WO2012006781A1 - 一种双频天线 - Google Patents

一种双频天线 Download PDF

Info

Publication number
WO2012006781A1
WO2012006781A1 PCT/CN2010/075159 CN2010075159W WO2012006781A1 WO 2012006781 A1 WO2012006781 A1 WO 2012006781A1 CN 2010075159 W CN2010075159 W CN 2010075159W WO 2012006781 A1 WO2012006781 A1 WO 2012006781A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
resonant
resonant coil
frequency
dual
Prior art date
Application number
PCT/CN2010/075159
Other languages
English (en)
French (fr)
Inventor
刘朋
郭羲祥
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2010/075159 priority Critical patent/WO2012006781A1/zh
Priority to EP10854574.0A priority patent/EP2595244B1/en
Priority to US13/809,550 priority patent/US9112285B2/en
Publication of WO2012006781A1 publication Critical patent/WO2012006781A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements

Definitions

  • the present invention relates to an antenna, and more particularly to a dual band antenna. Background technique
  • the corresponding antenna is also dual-frequency or multi-frequency.
  • the dual-frequency antenna mostly adopts a dual-frequency antenna with a double-layer structure or a partial resonance structure.
  • a dual-frequency antenna with a two-chip structure combines the two antennas and places them under one feed point.
  • the two antennas have their own resonances and do not affect each other.
  • the spiral structure constitutes a low frequency resonance, and the whip structure realizes a high frequency portion.
  • the length of the spiral structure is half wavelength (low frequency resonance frequency), and the length of the whip structure is one quarter wavelength (high frequency resonance frequency), and the performance of the antenna at two frequencies is similar to that of the half wave oscillator.
  • a dual-frequency antenna with partial resonant structure can achieve dual-frequency resonance by changing the pitch of part of the structure of the spiral.
  • the part changing the pitch is a resonant length of another frequency required, and the performance of the antenna at two frequencies is half.
  • the performance of the wave oscillator is similar.
  • Most of the existing external dual-frequency antennas are realized by a partially resonant structure.
  • the spiral structure is used to place the high-frequency resonance part at the bottom of the coil, which together with the other part constitutes a lower frequency resonance.
  • the specific structure can be seen in Figure 1.
  • the above two external spiral dual-frequency antennas are in the UHF/VHF (Very High Frequency) + GPS band mode, and the pitch of some coils is changed or a quarter of the whip antenna is placed at the bottom of the spiral to form resonance.
  • This design is relatively simple.
  • the performance of the antenna is more concentrated in the lower hemisphere.
  • the upper hemisphere the part pointing to the sky
  • there is a large depression and poor performance. is not conducive to the reception of GPS signals.
  • the technical problem to be solved by the present invention is to provide a dual frequency for the above-mentioned prior art dual-frequency antenna in the prior art which has poor performance in the upper hemisphere (direction pointing to the sky) and poor GPS receiving performance. antenna.
  • a dual-frequency antenna comprising a spiral coil, wherein a lower end of the spiral coil is disposed as a first resonant coil having a first pitch to generate a first resonant frequency, The upper end of the spiral coil is disposed to have a second pitch and is configured to generate a second resonant coil that is less resonant than the first resonant frequency, the first pitch being greater than the second pitch; further comprising: setting a first coupling unit for stabilizing the resonant frequency performance of the first resonant coil within the first resonant coil and electrically isolated from the first resonant coil;
  • a second coupling unit disposed outside the helical coil and electrically isolated from the helical coil for increasing the equivalent electrical length of the first resonant coil and increasing the gain of the first coil resonant frequency.
  • the advantageous effect of the present invention is that by adding the first coupling unit in the high frequency portion of the partial resonance structure, the performance of the resonance frequency of the first resonance coil is better, and the performance of the second resonance coil is not affected.
  • the performance of the resonant frequency of the first resonant coil is concentrated more on the upper hemisphere.
  • the two coupled units added increase the distributed current of the first resonant coil while increasing the electrical length of the first resonant coil.
  • FIG. 1 is a schematic diagram showing the structure of a partially resonant dual-frequency antenna in which a high-frequency resonance is placed at the bottom of a spiral coil in the prior art;
  • FIG. 2 is a schematic structural diagram of a dual frequency antenna according to an embodiment of the invention.
  • FIG. 3 is a schematic structural diagram of a dual-frequency antenna according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a GP S band index of the dual band antenna shown in FIG. 3;
  • FIG. 5 is a GPS gain simulation direction diagram of the dual-frequency antenna shown in FIG. 3;
  • FIG. 6 is a schematic diagram of a VHF band index of the dual-band antenna shown in FIG. 3; 7 is a VHF gain simulation pattern of the dual-band antenna shown in FIG. 3;
  • Figure 8 is a VHF band radiation pattern of the dual-frequency antenna sample shown in Figure 3;
  • Figure 9 is a GPS band radiation pattern of the dual-frequency antenna sample shown in Figure 3. detailed description
  • the dual band antenna 200 shown in Fig. 2 includes a spiral coil 201 and a first coupling unit 202.
  • the lower end of the spiral coil 201 is disposed as a first resonance coil 201A having a first pitch, the upper end of the spiral coil 201 being disposed to have a second pitch and for generating a resonance frequency lower than that of the first resonance coil 201A Resonant second resonant coil 201B, wherein the first pitch is greater than the second pitch.
  • the first coupling unit 202 is disposed in the first resonant coil and is electrically isolated from the first resonant coil for stabilizing the resonant frequency of the first resonant coil.
  • the performance of the resonance frequency of the first resonant coil is better, and the performance of the second resonant coil is not affected.
  • the performance of the resonant frequency of the first resonant coil is concentrated more on the upper hemisphere.
  • the parasitic impedance is an important factor in whether the GPS performance can be stabilized, and the addition of the first coupling unit 202 can increase the parasitic impedance of the first resonant coil 201A.
  • FIG. 3 is a schematic structural diagram of a dual frequency antenna according to another embodiment of the present invention.
  • the dual-frequency antenna shown in FIG. 3 further includes a second coupling unit 203, which is disposed outside the spiral coil and electrically isolated from the spiral coil for increasing the equivalent power of the first resonant coil.
  • the length and the resonance frequency gain of the first resonant coil are increased.
  • the second coupling unit 203 substantially increases the height of the second resonant coil.
  • the two coupling units in Figures 2 and 3 increase the distributed current of the first resonant coil while increasing the electrical length of the first resonant coil.
  • the spiral coil 201 shown in Figures 2 and 3 is a complete coil with upper and lower portions having different pitches.
  • the upper coil having the first pitch is referred to as a first resonant coil 201A
  • the lower coil having the second pitch is referred to as a second resonant coil 201B.
  • the dual-frequency antennas shown in Figures 2 and 3 operate in the GPS and VHF bands, with the first resonant coil 201A operating in the GPS band and the second resonant coil 201B operating in the VHF band.
  • the magnitude relationship between the first pitch and the second pitch is determined by the variable pitch spiral coil 201 as long as the variable pitch helical coil 201 can achieve dual frequency reception.
  • the size of the first pitch is more than twice the second pitch. Guarantee the basic performance of the GPS band.
  • the length of the first resonant coil 201A is about half a wavelength of the working frequency band (GPS frequency band) of the first resonant coil 201A
  • the length of the second resonant coil 201B is about the operating frequency band of the second resonant coil 201B ( Half wavelength of the VHF band).
  • the second coupling unit 203 in Fig. 3 is a wire having a length less than or equal to a half wavelength (9.5 mm) of the operating frequency band (GPS band) of the first resonant coil.
  • the first coupling unit 202 is an inverted circular body made of a metal material, the bottom is on the top, adjacent to the second resonant coil 201B, and the radius of the bottom is close to the inner diameter of the spiral coil.
  • This solution can be used as a preferred embodiment for carrying out the invention.
  • the first coupling unit 202 is a cone made of a metallic material.
  • the second coupling unit 203 is a wire, and one end is a ring that surrounds the first resonant coil 201A and has a fixed function, and may be, for example, a ring having an opening (that is, the ring is non-closed). ).
  • the ring end of the second coupling unit 203 is disposed outside the first resonance coil 201A, and the other end extends to a certain portion of the second resonance coil 201B.
  • a ring having an opening may be disposed at a position close to both ends of the first resonance coil 201A, in which case voltage coupling may be achieved to maximize the voltage.
  • the length of the second coupling unit 203 is less than or equal to half the wavelength of the GPS band.
  • one end of the second coupling unit 203 is a closed ring disposed in the middle of the first resonant coil and surrounding the first resonant coil, in which case maximum current coupling can be achieved.
  • the first coupling unit 202 and the second coupling unit 203 are electrically isolated from the helical coil, that is, in electrical contact with the helical coil.
  • the dual frequency antenna 200 allows GPS performance to be more concentrated on the upper hemisphere.
  • the first coupling unit 202 employed stabilizes the performance of the GPS resonant coil.
  • the second coupling unit 203 is capable of increasing the equivalent electrical length of the GPS and increasing the gain of the GPS resonant frequency.
  • the dual band antenna 200 of the present invention can be applied to a professional walkie-talkie or other electronic device.
  • the received point of the electronic device is electrically connected to the electronic device so that the received signal can be transmitted to the electronic device.
  • FIG. 4 is a schematic diagram of a GP S band index of the dual band antenna shown in FIG. 3
  • FIG. 5 is a GPS gain simulation direction diagram of the dual band antenna shown in FIG. 3.
  • the performance of the GPS band is better, and the performance of the antenna is half concentrated on the upper hemisphere, the antenna gain is about OdBi, and there is a higher peak gain angle (PGA) (this simulation)
  • the gain data is the ideal value of the PCB jacket and the main unit casing, excluding the PCB loss).
  • the position of m3, m4, m5, m6 in Figure 5 shows the PGA, and m7 indicates the position of the gain minimum of the two lobes.
  • FIG. 6 is a schematic diagram of a VHF band index of the dual-band antenna shown in FIG. 3.
  • FIG. 7 is a VHF gain simulation pattern of the dual-band antenna shown in FIG. As can be seen from Figures 6-7, the dual-band antenna of the present invention does not affect the performance of the VHF while improving GPS performance.
  • FIG. 8 is a VHF band radiation pattern of the dual-band antenna shown in Figure 3;
  • Figure 9 is a GPS band radiation pattern of the dual-band antenna shown in Figure 3.
  • the gain index of the antenna is very good.
  • the gain of the VHF band 160MHz
  • the gain of the GPS band 1575MHz
  • OdBi which is close to symmetry.
  • the direction map parameters, GPS gain pattern and simulation are basically the same. Therefore, the dual-frequency antenna of the present invention can have better GPS performance without affecting the performance of the VHF. In professional walkie-talkies, GPS can have good reception.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

一种双频天线,包括螺旋线圈,螺旋线圈的下端设置为具有第一节距的第一谐振线圈,螺旋线圈的上端设置为具有第二节距且用于产生比第一谐振线圈谐振频率更低的谐振的第二谐振线圈,第一节距大于第二节距;设置于第一谐振线圈内且与第一谐振线圈电隔离的用于稳定第一谐振线圈谐振频率性能的第一耦合单元;设置于螺旋线圈外且与螺旋线圈电隔离的用于增加第一谐振线圈等效电长度以及提高第一线圈谐振频率增益的第二耦合单元。本发明通过两个耦合单元对部分谐振结构的高频部分进行改进,得到较好的第一谐振线圈谐振频率性能,使得第一谐振线圈的性能更多的集中于上半球面,增大了第一谐振线圈的分布电流,同时增加了第一谐振线圈的电长度。

Description

一种双频天线 技术领域
本发明涉及一种天线, 更具体地说, 涉及一种双频天线。 背景技术
目前,手持终端设备通常有多个频段以实现多个功能或辅助功能,如手机 的全球移动通信系统 (GSM) 及数字蜂窝系统 (DCS ) 所需频段, 对讲机的 超高频 (UHF)及全球定位系统频率 (GPS) 等, 对应的其天线也是双频或者 多频的, 现有技术中的双频天线多采用双阵子结构或部分谐振结构的双频天 线。采用双阵子结构的双频天线将两个天线合并, 置于一个馈电点之下, 两个 天线有各自的谐振且互不影响。通常是螺旋结构构成低频谐振, 鞭结构实现高 频部分。 螺旋结构的长度为半波长 (低频谐振频率), 鞭结构的长度为四分之 一波长 (高频谐振频率), 两个频率下的天线性能与半波振子的性能相似。
部分谐振结构的双频天线,将螺旋的部分结构节距改变即可实现双频的谐 振, 改变节距的部分是所需要的另一频率的一个谐振长度, 两个频率下的天线 性能与半波振子的性能相似。目前的外置双频天线大多采用部分谐振的结构来 实现, 采用螺旋结构来实现, 将高频谐振部分放在线圈的底部, 它和另一部分 共同构成较低频率的谐振。 具体结构可参见图 1所示。
上述两种外置螺旋双频天线, 是 UHF/VHF (甚高频) +GPS频段的工作 模式, 将部分线圈的节距改变或者加入一个四分之一的鞭天线放在螺旋的底 部, 形成谐振。 这种设计相对简单, 凡是对于 GPS频段来讲, 天线的性能更 多的集中于下半球面,在 GPS所需要的上半球面 (指向天空的部分), 有一个很 大的凹陷, 性能比较差, 不利于 GPS信号的接收。
另外如果在 VHF频段设计双频天线,那么两个频率的差距巨大,约为 10倍频, VHF频率的少许偏差均会造成 GPS信号的巨大差异。 发明内容
本发明要解决的技术问题在于,针对现有技术的上述现有技术中双频天线 在上半球面(指向天空的方向)上性能不理想、 GPS接收性能不好的缺陷, 提 供一种双频天线。
本发明解决其技术问题所采用的技术方案是:构造一种双频天线,包括螺 旋线圈, 所述螺旋线圈的下端设置为具有第一节距的第一谐振线圈,产生第一 谐振频率,所述螺旋线圈的上端设置为具有第二节距且用于产生比所述第一谐 振频率更低谐振的第二谐振线圈, 所述第一节距大于所述第二节距; 还包括: 设置于第一谐振线圈内且与第一谐振线圈电隔离的用于稳定第一谐振线 圈谐振频率性能的第一耦合单元;
设置于螺旋线圈外且与螺旋线圈电隔离的用于增加第一谐振线圈等效电 长度以及提高第一线圈谐振频率增益的第二耦合单元。
本发明的有益效果是,通过在部分谐振结构的高频部分中增加第一耦合单 元, 从而得到较好的第一谐振线圈谐振频率的性能, 且并不影响第二谐振线圈 的性能。使得第一谐振线圈谐振频率的性能更多的集中于上半球面。加入的两 个耦合单元增大了第一谐振线圈的分布电流,同时增加了第一谐振线圈的电长 度。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1 是现有技术中将高频谐振置于螺旋线圈底部的部分谐振双频天线结 构示意图;
图 2是依据本发明一实施例的双频天线结构示意图;
图 3是依据本发明另一实施例的双频天线结构示意图;
图 4是图 3所示的双频天线的 GP S频带指标示意图;
图 5是图 3所示的双频天线的 GPS增益仿真方向图;
图 6是图 3所示的双频天线的 VHF频带指标示意图; 图 7是图 3所示的双频天线的 VHF增益仿真方向图;
图 8是图 3所示的双频天线样品的 VHF频段辐射方向图;
图 9是图 3所示的双频天线样品的 GPS频段辐射方向图。 具体实施方式
图 2是依据本发明一实施例的双频天线结构示意图。图 2所示的双频天线 200, 包括螺旋线圈 201、第一耦合单元 202。螺旋线圈 201的下端设置为具有 第一节距的第一谐振线圈 201A, 所述螺旋线圈 201的上端设置为具有第二节 距且用于产生比所述第一谐振线圈 201A谐振频率更低的谐振的第二谐振线圈 201B , 其中第一节距大于第二节距。 第一耦合单元 202 设置于第一谐振线圈 内且与第一谐振线圈电隔离的用于稳定第一谐振线圈谐振频率的性能。通过增 加第一耦合单元 202, 从而得到较好的第一谐振线圈谐振频率的性能, 且并不 影响第二谐振线圈的性能。使得第一谐振线圈谐振频率的性能更多的集中于上 半球面。 寄生阻抗是关乎 GPS性能能不能稳定下来的重要因素, 增加第一耦 合单元 202可以提高第一谐振线圈 201A的寄生阻抗。
图 3是依据本发明另一实施例的双频天线结构示意图。与图 2的区别在于, 图 3所示的双频天线还包括第二耦合单元 203, 第二耦合单元 203设置于螺旋 线圈外且与螺旋线圈电隔离的用于增加第一谐振线圈等效电长度以及提高第 一谐振线圈的谐振频率增益。第二耦合单元 203实质上增加了第二谐振线圈的 高度。 图 2和图 3中的两个耦合单元增大了第一谐振线圈的分布电流, 同时增 加了第一谐振线圈的电长度。
图 2和图 3所示的螺旋线圈 201是一个完整的线圈,上部和下部具有不同 的节距。为了描述上的方便,将上部的具有第一节距的线圈称作第一谐振线圈 201A, 将下部的具有第二节距的线圈称作第二谐振线圈 201B。 通常情况下, 图 2和图 3所示双频天线工作在 GPS和 VHF频段, 其中第一谐振线圈 201A 工作在 GPS频段, 第二谐振线圈 201B工作在 VHF频段。 关于第一节距和第 二节距的大小关系由变节距螺旋线圈 201来定,只要变节距螺旋线圈 201能够 实现双频接收就可以。 一般情况下, 第一节距的大小是第二节距的两倍以上, 保证 GPS频段的基础性能。
在本发明一实施例中,第一谐振线圈 201A的长度约为第一谐振线圈 201A 工作频段 (GPS频段) 的半个波长, 第二谐振线圈 201B的长度约为第二谐振 线圈 201B工作频段 (VHF频段) 的半个波长。
图 2所示为双频天线 200 的平面示意图, 图中显示的第一耦合单元 202 为矩形,实际上是其剖面为矩形,第一耦合单元 202为金属材料制成的圆柱体, 其半径接近于(略小于)螺旋线圈的内径, 第一耦合单元 202的高度约为第一 谐振线圈工作频段的八分之一波长。 图 3中的第二耦合单元 203为金属丝, 长 度小于等于第一谐振线圈工作频段 (GPS频段) 的半个波长 (9.5mm)。
在本发明一实施例中, 第一耦合单元 202 为金属材料制成的倒立的圆台 体, 底部在上, 靠近第二谐振线圈 201B , 底部的半径接近于螺旋线圈的内径。 该方案可作为实施本发明的优选方案。在本发明另一实施例中,第一耦合单元 202为金属材料制成的圆锥体。
在本发明一实施例中,第二耦合单元 203为金属丝,一端为环绕第一谐振 线圈 201A且具有固定作用的圆环, 例如可以是具有开口的圆环 (也即该圆环 是非封闭的)。第二耦合单元 203的圆环端设置在第一谐振线圈 201A的外部, 另一端延伸至第二谐振线圈 201B的某一部分。
具有开口的圆环可以设置于第一谐振线圈 201A的靠近两端的位置, 这种 情况下可实现电压耦合, 使得电压最大。 第二耦合单元 203 的长度小于等于 GPS频段的半个波长。
在本发明又一实施例中,第二耦合单元 203的一端为设置于所述第一谐振 线圈中部且环绕所述第一谐振线圈的封闭圆环,这种情况下可实现最大电流耦 合。 图 2和图 3中,第一耦合单元 202和第二耦合单元 203与螺旋线圈电隔离, 也就是说与螺旋线圈没有电接触。
双频天线 200使得 GPS性能更多的集中于上半球面。 采用的第一耦合单 元 202使 GPS谐振线圈的性能稳定。 第二耦合单元 203能够增加 GPS的等效 电长度, 提升 GPS谐振频率的增益。 本发明的双频天线 200可应用于专业对讲机或者其他的电子设备上。通过 电子设备的馈电点与电子设备电连接,从而可以将接收到的信号传送至电子设 备。
为了能够更清晰地表述本发明给出的双频天线的性能,下面介绍双频天线 200的仿真结果。
图 4是图 3所示的双频天线的 GP S频带指标示意图, 图 5是图 3所示的 双频天线的 GPS增益仿真方向图。 由图 4-5可知, GPS频段的性能较好, 天 线的性能有一半集中于上半球面, 天线增益约 OdBi左右, 并且有较高的最大 增益角度(peak gain angle,简称 PGA) (此仿真的增益数据为不加天线外套和 主机外壳, 不计 PCB损耗的理想值)。 图 5中 m3、 m4、 m5、 m6位置示出了 PGA, m7指示了两个波瓣的增益最小值的位置。
图 6是图 3所示的双频天线的 VHF频带指标示意图; 图 7是图 3所示的 双频天线的 VHF增益仿真方向图。 由图 6-7可知, 本发明的双频天线在提高 GPS性能的同时, 不影响 VHF的性能。
为了能够验证本发明提供的双频天线性能,使用网络分析仪以及微波暗室 对依据本发明设计的双频天线样品进行了测试。图 8是图 3所示的双频天线的 VHF频段辐射方向图; 图 9是图 3所示的双频天线的 GPS频段辐射方向图。
从图 8-9可以看出, 天线的增益指标很好, VHF频段 (图示为 160MHz) 的增益有 -5dBi左右, GPS频段 (图示为 1575MHz) 的增益约为 OdBi左右, 有接近对称的方向图参数, GPS增益方向图与仿真的基本一致。 因此, 应用本 发明的双频天线, 可以有较好的 GPS性能, 而且并不影响 VHF的性能。 在专 业的对讲机使用, GPS可以有很好的接收效果。
以上所述仅为本发明的优选实施例, 并不用以限制本发明,凡在本发明的 精神和原则内所作的任何修改、等同替换或改进等, 均应包含在本发明的保护 范围内。

Claims

权 利 要 求
1、 一种双频天线, 包括螺旋线圈, 所述螺旋线圈的下端设置为具有第一 节距的第一谐振线圈,所述螺旋线圈的上端设置为具有第二节距且用于产生比 所述第一谐振线圈谐振频率更低的谐振的第二谐振线圈,所述第一节距大于所 述第二节距; 其特征在于, 还包括:
设置于第一谐振线圈内且与第一谐振线圈电隔离的第一耦合单元,所述第 一耦合单元用于稳定第一谐振线圈谐振频率性能。
2、 根据权利要求 1所述的双频天线, 其特征在于, 还包括设置于螺旋线 圈外且与螺旋线圈电隔离的第二耦合单元,所述第二耦合单元用于增加第一谐 振线圈等效电长度以及提高第一线圈谐振频率增益。
3、 根据权利要求 1所述的双频天线, 其特征在于, 所述第一谐振线圈的 长度约为第一谐振线圈工作频段的半个波长,所述第二谐振线圈的长度约为第 二谐振线圈工作频段的半个波长。
4、 根据权利要求 1所述的双频天线, 其特征在于, 所述第一耦合单元为 金属材料制成的圆柱体或倒立的圆台。
5、 根据权利要求 4所述的双频天线, 其特征在于, 所述第一耦合单元的 高度约为第一谐振线圈工作频段的八分之一波长。
6、 根据权利要求 2所述的双频天线, 其特征在于, 所述第二耦合单元为 金属丝, 长度小于等于第一谐振线圈工作频段的半个波长。
7、 根据权利要求 6所述的双频天线, 其特征在于, 所述第二耦合单元的 一端为环绕所述第一谐振线圈且具有固定作用的圆环。
8、 根据权利要求 6所述的双频天线, 其特征在于, 所述第二耦合单元的 一端为设置于所述第一谐振线圈中部且环绕所述第一谐振线圈的封闭圆环。
9、 根据权利要求 2所述的双频天线, 其特征在于, 所述第一耦合单元的 直径略小于第一谐振线圈的内径。
10、根据权利要求 2所述的双频天线, 其特征在于, 所述螺旋线圈的第一 谐振线圈工作在 GPS频段, 所述螺旋线圈的第二谐振线圈工作在 VHF频段。
PCT/CN2010/075159 2010-07-14 2010-07-14 一种双频天线 WO2012006781A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2010/075159 WO2012006781A1 (zh) 2010-07-14 2010-07-14 一种双频天线
EP10854574.0A EP2595244B1 (en) 2010-07-14 2010-07-14 Dual frequency antenna
US13/809,550 US9112285B2 (en) 2010-07-14 2010-07-14 Dual frequency antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075159 WO2012006781A1 (zh) 2010-07-14 2010-07-14 一种双频天线

Publications (1)

Publication Number Publication Date
WO2012006781A1 true WO2012006781A1 (zh) 2012-01-19

Family

ID=45468880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075159 WO2012006781A1 (zh) 2010-07-14 2010-07-14 一种双频天线

Country Status (3)

Country Link
US (1) US9112285B2 (zh)
EP (1) EP2595244B1 (zh)
WO (1) WO2012006781A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666938B2 (en) * 2015-06-19 2017-05-30 Motorola Solutions, Inc. Antenna structure for multiband applications
US10965012B2 (en) * 2015-08-28 2021-03-30 Huawei Technologies Co., Ltd. Multi-filar helical antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278959A (zh) * 1997-09-15 2001-01-03 艾利森公司 带有无源元件的双频带螺旋天线
CN1476681A (zh) * 2001-10-13 2004-02-18 ���ǵ�����ʽ���� 具有多频带天线的移动通信系统
CN1482831A (zh) * 2002-07-04 2004-03-17 多频带螺旋天线

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800395A (en) * 1987-06-22 1989-01-24 Motorola, Inc. High efficiency helical antenna
JPH0637531A (ja) * 1992-07-17 1994-02-10 Sansei Denki Kk 広帯域ヘリカルアンテナ、および同製造方法
SE511255C2 (sv) * 1998-01-30 1999-09-06 Moteco Ab Antennanordning för dubbla frekvensband
KR100356196B1 (ko) * 1998-03-19 2002-10-12 마쯔시다덴기산교 가부시키가이샤 2주파 대응 안테나 장치 및 이를 사용한 이동 통신기기
US7848788B2 (en) * 1999-04-15 2010-12-07 The Johns Hopkins University Magnetic resonance imaging probe
MXPA03001676A (es) * 2000-09-25 2003-10-15 Eung-Soon Chang Antena de banda dual.
JP2002359514A (ja) * 2001-05-31 2002-12-13 Anten Corp ヘリカルアンテナ
ATE457533T1 (de) 2002-06-25 2010-02-15 Emw Antenna Co Ltd Antenne des mehrbandtyps und verfahren zu ihrer herstellung
CN1482381A (zh) 2002-09-10 2004-03-17 伟 刘 内传动磁阻电动机驱动的阀门
TWI283086B (en) * 2004-09-08 2007-06-21 Inventec Appliances Corp Multi-mode and multi-band combing antenna
US8115690B2 (en) * 2009-01-28 2012-02-14 Motorola Solutions, Inc. Coupled multiband antenna
CN101764281B (zh) 2009-07-31 2013-05-08 海能达通信股份有限公司 双频天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278959A (zh) * 1997-09-15 2001-01-03 艾利森公司 带有无源元件的双频带螺旋天线
CN1476681A (zh) * 2001-10-13 2004-02-18 ���ǵ�����ʽ���� 具有多频带天线的移动通信系统
CN1482831A (zh) * 2002-07-04 2004-03-17 多频带螺旋天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2595244A4 *

Also Published As

Publication number Publication date
EP2595244B1 (en) 2017-11-01
US20130113676A1 (en) 2013-05-09
US9112285B2 (en) 2015-08-18
EP2595244A4 (en) 2014-04-16
EP2595244A1 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
US7812774B2 (en) Active tuned loop-coupled antenna
Wu et al. A multiband quasi-Yagi type antenna
US8922449B2 (en) Communication electronic device and antenna structure thereof
Chen et al. Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure
US20060284770A1 (en) Compact dual band antenna having common elements and common feed
US7817103B2 (en) Dual-band multi-pitch parasitic half-wave (MPPH) antenna
JP2011103657A (ja) 無線デバイスのための小型多重帯域アンテナ
CN107994321B (zh) 一种带开口谐振环的双频偶极子天线
Puri et al. A review of antennas for wireless communication devices
Chen et al. Planar monopole antenna with a parasitic shorted strip for multistandard handheld terminals
Xiao et al. Dipole antenna with both odd and even modes excited and tuned
WO2011011928A1 (zh) 宽频的双频天线
CN101916916B (zh) 一种双频天线
JP2010524324A (ja) 二重共振による広帯域アンテナ
Sun et al. Design of an edge-fed quad-band slot antenna for GPS/WiMAX/WLAN applications
WO2012006781A1 (zh) 一种双频天线
Ilvonen et al. Balanced antenna structures of mobile terminals
Hu et al. Compact CPW-fed square slot antenna for dual-band operation
Rao et al. Shared-Aperture Design of the Cellular Antenna and Satellite Communication Antenna With Circular Polarization in S-Band for Metal-Bezel Smartphones
CN201749953U (zh) 一种双频天线
Nie et al. A compact triband fractal PIFA antenna for mobile handset applications
Jadhav et al. Planar inverted-f antenna using defected ground surface for mobile application
Deng et al. A novel design of LTE smart mobile antenna with multiband operation
CN114300833B (zh) 一种盘锥天线及数字广播天线
Hamid et al. Multiband Planar Antenna for Long Term Evaluation and Wireless Local Area Network Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854574

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010854574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010854574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13809550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE