WO2012007612A1 - Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas - Google Patents

Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas Download PDF

Info

Publication number
WO2012007612A1
WO2012007612A1 PCT/ES2011/000228 ES2011000228W WO2012007612A1 WO 2012007612 A1 WO2012007612 A1 WO 2012007612A1 ES 2011000228 W ES2011000228 W ES 2011000228W WO 2012007612 A1 WO2012007612 A1 WO 2012007612A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
calcium
silicon
phosphate
sodium
Prior art date
Application number
PCT/ES2011/000228
Other languages
English (en)
French (fr)
Inventor
Mohammad Hamdan Ali Alkhraisat
Enrique LÓPEZ CABARCOS
Original Assignee
Universidad Complutense De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense De Madrid filed Critical Universidad Complutense De Madrid
Publication of WO2012007612A1 publication Critical patent/WO2012007612A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0052Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with an inorganic matrix
    • A61L24/0063Phosphorus containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0052Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with an inorganic matrix
    • A61L24/0068Inorganic materials not covered by groups A61L24/0057 or A61L24/0063
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow

Definitions

  • the present invention relates to the preparation of a calcium phosphate cement which includes in its composition as a first component a basic calcium phosphate doped with silicon, as a second component an acidic calcium phosphate or phosphoric acid, and as a third component water or aqueous solution.
  • a hard mass is produced that is composed of a phase of calcium phosphate, mainly brushite (CaHP0 4 .2H 2 0), another of hydrated calcium silicate (CSH) and, in some cases, may contain hydroxyapatite.
  • the brushite doped with silicon constitutes between 10 and 90% of the volume of the hard dough.
  • the cements according to the invention can be used in bone engineering as a support to grow cells, as a bone substitute in maxillofacial surgery and orthopedic applications, and also as a vehicle for the controlled release of drugs (antibiotics, anti-inflammatory and anti-cancer) and biological substances (factors of growth and hormones).
  • This new material is osteoconductive, reabsorbable by the body and has mechanical properties suitable for clinical use.
  • Calcium phosphates form an efficient alternative to autologous bone (the ideal bone graft) since they are characterized by being biocompatible, osteoconductive and reabsorbable.
  • Important members of the calcium phosphate family are the hydraulic calcium phosphate cements whose use is increasing which causes the scientific and industrial interest of inventing new cements with the aim of improving their chemical-physical and biological properties.
  • These cements are prepared by mixing two phases: a solid phase in powder form and another liquid phase that is usually water or an aqueous solution. When both phases are mixed, a moldable paste is formed which is shaped as the defect to be filled, ensuring its intimate adaptation to the bone defect.
  • Si silicon ions
  • This invention relates to a new cement based on brushite doped with silicon, and a new method for its production, to improve the bioactivity of brushite cements, its effectiveness in bone regeneration, its function as a support for cell growth with special interest in the cells that are part of the process of formation and maintenance of bone tissue, and as a vehicle for the release of drugs and biologically active substances.
  • the use of a silicon doped calcium phosphate ceramic has been effective in introducing silicon ions into brushite crystals.
  • the increase in silicon content in Si-TCP has also induced CSH formation and, in some cases, HA precipitation.
  • This new cement allows to control the crystalline morphology, the porosity and the specific surface area of the cement, which is a tool to control the load of physiologically or biologically active principles in the cement and the profile of its release (from an exponential profile to a linear profile).
  • the proliferation of osteoblasts is 3 times greater and the cellular activity is 2 times greater than in an unsubstituted brushite cement.
  • One aspect of the present invention relates to a method for obtaining a calcium phosphate-calcium silicate cement
  • a ceramic composed of beta tricalcium phosphate (Ca
  • the first cement component according to the present invention comprises a beta tricalcium phosphate ( ⁇ -TCP) ceramic doped with silicon and silicocarnotite ions (Ca 5 (P0 4 ) 2 Si0 4 ).
  • the synthesis of the ceramic is carried out by calcining a mixture of acidic calcium phosphate, preferably brushite (CaHP0 4 .2H 2 0; DCPD) or its anhydrous form, and calcium carbonate (CaC0 3 ) in a molar ratio of 2: 1 at a temperature 700 ° C ⁇ T ⁇ 1250 ° C and for a time exceeding 3 hours.
  • CaHP0 4 .2H 2 0 is preferably substituted by amorphous silicon oxide (Si0 2 ) although the source of silicon ions such as organic silicon compounds could be another.
  • the atomic ratio (Si / P + Si) in the mixture of reactants before calcination is between 1 and 99% and, preferably, between 5-80% (Table 1).
  • the atomic ratio of (Ca / Si + P) is maintained between 1, 45 and 1, 5 and, since this molar ratio is equal to that of tricalcium phosphate ⁇ ( ⁇ -TCP), from this moment we will use Si-TCP initials to refer to silicon doped ceramics. These ceramics have a specific surface area between 0.5 and 2 m 2 / g and a porosity between 50% and 90%.
  • the second component of cement is one of the following substances: monocalcium phosphate particles Ca (H 2 P0 4 ) 2 (MCP); monocalcium phosphate monohydrate Ca (H 2 P0 4 ) 2 .H 2 0 (MCPM) particles; or phosphoric acid H 3 P0 4 .
  • MCP monocalcium phosphate particles Ca (H 2 P0 4 ) 2
  • MCPM monocalcium phosphate monohydrate Ca (H 2 P0 4 ) 2 .H 2 0 (MCPM) particles
  • phosphoric acid H 3 P0 4 The use of MCP or MCPM is preferred; Phosphoric acid can be used solidly or in solution.
  • the third component of the cement, according to the present invention is water that can have phosphoric acid at different concentrations. Aqueous solutions of acids, such as carboxylic acids, can also be used.
  • the solid phase is obtained by mixing the first component with the second with the help of a mortar or a grinder until a homogeneous mixture is obtained. Subsequently, the third component is added, that is, the liquid phase.
  • the cement setting reaction begins by mixing the solid phase and the liquid phase in a powder-liquid ratio (RPL) between 0.5 g / ml and 7.14 g / ml, preferably between 1.5 g / ml and 4 g / ml, producing a solid mass that is mainly composed of brushite (CaHP0 4 .2H 2 0) doped with silicon at low concentrations of silicon in Si-TCP.
  • RPL powder-liquid ratio
  • the increase in silicon content in Si-TCP results in the appearance in the X-ray diffraction pattern of a halo centered in the angular region (2 ⁇ ) between 29.6 ° -30 ° which indicates the formation of a phase of calcium silicate (Ca x (Si0 4 ) x ).
  • This phase is hydrated calcium silicate (CSH). This increase also induces HA precipitation in the cement matrix.
  • CSH hydrated calcium silicate
  • the cement After setting, the cement has a Ca: P molar ratio that varies between 1.00 and 1.67.
  • the X-ray diffraction diagram of the cement prepared in different concentrations of silicon is shown in Figure 2.
  • the solid phase obtained by mixing the first component with the second one can have a setting reaction rate controller chosen from sodium pyrophosphate, potassium pyrophosphate, sodium acetate, potassium acetate, sodium citrate, potassium citrate, sodium phosphocytrate, potassium phosphate citrate, sodium sulfate or potassium sulfate, calcium sulfate hemihydrate CaSO 4 .0.5H 2 O (CSH), sodium pyrophosphate Na 4 P 2 O 7 .10H 2 O (NaPPH), dihydrogen disodium pyrophosphate Na 2 H 2 P 2 0 7 (NaHPP), calcium pyrophosphate Ca 4 P 2 0 7 (CaPP), magnesium sulfate, sodium bisphosphonate, and potassium bisphosphonate.
  • a setting reaction rate controller chosen from sodium pyrophosphate, potassium pyrophosphate, sodium acetate, potassium acetate, sodium citrate, potassium citrate, sodium phosphocytrate, potassium phosphate citrate, sodium
  • the porosity of the cements of the invention is about 40%
  • the pore size distribution shows that the silicon ions have displaced the pore diameter from the micrometric to the nanometric scale.
  • the average pore diameter in the new cements varies from ca 2.00 ⁇ to ca 0.03 ⁇ .
  • the cement prepared with 20% Si-TCP has ca 1.73 ⁇
  • the cements prepared with 60% Si-TCP and 80% Si-TCP have ca. 40 nm
  • the distribution of the pore diameter for the cement prepared with 20% Si-TCP has the main peak around 0.42 ⁇ .
  • Cements prepared with 40% and 60% Si-TCP have the main distribution peak at 0.15 ⁇ while in the cement prepared with 80% Si-TCP is 0.82 ⁇ .
  • Figure 4 the effect of silicon ions on the pore diameter distribution of the cements produced in this invention can be seen.
  • One of the two components of the cement can have a biodegradable polymer to control the consistency of the cement paste obtained by mixing the two components and their cohesion in physiological liquids.
  • Biodegradable polymers are chosen from the group of: hyaluronic acid, hyaluronate salts, chondroitin 4 sulfate, chondroitin 6 sulfate, dextran, silica gel, alginate, hydroxypropyl methylcellulose, chitin derivatives, preferably chitosan, xanthan gum, agarose; polyethylene glycol (PEG), polyhydroxyethylene methacrylate (HEMA), synthetic or natural proteins, collagens or any combination between them.
  • PEG polyethylene glycol
  • HEMA polyhydroxyethylene methacrylate
  • One of the components of the cement may have bioactive agents, that is, pharmacologically or physiologically active substances, preferably selected from the group of: antibiotics, anti-inflammatories, anti-cancer drugs, analgesics, growth factors, hormones or any combination of said agents.
  • the antibiotics may be aminoglycosides, preferably gentamicin or salts of gentamicin, and / or glycopeptides, preferably vancomycin.
  • Antibiotics can also be tetracycline derivatives.
  • Figure 5 shows that the new cement is more effective in drug adsorption (vancomycin has been used as a model drug substance) than undoped cement.
  • the material of the invention provides a tool for changing the release profile of the medicament from a first order kinetics to a zero order kinetics, allows the medication release rate to be controlled and, also, the period of complete release of the drug medicine.
  • Figure 6 shows the change in vancomycin release profile as a function of the silicon content of the cement.
  • These cements can be used in tissue engineering and bone engineering to support the growth of cells, especially osteoblasts, stem cells and mesenchymal cells.
  • the new cement when culturing osteoblasts of human origin at a concentration of 50,000 cells / ml on brushite cement doped with silicon and during times of 3, 5, 7 and 10 days, it was demonstrated that the new cement is cytocompatible and It can be used as a support for the growth of these cells.
  • This new cement has increased 3 times the proliferation of cells and 2 times the activity of osteoblasts compared to an unmodified brushite cement.
  • the activity and proliferation of MG 63 cells (ATCC No. CRL-1427, Rockville, MD, USA) in calcium phosphate cements prepared with Si-TCP with a Si content of 0%, 20% is shown in Figure 7. , 40% and 80%.
  • Both ceramics and cements according to the invention can be used in the elaboration of matrices for maxillofacial and oral surgery (reconstruction of the alveolar process, filling for the dental groove), orthopedic applications (treatment of bone fractures, bone augmentation) and / or release controlled medication (antibiotics, anti-inflammatory and anti-cancer).
  • These new materials are osteoconductors, reabsorbable by the body and have mechanical properties suitable for clinical use. Therefore, another aspect of the invention relates to the use of ceramics and cements of the invention in maxillofacial and / or orthopedic bone regeneration.
  • the sterilization of cement and ceramics can be done by thermal processes (dry heat, autoclave), chemicals (gas, alcohol) or gamma radiation.
  • Si-TCP at different concentrations of silicon (20%, 40%, 60%, 80%).
  • B Enlargement of Figure 4A in the pore diameter range between 0 and 2.5 ⁇ .
  • Figure 8 Critical defects in the parietal bone of the calvary of a rabbit with a diameter of 10 mm filled with cement granulate prepared with 80% Si-TCP.
  • Figure 9. Critical defects in the parietal bone of a rabbit's baldness with a diameter of 10 mm filled with 80% Si-TCP (circle) ceramic granulate and ⁇ -TCP ceramics (arrow).
  • the histological sections of the defects treated with 10% (C) and 80% Si-TCP (D) show the presence of mature bone ($) and immature bone (*) ⁇
  • the second component consists of 0.9 g of monocalcium phosphate monohydrate Ca (H 2 P0 4 ) 2 .H 2 0.
  • the two components are mixed in a grinder or by hand in mortar for 60 s and form the solid phase.
  • the first component consists of 1.2 g of ceramic composed of tricalcium phosphate beta doped with silicon and silicocarnotite.
  • the ceramic was prepared at a temperature of 1,100 ° C for 12 hours, from a mixture of brushite, calcium carbonate and silicon dioxide (Si0 2 ) with an Si / Si + P ratio of 80% and a Ca / Si + P of 1.5 (atomic percentage).
  • This ceramic has a specific area of 1.60 ⁇ 0.01 m 2 / g and a porosity of 78%.
  • the second component consists of 0.9 g of monocalcium phosphate monohydrate Ca (H 2 P0 4 ) 2 .H 2 0.
  • Cement paste can be used for 3-5 minutes at room temperature while unmodified cement with sodium pyrophosphate sets in less than 2 minutes.
  • the sterilization of the cement is carried out with ethylene oxide.
  • the two components are mixed with 0.06 g calcium carbonate (CaC0 3 ), as a porogen, in a grinder or by hand in mortar, for 60 s, and form the solid phase.
  • the third component is 1M citric acid and constitutes the liquid phase.
  • the third component is formed by 1M citric acid.
  • the solid and liquid phases are mixed in a 1.5 g.ml "1 powder with a spatula, in a glass plate, for 30 s until a uniform paste is obtained.
  • the cement is incubated in a 5 mg / ml vancomycin solution and the amount of the adsorbed antibiotic is measured and its release in phosphate buffer is also studied.
  • the analysis of the microstructure of this cement by X-ray diffraction, reveals that the cement matrix is mainly composed of CSH, dicalcium phosphate dihydrate (brushite; CaHP0 4 .2H 2 0) doped with silicon, and also hydroxyapatite
  • the second component consists of 0.9 g of monocalcium phosphate monohydrate Ca (H 2 P0 4 ) 2 .H 2 0.
  • Forged cements are seeded with a human osteoblast cell line and proliferation is observed for 3, 5, 7, and 10 days.
  • the second component consists of 0.9 g of monocalcium phosphate monohydrate Ca (H 2 P0 4 ) 2 .H 2 0.
  • the third component is 1M citric acid and constitutes the liquid phase.
  • the solid and liquid phases are mixed in a powder / liquid ratio of 1.5 g.ml "1 with a spatula, on a glass plate, for 30 s until a uniform paste is obtained that can be used to fill a defect Bone or fill a mold to produce a block that, a posteriori, is used in the treatment of bone defects.
  • a uniform paste is obtained that can be used to fill a defect Bone or fill a mold to produce a block that, a posteriori, is used in the treatment of bone defects.
  • the set cement is crushed and sieved to produce a granulate of a particle size between 0.2 mm and 1 This granulate is used as a bone substitute
  • a 4 cm long incision was made over the sagittal suture of a rabbit's shell, previously shaved and disinfected with Betadine.
  • the second component consists of 1.26 g of monocalcium phosphate (Ca (H 2 P0 4 ) 2 ).
  • the two components are mixed in a grinder or by hand in mortar for 60 s and form the solid phase.
  • the third component is modified 1M glycolic acid with 0.5% (weight / weight) of hyaluronic acid and constitutes the liquid phase.
  • the solid and liquid phases are mixed in a powder / liquid ratio of 1.5 g.ml '1 with a spatula, in a glass plate, for 30 s until a uniform paste is obtained.
  • a powder / liquid ratio 1.5 g.ml '1
  • a spatula in a glass plate
  • Two ceramics composed of silicon-doped beta tricalcium phosphate and silicocarnotite were prepared at a temperature of 1100 ° C for 12 hours, from a mixture of brushite, calcium carbonate and silicon dioxide (Si0 2 ) with a Si / Si + ratio P of 10% and 80%, respectively, and a Ca / Si + P ratio of 1.5 (atomic percentage).
  • the 2 ceramics were crushed and screened separately to produce granules of a particle size between 0.5mm and 0.8mm. These granules were used as bone substitutes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Composite Materials (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

La presente invención se refiere a un cemento de fosfato cálcico-silicato cálcico que comprende una fracción de volumen del 10 al 90% de brushita (DCPD, CaHP042H20) dopada con silicio, una fracción de silicato cálcico hidratado (C-S-H) y otra fracción de hidroxiapatita. Así mismo, la invención se refiere a un método para elaborar dicho cemento y a la cerámica compuesta de fosfato tricálcico beta (Ca3(P04)2) dopado con silicio y silicocarnotita (Ca5(P04)2Si04) que resulta del primer paso de dicho método. La presente invención también se refiere al uso de matrices que incluyen el cemento o la cerámica en la elaboración de agentes terapéuticos para cirugía maxilofacial y oral, aplicaciones ortopédicas y/o liberación controlada de medicamentos, así como en ingeniería tisular y ósea como soporte para el crecimiento de células.

Description

Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas
Campo de la técnica
La presente invención se refiere a la preparación de un cemento de fosfato cálcico que incluye en su composición como primer componente un fosfato cálcico básico dopado con silicio, como segundo componente un fosfato cálcico ácido o ácido fosfórico, y como tercer componente agua o solución acuosa. Al mezclar los tres componentes, se produce una masa dura que está compuesta de una fase de fosfato cálcico, principalmente brushita (CaHP04.2H20), otra de silicato cálcico hidratado (C-S-H) y, en algunos casos, puede contener hidroxiapatita. La brushita dopada con silicio constituye entre el 10 y el 90% del volumen de la masa dura. Los cementos según la invención se pueden emplear en ingeniería ósea como soporte para crecer células, como sustituto óseo en cirugía máxilofacial y en aplicaciones ortopédicas, y también como vehículo para la liberación controlada de medicamentos (antibióticos, antiinflamatorios y anticancerígenos) y sustancias biológicas (factores de crecimiento y hormonas). Este nuevo material es osteoconductor, reabsorbible por el organismo y tiene propiedades mecánicas adecuadas para su uso clínico.
Técnica precedente
Los fosfatos cálcicos forman una alternativa eficiente al hueso autólogo (el injerto óseo ideal) ya que se caracterizan por ser biocompatibles, osteoconductores y reabsorbibles. Miembros importantes de la familia de los fosfatos cálcicos son los cementos hidráulicos de fosfatos cálcicos cuyo uso se está incrementando lo cual provoca el interés científico e industrial de inventar nuevos cementos con el objetivo de mejorar sus propiedades químico-físicas y biológicas. Estos cementos se preparan mezclando dos fases: una fase sólida en forma de polvo y otra fase líquida que suele ser agua o una solución acuosa. Cuando se mezclan ambas fases se forma una pasta moldeable a la que se da la forma del defecto a rellenar, asegurando su adaptación íntima al defecto óseo.
El interés de introducir iones de silicio (Si) en los fosfatos cálcicos se basa en su presencia en cantidades traza en la hidroxiapatita ósea y en su importancia para los procesos metabólicos asociados al desarrollo de hueso y de los tejidos conjuntivos [Carlise E. Silicon as a trace nutrient. Sci Total Environ 1988;73:95-106]. Distintos estudios sobre el suplemento dietético de Si han mostrado su eficacia en aumentar la densidad mineral ósea, estimular la síntesis del cartílago, inhibir el proceso fisiológico de reabsorción ósea y su importancia para la salud vascular [Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007;28:4023-4032; Jugdaohsingh R, Tucker K, Qiau N, Cupples L, Kiel D, Powell J. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 2004;19:297-307; Calomme M, Vanden-Berghe D. Supplementation of calves with stabilized orthosilicic acid. Effect on the Si, Ca, Mg and P concentrations in serum and the collagen conventration in skin and cartilage. Biol Trace Elem Res 1997;56: 153-165; Hott M. Short term effects of organic silicon on trabecular bone in mature ovariectomized rats. Cal Tiss Inter 1993;53:174-179; Schwarz K, Ricci BA, Punsar S, Karvonen MJ. Inverse relation of silicon in drinking water and atherosclerosis in Finland. Lancet 1977;1 :538-539].
La sustitución iónica del fósforo por silicio se ha estudiado en HA, fosfato tricálcico-a (a-TCP) y cementos basados en HA. Mediante el análisis de la estructura de la HA sustituida por silicio (Si-HA) y el α-TCP sustituido por silicio (Si-a-TCP) se ha comprobado que el modelo más sencillo que explica la incorporación del silicio en sus estructuras consiste en la sustitución del grupo P04 3" por el grupo Si04 4" [Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007;28:4023-4032]. Esta sustitución genera un déficit de carga eléctrica de manera que son necesarios mecanismos de compensación para recuperar la neutralidad y evitar un elevado coste energético. Se han propuesto fórmulas químicas de Si-HA [Ca5(P04)3-x(Si04)xOH1.x] y de Si-a-TCP [Ca3(P1-xSix04. x/2)2] considerando vacantes de OH" y de O " como los mecanismos de compensación [Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007;28:4023-4032].
Existe evidencia científica suficiente para asegurar el buen comportamiento biológico de las cerámicas de fosfato cálcico sustituidas por silicio. La mejora en la bioactividad de estos materiales se atribuye a varios factores que actúan sinérgicamente. Por un lado, la sustitución iónica por silicio facilita la precipitación de HA biológica in vivo que favorece la adsorción de proteínas, y la adhesión y proliferación de los osteoblastos [Sayer M, Stratilatov A, Reid J, Calderin L, Stott M, Yin X, et al. Structure and composition of silicon stabilized tricalcium phosphate. Biomaterials 2002;24:369-382; Vandiver J, Dean D, Patel N, Botelho C, Best S, Santos J, et al. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals and adhesive interactions. J Biomed Res 2005:78A:352-363]. Por otro lado, el ión de silicio liberado en la matriz extracelular o presente en la superficie del implante podría influir directamente en los osteoblastos, osteoclastos y la síntesis del colágeno [Keeting P, Oursler M, Wiegand K, Bonde S, Spelsberg T, Riggs B. Zeolite A increases proliferation, differentiation and TGF-beta production in normal adult human osteoblast-like cells in vitro. J Biomed Mater Res 1992;7: 1281-1289; Xynos I, Edger A, Buttery D, Hench L, Polak J. Gene-expression profiling of human osteoblasts following treatment with the ionic producís of Bioglass 45S5 dissolution. J Biomed Mater Res 2001 ;55: 151-157.]. Además, se ha demostrado que la implantación in vivo de Si-HA ha incrementado el crecimiento óseo un 14,5% más que la HA no sustituida. Se ha observado también la formación de fibrillas de colágeno en la superficie de Si-HA 6 semanas después de su implantación, en comparación con las 12 semanas necesarias para observar el mismo efecto cuando se utiliza HA no sustituida [Patel N, Best S, Bonfield W, Gibson I, Hing K, Damien E, et al. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 2002;13: 1199-1206]. En otro estudio, los mejores resultados en la formación, crecimiento y remodelación ósea se han obtenido mediante la elaboración de un andamio poroso fabricado de HA con un contenido de Si del 0,8% (peso/peso) [Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression ofbone healing within silicate- substituted porous hydroxyapatite scaffolds. Biomaterials 2006;27:5014-5026].
Hasta ahora, no existe ningún estudio sobre el uso de sustitución iónica por silicio para mejorar el funcionamiento biológico de los cementos osteotransductivos de brushita. De hecho, un trabajo publicado en 2009 demuestra que la modificación del sistema de cementos de fosfato tricálcico-β (P-TCP)/fosfato monocálcico monohidratado (MCPM) con silicato tricálcico (Ca3Si05) produce un cambio drástico en el producto de fraguado: mientras que los cementos no modificados fraguan en brushita, los cementos modificados con silicato tricálcico fraguan en HA [Huan Z, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009:5: 1253-1264]. Recientemente se ha demostrado que la modificación de cementos de brushita con gel de sílice mejora su cohesión, acelera su reacción de fraguado y aumenta la presencia de β-TCP en la matriz del cemento, explicando así la presencia de más injerto residual después de 8 semanas de su implantación in vivo [Alkhraisat MH, Rueda C, Jerez LB, Tamimi FM, Torres J, Gbureck U, Lopez- Cabarcos E. Effect of silica gel on the cohesión, properties and biological performance of brushite cement. Acta Biomater 2010; 6: 257-265]. Sin embargo el uso del gel de sílice no introduce los iones de silicio en la brushita y, además, el producto final de la reacción de fraguado, tras la adición de gel de sílice, está compuesto de brushita y β-TCP residual.
Problema técnico
No existe una evidencia científica que apoye la mejora en la reabsorción in vivo del Si-HA. Sin embargo, la sustitución iónica por silicio en otros fosfatos cálcicos más reabsorbibles sería más interesante ya que su completa transducción a hueso maduro evita las complicaciones que puedan surgir debido a las bajas propiedades mecánicas de estos fosfatos cálcicos. Esta invención se refiere a un cemento nuevo basado en brushita dopada con silicio, y un método nuevo para su producción, para mejorar la bioactividad de los cementos de brushita, su eficacia en la regeneración ósea, su función como soporte para el crecimiento celular con especial interés en las células que forman parte del proceso de formación y mantenimiento del tejido óseo, y como vehículo para la liberación de medicamentos y sustancias biológicamente activas. En la presente invención, el uso de una cerámica de fosfato cálcico dopada con silicio ha sido eficaz en introducir los iones de silicio en los cristales de brushita. El aumento en contenido de silicio en Si-TCP ha inducido también la formación de C-S-H y, en algunos casos, la precipitación de HA. Este nuevo cemento permite controlar la morfología cristalina, la porosidad y el área de superficie específica del cemento, lo que supone una herramienta para controlar la carga de principios fisiológica o biológicamente activos en el cemento y el perfil de su liberación (desde un perfil exponencial a un perfil lineal). Además, se ha observado que en el cemento inventado la proliferación de osteoblastos es 3 veces mayor y la actividad celular es 2 veces mayor que en un cemento de brushita no sustituido. Descripción detallada de la invención
Antes de entrar en detalles sobre la invención, tiene que entenderse que la invención no está limitada a las especificaciones particulares de la invención descrita más adelante, ya que se pueden hacer variaciones de las especificaciones particulares y estar todavía dentro del ámbito de las reivindicaciones.
Los términos técnicos y científicos utilizados aquí tienen el mismo significado que comúnmente entendería un sujeto con conocimiento en el campo al que pertenece esta invención. También debe entenderse que la terminología empleada es con el propósito de describir los detalles específicos, y no pretende ser limitante.
Se debe tener en cuenta que el uso en esta descripción y en las reivindicaciones de los artículos el/la, un/a/o incluye la referencia al plural a no ser que en el contexto se indique explícitamente lo contrario.
Todas las publicaciones mencionadas aquí son incorporadas como referencias para el propósito de describir y revelar componentes que están descritos en dichas publicaciones que pueden ser usados en conexión con la presente invención.
Un aspecto de la presente invención se refiere a un método para obtener un cemento de fosfato cálcico-silicato cálcico que comprende un primer paso (a) de síntesis de una cerámica compuesta de fosfato tricálcio beta (Ca3(P04)2) dopado con silicio y silicartonita (Ca5(H2P04)2Si04) a partir de una mezcla de fosfato cálcico ácido, preferentemente brushita (CaHP04.2H20) o su forma anhidra, carbonato cálcico (CaC03) y una fuente de iones de silicio (dióxido de silicio (Si02) o compuestos orgánicos de silicio) con una relación Si/(Si+P), antes de la calcinación, entre 1 y 99% y una relación Ca/(Si+P) de 1,45-1,5 (porcentaje atómico), aplicando una temperatura entre 700°C y 1250°C durante un tiempo superior a 3 horas.
A continuación, paso (b), se mezcla la cerámica del paso (a) con fosfato monocálcico (Ca(H2P04)2), fosfato monocálcico monohidratado (Ca(H2P04)2.H20) o ácido fosfórico (H3P04) y, en un paso (c), se mezcla el resultado de esta mezcla con una fase acuosa.
El primer componente del cemento según la presente invención comprende una cerámica de fosfato tricálcico beta (β-TCP) dopada con iones de silicio y silicocarnotita (Ca5(P04)2Si04). La síntesis de la cerámica se lleva a cabo mediante la calcinación de una mezcla de fosfato cálcico ácido, preferentemente brushita (CaHP04.2H20; DCPD) o su forma anhidra, y carbonato cálcico (CaC03) en ratio molar de 2: 1 a una temperatura 700°C < T < 1250°C y durante un tiempo superior a 3 horas. Para introducir el silicio en el β-TCP se sustituye el CaHP04.2H20 preferiblemente por óxido amorfo de silicio (Si02) aunque podría ser otra la fuente de iones de silicio tales como compuestos orgánicos de silicio. El ratio atómico (Si/P+Si) en la mezcla de reactantes antes de la calcinación está entre 1 y 99% y, preferentemente, entre 5-80% (Tabla 1). El ratio atómico de (Ca/Si+P) se mantiene entre 1 ,45 y 1 ,5 y, dado que esta relación molar es igual a la del fosfato tricálcico β (β- TCP), a partir de este momento vamos a utilizar las iniciales Si-TCP para referirnos a las cerámicas dopadas con silicio. Estas cerámicas tienen un área de superficie específica entre 0,5 y 2 m2/g y una porosidad entre 50% y 90%.
Figure imgf000007_0001
Tabla 1. Cantidades (molar) de los reactivos empleados para sintetizar las cerámicas dopadas con silicio. Estas cantidades se calcularon suponiendo que el silicio sustituye el fósforo.
En la Figura 1 se muestran los diagramas de difracción de rayos X de la cerámica compuesta principalmente de β-TCP dopado con silicio y de silicocarnotita (Ca5(P04)2Si04 o fosfato de silicato cálcico), fabricada con fracciones de (Si/Si+P) que varían entre 10 y 80%) (porcentaje atómico). Posteriormente, se procede a moler, en mortero a mano, el material dopado con silicio y a pasar el polvo por una malla con poros de tamaño 200 μηι.
El segundo componente del cemento es una de las siguientes sustancias: partículas de fosfato monocálcico Ca(H2P04)2 (MCP); partículas de fosfato monocálcico monohidratado Ca(H2P04)2.H20 (MCPM); o ácido fosfórico H3P04. Se prefiere el uso de MCP o MCPM; el ácido fosfórico se puede usar de forma sólida o en disolución. El tercer componente del cemento, según la presente invención, es agua que puede tener ácido fosfórico a distintitas concentraciones. También se pueden utilizar soluciones acuosas de ácidos, como los ácidos carboxílicos.
La fase sólida se obtiene mezclando el primer componente con el segundo con la ayuda de un mortero o un molinillo hasta obtener una mezcla homogénea. Posteriormente se añade el tercer componente, es decir, la fase líquida.
La reacción de fraguado del cemento comienza al mezclar la fase sólida y la fase líquida en una relación de polvo-líquido (RPL) comprendida entre 0,5 g/ml y 7,14 g/ml, preferiblemente entre 1,5 g/ml y 4 g/ml, produciéndose una masa sólida que está compuesta principalmente de brushita (CaHP04.2H20) dopada con silicio a bajas concentraciones de silicio en Si-TCP. El aumento en el contenido de silicio en Si-TCP resulta en la aparición en el patrón de difracción de rayos X de un halo centrado en la región angular (2Θ) entre 29,6°-30° lo que indica la formación de una fase de silicato cálcico (Cax(Si04)x). Esta fase es silicato cálcico hidratado (C-S-H). Este aumento también induce la precipitación de HA en la matriz del cemento. Después del fraguado, el cemento tiene una proporción Ca:P molar que varía entre 1,00 y 1,67. En la Figura 2 se muestra el diagrama de difracción de rayos X del cemento preparado en distintas concentraciones de silicio.
En esta invención, la presencia de iones de silicio acelera la reacción de fraguado del cemento de fosfato cálcico lo que podría relacionarse con la formación de C-S-H que serviría como núcleo para la precipitación de DCPD y/o HA. Los cementos preparados con 10%Si-TCP tienen un tiempo de fraguado final (FST) de 4 minutos mientras los cementos preparados con Si-TCP de mayor contenido de Si tienen el FST alrededor de 2 minutos (Tabla 3). Por esta razón, la relación polvo/líquido se ha bajado para permitir la obtención de un tiempo de trabajo suficiente antes del fraguado del cemento.
La fase sólida obtenida mezclando el primer componente con el segundo puede tener un controlador de la velocidad de reacción de fraguado elegido entre pirofosfato sódico, pirofosfato potásico, acetato sódico, acetato potásico, citrato sódico, citrato potásico, fosfocitrato sódico, fosfocitrato potásico, sulfato sódico o sulfato potásico, sulfato cálcico hemihidratado CaSO4.0.5H2O (CSH), pirofosfato sódico Na4P2O7.10H2O (NaPPH), disodio dihidrógeno pirofosfato Na2H2P207 (NaHPP), pirofosfato cálcico Ca4P207 (CaPP), sulfato de magnesio, bisfosfonato sódico, y bisfosfonato potásico.
El análisis de la morfología cristalina del cemento nuevo con microscopía electrónica de barrido (SEM) muestra que la introducción de los iones de silicio induce un cambio hacia una morfología cristalina más redonda comparada con la morfología prismática del cemento no modificado (ver Figura 3). Además, esta sustitución iónica por silicio ha reducido el tamaño de los cristales hasta un diámetro de ca. 160 nm. En la Figura 3 se puede observar la matriz del cemento cálcico preparado 20%Si-TCP (A) y 80%Si- TCP (B).
Por otro lado, el análisis elemental usando espectroscopia de rayos X por dispersión de energía (EDX) del cemento preparado con 20%Si-TCP ha verificado la presencia de iones de silicio en β-TCP y brushita.
Figure imgf000009_0001
Tabla 2. Análisis de elementos de los cementos de fosfato cálcico (CPC) preparados con 20%Si-TCP y fórmulas de los compuestos detectados.
Aunque la porosidad de los cementos de la invención es de alrededor del 40%, la distribución del tamaño de los poros muestra que los iones de silicio han desplazado el diámetro de poro desde la escala micrométrica a la nanométrica. El diámetro medio de poro en los nuevos cementos varía desde ca 2,00 μιη hasta ca 0,03 μιη. Como se muestra en la Tabla 3, el cemento preparado con 20%Si-TCP presenta ca 1,73 μπι, y, los cementos preparados con 60%Si-TCP y 80%Si-TCP tienen ca. 40 nm. La distribución del diámetro de los poros para el cemento preparado con 20%Si-TCP tiene el pico principal alrededor de 0,42 μηι. Los cementos preparados con 40% y 60%Si-TCP tienen el pico principal de la distribución a 0,15 μηι mientras que en el cemento preparado con 80%Si-TCP se encuentra a 0,82 μιη. En la Figura 4 se puede apreciar el efecto de los iones de silicio en la distribución de diámetro de los poros de los cementos producidos en esta invención.
Uno de los componentes del cemento puede tener como aditivo un porógeno que puede ser un compuesto de carbonato como carbonato cálcico, bicarbonato cálcico, carbonato de sodio, bicarbonato de sodio o sustancias solubles en agua como manitol, cloruro sódico, o polímeros. Además, los iones de silicio tienen un efecto pronunciado sobre el área de la superficie específica (SSA) de los cementos de la invención en los que varía entre 3 y 40 m2/g. Los cementos preparados con β-TCP, 10%, y 20%Si-TCP tienen una SSA de 3,39 ± 0,01 m2/g, 3,14 ± 0,04 m2/g y 4,92 ± 0,02 m2/g, respectivamente, mientras la preparación de los cementos con 40%, 60% y 80%Si-TCP ha resultado en un aumento significativo en la SSA obteniéndose valores de 15,8 ± 0,1 m2/g, 39,3 ± 0,1 m2/g y 28,7 ± 0,1 m2/g, respectivamente.
Figure imgf000010_0001
Tabla 3. Tiempo de fraguado final (FST) y relación polvo/líquido (RPL) en cementos (CPC) preparados con distinto porcentaje de Si-P-TCP. La porosidad y el diámetro promedio de poro han sido medidos en cilindros de cemento, con dimensiones de 5 mm x 10 mm, preparados con el nuevo material de la invención y RPL=1,5 g.ml"1.
Uno de los dos componentes del cemento (la fase sólida o la fase líquida) puede tener un polímero biodegradable para controlar la consistencia de la pasta de cemento obtenida al mezclar los dos componentes y su cohesión en líquidos fisiológicos. Los polímeros biodegradables son elegidos entre el grupo de: ácido hialurónico, sales de hialuronato, condroitín 4 sulfato, condroitín 6 sulfato, dextrano, gel de sílice, alginato, hidroxipropilmetilcelulosa, derivados de quitina, preferiblemente el quitosano, goma xanthan, agarosa; el polietilenglicol (PEG), polihidroxietilenometacrilato (HEMA), proteínas sintéticas o naturales, colágenos o cualquier combinación entre ellos.
Uno de los componentes del cemento (la fase sólida o la fase líquida) puede tener agentes bioactivos, es decir, sustancias farmacológica o fisiológicamente activas, preferiblemente seleccionadas del grupo de: antibióticos, antiinflamatorios, medicamentos anticancerígenos, analgésicos, factores de crecimiento, hormonas o cualquier combinación de dichos agentes. Los antibióticos pueden ser aminoglicósidos, preferiblemente gentamicina o sales de gentamicina, y/o glucopéptidos, preferentemente vancomicina. Los antibióticos pueden ser también derivados de la tetraciclina. La Figura 5 muestra que el nuevo cemento es más eficaz en la adsorción de medicamento (se ha utilizado vancomicina como sustancia farmacológica modelo) que el cemento sin dopar. Además, el material de la invención proporciona una herramienta para cambiar el perfil de liberación del medicamento desde una cinética de primer orden a una cinética de orden cero, permite controlar la velocidad de liberación del medicamento y, también, el periodo de la liberación completa del medicamento. La figura 6 muestra el cambio en el perfil de la liberación de vancomicina en función del contenido de silicio del cemento.
Estos cementos se puede utilizar en ingeniería tisular y en ingeniería ósea como soporte para el crecimiento de células, especialmente osteoblastos, células madre y células mesenquimales. En la presente invención, al cultivar osteoblastos de origen humano a una concentración de 50.000 células/ml sobre el cemento de brushita dopado con silicio y durante tiempos de 3, 5, 7 y 10 días, se demostró que el nuevo cemento es citocompatible y se puede utilizar como soporte para el crecimiento de dichas células. Este nuevo cemento ha aumentado en 3 veces la proliferación de las células y en 2 veces la actividad de los osteoblastos en comparación con un cemento de brushita no modificado. En la Figura 7 se muestra la actividad y proliferación de las células MG 63 (ATCC no. CRL-1427, Rockville, MD, USA) en cementos de fosfato cálcico preparados con Si-TCP con un contenido de Si de 0%, 20%, 40% y 80%.
Tanto las cerámicas como los cementos según la invención se pueden emplear en la elaboración de matrices para cirugía maxilofacial y oral (reconstrucción del proceso alveolar, relleno para el surco dental), aplicaciones ortopédicas (tratamiento de fracturas óseas, aumentación ósea) y/o liberación controlada de medicamentos (antibióticos, antiinflamatorios y anticancerígenos). Estos nuevos materiales son osteoconductores, reabsorbibles por el organismo y tienen propiedades mecánicas adecuadas para su uso clínico. Por lo tanto, otro aspecto de la invención se refiere al uso de las cerámicas y cementos de la invención en regeneración ósea maxilofacial y/o ortopédica.
El cemento de la invención se puede utilizar en forma de pasta, bloque o granulado. El tamaño de partícula del granulado se selecciona entre 0,2 y 1 mm y, preferiblemente, entre 0,5 y 0,8mm. En la Figura 8 se muestra la utilización de un granulado de cemento preparado con 80%Si-TCP en regeneración ósea en calota de conejo. Las cerámicas sintetizadas en esta patente son otra fuente de sustitutos óseos como muestra la figura 9.
La esterilización del cemento y la cerámica se puede realizar mediante procesos térmicos (calor seco, autoclave), químicos (gas, alcohol) o radiación gamma.
Breve descripción de las figuras
Figura 1. Diagramas de difracción de rayos X del primer componente del cemento compuesto principalmente de fosfato tricálcico beta (β-TCP) dopado con silicio (*), y silicocarnotita (Ca5(P04)2Si04; +). El primer componente se ha fabricado con fracciones de (Si/Si+P) que varían entre 0 y 80% (porcentaje atómico).
Figura 2. Diagrama de difracción de rayos X del cemento preparado en distintas concentraciones de silicio. Están señalados los picos característicos de brushita (*), β- TCP (°), hidroxiapatita (+), silicocarnotita (·), y monetita (*).
Figura 3. Imágenes obtenidas con microscopía electrónica de barrido de la matriz del cemento cálcico preparado con 20%Si-TCP (A) y 80%Si-TCP (B).
Figura 4. A: Distribución del diámetro de los poros para los cementos preparados con
Si-TCP a distintas concentraciones de silicio (20%, 40%, 60%, 80%). B: Ampliación de la Figura 4A en el rango de diámetro de poro entre 0 y 2,5 μιη.
Figura 5. Adsorción de vancomicina al cemento de brushita no dopado con silicio (CPC-P-TCP), al cemento preparado con 40%Si-TCP y al cemento preparado con
80%Si-TCP, en función de la concentración inicial del antibiótico en la solución de incubación.
Figura 6. Cambio en el perfil de la desorción de vancomicina de la superficie de los cementos de brushita preparados con β-TCP, 40%Si-TCP y 80%Si-TCP. A: muestras incubadas en 5 mg/ml de vancomicina, y B: muestras incubadas en 10 mg/ml de vancomicina.
Figura 7. Proliferación (A) y actividad celular (B) de las células MG 63 en cementos preparados con Si-TCP con un contenido de Si de 0%, 20%, 40% y 80%.
Figura 8. Defectos críticos en el hueso parietal de la calvaría de un conejo con un diámetro de 10 mm rellenados con granulado de cemento preparado con 80%Si-TCP. Figura 9. Defectos críticos en el hueso parietal de la calvaría de un conejo con un diámetro de 10 mm rellenados con granulado de cerámica de 80%Si-TCP (círculo) y cerámica de β-TCP (flecha). Los cortes histológicos de los defectos tratados con 10% (C) y 80%Si-TCP (D) muestran la presencia de hueso maduro ($) y hueso no maduro (*)·
Modo de realización de la invención
La presente invención se ilustra adicionalmente mediante los siguientes ejemplos, los cuales no pretenden ser limitativos de su alcance.
Ejemplo 1
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocarnotita. La cerámica fue preparada a una temperatura de 1 100°C durante 14 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) en una relación Si/Si+P de 10% y una relación Ca/Si+P de 1,5 (porcentaje atómico). Esta cerámica tiene un área específica de 0,85 ± 0.01 m /g y una porosidad del 82%.
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
El primero y segundo componentes se mezclan en un molinillo o a mano en mortero durante 60 s y forman la fase sólida.
El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 2,5 g.mi"1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtiene una pasta uniforme. La pasta del cemento se puede utilizar durante 3-5 minutos a temperatura ambiente. Este tiempo se hace más corto a temperaturas más altas, por ejemplo a una temperatura de 37°C el tiempo de fraguado es menor de 2 minutos y se alarga a temperaturas más bajas, por ejemplo a 15°C el tiempo de fraguado es mayor de 7 minutos.
Una vez fraguado, el análisis de la microestructura de este cemento mediante difracción de rayos X revela que está compuesto principalmente (entre 70-90%) de fosfato dicálcico dihidratado (brushita; CaHP04.2H20). Los picos de difracción de la brushita están desplazados hacia ángulos más bajos indicando la incorporación de silicio en su estructura (ver Figura 2). Además, este cemento tiene un tamaño promedio de poro de 1,725 μπι y una porosidad del 41% (Tabla 3). El área de superficie específica de este cemento es de 3,14 ± 0,04 m2/g. Ejemplo 2
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocamotita. La cerámica fue preparada a una temperatura de 1100°C durante 14 horas, a partir de una mezcla de la forma anhidra de la brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 40% y una relación Ca/Si+P de 1 ,5 (porcentaje atómico).
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
Se mezclan los dos componentes en un molinillo o a mano en mortero durante 60 s y forman la fase sólida.
El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 2 g.ml"1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme. Una vez fraguado, el análisis de la microestructura de este cemento mediante difracción de rayos X revela que la matriz del cemento está compuesta principalmente (más del 50%) de fosfato dicálcico dihidratado (brushita; CaHP04.2H20) dopado con silicio y, además, contiene una fracción de C-S-H y otra de hidroxiapatita. Este cemento tiene un tamaño promedio de poro de 0,048 μιη y una porosidad del 43% (Tabla 3). El área de superficie específica de este cemento es de 5,8 ± 0,1 m2/g.
Ejemplo 3
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocamotita. La cerámica fue preparada a una temperatura de 1100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 60% y una relación Ca/Si+P de 1,5 (porcentaje atómico).
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
Se mezclan los dos componentes en un molinillo o a mano en mortero durante 60 s y forman la fase sólida.
El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 2 g.ml"1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme. Una vez fraguado, el análisis de la microestructura de este cemento, mediante difracción de rayos X, revela que la matriz del cemento está compuesta principalmente de fosfato dicálcico dihidratado (brushita; CaHP04.2H20) dopado con silicio, con una fracción de C-S-H y otra de hidroxiapatita. Este cemento tiene un tamaño promedio de poro de 0,041 μπι y una porosidad del 39% (Tabla 3). El área de superficie específica de este cemento es de 39,3 ± 0,02 m /g.
Ejemplo 4
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocarnotita. La cerámica fue preparada a una temperatura de 1 100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 80% y una relación Ca/Si+P de 1,5 (porcentaje atómico). Esta cerámica tiene un área específica de 1,60 ± 0,01 m2/g y una porosidad del 78%.
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
Se mezclan los dos componentes con 0,036 g de pirofosfato sódico como retardante de la reacción de fraguado en un molinillo o a mano en mortero durante 60 s.
El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 1 ,5 g.ml"1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme.
La pasta del cemento se puede utilizar durante 3-5 minutos a temperatura ambiente mientras que el cemento no modificado con pirofosfato sódico fragua en menos de 2 minutos. La esterilización del cemento se lleva a cabo con óxido de etileno.
Una vez fraguado, el análisis de la microestructura de este cemento, mediante difracción de rayos X, revela que la matriz del cemento está compuesta principalmente de C-S-H, fosfato dicálcico dihidratado (brushita; CaHP04.2H20) dopado con silicio, y también hidroxiapatita.
Ejemplo 5
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocarnotita. La cerámica fue preparada a una temperatura de 1 100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 40% y una relación Ca/Si+P de 1,5 (porcentaje atómico).
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
Se mezclan los dos componentes con 0,06 g carbonato cálcico (CaC03), como porógeno, en un molinillo o a mano en mortero, durante 60 s, y forman la fase sólida. El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en relación polvo líquido de 2 g.ml'1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme. El cemento fraguado tiene una porosidad de 45± 5% con tamaño promedio de poro de 0,525 μηι. Este tamaño de poro es muy diferente del que presentan los cementos no modificados con el pórogeno (0,037 μιη) y que quedan reflejados en la Tabla 3.
Una vez fraguado, el análisis de la microestructura de este cemento mediante difracción de rayos X revela que la matriz del cemento está compuesta principalmente de fosfato dicálcico dihidratado (brushita; CaHP04.2H20) dopado con silicio y, además, contiene una fracción de C-S-H y otra de hidroxiapatita.
Una vez obtenido el cemento, se esteriliza usando autoclave. El análisis de la microestructura del cemento esterilizado en autoclave mediante difracción de rayos X revela que toda la brushita se ha transformado a monetita. Debido al calentamiento, en el autoclave se produce la transformación de fase de brushita a monetita.
Ejemplo 6
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocarnotita. La cerámica fue preparada a una temperatura de 1 100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 80% y una relación Ca/Si+P de 1,5 (porcentaje atómico).
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
Se mezclan los dos componentes a mano en mortero durante 60 s o en un molinillo y forman la fase sólida.
El tercer componente está formado por 1M ácido cítrico. Se mezclan las fases sólida y líquida en relación polvo líquido de 1,5 g.ml"1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme. Al fraguar, se incuba el cemento en una solución de vancomicina de 5 mg/ml y se mide la cantidad del antibiótico adsorbido y también se estudia la liberación del mismo en tampón fosfato.
Los resultados indican que el cemento adsorbió 4 mg del antibiótico por cada gramo de cemento (Figura 5) y la liberación del antibiótico adsorbido siguió una cinética de orden cero a una velocidad constante de 0,14%/hora y durante 6 días, un 30% del antibiótico adsorbido fue liberado (Figura 6). La cantidad adsorbida y el porcentaje liberado se pueden aumentar incrementando la concentración de la vancomicina (Figuras 5 y 6). La incubación del cemento en solución de vancomicina con una concentración de 20 mg/ml ha aumentado la cantidad adsorbida del antibiótico a 33 mg por cada gramo de cemento, aproximadamente. El uso de una solución de vancomicina como la fase líquida es otro método para cargar el cemento con el antibiótico.
Una vez fraguado, el análisis de la microestructura de este cemento, mediante difracción de rayos X, revela que la matriz del cemento está compuesta principalmente de C-S-H, fosfato dicálcico dihidratado (brushita; CaHP04.2H20) dopado con silicio, y también hidroxiapatita.
Ejemplo 7
El primer componente consta de 1 ,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocamotita. La cerámica fue preparada a una temperatura de 1100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 80% y una relación Ca/Si+P de 1,5 (porcentaj e atómico) .
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
El primero y segundo componentes se mezclan en un molinillo o a mano en mortero durante 60 s y forman la fase sólida.
El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 1,5 g.ml"1, con una espátula, en una placa de vidrio durante 30 s hasta que se obtenga una pasta uniforme. Según los análisis de difracción de rayos X el cemento tiene una fracción de brushita dopada con silicio cercana al 20%. El área de superficie específica de este cemento es de 28,7 ± 0,lm /g.
Los cementos fraguados se siembran con una línea celular de osteoblastos humanos y se observa su proliferación durante 3, 5, 7, y 10 días.
Los resultados indican que la proliferación de los osteoblastos fue tres veces mayor que la proliferación en cemento de brushita no dopada con silicio y también la actividad celular fue incrementada al doble para el cemento dopado con silicio (Figura 7)·
Ejemplo 8
El primer componente consta de 1,2 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocarnotita. La cerámica fue preparada a una temperatura de 1100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 80% y una relación Ca/Si+P de 1,5 (porcentaje atómico).
El segundo componente consta de 0,9 g de fosfato monocálcico monohidratado Ca(H2P04)2.H20.
Los dos componentes se mezclan en un molinillo o a mano en mortero durante 60 s y forman la fase sólida.
El tercer componente es ácido cítrico 1M y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 1 ,5 g.ml"1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme que se puede utilizar para rellenar un defecto óseo o rellenar un molde para producir un bloque que, a posteriori, se utiliza en el tratamiento de defectos óseos. Otra posibilidad es que el cemento fraguado se triture y tamice para producir un granulado de un tamaño de partícula entre 0,2 mm y 1 mm. Este granulado se utiliza como sustituto óseo. En un modelo de experimentación animal (conejo), se practicó una incisión de 4 cm de longitud encima de la sutura sagital de la calota de un conejo, previamente afeitada y desinfectada con Betadine. A continuación se levantó el periostio del hueso parietal y se fresaron dos defectos óseos utilizando una trefina de 10 mm de diámetro, conectada a un instrumento rotatorio (contrángulo) quirúrgico con irrigación de suero fisiológico. Los defectos fueron rellenados con 0,5 gramos del granulado del cemento seleccionando el tamaño de partícula entre 0,5-0,8mm. Se recolocó y suturó el periostio con sutura reabsorbible y la piel se suturó con sutura de seda. Al cabo de 8 semanas, se observó la formación de nuevo tejido óseo rellenando el defecto (Figura 8).
Ejemplo 9
El primer componente consta de 1,55 g de cerámica compuesta de fosfato tricálcico beta dopado con silicio y silicocarnotita. La cerámica fue preparada a una temperatura de 1000°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 10% y una relación Ca/Si+P de 1,45 (porcentaje atómico).
El segundo componente consta de 1,26 g de fosfato monocálcico (Ca(H2P04)2).
Los dos componentes se mezclan en un molinillo o a mano en mortero durante 60 s y forman la fase sólida.
El tercer componente es ácido glicólico 1M modificado con 0,5% (peso/peso) de ácido hialurónico y constituye la fase líquida.
Se mezclan las fases sólida y líquida en una relación polvo/líquido de 1,5 g.ml'1 con una espátula, en una placa de vidrio, durante 30 s hasta que se obtenga una pasta uniforme. Con este procedimiento se ha observado que la viscosidad de la pasta del cemento se ha aumentado y que la pérdida de masa sólida se redujo en un 50% en comparación con el cemento no modificado con ácido hialurónico. La adición del ácido hialurónico no ha inducido cambios en la composición del cemento.
Ejemplo 10
Se prepararon 2 cerámicas compuestas de fosfato tricálcico beta dopado con silicio y silicocarnotita a una temperatura de 1100°C durante 12 horas, a partir de una mezcla de brushita, carbonato cálcico y dióxido de silicio (Si02) con una relación Si/Si+P de 10% y 80%, respectivamente, y una relación Ca/Si+P de 1,5 (porcentaje atómico). Las 2 cerámicas fueron trituradas y tamizadas por separado para producir sendos granulados de un tamaño de partícula entre 0,5mm y 0,8mm. Estos granulados se utilizaron como sustitutos óseos.
Utilizando como modelo de experimentación animal el conejo, se practicó una incisión de 4 cm de longitud encima de la sutura sagital de la calota de un conejo, previamente afeitada y desinfectada con Betadine. A continuación se levantó el periostio del hueso parietal y se fresaron dos defectos óseos utilizando una trefina de lO mm de diámetro, conectada a un instrumento rotatorio (contrángulo) quirúrgico con irrigación de suero fisiológico. Cada uno de los defectos se rellenó con 0,25 gramos del granulado de una de las cerámicas utilizadas, seleccionando el tamaño de partícula entre 0,5-0,8mm. Se recolocó y suturó el periostio con sutura reabsorbible y la piel se suturó con sutura de seda. Se observó la formación de nuevo tejido óseo rellenando cada uno de los defectos, al cabo de 8 y de 12 semanas (Figura 9).
El análisis histológico e histomorfológico mostró que la formación de nuevo hueso fue del 41% y el 62%, 8 semanas postoperatorio, para las cerámicas con 10% y 80%-Si- TCP, respectivamente. Este porcentaje aumentó a 62% y 85% 12 semanas postoperatorio, dato que coincidió con la observación macroscópica de la regeneración completa del defecto que se rellenó con la cerámica de 80%Si-TCP (Figura 9).

Claims

Reivindicaciones
1. Método para obtener un cemento de fosfato cálcico-silicato cálcico que comprende: sintetizar una cerámica compuesta de fosfato tricálcio beta (Ca3(P04)2) dopado con silicio y silicocarnotita (Ca5(P04)2Si04) a partir de una mezcla de fosfato cálcico ácido, preferiblemente fosfato dicálcico dihidratado (brushita; CaHP04.2H20) o su forma anhidra, carbonato cálcico (CaC03) y dióxido de silicio (Si02) con una relación Si/(Si+P), antes de la calcinación, entre 1 y 99% y una relación Ca/(Si+P) de 1,45-1,5 (porcentaje atómico), aplicando una temperatura entre 700°C y 1250°C durante, al menos, 3 horas.
2. Método según la reivindicación 1 que, además, comprende los siguientes pasos: a) Mezclar la cerámica obtenida según la reivindicación 1 con fosfato monocálcico (Ca(H2P04)2), fosfato monocálcico monohidratado (Ca(H2P04)2.H20) o ácido fosfórico (H3P04);
b) Mezclar el resultado del paso a) con una fase acuosa.
3. Método según la reivindicación 2 en el que la fase acuosa se presenta en una proporción respecto a la fase sólida de entre 0,5 g/ml y 7,14 g/ml.
4. Método según la reivindicación 3 en el que la fase acuosa se presenta en una proporción respecto a la fase sólida de entre 1,5 y 4 g/ml.
5. Método según cualquiera de las reivindicaciones 2-4 que incluye la incorporación de un aditivo porógeno en el paso b).
6. Método según la reivindicación 5 en que el agente porógeno se selecciona del grupo formado por compuestos de carbonato, como carbonato cálcico, bicarbonato cálcico, carbonato de sodio, bicarbonato de sodio; sustancias solubles en agua como manitol, cloruro sódico; y polímeros.
7. Método según cualquiera de las reivindicaciones 2-6 en el que se incluye la incorporación de un agente bioactivo.
8. Método según la reivindicación 7 en que el agente bioactivo se incorpora bien en la fase acuosa y/o en la fase sólida o bien por adsorción posteriormente al paso b.
9. Método según cualquiera de las reivindicaciones 7-8 en el que el agente bioactivo se selecciona entre antibióticos, antiinflamatorios, medicamentos anticancerígenos, analgésicos, factores de crecimiento, hormonas, o cualquier combinación de dichos agentes.
10. Método según cualquiera de las reivindicaciones 2-9 en el que se incluye la incorporación en el paso a) o b) de un polímero biodegradable seleccionado entre: ácido hialurónico, sales de hialuronato, condroitín 4 sulfato, condroitín 6 sulfato, dextrano, gel de sílice, alginato, hidroxipropilmetilcelulosa, derivados de quitina, preferiblemente quitosano, goma xanthan, agarosa, polietilenglicol (PEG), polihidroxietilenometacrilato (HEMA), proteínas sintéticas o naturales, colágenos o cualquier combinación entre ellos.
1 1. Método según cualquiera de las reivindicaciones 1-10 en el que se incluye la incorporación, en el paso a definido en la reivindicación 2, de un aditivo para controlar la velocidad de reacción del fraguado seleccionado del grupo formado por: pirofosfato sódico, pirofosfato potásico, acetato sódico, acetato potásico, citrato sódico, citrato potásico, fosfocitrato sódico, fosfocitrato potásico, sulfato sódico o sulfato potásico, sulfato cálcico hemihidratado CaSO4.0.5H2O (CSH), pirofosfato sódico Na4P2O7.10H2O (NaPPH), disodio dihidrógeno pirofosfato Na2H2P207 (NaHPP), pirofosfato cálcico Ca4P207 (CaPP), sulfato de magnesio, bisfosfonato sódico, y bisfosfonato potásico.
12. Método según cualquiera de las reivindicaciones 1-11 que incluye la formación de bloques o granulados del cemento.
13. Método según cualquiera de las reivindicaciones 1-12 que incluye la esterilización del cemento mediante procesos térmicos (calor seco, autoclave), químicos (gas, alcohol) o radiación gamma.
14. Cerámica que comprende fosfato tricálcico beta (Ca3(P04)2) dopado con silicio y silicocarnotita (Ca5(P04)2Si04)j teniendo dicha cerámica un área de superficie específica entre 0,5 y 2 m2/g y una porosidad entre 50% y 90%.
15. Cemento de fosfato cálcico-silicato cálcico que comprende una fracción de volumen entre el 10% y el 90% de brushita (DCPD, CaHP0 2H20) dopada con silicio, una fracción de silicato cálcico hidratado (C-S-H) y/o una fracción de hidroxiapatita, teniendo dicho cemento, al fraguar, un área de superficie específica entre 3 y 40 m2/g y un diámetro medio de poro entre 0,03 y 2 μιη.
16. Cemento de fosfato cálcico-silicato cálcico según la reivindicación 15 que se presenta en forma de granulado.
17. Cemento de fosfato cálcico-silicato cálcico según la reivindicación 16 en que el granulado tiene un tamaño de partícula de entre 0,2 y 1 mm.
18. Cemento de fosfato cálcico-silicato cálcico según la reivindicación 15 que se presenta en forma de pasta o de bloque.
19. Cemento de fosfato cálcico-silicato cálcico según cualquiera de las reivindicaciones 15-18 que incorpora al menos un agente bioactivo.
20. Cemento de fosfato cálcico-silicato cálcico según la reivindicación 19 en que el agente bioactivo se selecciona entre antibióticos, antiinflamatorios, medicamentos anticancerígenos, analgésicos, factores de crecimiento, hormonas, o cualquier combinación de dichos agentes.
21. Cemento de fosfato cálcico-silicato cálcico según cualquiera de las reivindicaciones 15-20 que incorpora un polímero biodegradable seleccionado entre: ácido hialurónico, sales de hialuronato, condroitín 4 sulfato, condroitín 6 sulfato, dextrano, gel de sílice, alginato, hidroxipropilmetilcelulosa, derivados de quitina, preferiblemente quitosano, goma xanthan, agarosa, polietilenglicol (PEG), polihidroxietilenometacrilato (HEMA), proteínas sintéticas o naturales, colágenos o cualquier combinación entre ellos.
22. Uso de las cerámicas y cementos definidos en cualquiera de las reivindicaciones 14-21, o producidos por los métodos según cualquiera de las reivindicaciones 1-13 en la preparación de un agente terapéutico para regeneración ósea máxilofacial y/o ortopédica.
23. Matriz de cemento que comprende el cemento de fosfato cálcico-silicato cálcico definido por cualquiera de las reivindicaciones 14-21, o producido por cualquiera de los métodos según cualquiera de las reivindicaciones 1-13.
24. Uso de las matrices según la reivindicación 23 en la preparación de un agente terapéutico para regeneración ósea máxilofacial u oral y/o aplicaciones ortopédicas.
25. Uso de las matrices según la reivindicación 23 en ingeniería tisular y ósea como soporte para el crecimiento de células.
26. Uso de las matrices según la reivindicación 25 en el que las células se seleccionan entre el grupo formado por: osteoblastos, células madres y células mesenquimales.
27. Uso de las matrices según la reivindicación 23 en la preparación de un agente terapéutico para la liberación controlada de medicamentos (antibióticos, antiinflamatorios y anticancerígenos).
PCT/ES2011/000228 2010-07-16 2011-07-15 Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas WO2012007612A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000915 2010-07-16
ES201000915A ES2373137B2 (es) 2010-07-16 2010-07-16 Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas.

Publications (1)

Publication Number Publication Date
WO2012007612A1 true WO2012007612A1 (es) 2012-01-19

Family

ID=45468963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000228 WO2012007612A1 (es) 2010-07-16 2011-07-15 Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas

Country Status (2)

Country Link
ES (1) ES2373137B2 (es)
WO (1) WO2012007612A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103263691A (zh) * 2013-04-25 2013-08-28 浙江大学 一种促进骨再生修复的高生物活性复合材料及制备方法
CN104030718A (zh) * 2014-05-20 2014-09-10 广州医科大学 一种掺杂痕量元素的多孔碳酸钙陶瓷及其制备方法和应用
US10835495B2 (en) 2012-11-14 2020-11-17 W. R. Grace & Co.-Conn. Compositions containing a biologically active material and a non-ordered inorganic oxide material and methods of making and using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087390A2 (en) * 2008-01-09 2009-07-16 University Court Of The University Of Aberdeen Synthesis of bioceramic compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087390A2 (en) * 2008-01-09 2009-07-16 University Court Of The University Of Aberdeen Synthesis of bioceramic compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAMDAN ALKHRAISAT, MOHAMMAD ET AL.: "Effect of silica gel on the cohesion, properties and biological performance of brushite cement", ACTA BIOMATERIALIA, vol. 6, 2010, pages 257 - 265, XP026781986, DOI: doi:10.1016/j.actbio.2009.06.010 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835495B2 (en) 2012-11-14 2020-11-17 W. R. Grace & Co.-Conn. Compositions containing a biologically active material and a non-ordered inorganic oxide material and methods of making and using the same
CN103263691A (zh) * 2013-04-25 2013-08-28 浙江大学 一种促进骨再生修复的高生物活性复合材料及制备方法
CN104030718A (zh) * 2014-05-20 2014-09-10 广州医科大学 一种掺杂痕量元素的多孔碳酸钙陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
ES2373137B2 (es) 2012-07-17
ES2373137A1 (es) 2012-01-31

Similar Documents

Publication Publication Date Title
US8389467B2 (en) In situ self-setting mineral-polymer hybrid materials, composition and use thereof
ES2389294T3 (es) Material de regeneración ósea a partir de combinaciones de monetita con otros compuestos bioactivos de calcio y silicio
AU2005211732B2 (en) Macroporous, resorbable and injectible calcium phosphate-based cements (MCPC) for bone repair, augmentation, regeneration, and osteoporosis treatment
US6117456A (en) Methods and products related to the physical conversion of reactive amorphous calcium phosphate
Demir-Oğuz et al. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring?
Huan et al. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system
US20080152723A9 (en) Inorganic resorbable bone substitute material
Masaeli et al. Efficacy of the biomaterials 3 wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly (lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study
US7150879B1 (en) Neutral self-setting calcium phosphate paste
Pina et al. Ceramic biomaterials for tissue engineering
Alkhraisat et al. Effect of silica gel on the cohesion, properties and biological performance of brushite cement
Arcos Calcium phosphate bioceramics
Ramesh et al. Calcium-based ceramic biomaterials
ES2373137B2 (es) Cemento de fosfato cálcico-silicato cálcico para aplicaciones biomédicas.
Padilla et al. Novel nanostructured Zn-substituted monetite based biomaterial for bone regeneration
Chen et al. Calcium phosphate bone cements: their development and clinical applications
He et al. Accelerating biodegradation of calcium phosphate cement
Ito et al. Magnesium-and zinc-substituted beta-tricalcium phosphates as potential bone substitute biomaterials
Chanes-Cuevas et al. Calcium Phosphate and Bioactive Glasses
Dorozhkin Self-Setting Formulations Calcium Orthophosphate (CaPO4)
Piccinini Porous calcium phosphate granules for biomedical applications
Kashi et al. Reza Masaeli
Wu Development of biocomposite scaffolds and injectable biocement for bone regeneration.
Valente et al. Gonçalves
Masaeli et al. Calcium Phosphate Cement Containing Strontium for Increasing Bone Formation: In Vitro and In Vivo Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806331

Country of ref document: EP

Kind code of ref document: A1