモータを駆動させる回転モードでアクチュエータおよびモータを駆動するステップと、回転モードの実行時に、アクチュエータの駆動より前にエンジンおよび機器の負荷変動を抑制するステップとを備える。
 エンジンの始動要求がある場合、アクチュエータを作動させる時点よりも前にエンジンの負荷の変動を抑制するようにエンジン100または機器を制御することによって、エンジンの回転速度の急変動を抑制することができる。そのため、モータの駆動後にアクチュエータを作動させる場合に、エンジンの回転速度を精度よく予測することができる。その結果、エンジンの回転速度とモータの回転速度とを同期させるためのモータの駆動開始タイミングを精度よく設定することができる。したがって、エンジンの始動性の悪化を抑制するエンジンの始動装置およびエンジンの始動方法を提供することができる。
車両の全体ブロック図である。 ECUの機能ブロック図である。 スタータの動作モードの遷移を説明するための図である。 エンジン始動動作時の駆動モードを説明するための図である。 ECUが実行する処理の制御構造を示すフローチャート(その1)である。 ECUが実行する処理の制御構造を示すフローチャート(その2)である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
 [エンジン始動装置の構成]
 図1は、車両10の全体ブロック図である。図1を参照して、車両10は、エンジン100と、バッテリ120と、スタータ200と、制御装置(以下ECU(Electronic Control Unit)とも称する。)300と、リレーRY1,RY2とを備える。また、スタータ200は、モータ220と、アクチュエータ232と、連結部240と、出力部材250と、ピニオンギヤ260とを含む。また、アクチュエータ232は、プランジャ210とソレノイド230とを含む。
 エンジン100は、車両10を走行するための駆動力を発生する。エンジン100の出力軸であるクランク軸111は、クラッチや減速機などを含んで構成される動力伝達装置を介在させて、駆動輪に接続される。
 エンジン100には、エンジン100に空気を供給する吸気通路166が設けられる。吸気通路166には、吸気通路166を流通する空気の流量を調整するためのスロットルバルブ164が設けられる。スロットルバルブ164は、スロットルモータ160によって作動する。スロットルモータ160は、ECU300からの制御信号THCに基づいて駆動する。スロットルバルブ164の位置、すなわち、スロットル開度は、スロットルポジションセンサ162によって検出される。スロットルポジションセンサ162は、検出値THをECU300へ出力する。
 エンジン100には、吸気バルブおよび排気バルブを駆動するためのバルブ駆動用アクチュエータ172が設けられるようにしてもよい。バルブ駆動用アクチュエータ172は、たとえば、吸気バルブおよび排気バルブを直接駆動することによって各開弁量を調整するアクチュエータであってもよいし、吸気バルブおよび排気バルブの閉じタイミングおよびリフト量を変更するためのアクチュエータであってもよい。バルブ駆動用アクチュエータ172は、ECUからの制御信号VBに基づいて駆動する。
 エンジン100には、回転速度センサ115が設けられる。回転速度センサ115は、エンジン100の回転速度Neを検出し、その検出結果をECU300へ出力する。
 バッテリ120は、充放電可能に構成された電力貯蔵要素である。バッテリ120は、リチウムイオン電池、ニッケル水素電池または鉛蓄電などの二次電池を含んで構成される。また、バッテリ120は、電気二重層キャパシタなどの蓄電素子により構成されてもよい。
 さらに、エンジン100には、エンジン100の負荷を変動させる機器として、オルタネータ132と、エアコンディショナコンプレッサ134とが設けられる。オルタネータ132の入力軸にはプーリ136が設けられる。また、エアコンディショナコンプレッサ134の入力軸には、プーリ138が設けられる。エンジン100のクランク軸111にはプーリ168が設けられる。プーリ136,138,168は、ベルト170を用いて連結される。したがって、エンジン100のクランク軸111の回転力は、プーリ168およびベルト170を経由してプーリ136,138に伝達される。
 オルタネータ132は、ECU300からの制御信号ALTに基づいて内蔵する電磁コイルを励磁することによってプーリ136に伝達された回転力を用いて発電する。オルタネータ132は、発電した電力を図示しないインバータやコンバータ等を経由してバッテリ120に供給することによってバッテリ120を充電する。なお、オルタネータ132は、オルタネータ132において発電された電力を図示しないインバータおよびDC/DCコンバータ127を経由してバッテリ120に供給することによってバッテリ120を充電するようにしてもよい。オルタネータ132の発電量は、ECU300により制御される。
 エアコンディショナコンプレッサ134は、ECU300からの制御信号ACに基づいて作動する。エアコンディショナコンプレッサ134には電磁クラッチ142が内蔵される。電磁クラッチ142は、ECU300からの制御信号ACに基づいて係合状態となったり、解放状態となったりする。
 電磁クラッチ142の状態が係合状態になる場合、クランク軸111からベルト170を経由してプーリ138に伝達される回転力は、エアコンディショナコンプレッサ134の入力軸に伝達される。そのため、プーリ138とエアコンディショナコンプレッサ134の入力軸とが一体的に回転することによってエアコンディショナコンプレッサ134が作動する。
 また、電磁クラッチ142の状態が解放状態になる場合、クランク軸111からベルト170を経由してプーリ138に伝達される回転力は、エアコンディショナコンプレッサ134の入力軸に伝達されない。そのため、この場合、プーリ138とエアコンディショナコンプレッサ134の入力軸とのうちのプーリ138のみが回転する。
 本実施の形態に係るエンジン100の始動装置は、エンジン100を始動させるスタータ200と、エンジンのクランク軸111に連結され、エンジン100の負荷を変動する機器(オルタネータ132,エアコンディショナコンプレッサ134)と、スタータ200の制御装置であるECU300とを備える。
 バッテリ120は、ECU300によって制御されるリレーRY1,RY2を介在させて、スタータ200に接続される。そして、バッテリ120は、リレーRY1,RY2が閉成されることによって、スタータ200に駆動用の電源電圧を供給する。なお、バッテリ120の負極は車両10のボディアースに接続される。
 バッテリ120には、電圧センサ125が設けられる。電圧センサ125は、バッテリ120の出力電圧VBを検出し、その検出値をECU300へ出力する。
 バッテリ120の電圧は、DC/DCコンバータ127を経由して、ECU300、および空調装置のインバータなどの補機に供給される。DC/DCコンバータ127は、ECU300などに供給される電圧を維持するようにECU300により制御される。たとえば、モータ220を駆動してエンジン100をクランキングすることによってバッテリ120の電圧が一時的に低下することに鑑みて、モータ220を駆動するときに昇圧するように制御される。
 後述するように、モータ220は、エンジン100の始動要求信号が出力された場合に駆動するように制御されるため、DC/DCコンバータ127は、エンジン100の始動要求信号が出力された場合に昇圧するように制御される。DC/DCコンバータ127の制御方法はこれに限定されない。
 リレーRY1の一方端はバッテリ120の正極に接続され、リレーRY1の他方端はスタータ200内のソレノイド230の一方端に接続される。リレーRY1は、ECU300からの制御信号SE1により制御され、バッテリ120からソレノイド230への電源電圧の供給と遮断とを切替える。
 リレーRY2の一方端はバッテリ120の正極に接続され、リレーRY2の他方端はスタータ200内のモータ220に接続される。リレーRY2は、ECU300からの制御信号SE2により制御され、バッテリ120からモータ220へ電源電圧の供給と遮断とを切替える。また、リレーRY2とモータ220とを結ぶ電力線には、電圧センサ130が設けられる。電圧センサ130は、モータ電圧VMを検出して、その検出値をECU300へ出力する。
 本実施の形態において、スタータ200は、エンジン100のクランク軸111に連結された第1のギヤと係合可能な第2のギヤと、駆動状態において、第2のギヤを第1のギヤと係合する位置まで移動させるアクチュエータ232と、第2のギヤを回転させるモータ220とを含む。本実施の形態において「第1のギヤ」は、エンジン100のクランク軸111に連結されたリングギヤ110であり、「第2のギヤ」は、ピニオンギヤ260である。
 上述のように、スタータ200内のモータ220およびソレノイド230への電源電圧の供給は、リレーRY1,RY2によってそれぞれ独立に制御することが可能である。
 出力部材250は、モータ内部のロータ(図示せず)の回転軸と、たとえば直線スプラインなどで結合される。また、出力部材250のモータ220とは反対側の端部には、ピニオンギヤ260が設けられる。リレーRY2が閉成されることによって、バッテリ120から電源電圧が供給されてモータ220が回転すると、出力部材250は、ロータの回転動作をピニオンギヤ260に伝達して、ピニオンギヤ260を回転させる。
 ソレノイド230の一方端は上述のようにリレーRY1に接続され、ソレノイド230の他方端はボディアースに接続される。リレーRY1が閉成されソレノイド230が励磁されると、ソレノイド230はプランジャ210を矢印の方向に吸引する。
 プランジャ210は、連結部240を介して出力部材250と結合される。ソレノイド230が励磁されてプランジャ210が矢印の方向に吸引される。これにより、支点245が固定された連結部240によって、出力部材250が、図1に示された待機位置から、プランジャ210の動作方向とは逆の方向、すなわちピニオンギヤ260がモータ220の本体から遠ざかる方向に動かされる。また、プランジャ210は、図示しないばね機構によって、図1中の矢印とは逆向きの力が付勢されており、ソレノイド230が非励磁となると、待機位置に戻される。
 このように、ソレノイド230が励磁されることによって、出力部材250が軸方向に動作すると、ピニオンギヤ260が、エンジン100のクランク軸111に取付けられたフライホイールまたはドライブプレートの外周に設けられたリングギヤ110と係合する。そして、ピニオンギヤ260とリングギヤ110とが係合した状態で、ピニオンギヤ260が回転動作することによって、エンジン100がクランキングされ、エンジン100が始動される。
 このように、本実施の形態においては、エンジン100のフライホイールまたはドライブプレートの外周に設けられたリングギヤ110と係合するようにピニオンギヤ260を移動させるアクチュエータ232と、ピニオンギヤ260を回転させるモータ220とが個別に制御される。
 なお、図1には図示しないが、リングギヤ110の回転動作によって、モータ220のロータが回転されないように、出力部材250とモータ220のロータ軸の間にワンウェイクラッチが設けられてもよい。
 また、図1におけるアクチュエータ232は、ピニオンギヤ260の回転をリングギヤ110に伝達でき、かつピニオンギヤ260およびリングギヤ110が係合した状態と、両方が非係合の状態とを切替えることができる機構であれば、上記のような機構に限られるものではなく、たとえば、出力部材250の軸を、ピニオンギヤ260の径方向に動かすことによってピニオンギヤ260とリングギヤ110とが係合するような機構であってもよい。
 ECU300は、いずれも図示しないが、CPU(Central Processing Unit)と、記憶装置と、入出力バッファとを含み、各センサの入力や各機器への制御指令の出力を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、一部を専用のハードウェア(電子回路)で構築して処理することも可能である。
 ECU300は、アクセルペダル140に設けられたセンサ(図示せず)からのアクセルペダル140の操作量を表わす信号ACCを受ける。ECU300は、ブレーキペダル150に設けられたセンサ(図示せず)からのブレーキペダル150の操作量を表わす信号BRKを受ける。また、ECU300は、運転者によるイグニッション操作などによる始動操作信号IG-ONを受ける。ECU300は、これらの情報に基づいて、エンジン100の始動要求信号および停止要求信号を生成し、それに従って制御信号SE1,SE2を出力してスタータ200の動作を制御する。
 ECU300は、アクチュエータ232およびモータ220の各々を個別に駆動させることができる。また、ECU300は、アクチュエータ232の駆動に先立ってモータ220を駆動させる回転モードを有する。本実施の形態において、ECU300は、回転モード実行時に、アクチュエータ232の駆動より前にエンジン100および上記した機器(すなわち、オルタネータ132およびエアコンディショナコンプレッサ134)の負荷変動を抑制する。
 図2を参照して、ECU300の機能について説明する。なお、以下に説明するECU300の機能は、ソフトウェアにより実現してもよく、ハードウェアにより実現してもよく、ソフトウェアとハードウェアの協働により実現してもよい。
 ECU300は、判定部302と、スタータ制御部304と、変動抑制制御部306とを備える。判定部302は、エンジン100を始動要求があるか否かを判定する。判定部302は、たとえば、運転者によるブレーキペダル150の操作量が零まで減少すると、エンジン100の始動要求があると判定する。より具体的には、判定部302は、エンジン100および車両10が停止した状態において、運転者によるブレーキペダル150の操作量が零まで減少すると、エンジン100の始動要求があると判定する。判定部302がエンジン100の始動要求があるか否かを判定する方法はこれに限らない。ECU300は、エンジン100の始動要求があると判定した場合、エンジン100の始動要求信号を生成し、それに従って制御信号SE1,SE2を出力する。
 本実施の形態において、スタータ制御部304は、エンジン100の始動要求信号が生成された場合、すなわち、エンジン100の始動要求があると判定された場合、エンジン100の回転速度Neに基づいて複数の制御モードのうちのいずれか一つを選択して、エンジン100が始動するようにアクチュエータ232およびモータ220を制御する。複数の制御モードは、ピニオンギヤ260がリングギヤ110に向かって移動した後、ピニオンギヤ260が回転を開始するようにアクチュエータ232およびモータ220が制御される第1のモードと、ピニオンギヤ260が回転を開始した後、ピニオンギヤ260がリングギヤ110に向かって移動するようにアクチュエータ232およびモータ220が制御される第2のモードとを含む。
 なお、スタータ制御部304は、エンジン100の始動要求があると判定された場合、複数の制御モードのうちのいずれか一つを選択することなく、ピニオンギヤ260が回転を開始した後、ピニオンギヤ260がリングギヤ110に向かって移動するようにアクチュエータ232およびモータ220を制御するものであってもよい。
 スタータ制御部304は、第1のモードを選択した場合には、判定部302によってエンジン100の始動要求があると判定されたときにピニオンギヤ260がリングギヤ110に向かって移動するようにアクチュエータ232を制御し、ピニオンギヤ260がリングギヤ110に向かって移動した後に、ピニオンギヤ260が回転するようにモータ220を制御する。
 スタータ制御部304は、第2のモードを選択した場合には、判定部302によってエンジン100の始動要求があると判定されたときにピニオンギヤ260が回転を開始するようにモータ220が制御され、ピニオンギヤ260が回転を開始した後にピニオンギヤ260がリングギヤ110に向かって移動するようにアクチュエータ232を制御する。
 スタータ制御部304は、エンジン100の回転速度Neが予め定められた第1の基準値α1以下である場合に、第1のモードを選択する。スタータ制御部304は、エンジン100の回転速度Neが第1の基準値α1より大きい場合に、第2のモードを選択する。
 変動抑制制御部306は、第2のモードが選択された場合に、スタータ制御部304によってアクチュエータ232を作動させる時点よりも前にエンジン100の負荷の変動を抑制するようにエンジン100と、エンジン100に連結され、作動によってエンジン100の負荷を変動させる機器とのうちの少なくともいずれか一方を制御する。
 具体的には、変動抑制制御部306は、スタータ制御部304によって第2のモードが選択され、判定部302によってエンジン100の始動要求があると判定されたときに、始動要求後の第1時点からスタータ制御部304によってアクチュエータ232を作動させる第2時点までの間にエンジン100の負荷の変動を抑制するようにエンジン100または作動によってエンジン100の負荷を変動させる機器を制御する。第1時点は、始動要求があると判定された時点であってもよいし、モータ220の作動を開始する時点であってもよく、少なくともアクチュエータ232を作動させる前にエンジン100の回転速度Neが急変動しないように設定される時点である。
 本実施の形態において、エンジン100の負荷を変動させる機器は、オルタネータ132およびエアコンディショナコンプレッサ134のうちのいずれか一方であるとして説明するが、オルタネータ132およびエアコンディショナコンプレッサ134に加えて、ベルト170に連結される機器であれば特にこれらに限定されるものではない。たとえば、機器は、ECU300からの制御信号に応じてエンジン100の動力を用いて作動するパワーステアリングの油圧を発生させるためのポンプであってもよい。
 変動抑制制御部306は、第2のモードが選択された場合に、始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間機器の作動状態を保持することによってエンジン100の負荷の変動を抑制する。
 変動抑制制御部306は、たとえば、第2のモードが選択された場合であって、かつ、始動要求後の第1時点においてオルタネータ132が作動している場合、第1時点から第2時点までの間オルタネータ132における発電量を保持するようにオルタネータ132を制御する。
 変動抑制制御部306は、たとえば、第2のモードが選択された場合であって、かつ、始動要求後の第1時点において電磁クラッチ142の状態が係合状態であり、エアコンディショナコンプレッサ134が作動している場合、第1時点から第2時点までの間電磁クラッチ142の係合状態およびエアコンディショナコンプレッサ134の作動量を保持するようにエアコンディショナコンプレッサ134を制御する。
 さらに、変動抑制制御部306は、たとえば、第2のモードが選択された場合であって、かつ、始動要求後の第1時点においてオルタネータ132およびエアコンディショナコンプレッサ134がいずれも作動している場合、第1時点から第2時点までの間オルタネータ132の作動量、電磁クラッチ142の係合状態およびエアコンディショナコンプレッサ134の作動量を保持するようにオルタネータ132およびエアコンディショナコンプレッサ134を制御する。
 さらに、変動抑制制御部306は、第2のモードが選択された場合、始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100の作動状態を保持する。変動抑制制御部306は、たとえば、スロットルバルブの開度を保持するようにスロットルモータ160を制御したり、吸気バルブおよび排気バルブの各開弁量あるいはリフト量および閉じタイミングの各々を保持するようにバルブ駆動用アクチュエータ172を制御したりしてもよい。
 あるいは、変動抑制制御部306は、第2のモードが選択された場合、始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100の負荷の変動を禁止するようにエンジン100および機器のうちのいずれか一方を制御するようにしてもよい。
 変動抑制制御部306は、たとえば、第2のモードが選択された場合、始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間機器の作動を禁止する。変動抑制制御部306は、たとえば、空調装置を作動させる操作あるいは自動的に室内の温度を調整するために空調装置を作動させる要求がある場合においても電磁クラッチ142が係合状態となることを禁止する。
 あるいは、変動抑制制御部306は、たとえば、オルタネータ132の作動要求がある場合にオルタネータ132の作動を禁止する。
 また、変動抑制制御部306は、第2のモードが選択された場合、始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100に対する制御値の変化を禁止する。エンジン100に対する制御値とは、たとえば、スロットル開度の制御値、吸気バルブおよび排気バルブの各開弁量の制御値または吸気バルブおよび排気バルブのリフト量および閉じタイミングの各々の制御値である。変動抑制制御部306は、第2のモードが選択された場合、始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間たとえばスロットルバルブ164が全閉となることを禁止したり、あるいは、吸気バルブおよび排気バルブが全閉となることを禁止したりする。
 変動抑制制御部306は、リングギヤ110とピニオンギヤ260との係合が完了した場合に負荷の変動の抑制あるいは禁止を解除する。変動抑制制御部306は、たとえば、ソレノイド230への電流値がソレノイド230が駆動していることを示す値である場合にリングギヤ110とピニオンギヤ260との係合が完了した判定してもよい。あるいは、変動抑制制御部306は、たとえば、モータ220およびアクチュエータ232が作動してから予め定められた時間が経過するまでモータ220の回転速度Nmとエンジン100の回転速度Neとの差の絶対値が予め定められた値以下の状態が継続している場合に、リングギヤ110とピニオンギヤ260との係合が完了したと判定してもよい。
 [スタータの動作モードの説明]
 図3は、本実施の形態におけるスタータ200の動作モードの遷移を説明するための図である。本実施の形態におけるスタータ200の動作モードには、待機モード410、係合モード420、回転モード430、および全駆動モード440が含まれる。
 前述した第1のモードは、係合モード420を経て、全駆動モード440に移行するモードである。前述した第2のモードは、回転モード430を経て、全駆動モード440に移行するモードである。
 待機モード410は、スタータ200のアクチュエータ232およびモータ220の両方の駆動を停止させるモードであって、エンジン100の始動要求がない場合に選択されるモードである。待機モード410は、スタータ200の初期状態に相当し、エンジン100の始動動作前、エンジン100が始動完了した後、およびエンジン100の始動が失敗したときなどにおいて、スタータ200の駆動が不要となった場合に選択される。
 全駆動モード440は、スタータ200のアクチュエータ232およびモータ220の両方を駆動させるモードである。この全駆動モード440が選択された場合、ピニオンギヤ260とリングギヤ110が係合した状態で、ピニオンギヤ260を回転させるようにモータ220およびアクチュエータ232が制御される。これによって、実際にエンジン100がクランキングされて始動動作が開始される。
 本実施の形態におけるスタータ200は、上述のように、アクチュエータ232およびモータ220の各々を、独立して駆動することができる。そのため、待機モード410から全駆動モード440に遷移する過程において、モータ220の駆動に先立ってアクチュエータ232を駆動する場合(すなわち、係合モード420に相当)と、アクチュエータ232の駆動に先立ってモータ220を駆動する場合(すなわち、回転モード430に相当)とがある。
 この係合モード420および回転モード430の選択は、基本的には、エンジン100の再始動要求が発生したときの、エンジン100の回転速度Neに基づいて行なわれる。
 係合モード420は、アクチュエータ232とモータ220とのうちアクチュエータ232のみが駆動され、モータ220が駆動されていない状態である。このモードは、ピニオンギヤ260が停止した状態においても、ピニオンギヤ260とリングギヤ110とが係合可能である場合に選択される。具体的には、エンジン100が停止している状態、あるいはエンジン100の回転速度Neが十分に低下した状態(Ne≦第1の基準値α1)の場合に、この係合モード420が選択される。
 エンジン100の始動要求信号が生成された後にアクチュエータ232およびモータ220が係合モード420が選択される。
 そして、係合モード420が動作モードとして選択された後に、係合モード420から全駆動モード440に動作モードが遷移する。すなわち、全駆動モード440が選択されてアクチュエータ232およびモータ220が制御される。すなわち、本実施の形態においては、アクチュエータ232の駆動開始から予め定められた時間が経過したことに基づいて、ピニオンギヤ260とリングギヤ110との係合が完了したと判定される。
 一方、回転モード430は、アクチュエータ232とモータ220とのうちモータ220のみが駆動され、アクチュエータ232が駆動されていない状態である。このモードは、たとえば、エンジン100の停止要求直後に、エンジン100の再始動要求が出力されたような場合に、エンジン100の回転速度Neが相対的に高いとき(α1<Ne≦第2の基準値α2)に選択される。
 エンジン100の始動要求信号が生成された場合に、アクチュエータ232およびモータ220が回転モード430で制御される。
 このように、エンジン100の回転速度Neが高いときには、ピニオンギヤ260を停止したままの状態では、ピニオンギヤ260とリングギヤ110との間の速度差が大きく、ピニオンギヤ260とリングギヤ110との係合が困難となる可能性がある。そのため、回転モード430においては、アクチュエータ232の駆動に先立ってモータ220のみが駆動され、リングギヤ110の回転速度Neとピニオンギヤ260の回転速度とを同期させる。そして、リングギヤ110の回転速度Neとピニオンギヤ260の回転速度との差が十分に小さくなったことに応じて同期が成立したと判定されたときにアクチュエータ232が駆動され、リングギヤ110とピニオンギヤ260との係合が行なわれる。そして、動作モードが回転モード430から全駆動モード440へ遷移する。
 本実施の形態において同期の成立の判定としては、具体的には、エンジン100の回転速度Neとピニオンギヤ260の回転速度(クランク軸換算のモータ220の回転速度Nm)との相対回転速度Ndiff(=Ne-Nm)が所定のしきい値の範囲内となっているか否かによって行なう(0≦β1≦Ndiff<β2)。なお、同期の成立の判定を、相対回転速度Ndiffの絶対値がしきい値βより小さいか否か(|Ndiff|<β)によって判定することも可能であるが、エンジン100の回転速度Neのほうがピニオンギヤ260の回転速度より高い状態で係合させるほうがより好ましい。
 全駆動モード440の場合に、エンジン100の始動が完了し、エンジン100が自立運転を開始したことに応じて、運転モードは全駆動モード440から待機モード410へ戻される。
 このように、エンジン100の始動要求信号が出力された場合、すなわち、エンジン100を始動すると判定された場合、係合モード420を経て、全駆動モード440に移行する第1のモードと、回転モード430を経て、全駆動モード440に移行する第2のモードとのうちのいずれか一方のモードで、アクチュエータ232およびモータ220が制御される。
 図4は、本実施の形態において、エンジン始動動作時に選択される2つの駆動モード(第1のモード,第2のモード)によるエンジンの始動制御およびエンジンの始動制御と並行して実行される変動抑制制御を説明するための図である。
 図4の横軸には時間が示され、縦軸には、エンジン100の回転速度Ne、第1のモード時および第2のモード時における、アクチュエータ232およびモータ220の駆動状態が示される。
 時刻t0において、たとえば車両10が停止し、かつ運転者によりブレーキペダル150が操作されているという条件が満たされたことによってエンジン100の停止要求が生成され、エンジン100の燃焼が停止された場合を想定する。この場合に、エンジン100が再始動されなければ、実線の曲線W0のように、徐々にエンジン100の回転速度Neが低下し、最終的にエンジン100の回転が停止する。
 次に、エンジン100の回転速度Neの低下中に、たとえば、運転者によるブレーキペダル150の操作量が零になったことによってエンジン100の再始動要求が生成された場合について考える。この場合には、エンジン100の回転速度Neによって3つの領域に分類される。
 第1の領域(領域1)は、エンジン100の回転速度Neが第2の基準値α2よりも高い場合であり、たとえば、図4中の点P0において再始動要求が生成されたような状態である。
 この領域1は、エンジン100の回転速度Neが十分に高いので、燃料噴射および点火動作によって、スタータ200を用いなくともエンジン100が始動可能な領域である。すなわち、領域1は、エンジン100が自立復帰可能な領域である。したがって、領域1においては、スタータ200の駆動が禁止される。なお、上述の第2の基準値α2については、モータ220の最高回転速度によって制限される場合もある。
 第2の領域は(領域2)は、エンジン100の回転速度Neが第1の基準値α1および第2の基準値α2の間にある場合であり、図4中の点P1において再始動要求が生成されたような状態である。
 この領域2は、エンジン100は自立復帰できないが、エンジン100の回転速度Neが比較的高い状態の領域である。この領域においては、図3で説明したように、回転モード(第2のモード)が選択される。
 時刻t2において、エンジン100の再始動要求が生成されると、スタータ制御部304は、まずモータ220を駆動させる。これによって、ピニオンギヤ260が回転し始める。また、変動抑制制御部306は、モータ220の駆動にともなって変動抑制制御を実行する。変動抑制制御については上述したとおりであるため、その詳細な説明は繰返さない。変動抑制制御が実行されることによって、エンジン100の回転速度Neの急変動が抑制される。
 時刻t3において、アクチュエータ232が駆動される。時刻t4において、アクチュエータ232が駆動されることによってリングギヤ110とピニオンギヤ260との係合が完了すると変動抑制制御の実行が解除される。そして、リングギヤ110とピニオンギヤ260とが係合されると、エンジン100がクランキングされて、破線の曲線W1のようにエンジン100の回転速度Neが増加する。その後、エンジン100が自立運転を再開すると、アクチュエータ232およびモータ220の駆動が停止される。
 第3の領域(領域3)は、エンジン100の回転速度Neが第1の基準値α1よりも低い場合であり、たとえば、図4中の点P2において再始動要求が生成されたような状態である。
 この領域3は、エンジン100の回転速度Neが低く、ピニオンギヤ260を同期させなくても、ピニオンギヤ260とリングギヤ110との係合が可能な領域である。この領域においては、図3で説明したように、係合モードが選択される。
 時刻t5において、エンジン100の再始動要求が生成されると、スタータ制御部304は、まずアクチュエータ232を駆動させる。これによって、ピニオンギヤ260がリングギヤ110側に押し出される。時間t6において、アクチュエータ232が駆動された後にリングギヤ110とピニオンギヤ260との係合が完了すると、モータ220が駆動される。これによってエンジン100がクランキングされて破線の曲線W2のように、エンジン100の回転速度Neが増加する。その後、エンジン100が自立運転を再開すると、アクチュエータ232およびモータ220の駆動が停止される。
 このように、アクチュエータ232とモータ220とが独立して駆動可能なスタータ200を用いて、エンジン100の再始動制御を行なうことによって、従来のスタータでは、エンジン100の自立復帰が不可能となる回転速度(図4中の時刻t1)から、エンジン100が停止するまで(図4中の時刻t7)の期間(Tinh)中エンジン100の再始動動作が禁止されていた場合に比べて、より短時間でエンジン100を再始動することが可能となる。これによって、運転者に対して、エンジン再始動が遅れてしまうことによる違和感を低減することができる。
 [動作モード設定制御の説明]
 図5は、本実施の形態において、ECU300のスタータ制御部304で実行される動作モード設定制御処理の詳細を説明するためのフローチャートである。図5に示すフローチャートは、ECU300のメモリに予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図1および図5を参照して、ステップ(以下、ステップをSと略す。)100において、スタータ制御部304は、エンジン100の始動要求があるか否かを判定する。
 エンジン100の始動要求がない場合は(S100にてNO)、スタータ制御部304は、エンジン100の始動動作は不要であるので、処理をS190に進めて、待機モードを選択する。
 エンジン100の始動要求がある場合は(S100にてYES)、処理がS110に進められ、スタータ制御部304は、次にエンジン100の回転速度Neが第2の基準値α2以下であるか否かを判定する。
 エンジン100の回転速度Neが第2の基準値α2より大きい場合(S110にてNO)は、エンジン100の自立復帰が可能な図4における領域1に対応するので、スタータ制御部304は、処理をS190に進めて待機モードを選択する。
 エンジン100の回転速度Neが第2の基準値α2以下の場合(S110にてYES)は、スタータ制御部304は、さらにエンジン100の回転速度Neが第1の基準値α1以下であるか否かを判定する。
 エンジン100の回転速度Neが第1の基準値α1以下の場合(S120にてYES)は、図4における領域1に対応するので、処理がS145に進められ、スタータ制御部304は、係合モードを選択する。そして、スタータ制御部304は、制御信号SE1を出力してリレーRY1を閉成することによってアクチュエータ232を駆動する。このとき、モータ220は駆動されない。
 その後、S170に処理が進められ、スタータ制御部304は、全駆動モードを選択する。そして、スタータ200によって、エンジン100のクランキングが開始される。
 次に、スタータ制御部304は、S180にて、エンジン100の始動が完了したか否かを判定する。エンジン100の始動完了の判定については、たとえば、モータ220の駆動開始から所定時間が経過した後に、エンジン回転速度が、自立運転を示すしきい値γより大きいか否かによって判定するようにしてもよい。
 エンジン100の始動が完了していない場合(S180にてNO)は、S170に処理が戻され、エンジン100のクランキングが継続される。
 エンジン100の始動が完了した場合(S180にてYES)は、S190に処理が進められて、ECU300は、待機モードを選択する。
 一方、エンジン100の回転速度Neが第1の基準値α1より大きい場合(S120にてNO)は、処理がS140に進められ、ECU300は、回転モードを選択する。そして、ECU300は、制御信号SE2を出力してリレーRY2を閉成することによってモータ220を駆動する。このとき、アクチュエータ232は駆動されない。
 そして、ECU300は、S170にて、全駆動モードを選択する。これによって、アクチュエータ232が駆動されて、ピニオンギヤ260とリングギヤ110が係合し、エンジン100がクランキングされる。
 [変動抑制制御の説明]
 図6は、本実施の形態において、ECU300の変動抑制制御部306で実行される変動抑制制御の処理の詳細を説明するためのフローチャートである。図6に示すフローチャートは、ECU300のメモリに予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図1および図6を参照して、S200において、変動抑制制御部306は、エンジン100の始動要求があるか否かを判定する。
 エンジン100の始動要求がない場合(S100にてNO)は、処理はS200に戻される。エンジン100の始動要求がある場合(S100にてYES)、処理はS210に進められ、変動抑制制御部306は、全駆動モードが選択されているか否かを判定する。
 変動抑制制御部306は、たとえば、モータ220とアクチュエータ232がいずれも作動中である場合に全駆動モードが選択されていると判定する。また、変動抑制制御部306は、たとえば、アクチュエータ232の作動を停止した状態でモータ220が作動している場合、あるいは、モータ220およびアクチュエータ232のいずれもが作動を停止した状態である場合、全駆動モードが選択されていないと判定する。
 全駆動モードが選択されていないと判定された場合(S210にてNO)、処理はS220に進められ、モータ220の駆動中であるか否かを判定する。
 モータ220が駆動中である場合(S220にてYES)、変動抑制制御部306は、変動抑制制御を実行する。すなわち、変動抑制制御部306は、エンジン100、オルタネータ132およびエアコンディショナコンプレッサ134のうちの少なくともいずれか一方の作動状態を保持することによって、エンジン100の負荷の変動を抑制する。
 モータ220が駆動中でない場合(S220にてNO)、変動抑制制御部306は、この処理は終了する。
 また、全駆動モードが選択されていると判定された場合(S210にてYES)、処理はS240に進められ、変動抑制制御部306は、ピニオンギヤ260とリングギヤ110との係合が完了したか否かを判定する。
 ピニオンギヤ260とリングギヤ110との係合が完了したと判定された場合(S230にてYES)、処理はS250に進められ、変動抑制制御部306は、変動抑制制御を解除する。ピニオンギヤ260とリングギヤ110との係合が完了していないと判定された場合(S230にてNO)、変動抑制制御部306は、この処理を終了する。
 以上のように、本実施の形態においては、エンジン100の始動要求に応じて回転モードが選択された場合、アクチュエータ232を作動させる時点よりも前にエンジン100の負荷の変動を抑制するようにエンジン100、オルタネータ132およびエアコンディショナコンプレッサ134のうちの少なくともいずれか一方を制御することによって、エンジン100の回転速度Neの急変動を抑制することができる。そのため、回転モードの選択時のモータ220の駆動中に、エンジン100の回転速度Neが変動することに起因してモータ220の回転速度Nmとエンジン100の回転速度Neとが同期できなくなることを回避することができる。すなわち、モータ220の駆動後にアクチュエータ232を作動させる場合に、エンジン100の回転速度Neを精度よく予測することができる。その結果、エンジン100の回転速度Neとモータ220の回転速度Nmとを同期させるためのモータ220の駆動開始タイミングを精度よく設定することができる。したがって、エンジンの始動性の悪化を抑制するエンジンの始動装置およびエンジンの始動方法を提供することができる。
 また、リングギヤ110とピニオンギヤ260との係合が完了した場合に負荷の変動の抑制を解除する場合には、エンジン100の負荷を変動させる機器を作動させたり、作動を停止させたりすることができるため、車両の状態を所望の状態に制御することができる。
 さらに、エンジン100の始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100の負荷を変動させる機器(エアコンディショナコンプレッサ134またはオルタネータ132)の作動状態を保持する場合には、アクチュエータ232を作動させるまでエンジン100の負荷が変動することを抑制することができるため、始動性の悪化を抑制することができる。
 また、エンジン100の始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100の作動状態を保持する場合には、アクチュエータ232を作動させるまでエンジン100の負荷が変動することを抑制することができるため、始動性の悪化を抑制することができる。
 また、エンジン100の始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100の負荷の変動を禁止するようにエンジン100またはエンジン100の負荷を変動させる機器を制御する場合には、アクチュエータ232を作動させるまでエンジン100の負荷が変動することを抑制することができるため、始動性の悪化を抑制することができる。
 さらに、エンジン100の始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100の負荷を変動させる機器の作動を禁止する場合には、アクチュエータ232を作動させるまでエンジン100の負荷が変動することを抑制することができるため、始動性の悪化を抑制することができる。
 そして、エンジン100の始動要求後の第1時点からアクチュエータ232を作動させる第2時点までの間エンジン100に対する制御値の変化を禁止する場合には、アクチュエータ232を作動させるまでエンジン100の負荷が変動することを抑制することができるため、始動性の悪化を抑制することができる。
 また、本実施の形態において、ECU300は、エンジン100の回転速度に基づいて第1のモードと第2のモードとのうちのいずれか一方のモードを選択してエンジン100が始動するようにアクチュエータ232とモータ220とを制御する。これによって、エンジン100の回転速度に応じて適切なモードが選択される。そのため、第2のモードが選択された場合には、より確実にエンジン100を始動させることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 車両、100 エンジン、110 リングギヤ、111 クランク軸、115 回転速度センサ、120 バッテリ、125 電圧センサ、127 DC/DCコンバータ、130 電圧センサ、132 オルタネータ、134 エアコンディショナコンプレッサ、136,138,168 プーリ、140 アクセルペダル、142 電磁クラッチ、150 ブレーキペダル、160 スロットルモータ、162 スロットルポジションセンサ、164 スロットルバルブ、166 吸気通路、170 ベルト、172 バルブ駆動用アクチュエータ、200 スタータ、210 プランジャ、220 モータ、230 ソレノイド、232 アクチュエータ、240 連結部、245 支点、250 出力部材、260 ピニオンギヤ、300 ECU、302 判定部、304 スタータ制御部、306 変動抑制制御部。

Claims (9)

  1.  エンジンの始動装置であって、
     前記エンジン(100)を始動させるスタータ(200)と、
     前記エンジン(100)のクランク軸(111)に連結され、前記エンジン(100)の負荷を変動する機器(132,134)と、
     前記スタータ(200)の制御装置(300)とを備え、
     前記スタータ(200)は、
     前記エンジン(100)の前記クランク軸(111)に連結された第1のギヤ(110)と係合可能な第2のギヤ(260)と、
     駆動状態において、前記第2のギヤ(260)を前記第1のギヤ(110)と係合する位置まで移動させるアクチュエータ(232)と、
     前記第2のギヤ(260)を回転させるモータ(220)とを含み、
     前記制御装置(300)は、前記アクチュエータ(232)および前記モータ(220)の各々を個別に駆動可能であり、
     前記制御装置(300)は、前記アクチュエータ(232)の駆動に先立って前記モータ(220)を駆動させる回転モードを有し、
     前記回転モードの実行時に、前記アクチュエータ(232)の駆動より前に前記エンジン(100)および前記機器(132,134)の負荷変動を抑制する、エンジンの始動装置。
  2.  前記制御装置(300)は、前記第1のギヤ(110)と前記第2のギヤ(260)との係合が完了した場合に前記負荷の変動の抑制を解除する、請求の範囲第1項に記載のエンジンの始動装置。
  3.  前記機器は、エアコンディショナコンプレッサ(134)およびオルタネータ(132)のうちの少なくともいずれか一方を含み、
     前記制御装置(300)は、前記始動要求後の第1時点から前記アクチュエータ(232)を作動させる第2時点までの間前記機器(132,134)の作動状態を保持する、請求の範囲第1項に記載のエンジンの始動装置。
  4.  前記制御装置(300)は、前記始動要求後の第1時点から前記アクチュエータ(232)を作動させる第2時点までの間前記エンジン(100)の作動状態を保持する、請求の範囲第1項に記載のエンジンの始動装置。
  5.  前記制御装置(300)は、前記始動要求後の第1時点から前記アクチュエータ(232)を作動させる第2時点までの間前記エンジン(100)の負荷の変動を禁止するように前記エンジン(100)および前記機器(132,134)のうちのいずれか一方を制御する、請求の範囲第1項に記載のエンジンの始動装置。
  6.  前記機器は、エアコンディショナコンプレッサ(134)およびオルタネータ(132)のうちの少なくともいずれか一方を含み、
     前記制御装置(300)は、前記始動要求後の第1時点から前記アクチュエータ(232)を作動させる第2時点までの間前記機器の作動を禁止する、請求の範囲第5項に記載のエンジンの始動装置。
  7.  前記制御装置(300)は、前記始動要求後の第1時点から前記アクチュエータ(232)を作動させる第2時点までの間前記エンジン(100)に対する制御値の変化を禁止する、請求の範囲第5項に記載のエンジンの始動装置。
  8.  前記制御装置(300)は、前記エンジン(100)の回転速度に基づいて複数の制御モードのうちのいずれか一つを選択して前記エンジン(100)が始動するように前記アクチュエータ(232)と前記モータ(220)とを制御し、
     前記複数の制御モードは、前記回転モードの実行後に前記第1のギヤ(110)に向けて前記第2のギヤ(260)が移動するように前記アクチュエータ(232)を作動させるための第1制御モードと、前記アクチュエータ(232)の作動を開始した後に前記モータ(220)を作動させるための第2制御モードとを含む、請求の範囲第1項に記載のエンジンの始動装置。
  9.  エンジンの始動方法であって、
     前記エンジンには、前記エンジン(100)を始動させるスタータ(200)と、前記エンジン(100)のクランク軸(111)に連結され、前記エンジン(100)の負荷を変動する機器(132,134)と、スタータ(200)の制御装置(300)とが設けられ、
     前記スタータ(200)は、前記エンジン(100)の前記クランク軸(111)に連結された第1のギヤ(110)と係合可能な第2のギヤ(260)と、駆動状態において、前記第2のギヤ(260)を前記第1のギヤ(110)と係合する位置まで移動させるアクチュエータ(232)と、前記第2のギヤ(260)を回転させるモータ(220)とを含み、
     前記アクチュエータ(232)および前記モータ(220)の各々は、個別に駆動可能であり、
     前記始動方法は、前記アクチュエータ(232)の駆動に先立って前記モータ(220)を駆動させる回転モードで前記アクチュエータ(232)および前記モータ(220)を駆動するステップと、
     前記回転モードの実行時に、前記アクチュエータ(232)の駆動より前に前記エンジン(100)および前記機器(132,134)の負荷変動を抑制するステップとを備える、エンジンの始動方法。
PCT/JP2010/062092 2010-07-16 2010-07-16 エンジンの始動装置およびエンジンの始動方法 WO2012008050A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/144,999 US8573174B2 (en) 2010-07-16 2010-07-16 Engine starting device and engine starting method
PCT/JP2010/062092 WO2012008050A1 (ja) 2010-07-16 2010-07-16 エンジンの始動装置およびエンジンの始動方法
CN2010800302139A CN102472230B (zh) 2010-07-16 2010-07-16 发动机的起动装置以及发动机的起动方法
EP10844306.0A EP2514960A4 (en) 2010-07-16 2010-07-16 ENGINE STARTING DEVICE AND MOTOR STARTING PROCEDURE
JP2011544530A JP5056988B2 (ja) 2010-07-16 2010-07-16 エンジンの始動装置およびエンジンの始動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062092 WO2012008050A1 (ja) 2010-07-16 2010-07-16 エンジンの始動装置およびエンジンの始動方法

Publications (1)

Publication Number Publication Date
WO2012008050A1 true WO2012008050A1 (ja) 2012-01-19

Family

ID=45469074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062092 WO2012008050A1 (ja) 2010-07-16 2010-07-16 エンジンの始動装置およびエンジンの始動方法

Country Status (5)

Country Link
US (1) US8573174B2 (ja)
EP (1) EP2514960A4 (ja)
JP (1) JP5056988B2 (ja)
CN (1) CN102472230B (ja)
WO (1) WO2012008050A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109567B2 (en) 2010-07-16 2015-08-18 Toyota Jidosha Kabushiki Kaisha Starter control device, starter control method, and engine starting device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2498509B1 (en) 2008-04-07 2018-08-15 Koss Corporation Wireless earphone that transitions between wireless networks
JP5316715B2 (ja) 2010-07-16 2013-10-16 トヨタ自動車株式会社 スタータの制御装置、スタータの制御方法およびエンジンの始動装置
EP2594778A4 (en) * 2010-07-16 2013-11-27 Toyota Motor Co Ltd ENGINE STARTING DEVICE AND VEHICLE EQUIPPED WITH SAID DEVICE
EP2573372A4 (en) * 2011-03-08 2014-07-02 Toyota Motor Co Ltd MOTOR CONTROL DEVICE AND CONTROL METHOD, ENGINE START-UP DEVICE, AND VEHICLE
US8695553B2 (en) * 2011-03-25 2014-04-15 Toyota Jidosha Kabushiki Kaisha Control device and control method for starter, and vehicle
WO2013074852A1 (en) * 2011-11-15 2013-05-23 Remy Technologies, Llc Starter system
DE102012210890B4 (de) * 2012-06-26 2021-03-18 Seg Automotive Germany Gmbh Andrehvorrichtung und Verfahren zur Montage einer Andrehvorrichtung
DE102012015034A1 (de) * 2012-07-31 2014-02-27 Andreas Stihl Ag & Co. Kg Verfahren zur Abschaltung einer Drehzahlbegrenzung bei einem Verbrennungsmotor
DE102013226999B4 (de) * 2013-12-20 2020-06-04 Seg Automotive Germany Gmbh Verfahren zum Einspuren eines axial verschieblichen Andrehritzels einer Startvorrichtung in einen Zahnkranz einer Brennkraftmaschine
US9657705B2 (en) * 2014-03-13 2017-05-23 GM Global Technology Operations LLC Powertrain for a vehicle and an electromechanical apparatus coupleable to an engine
US9481236B2 (en) 2014-03-13 2016-11-01 GM Global Technology Operations LLC Powertrain for a vehicle
JP6153147B2 (ja) * 2015-05-12 2017-06-28 三菱電機株式会社 モータジェネレータ、エンジン始動装置、およびエンジン始動制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073911A (ja) * 1999-08-31 2001-03-21 Denso Corp クラッチ制御装置
JP2002115631A (ja) * 2000-10-12 2002-04-19 Toyota Motor Corp 内燃機関の始動装置
JP2005030348A (ja) * 2003-07-10 2005-02-03 Nissan Motor Co Ltd 内燃機関の補機駆動制御装置
EP2159410A2 (en) * 2008-09-02 2010-03-03 Denso Corporation System for restarting internal combustion engine when engine restart request occurs

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262684A4 (en) 2000-03-10 2009-11-04 Hitachi Ltd AUTOMATIC TRANSMISSION, DYNAMOELECTRIC MACHINE AND CAR
JP2002285942A (ja) 2001-03-27 2002-10-03 Honda Motor Co Ltd エンジン始動装置
JP4214401B2 (ja) * 2004-05-18 2009-01-28 株式会社デンソー エンジン自動停止再始動装置
JP4889249B2 (ja) * 2005-07-05 2012-03-07 日産自動車株式会社 エンジンのスタータ保護方法及びエンジンのスタータ保護装置
DE102006011644A1 (de) 2006-03-06 2007-09-13 Robert Bosch Gmbh Vorrichtung mit einem ersten Getriebeteil zum Einspuren in ein zweites Getriebeteil, insbesondere Startvorrichtung mit einem Ritzel zum Einspuren in einen Zahnkranz einer Brennkraftmaschine sowie Verfahren zum Betrieb einer derartigen Vorrichtung
JP2008163818A (ja) 2006-12-28 2008-07-17 Hitachi Ltd スタータ
JP5251751B2 (ja) 2008-07-04 2013-07-31 トヨタ自動車株式会社 内燃機関の始動装置
DE102008041037A1 (de) * 2008-08-06 2010-02-11 Robert Bosch Gmbh Verfahren und Vorrichtung einer Steuerung für einen Start-Stopp-Betrieb einer Brennkraftmaschine
JP4737571B2 (ja) 2008-09-08 2011-08-03 株式会社デンソー エンジン始動装置
JP4631962B2 (ja) 2008-11-11 2011-02-16 トヨタ自動車株式会社 エンジン始動制御装置
JP2010229882A (ja) 2009-03-27 2010-10-14 Hitachi Automotive Systems Ltd 車両制御装置およびアイドルストップシステム
WO2012011167A1 (ja) * 2010-07-21 2012-01-26 トヨタ自動車株式会社 エンジンの始動装置およびエンジンの始動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073911A (ja) * 1999-08-31 2001-03-21 Denso Corp クラッチ制御装置
JP2002115631A (ja) * 2000-10-12 2002-04-19 Toyota Motor Corp 内燃機関の始動装置
JP2005030348A (ja) * 2003-07-10 2005-02-03 Nissan Motor Co Ltd 内燃機関の補機駆動制御装置
EP2159410A2 (en) * 2008-09-02 2010-03-03 Denso Corporation System for restarting internal combustion engine when engine restart request occurs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514960A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109567B2 (en) 2010-07-16 2015-08-18 Toyota Jidosha Kabushiki Kaisha Starter control device, starter control method, and engine starting device

Also Published As

Publication number Publication date
US8573174B2 (en) 2013-11-05
CN102472230B (zh) 2013-07-10
JP5056988B2 (ja) 2012-10-24
EP2514960A4 (en) 2013-05-15
JPWO2012008050A1 (ja) 2013-09-05
US20130099507A1 (en) 2013-04-25
EP2514960A1 (en) 2012-10-24
CN102472230A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5056988B2 (ja) エンジンの始動装置およびエンジンの始動方法
JP5105032B2 (ja) スタータの制御装置および制御方法、ならびに車両
WO2012011167A1 (ja) エンジンの始動装置およびエンジンの始動方法
JP5316715B2 (ja) スタータの制御装置、スタータの制御方法およびエンジンの始動装置
JP5170347B1 (ja) エンジンの始動装置および制御方法
JP5224005B2 (ja) スタータの制御装置、スタータの制御方法およびエンジンの始動装置
JP5321744B2 (ja) エンジンの始動装置およびそれを搭載する車両
JP5321745B2 (ja) エンジンの始動装置およびそれを搭載する車両
JP5321746B2 (ja) スタータの制御装置およびスタータの制御方法
JP5644843B2 (ja) 車両の制御装置
JP5288070B2 (ja) エンジンの制御装置および制御方法、ならびに車両
JP5316734B2 (ja) スタータの制御装置および制御方法、ならびに車両
JP2012021494A (ja) エンジンの始動装置およびそれを搭載する車両
JP5454402B2 (ja) スタータの制御装置
JP2012021495A (ja) エンジンの始動装置およびそれを搭載する車両
JP2012021496A (ja) エンジンの始動装置およびそれを搭載する車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030213.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13144999

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010844306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011544530

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE