WO2012005327A1 - Corrosion-resistant steel material for cargo oil tank - Google Patents

Corrosion-resistant steel material for cargo oil tank Download PDF

Info

Publication number
WO2012005327A1
WO2012005327A1 PCT/JP2011/065595 JP2011065595W WO2012005327A1 WO 2012005327 A1 WO2012005327 A1 WO 2012005327A1 JP 2011065595 W JP2011065595 W JP 2011065595W WO 2012005327 A1 WO2012005327 A1 WO 2012005327A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
less
steel material
upper limit
effect
Prior art date
Application number
PCT/JP2011/065595
Other languages
French (fr)
Japanese (ja)
Inventor
鹿島 和幸
幸 英昭
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CN2011800051436A priority Critical patent/CN102686760A/en
Priority to JP2011550372A priority patent/JP4941620B2/en
Publication of WO2012005327A1 publication Critical patent/WO2012005327A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Definitions

  • the present invention relates to a steel material for a cargo oil tank used for a crude oil tank in a tanker.
  • the plate thickness design considering the corrosion allowance is carried out, and it is considered as a countermeasure against the general corrosion and the local corrosion.
  • a plate thickness design that takes into account the corrosion allowance, such as 2 mm corrosion allowance for 20 years of use has been performed.
  • the bottom plate is regularly inspected, and those with a large pitting corrosion depth are repaired by overlay welding, but this creates a problem with enormous maintenance costs. .
  • Patent Document 1 proposes steel containing Cu and Mg as essential components
  • Patent Literature 2 proposes steel containing Cr and Al as essential components.
  • H 2 S has not been considered at all for effects against corrosion, Therefore, sufficient corrosion resistance is obtained at the cargo oil tank to be mounted on an actual ship There was no case.
  • H 2 S since the influence of H 2 S is extremely large in the environment of the crude oil tank bottom plate, it is essential to ensure corrosion resistance in the H 2 S existence environment.
  • Patent Document 3 containing Cu and Ni as essential components is said to have improved overall corrosion resistance and pitting corrosion resistance in the cargo oil tank.
  • this steel material certainly improves the corrosion resistance, since it contains expensive alloy components such as Cu and Ni, there is a problem that the melting cost of the steel material becomes high. In particular, in recent years, the prices of these elements have risen, and even the low content of alloy components increases the cost of the alloy components, which is a significant cost increase compared to the coating specifications of ordinary steel materials.
  • Patent Document 4 Cu: 0.05-2%, Ni: 0.01-1%, W: 0.01-1%, N: 0.001-0.01%, and O (oxygen) : Steel material containing 0.0001 to 0.005% as an essential component is disclosed, and it is said that both the general corrosion resistance and the local corrosion resistance in the cargo oil tank are improved.
  • this steel material contains expensive alloy components such as Cu and Ni, there remains a problem that the melting cost of the steel material becomes high.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a corrosion-resistant steel material for a cargo oil tank that has excellent resistance to general corrosion and local corrosion and has high cost performance.
  • the inventors conducted an experiment on the overall corrosion occurring in the gas phase portion of the top plate portion and the local corrosion occurring in the bottom plate portion, simulating the corrosive environment caused by crude oil on an actual ship. It was. That is, for the gas phase, in the wet and dry repeatedly environment containing inert gas and H 2 S, were reproduced experiment corrosion product layer found in the deck behind the actual ship loaded with crude oil containing H 2 S. And about the baseplate part, the experiment which simulated the pitting corrosion generation
  • FIGS. 1 is a reproduction test apparatus for a gas phase part
  • FIG. 2 is a reproduction test apparatus for a bottom plate part.
  • the corrosion resistance of the base material itself is improved by suppressing the anodic dissolution reaction of the steel material.
  • an iron rust ( ⁇ -FeOOH) layer is usually formed on the surface of the steel material.
  • a sulfide layer is first formed on the steel material surface, and then an iron rust layer is formed. Since this sulfide layer remarkably suppresses the anodic dissolution reaction, it contributes to the improvement of corrosion resistance.
  • a layer containing W sulfide or further Mo sulfide exhibits cation selectivity and has an effect of suppressing permeation of Cl 2 ⁇ ions through the sulfide layer. When this layer is formed, the contribution to the improvement of the corrosion resistance becomes particularly large.
  • the present invention has been completed based on these findings, and the gist of the invention resides in the following corrosion-resistant steel materials for cargo oil tanks (1) to (7).
  • a corrosion-resistant steel material for a cargo oil tank characterized by comprising a balance Fe and impurities.
  • Corrosion resistant steel material for cargo oil tank according to (1) above containing one or more of 3% or less and Sn: 0.3% or less.
  • Nb not more than 0.1%
  • V not more than 0.2%
  • B not more than 0.01%
  • the surface is covered with an anticorrosion film through an intermediate layer made of sulfide of Cu, Ni and W or further sulfide of Mo. Corrosion-resistant steel material for cargo oil tanks as described.
  • FIG. 1 shows a reproduction test apparatus for a gas phase part.
  • regeneration test apparatus of a baseplate part is shown.
  • An acid immersion test apparatus is shown.
  • Chemical composition C 0.01 to 0.2% C is an element necessary for securing strength as a material, and a content of 0.01% or more is necessary. However, if the content exceeds 0.2%, weldability decreases. Further, as the C content increases, the amount of cementite that becomes a cathode in an acidic environment and promotes corrosion increases, and the weldability deteriorates. For this reason, the upper limit was made 0.2%. A preferable upper limit is 0.15%, and a preferable lower limit is 0.04%.
  • Si 0.01 to 1.0%
  • Si is an element necessary for deoxidation, and in order to obtain a sufficient deoxidation effect, it is necessary to contain 0.01% or more. However, if the content exceeds 1%, the toughness of the base material and the welded joint is impaired. Therefore, the Si content is set to 0.01 to 1.0%.
  • a preferable upper limit is 0.8%, and a more preferable upper limit is 0.5%.
  • a preferred lower limit is 0.04%, and a more preferred lower limit is 0.10%.
  • Mn 0.05 to 2.0%
  • Mn is an element having an effect of increasing the strength of steel at a low cost, and a content of 0.05% or more is necessary to obtain this effect. However, if the content exceeds 2.0%, weldability deteriorates and joint toughness also deteriorates. Therefore, the Mn content is set to 0.05 to 2.0%.
  • a preferable upper limit is 1.8%, and a more preferable upper limit is 1.6%.
  • a preferred lower limit is 0.3%, and a more preferred lower limit is 0.5%.
  • P 0.002 to 0.1%
  • P has the effect of improving the general corrosion resistance and pitting resistance.
  • acid resistance improves by containing P in Cu containing steel.
  • the effect of improving acid resistance in such general corrosion resistance and pitting corrosion resistance and the effect of improving acid resistance in Cu-containing steel are exhibited by containing 0.002% or more of P.
  • the P content is set to 0.002 to 0.1%.
  • a preferable upper limit is 0.08%, and a more preferable upper limit is 0.06%.
  • a preferred lower limit is 0.003%, and a more preferred lower limit is 0.004%.
  • S 0.01% or less S is unavoidably present as an impurity in steel. However, if the content exceeds 0.01%, a large amount of MnS is produced in the steel, and MnS becomes a starting point of corrosion, resulting in overall corrosion and pitting corrosion. Therefore, the S content is set to 0.01% or less. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, the lower the S content, the better.
  • Cu 0.01 to 2.0%
  • Cu is an element that not only improves the overall corrosion resistance, but also forms a sulfide layer together with S to improve the pitting corrosion resistance under the bottom plate environment (local corrosion environment) in the cargo oil tank.
  • This effect is exhibited by containing 0.01% or more of Cu, but even if Cu is contained exceeding 2.0%, the effect is not only saturated, but also for preventing cracking during hot rolling. Since the amount of Ni contained in the steel also increases, the cost increases. Therefore, the Cu content is set to 0.01 to 2.0%.
  • a preferable upper limit is 1.8%, and a more preferable upper limit is 1.5%.
  • a preferred lower limit is 0.05%, and a more preferred lower limit is 0.10%. Details of the sulfide layer will be described later.
  • Ni 0.01 to 1.0%
  • Ni, as well as Cu is an element that not only improves the overall corrosion resistance, but also forms a sulfide layer together with S to improve the pitting corrosion resistance under the bottom plate environment (local corrosion environment) in the cargo oil tank. .
  • This effect is exhibited when the content is 0.01% or more. However, if the content exceeds 1.0%, the effect is not only saturated but also the cost is increased. Therefore, the Ni content is set to 0.01 to 1.0%.
  • a preferable upper limit is 0.9%, and a more preferable upper limit is 0.8%.
  • a preferred lower limit is 0.05%, and a more preferred lower limit is 0.1%. Details of the sulfide layer will be described later.
  • W more than 0% and less than 0.01%
  • W is an element that improves acid resistance and improves overall corrosion resistance.
  • W also has the effect of increasing the overall corrosion resistance by combining with other elements and the effect of improving the pitting corrosion resistance by forming a corrosion-resistant sulfide layer together with S in a wet hydrogen sulfide environment.
  • These effects can be obtained by containing a trace amount of W.
  • W is contained in an amount of 0.01% or more, an effect commensurate with the cost cannot be obtained, and deterioration of weldability is also a concern. Therefore, the W content is more than 0% and less than 0.01%. Details of the sulfide layer will be described later.
  • Al 0.1% or less Al is an element effective for deoxidation of steel, but since Si is contained in the present invention, deoxidation is performed with Si. Therefore, since it is not always necessary to deoxidize with Al, it is not necessary to contain Al. However, in addition to Si, the composite deoxidation can be performed by further adding Al. In this case, when Al is contained 0.005% or more, it can be effectively deoxidized. On the other hand, if the Al content exceeds 0.1%, not only the overall corrosiveness is remarkably deteriorated but also the nitride is coarsened, resulting in a decrease in toughness. Therefore, the upper limit of the Al content when Al is contained is set to 0.1% or less. A preferred upper limit is 0.05%.
  • the corrosion-resistant steel material for cargo oil tank according to the present invention has the above-described elements, and the balance is made of Fe and impurities.
  • the impurities are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel materials, and do not adversely affect the present invention. Means what is allowed.
  • Corrosion resistant steel material for cargo oil tank according to the present invention may be replaced with a part of Fe, if necessary, among Cr, Mo, Ti, Zr, Sb, Sn, Nb, V, B, Ca, Mg, REM. 1 type, or 2 or more types of elements can be contained.
  • the second group is one or more of Nb: 0.1% or less, V: 0.2% or less, and B: 0.01% or less.
  • the third group is one or more of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.01% or less.
  • Mo 1.0% or less Mo can be contained as necessary.
  • Mo is an element that improves acid resistance, and has the effect of improving overall corrosion resistance in a dry and wet repeated environment with acidic water.
  • the upper limit of the Mo content when Mo is contained is 1.0%.
  • a preferable upper limit is 0.5%, and a more preferable upper limit is 0.4%.
  • Ti 0.2% or less Ti can be contained as necessary.
  • Ti also has an effect of improving the toughness of steel and an effect of suppressing the generation of MnS as a starting point of corrosion and increasing the resistance to general corrosion and pitting corrosion by forming TiS. Furthermore, since the coarsening of the crystal grains is suppressed by the dispersion of TiN, the toughness of the high heat input weld is improved. However, even if Ti is contained in excess of 0.2%, the above effect is saturated and the cost is increased. Therefore, the upper limit of the Ti content when Ti is contained is 0.2%. A preferable upper limit is 0.15%, and a more preferable upper limit is 0.1%. In addition, in order to acquire the effect by containing Ti stably, it is preferable to contain Ti 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.015% or more.
  • Zr 0.2% or less Zr can be contained if necessary.
  • Zr like Ti, preferentially forms sulfides and has the effect of suppressing the generation of MnS.
  • Zr is an element that hardly forms nitrides as compared with Ti, and has a feature that sulfides are formed more efficiently.
  • the upper limit of the Zr content when Zr is contained is 0.2%.
  • a preferable upper limit is 0.15%, and a more preferable upper limit is 0.1%.
  • Sb 0.3% or less Sb can be contained as required.
  • Sb has the effect of improving the overall corrosion resistance in a wet and dry repeated environment and increasing the acid resistance. Furthermore, it has the effect
  • the upper limit of the Sb content when Sb is contained is 0.3%.
  • a preferable upper limit is 0.25%, and a more preferable upper limit is 0.2%.
  • Sn 0.3% or less Sn can be contained as necessary.
  • Sn is an element that improves the corrosion resistance in an acid environment, and has the effect of improving the overall corrosion resistance in a dry and wet repeated environment with acidic water. Moreover, it has the effect
  • the upper limit of the Sn content when Sn is contained is 0.3%.
  • a preferable upper limit is 0.25%, and a more preferable upper limit is 0.2%.
  • Nb, V and B Nb 0.1% or less Nb can be contained as necessary.
  • Nb is an element having an effect of increasing the strength of steel.
  • the upper limit of the Nb content when Nb is contained is 0.1%.
  • a preferable upper limit is 0.08%, and a more preferable upper limit is 0.05%.
  • Nb 0.001% or more More preferably, it is 0.005% or more, More preferably, it is 0.01% or more.
  • V 0.2% or less V can be contained as necessary.
  • V is an element having an effect of increasing the strength of steel.
  • the upper limit of the V content when V is contained is 0.2%.
  • a preferable upper limit is 0.15%.
  • V 0.005% or more More preferably, it is 0.01% or more.
  • B 0.01% or less B can be contained if necessary.
  • B is an element having an effect of increasing the strength of steel.
  • toughness deteriorates. Therefore, the upper limit of the B content when B is contained is 0.01%.
  • a preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%.
  • B 0.0002% or more More preferably, it is 0.0005% or more, More preferably, it is 0.0008% or more.
  • Ca, Mg and REM Ca 0.01% or less Ca can be contained as necessary.
  • Ca dissolves in water at the time of a corrosion reaction and becomes alkaline, and has an action of suppressing pH reduction at the steel material interface. For this reason, the corrosion resistance of bare steel and a coating part improves. However, this effect is saturated even if Ca is contained exceeding 0.01%. Therefore, the upper limit of the Ca content when Ca is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%.
  • Mg 0.01% or less Mg can be contained as required.
  • Mg like Ca, has the effect of improving the corrosion resistance by suppressing the pH drop at the steel material interface during the corrosion reaction. However, the effect is saturated even if Mg is contained exceeding 0.01%. Therefore, the upper limit of the Mg content when Mg is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%.
  • Mg 0.0002% or more More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more.
  • REM 0.01% or less REM can be contained as necessary. REM has the effect of improving the weldability of steel. However, even if REM exceeds 0.01%, not only this effect is saturated but also the cost of the steel material increases. Therefore, the upper limit of the REM content when REM is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, in order to acquire the effect by containing REM stably, it is preferable to contain REM 0.0001% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more.
  • REM is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained. Note that the content of REM means the total content of these elements.
  • a sulfide layer contains Cu, W, Ni, or Mo further in steel materials, and is formed by using it in the bottom plate environment of a cargo oil tank. Therefore, it is not necessary to form a sulfide layer when shipping steel. Cargo to use the initial by using as a bottom plate steel oil tank H 2 S and Cl - proceeds constant pitting attack of, after a certain period of time, the sulfide layer is formed. Sulfide layer reduces the concentration of H 2 S in the steel material surface, suppresses the anodic dissolution of steel, W sulfide or even Mo sulfide particular a cation selective is Cl - inhibiting the transmission of. This slows down the progress of pitting corrosion and improves corrosion resistance.
  • an iron rust ( ⁇ -FeOOH) layer that is normally formed on the surface of the steel material may be formed thereon.
  • the iron rust layer does not have the effect of reducing the H 2 S concentration or the effect of suppressing the permeation of Cl ⁇ , but H 2 S and Cl ⁇ that have permeated the iron rust layer are blocked by the sulfide layer, so that excellent corrosion resistance is achieved Demonstrate.
  • the sulfide layer may be partially damaged by cleaning the cargo oil tank. Even in such a case, since the sulfide layer is formed again by use, the corrosion resistance is not lowered.
  • the steel material of the present invention can also be used as a tank top plate portion where a sulfide layer is not formed, and when used in a full corrosive environment, the corrosion resistance of the base material itself causes corrosion. Progress can be suppressed.
  • the steel material of the present invention described above exhibits good corrosion resistance even when used as it is, and can reduce the corrosion allowance.
  • an anticorrosion coating made of an organic resin or metal the durability of the anticorrosion coating is improved and the corrosion resistance is further improved, which is more suitable for use as a corrosion resistant steel material for cargo oil tanks.
  • examples of the anticorrosion coating made of an organic resin include vinyl butyral, epoxy, urethane, and phthalic acid resin coatings
  • examples of the anticorrosion coating made of metal include a plating coating and a thermal spray coating of Zn or Al. be able to.
  • the durability of the anticorrosion film is improved because the corrosion of the steel material of the present invention, which is the base, is remarkably suppressed. This is considered to be because of this.
  • the treatment with the above anticorrosion coating may be performed by a usual method. Moreover, it is not always necessary to apply the anticorrosion coating to the entire surface of the steel material, and only one surface of the steel material as the surface exposed to the corrosive environment may be subjected to the anticorrosion treatment. Alternatively, only a part of the steel material that is exposed to the corrosive environment may be subjected to anticorrosion treatment.
  • the steel material of the present invention can be manufactured as follows. However, the manufacturing method of the steel material of the present invention is not limited to this manufacturing method.
  • Slab having a composition defined in the present invention in which the content of S is kept low and RH, DH, electromagnetic stirring, etc. are performed in the steelmaking stage.
  • This slab is hot-rolled under the conditions that the heating temperature is about 1100 ° C. to 1200 ° C., the rolling reduction per rolling is 3% or more, and the rolling finish temperature is about 700 to 900 ° C.
  • the heating temperature is about 1100 ° C. to 1200 ° C.
  • the rolling reduction per rolling is 3% or more
  • the rolling finish temperature is about 700 to 900 ° C.
  • it is allowed to cool in the air, or a temperature range from a temperature of Ar 3 or higher to at least about 570 ° C. is cooled at a cooling rate of 5 ° C./s or higher, and then cooled in the air.
  • the steel material of the present invention can be manufactured.
  • all the above-mentioned temperature is the temperature in the surface part of steel materials.
  • the block was heated at 1120 ° C. for 1 hour, hot-rolled, finished to a thickness of 20 mm at 850 ° C., and then allowed to cool to room temperature.
  • a test piece having a width of 25 mm, a length of 50 mm, and a thickness of 4 mm was taken from each steel plate having a thickness of 20 mm and subjected to a corrosion test simulating the environment behind the deck of an actual ship.
  • This corrosion test assumes a cargo tank gas phase.
  • a modified epoxy paint is spray-coated to form an anticorrosion film of about 200 ⁇ m, and a cross bark is attached to the anticorrosion film to partially bullion. Exposed and subjected to a similar corrosion test.
  • an acrylic lid having a gas supply port with a sample specimen attached to the lower surface while preparing a glass container in which ion exchange water is placed in the lower third portion. was used to seal the upper end of the glass container.
  • the sealed glass container was placed in a thermostatic bath, and a temperature cycle of 50 ° C. ⁇ 20 hours ⁇ 25 ° C. ⁇ 4 hours was applied for 56 days.
  • the corrosive gas in the cargo tank was simulated in the gas phase portion in the glass container, and the gas A having the following composition was blown from the gas supply port.
  • [Gas A] 5% by volume, 5% O 2 -13% CO 2 -0.01% SO 2 -0.05% H 2 S-residual N 2
  • the corrosion rate (total corrosion rate) in units of “mm / year” was determined from the reduced mass of each specimen. Table 2 shows the test result as “Test 1”. In Table 2, for the test steel (steel type 1 (with coating)) on which the anticorrosion coating was formed, the corrosion rate of the bare metal exposed portion was determined.
  • Gas B having the following composition was blown from the gas supply port.
  • Gas B having the following composition was blown from the gas supply port.
  • [Gas B] 5% by volume, 5% O 2 -13% CO 2 -0.01% SO 2 -0.2% H 2 S-residual N 2
  • the corrosion test piece was prepared by applying a simulated oil coat (mixture of crude oil and rust) on a test piece taken from a steel plate except for a 5 mm diameter circular portion.
  • the measurement of pitting corrosion depth was carried out using a micrometer based on the portion where pitting corrosion did not occur, that is, the simulated oil coat application portion, in the corrosion test piece after the test.
  • the maximum value of the depth at the pitting corrosion occurrence portion was adopted as the pitting corrosion depth.
  • the pitting corrosion rate in units of “mm / year” was determined from the pitting depth of each test piece.
  • Table 2 shows the test results as “Test 2”.
  • the corrosion rate of the bare metal exposed portion was determined for the test steel (steel type 1 (with coating)) on which the anticorrosion coating was formed.
  • Example 2 A test was taken from each steel plate having a thickness of 20 mm produced in the same manner as in Example 1, and a test piece having a width of 40 mm, a length of 50 mm, and a thickness of 4 mm was taken to simulate the environment in the pitting corrosion of the cargo tank bottom plate. Carried out.
  • HCl was added to a 10% NaCl solution at 30 ° C., and the test piece was immersed in a solution adjusted to pH 0.85.
  • the test period was 72 hours, and the solution was changed every 24 hours in order to minimize the impact on corrosion due to solution degradation.
  • the corrosion rate in “mm / year” was determined from the reduced mass of each test piece.
  • Table 3 shows the test result as “Test 3”.
  • the corrosion rate of the bare metal exposed portion was determined for the test steel (steel type 1 (with coating)) on which the anticorrosion coating was formed.
  • inventive examples (1 to 20) show good corrosion resistance in Tests 1, 2 and 3.

Abstract

Disclosed is a corrosion-resistant steel material for a cargo oil tank, which has excellent resistance to general corrosion and local corrosion and is characterized by containing, in mass%, 0.01-0.2% of C, 0.01-1.0% of Si, 0.05-2.0% of Mn, 0.002-0.1% of P, 0.01% or less of S, 0.01-2.0% of Cu, 0.01-1.0% of Ni, more than 0% but less than 0.01% of W and 0.1% or less of Al, with the balance made up of Fe and impurities. The corrosion-resistant steel material for a cargo oil tank may additionally contain one or more elements selected from among Cr, Mo, Ti, Zr, Sb, Sn, Nb, V, B, Ca, Mg and REM. The surface of the corrosion-resistant steel material for a cargo oil tank may be coated with a sulfide layer or an anti-corrosion coating film.

Description

カーゴオイルタンク用耐食性鋼材Corrosion resistant steel for cargo oil tanks
 本発明は、タンカーにおける原油タンクに用いられるカーゴオイルタンク用の鋼材に関する。 The present invention relates to a steel material for a cargo oil tank used for a crude oil tank in a tanker.
 タンカーのカーゴオイルタンクの腐食形態には大きく分けて2つの形態がある。1つは天板部の気相部で生じる全面腐食、もう1つは底板部で起こる局部腐食である。特に硫化水素(HS)を含む原油の積載時には、原油中に含まれるHSの一部が気相中に移行するため、腐食環境としては極めて厳しいものになる。 There are two main types of corrosion forms in tanker cargo oil tanks. One is general corrosion that occurs in the gas phase portion of the top plate portion, and the other is local corrosion that occurs in the bottom plate portion. In particular, when loading crude oil containing hydrogen sulfide (H 2 S), part of H 2 S contained in the crude oil moves into the gas phase, which makes the corrosive environment extremely severe.
 上記のような腐食環境においては、カーゴオイルタンクの天井部となるデッキ裏では全面腐食が起こり易く、腐食速度が0.3mm/年以上と非常に大きい全面腐食の事例も報告されている。また、カーゴオイルタンクの底板には孔食が発生し易く、数mm/年という大きな孔食進展速度となる場合もある。 In such a corrosive environment as described above, it is easy to cause full corrosion on the back of the deck, which is the ceiling of the cargo oil tank, and there have been reports of cases where the corrosion rate is very large at 0.3 mm / year or more. Further, pitting corrosion is likely to occur on the bottom plate of the cargo oil tank, and there are cases where the pitting corrosion growth rate is as high as several mm / year.
 こうした事情から、カーゴオイルタンクの鋼材の内面に塗装を施すことが一部で行われているが、初期の塗装のコスト及び約10年毎の塗り替えのコストが大きい。また、タンク底板においては、塗装されている場合でも塗膜の欠陥部から孔食が発生することがある。このため、腐食代を考慮した板厚設計が行われ、全面腐食や局部腐食への対策とされているのが実情である。例えば、20年の使用に対して2mmの腐食代を見込むというような、腐食代を考慮した板厚設計が行われている。さらに、底板においては定期的に点検を実施しており、孔食深さが大きいものについては肉盛溶接によって補修がなされているが、このために膨大なメンテナンスコストが発生し問題となっている。 For this reason, painting on the inner surface of the steel material of the cargo oil tank is partly performed, but the initial painting cost and the cost of repainting every 10 years are large. Moreover, even when the tank bottom plate is painted, pitting corrosion may occur from a defective portion of the coating film. Therefore, the actual situation is that the plate thickness design considering the corrosion allowance is carried out, and it is considered as a countermeasure against the general corrosion and the local corrosion. For example, a plate thickness design that takes into account the corrosion allowance, such as 2 mm corrosion allowance for 20 years of use, has been performed. In addition, the bottom plate is regularly inspected, and those with a large pitting corrosion depth are repaired by overlay welding, but this creates a problem with enormous maintenance costs. .
 しかし、腐食代を考慮した板厚設計をすると、鋼材の厚みがその分増加するためにタンクの製造コストが上昇するだけでなく、腐食代を考慮した板厚分だけ原油積載量が減少するというデメリットも生じる。したがって、腐食代の低減が図れ、しかもコスト上昇を防止できる、耐食性に優れたカーゴオイルタンク用鋼材の開発が強く望まれている。 However, when designing the plate thickness considering the corrosion allowance, not only will the tank manufacturing cost increase because the thickness of the steel will increase by that amount, but the crude oil load will decrease by the plate thickness considering the corrosion allowance. There are also disadvantages. Accordingly, there is a strong demand for the development of a steel material for cargo oil tanks that can reduce the corrosion allowance and that can prevent an increase in cost and has excellent corrosion resistance.
 また、造船段階でオイルタンクを構築するために溶接が行われていて、溶接継手部が存在するので、単に耐食性がよいだけでなく、溶接継手部の強度、靭性、溶接性等にも優れた材料が望まれる。 In addition, welding is performed to build an oil tank at the shipbuilding stage, and since there is a welded joint, not only corrosion resistance is good, but also the strength, toughness, weldability, etc. of the welded joint are excellent. A material is desired.
 カーゴオイルタンク用鋼としては、例えば、特許文献1にCuとMgを必須成分として含む鋼が、また、特許文献2にCrとAlを必須成分として含む鋼が、それぞれ提案されている。しかし、原油がHSを含む場合において、HSが腐食に対して及ぼす影響については全く考慮されておらず、このため、実船に搭載されるカーゴオイルタンクにおいて十分な耐食性が得られない場合があった。特に、原油タンク底板の環境においてはHSの影響が極めて大きいため、HS存在環境における耐食性の確保は必須である。  As steel for cargo oil tanks, for example, Patent Document 1 proposes steel containing Cu and Mg as essential components, and Patent Literature 2 proposes steel containing Cr and Al as essential components. However, when the crude oil containing H 2 S, H 2 S has not been considered at all for effects against corrosion, Therefore, sufficient corrosion resistance is obtained at the cargo oil tank to be mounted on an actual ship There was no case. In particular, since the influence of H 2 S is extremely large in the environment of the crude oil tank bottom plate, it is essential to ensure corrosion resistance in the H 2 S existence environment.
 また、特許文献3に開示された、CuとNiを必須成分として含有させてなる鋼材は、カーゴオイルタンク内の耐全面腐食性と耐孔食性が向上するとされている。 Further, the steel material disclosed in Patent Document 3 containing Cu and Ni as essential components is said to have improved overall corrosion resistance and pitting corrosion resistance in the cargo oil tank.
 しかし、この鋼材は確かに耐食性は向上するが、Cu及びNiという高価な合金成分を含有するために、鋼材の溶製コストが高くなるという問題がある。特に、近年はこれらの元素の価格が高騰しており、低含有量の合金成分といえども合金成分のコストが高くつき、普通鋼材の塗装仕様に比べても大幅なコスト増となる。 However, although this steel material certainly improves the corrosion resistance, since it contains expensive alloy components such as Cu and Ni, there is a problem that the melting cost of the steel material becomes high. In particular, in recent years, the prices of these elements have soared, and even the low content of alloy components increases the cost of the alloy components, which is a significant cost increase compared to the coating specifications of ordinary steel materials.
 さらに、特許文献4には、Cu:0.05~2%、Ni:0.01~1%、W:0.01~1%、N:0.001~0.01%及びO(酸素):0.0001~0.005%を必須成分として含有する鋼材が開示されており、カーゴオイルタンク内の耐全面腐食性と耐局部腐食性の両方が向上するとされている。 Further, in Patent Document 4, Cu: 0.05-2%, Ni: 0.01-1%, W: 0.01-1%, N: 0.001-0.01%, and O (oxygen) : Steel material containing 0.0001 to 0.005% as an essential component is disclosed, and it is said that both the general corrosion resistance and the local corrosion resistance in the cargo oil tank are improved.
 しかし、この鋼材はCu及びNiという高価な合金成分を含有するために、鋼材の溶製コストが高くなるという問題が残る。 However, since this steel material contains expensive alloy components such as Cu and Ni, there remains a problem that the melting cost of the steel material becomes high.
特開2000-17381号公報Japanese Patent Laid-Open No. 2000-17381 特開2001-107180号JP 2001-107180 A 特開2003-82435号公報Japanese Patent Laid-Open No. 2003-82435 特開2005-325439号公報JP 2005-325439 A
 本発明は、上記現状に鑑みてなされたもので、その目的は、全面腐食や局部腐食に対する抵抗性に優れるとともに、コストパフォーマンスの高いカーゴオイルタンク用耐食性鋼材を提供することである。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a corrosion-resistant steel material for a cargo oil tank that has excellent resistance to general corrosion and local corrosion and has high cost performance.
 本発明者らは、前記した課題を達成するために、実船における原油による腐食環境を模擬して、天板部の気相部で生じる全面腐食と、底板部で起こる局部腐食に関して実験を行った。すなわち、気相部については、イナートガス及びHSを含む乾湿繰り返し環境において、HSを含む原油を積載した実船のデッキ裏に見られる腐食生成物層の再現実験を行った。そして、底板部については、高濃度塩化物溶液中におけるオイルコート欠陥部からの孔食発生を模擬した実験を行った。 In order to achieve the above-mentioned problems, the inventors conducted an experiment on the overall corrosion occurring in the gas phase portion of the top plate portion and the local corrosion occurring in the bottom plate portion, simulating the corrosive environment caused by crude oil on an actual ship. It was. That is, for the gas phase, in the wet and dry repeatedly environment containing inert gas and H 2 S, were reproduced experiment corrosion product layer found in the deck behind the actual ship loaded with crude oil containing H 2 S. And about the baseplate part, the experiment which simulated the pitting corrosion generation | occurrence | production from the oil-coat defect part in a high concentration chloride solution was conducted.
 この実験は、後述する実施例において用いた種々の化学組成を有する鋼について、図1及び図2に示す試験装置で行った。なお、図1は気相部の再現試験装置、そして、図2は底板部の再現試験装置である。 This experiment was performed on the steels having various chemical compositions used in the examples described later using the test apparatus shown in FIGS. 1 is a reproduction test apparatus for a gas phase part, and FIG. 2 is a reproduction test apparatus for a bottom plate part.
 その結果、気相部及び底板部の耐食性に関して、下記の(a)~(c)に示す知見を得た。 As a result, the following findings (a) to (c) were obtained regarding the corrosion resistance of the gas phase part and the bottom plate part.
 (a) 気相部の再現試験、すなわちタンク天板部で生じる全面腐食に関する試験では、合金元素の含有の有無にかかわらず、腐食速度が時間にほとんど依存しないことが判明した。したがって、気相環境では腐食生成物による防食効果は小さく、合金元素を含有させることによって母材自体の耐食性向上を図る必要がある。 (A) In the reproducibility test of the gas phase part, that is, the test on the overall corrosion occurring in the tank top plate part, it was found that the corrosion rate hardly depends on the time regardless of the presence or absence of alloy elements. Therefore, in the gas phase environment, the corrosion protection effect by the corrosion products is small, and it is necessary to improve the corrosion resistance of the base material itself by containing the alloy element.
 全面腐食環境下では、Cu,NiやWの元素を含有させることが効果的であり、これらの元素を複合して含有させることによりさらにその効果が増加する。特に、CuとWを複合して含有させることにより、鋼材のアノード溶解反応を抑制することにより、母材自体の耐食性が向上する。 In the entire corrosive environment, it is effective to contain elements such as Cu, Ni and W, and the effect is further increased by compounding these elements. In particular, by containing Cu and W in combination, the corrosion resistance of the base material itself is improved by suppressing the anodic dissolution reaction of the steel material.
 (b) 底板部の再現試験、すなわち底板部で起こる局部腐食に関する試験では、腐食初期の孔食速度は鋼種による差がほとんどないが、鋼種によっては時間経過とともに孔食速度は低下することが判明した。したがって、底板環境では腐食生成物による防食効果が支配的である。すなわち、腐食初期に腐食の進行を遅延させる腐食生成物を鋼材表面に形成することができれば、耐食性の向上を図ることができる。 (b) In the reproducibility test of the bottom plate part, that is, the test on the local corrosion that occurs in the bottom plate part, the pitting corrosion rate at the initial stage of corrosion is almost the same depending on the steel type, but it turns out that the pitting corrosion rate decreases with time depending on the steel type. did. Therefore, the anticorrosion effect by the corrosion products is dominant in the bottom plate environment. That is, if a corrosion product that delays the progress of corrosion at the initial stage of corrosion can be formed on the surface of the steel material, the corrosion resistance can be improved.
 鋼材を局部腐食環境下に置いた場合、通常鋼材表面には鉄さび(β-FeOOH)層が形成される。しかし、Cu,Ni,Wを含有させると、鋼材表面にまず硫化物層が形成され、その後、鉄さび層が形成される。この硫化物層がアノード溶解反応を著しく抑制するので耐食性の向上に寄与する。特に、Wの硫化物あるいはさらにMoの硫化物を含有する層はカチオン選択性を示し、硫化物層を介したClイオンの透過抑制効果を有するので、Wの硫化物あるいはさらにMoの硫化物の層が形成される場合には耐食性の向上への寄与は特に大きくなる。 When a steel material is placed in a locally corrosive environment, an iron rust (β-FeOOH) layer is usually formed on the surface of the steel material. However, when Cu, Ni, and W are contained, a sulfide layer is first formed on the steel material surface, and then an iron rust layer is formed. Since this sulfide layer remarkably suppresses the anodic dissolution reaction, it contributes to the improvement of corrosion resistance. In particular, a layer containing W sulfide or further Mo sulfide exhibits cation selectivity and has an effect of suppressing permeation of Cl 2 ions through the sulfide layer. When this layer is formed, the contribution to the improvement of the corrosion resistance becomes particularly large.
 (c) このように、全面腐食環境下と局部腐食環境下のいずれにおいても、Cu,NiおよびWを含有させることが重要となるが、両環境下でともに高い耐食性を得るためには、Cu,NiおよびWのそれぞれを適切な含有量とする必要がある。 (c) As described above, it is important to contain Cu, Ni, and W in both a general corrosion environment and a local corrosion environment, but in order to obtain high corrosion resistance in both environments, Cu , Ni and W are required to have appropriate contents.
 本発明は、これらの知見に基づいて完成したものであり、その発明の要旨は、次の(1)~(7)に示すカーゴオイルタンク用耐食性鋼材にある。 The present invention has been completed based on these findings, and the gist of the invention resides in the following corrosion-resistant steel materials for cargo oil tanks (1) to (7).
 (1) 質量%で、C:0.01~0.2%、Si:0.01~1.0%、Mn:0.05~2.0%、P:0.002~0.1%、S:0.01%以下、Cu:0.01~2.0%、Ni:0.01~1.0%、W:0%を超え0.01%未満、Al:0.1%以下を含有し、残部Fe及び不純物からなることを特徴とする、カーゴオイルタンク用耐食鋼材。 (1)% by weight, C: 0.01 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.05 to 2.0%, P: 0.002 to 0.1% , S: 0.01% or less, Cu: 0.01-2.0%, Ni: 0.01-1.0%, W: more than 0% and less than 0.01%, Al: 0.1% or less A corrosion-resistant steel material for a cargo oil tank, characterized by comprising a balance Fe and impurities.
 (2) 質量%で、Feの一部に代えて、Cr:5.0%以下、Mo:1.0%以下、Ti:0.2%以下、Zr:0.2%以下、Sb:0.3%以下およびSn:0.3%以下のうちの1種または2種以上を含有することを特徴とする、上記(1)のカーゴオイルタンク用耐食鋼材。 (2) In mass%, instead of part of Fe, Cr: 5.0% or less, Mo: 1.0% or less, Ti: 0.2% or less, Zr: 0.2% or less, Sb: 0 3. Corrosion resistant steel material for cargo oil tank according to (1) above, containing one or more of 3% or less and Sn: 0.3% or less.
 (3) 質量%で、Feの一部に代えて、Nb:0.1%以下、V:0.2%以下およびB:0.01%以下のうちの1種または2種以上を含有することを特徴とする、上記(1)または(2)のカーゴオイルタンク用耐食鋼材。 (3) In mass%, in place of part of Fe, Nb: not more than 0.1%, V: not more than 0.2% and B: not more than 0.01%, containing one or more The corrosion-resistant steel material for cargo oil tanks according to (1) or (2) above.
 (4) 質量%で、Feの一部に代えて、Ca:0.01%以下、Mg:0.01以下%およびREM:0.01%以下のうちの1種または2種以上を含有することを特徴とする、上記(1)~(3)のいずれかのカーゴオイルタンク用耐食鋼材。 (4) In mass%, instead of a part of Fe, it contains one or more of Ca: 0.01% or less, Mg: 0.01 or less and REM: 0.01% or less The corrosion-resistant steel material for a cargo oil tank according to any one of (1) to (3) above.
 (5) 表面にCu、NiおよびWの硫化物あるいはさらにMoの硫化物の層を有することを特徴とする、上記(1)~(4)のいずれかのカーゴオイルタンク用耐食鋼材。 (5) The corrosion-resistant steel material for a cargo oil tank according to any one of (1) to (4) above, which has a Cu, Ni and W sulfide or Mo sulfide layer on the surface.
 (6) 表面が防食皮膜によって被覆されていることを特徴とする、上記(1)~(4)のいずれかのカーゴオイルタンク用耐食鋼材。 (6) The corrosion-resistant steel material for cargo oil tanks according to any one of (1) to (4) above, wherein the surface of the ridge is covered with an anticorrosion film.
 (7) Cu、NiおよびWの硫化物あるいはさらにMoの硫化物からなる中間層を介して、表面が防食皮膜によって被覆されていることを特徴とする、請求項1から4までのいずれかに記載のカーゴオイルタンク用耐食鋼材。 (7) The surface is covered with an anticorrosion film through an intermediate layer made of sulfide of Cu, Ni and W or further sulfide of Mo. Corrosion-resistant steel material for cargo oil tanks as described.
 本発明によれば、全面腐食や局部腐食に対する抵抗性に優れたカーゴオイルタンク用耐食性鋼材を提供することができる。 According to the present invention, it is possible to provide a corrosion-resistant steel material for cargo oil tanks having excellent resistance to general corrosion and local corrosion.
気相部の再現試験装置を示す。1 shows a reproduction test apparatus for a gas phase part. 底板部の再現試験装置を示す。The reproduction | regeneration test apparatus of a baseplate part is shown. 酸浸漬試験装置を示す。An acid immersion test apparatus is shown.
 以下、本発明について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
 (A)化学組成について
 C:0.01~0.2%
 Cは、材料としての強度を確保するために必要な元素であり、0.01%以上の含有量が必要である。しかし、0.2%を超えて含有させると溶接性が低下する。また、C含有量の増大とともに、酸性の環境でカソードとなって腐食を促進するセメンタイトの生成量が増大するとともに溶接性が悪化する。このため上限を0.2%とした。好ましい上限は0.15%、好ましい下限は0.04%である。
(A) Chemical composition C: 0.01 to 0.2%
C is an element necessary for securing strength as a material, and a content of 0.01% or more is necessary. However, if the content exceeds 0.2%, weldability decreases. Further, as the C content increases, the amount of cementite that becomes a cathode in an acidic environment and promotes corrosion increases, and the weldability deteriorates. For this reason, the upper limit was made 0.2%. A preferable upper limit is 0.15%, and a preferable lower limit is 0.04%.
 Si:0.01~1.0%
 Siは、脱酸に必要な元素であり、十分な脱酸効果を得るためには0.01%以上含有させる必要がある。しかし、1%を超えて含有させると母材および溶接継手部の靱性が損なわれる。このため、Siの含有量を0.01~1.0%とした。好ましい上限は0.8%、より好ましい上限は0.5%である。好ましい下限は0.04%、より好ましい下限は0.10%である。
Si: 0.01 to 1.0%
Si is an element necessary for deoxidation, and in order to obtain a sufficient deoxidation effect, it is necessary to contain 0.01% or more. However, if the content exceeds 1%, the toughness of the base material and the welded joint is impaired. Therefore, the Si content is set to 0.01 to 1.0%. A preferable upper limit is 0.8%, and a more preferable upper limit is 0.5%. A preferred lower limit is 0.04%, and a more preferred lower limit is 0.10%.
 Mn:0.05~2.0%
 Mnは、低コストで鋼の強度を高める作用を有する元素であり、この効果を得るためには0.05%以上の含有量が必要である。しかし、2.0%を超えて含有させると溶接性が劣化するとともに継手靭性も劣化する。このため、Mnの含有量を0.05~2.0%とした。好ましい上限は1.8%、より好ましい上限は1.6%である。好ましい下限は0.3%、より好ましい下限は0.5%である。
Mn: 0.05 to 2.0%
Mn is an element having an effect of increasing the strength of steel at a low cost, and a content of 0.05% or more is necessary to obtain this effect. However, if the content exceeds 2.0%, weldability deteriorates and joint toughness also deteriorates. Therefore, the Mn content is set to 0.05 to 2.0%. A preferable upper limit is 1.8%, and a more preferable upper limit is 1.6%. A preferred lower limit is 0.3%, and a more preferred lower limit is 0.5%.
 P:0.002~0.1%
 Pは耐全面腐食性および耐孔食性を向上させる作用を有する。また、通常Pの含有量が多いほど耐酸性が劣化するが、Cu含有鋼ではPを含有させることで耐酸性が向上する。このような耐全面腐食性および耐孔食性における耐酸性向上効果並びにCu含有鋼における耐酸性向上効果は0.002%以上のPを含有させることで発揮される。しかし、0.1%を超えて含有させると溶接性が著しく低下する。このため、Pの含有量は0.002~0.1%とした。好ましい上限は0.08%、より好ましい上限は0.06%である。好ましい下限は0.003%、より好ましい下限は0.004%である。
P: 0.002 to 0.1%
P has the effect of improving the general corrosion resistance and pitting resistance. Moreover, although acid resistance deteriorates, so that there is usually much content of P, acid resistance improves by containing P in Cu containing steel. The effect of improving acid resistance in such general corrosion resistance and pitting corrosion resistance and the effect of improving acid resistance in Cu-containing steel are exhibited by containing 0.002% or more of P. However, if the content exceeds 0.1%, the weldability is significantly reduced. Therefore, the P content is set to 0.002 to 0.1%. A preferable upper limit is 0.08%, and a more preferable upper limit is 0.06%. A preferred lower limit is 0.003%, and a more preferred lower limit is 0.004%.
 S:0.01%以下
 Sは鋼中に不純物として不可避的に存在する。ただし、その含有量が0.01%を超えると鋼中にMnSが多く生成し、MnSが腐食の起点となって全面腐食及び孔食が生じる。このため、Sの含有量を0.01%以下とした。好ましい上限は0.008%、より好ましい上限は0.005%である。なお、S含有量は低ければ低いほどよい。
S: 0.01% or less S is unavoidably present as an impurity in steel. However, if the content exceeds 0.01%, a large amount of MnS is produced in the steel, and MnS becomes a starting point of corrosion, resulting in overall corrosion and pitting corrosion. Therefore, the S content is set to 0.01% or less. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, the lower the S content, the better.
 Cu:0.01~2.0%
 Cuは耐全面腐食性を向上させるだけでなく、カーゴオイルタンクにおける底板環境下(局部腐食環境下)で、Sとともに硫化物層を形成し耐孔食性を向上させる元素である。この効果はCuを0.01%以上含有させることにより発揮されるが、2.0%を超えてCuを含有させてもその効果は飽和するだけでなく、熱間圧延時の割れ防止のために含有させるNi量も増加するので、コスト増につながる。そのため、Cuの含有量は0.01~2.0%とした。好ましい上限は1.8%、より好ましい上限は1.5%である。好ましい下限は0.05%、より好ましい下限は0.10%である。なお、硫化物層の詳細は後述する。
Cu: 0.01 to 2.0%
Cu is an element that not only improves the overall corrosion resistance, but also forms a sulfide layer together with S to improve the pitting corrosion resistance under the bottom plate environment (local corrosion environment) in the cargo oil tank. This effect is exhibited by containing 0.01% or more of Cu, but even if Cu is contained exceeding 2.0%, the effect is not only saturated, but also for preventing cracking during hot rolling. Since the amount of Ni contained in the steel also increases, the cost increases. Therefore, the Cu content is set to 0.01 to 2.0%. A preferable upper limit is 1.8%, and a more preferable upper limit is 1.5%. A preferred lower limit is 0.05%, and a more preferred lower limit is 0.10%. Details of the sulfide layer will be described later.
 Ni:0.01~1.0%
 Niも、Cuと同様に耐全面腐食性を向上させるだけでなく、カーゴオイルタンクにおける底板環境下(局部腐食環境下)で、Sとともに硫化物層を形成し耐孔食性を向上させる元素である。この効果は0.01%以上含有させることにより発揮されるが、1.0%を超えて含有してもその効果は飽和するだけでなく、コスト増につながる。そのため、Niの含有量は0.01~1.0%とした。好ましい上限は0.9%、より好ましい上限は0.8%である。好ましい下限は0.05%、より好ましい下限は0.1%である。なお、硫化物層の詳細は後述する。
Ni: 0.01 to 1.0%
Ni, as well as Cu, is an element that not only improves the overall corrosion resistance, but also forms a sulfide layer together with S to improve the pitting corrosion resistance under the bottom plate environment (local corrosion environment) in the cargo oil tank. . This effect is exhibited when the content is 0.01% or more. However, if the content exceeds 1.0%, the effect is not only saturated but also the cost is increased. Therefore, the Ni content is set to 0.01 to 1.0%. A preferable upper limit is 0.9%, and a more preferable upper limit is 0.8%. A preferred lower limit is 0.05%, and a more preferred lower limit is 0.1%. Details of the sulfide layer will be described later.
 W:0%を超え0.01%未満
 Wは耐酸性を向上させる元素であり、耐全面腐食性を向上させる。また、Wには、他の元素と複合して耐全面腐食性を高める効果や、湿潤硫化水素環境においてSとともに防食性の硫化物層を形成して耐孔食性を向上させる効果もある。これらの効果は微量のWを含有することにより得られる。しかし、Wを0.01%以上含有させるとコストに見合う効果が得られなくなり、また溶接性の悪化も懸念される。したがって、Wの含有量は0%を超え0.01%未満とした。なお、硫化物層の詳細は後述する。
W: more than 0% and less than 0.01% W is an element that improves acid resistance and improves overall corrosion resistance. W also has the effect of increasing the overall corrosion resistance by combining with other elements and the effect of improving the pitting corrosion resistance by forming a corrosion-resistant sulfide layer together with S in a wet hydrogen sulfide environment. These effects can be obtained by containing a trace amount of W. However, if W is contained in an amount of 0.01% or more, an effect commensurate with the cost cannot be obtained, and deterioration of weldability is also a concern. Therefore, the W content is more than 0% and less than 0.01%. Details of the sulfide layer will be described later.
 Al:0.1%以下
 Alは、鋼の脱酸に有効な元素であるが、本発明においてはSiを含有させているので、Siで脱酸がなされる。したがって、Alで脱酸処理することは必ずしも必要でないため、Alは含有させなくてもよい。ただし、Siに加えて、さらにAlを含有させて複合脱酸することもできる。この場合、Alを0.005%以上含有させると効果的に脱酸できる。一方、Alの含有量が0.1%を超えると、全面腐食性が著しく悪化するばかりか、窒化物が粗大化するために靱性の低下を引き起こす。したがって、Alを含有させる場合のAl含有量の上限を0.1%以下とする。好ましい上限は0.05%である。
Al: 0.1% or less Al is an element effective for deoxidation of steel, but since Si is contained in the present invention, deoxidation is performed with Si. Therefore, since it is not always necessary to deoxidize with Al, it is not necessary to contain Al. However, in addition to Si, the composite deoxidation can be performed by further adding Al. In this case, when Al is contained 0.005% or more, it can be effectively deoxidized. On the other hand, if the Al content exceeds 0.1%, not only the overall corrosiveness is remarkably deteriorated but also the nitride is coarsened, resulting in a decrease in toughness. Therefore, the upper limit of the Al content when Al is contained is set to 0.1% or less. A preferred upper limit is 0.05%.
 本発明に係るカーゴオイルタンク用耐食性鋼材は、上述した元素を有し、残部がFeおよび不純物からなる。なお、不純物とは、鋼材を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 The corrosion-resistant steel material for cargo oil tank according to the present invention has the above-described elements, and the balance is made of Fe and impurities. The impurities are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel materials, and do not adversely affect the present invention. Means what is allowed.
 本発明にかかるカーゴオイルタンク用耐食性鋼材は、必要に応じて、Feの一部に代えて、Cr、Mo、Ti、Zr、Sb、Sn、Nb、V、B、Ca、Mg、REMのうちの1種または2種以上の元素を含有させることができる。 Corrosion resistant steel material for cargo oil tank according to the present invention may be replaced with a part of Fe, if necessary, among Cr, Mo, Ti, Zr, Sb, Sn, Nb, V, B, Ca, Mg, REM. 1 type, or 2 or more types of elements can be contained.
 これらの元素は、次の3つのグループに分類することができる。 These elements can be classified into the following three groups.
 (i) 第1のグループとしては、Cr:5.0%以下、Mo:1.0%以下、Ti:0.2%以下、Zr:0.2%以下、Sb:0.3%以下およびSn:0.3%以下の1種または2種以上である。 (i) As the first group, Cr: 5.0% or less, Mo: 1.0% or less, Ti: 0.2% or less, Zr: 0.2% or less, Sb: 0.3% or less and Sn: One or more of 0.3% or less.
 (ii) 第2のグループとしては、Nb:0.1%以下、V:0.2%以下およびB:0.01%以下の1種または2種以上である。 (Ii) The second group is one or more of Nb: 0.1% or less, V: 0.2% or less, and B: 0.01% or less.
 (iii) 第3のグループとしては、Ca:0.01%以下、Mg:0.01以下%およびREM:0.01%以下の1種または2種以上である。 (Iii) The third group is one or more of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.01% or less.
 以下、これらの各元素について、グループ毎に説明する。 Hereinafter, each of these elements will be described for each group.
 (i) 第1のグループ:Cr、Mo、Ti、Zr、SbおよびSn
 Cr:5.0%以下
 Crは必要に応じて含有させることができる。Crを単独で含有させると酸環境における耐食性を低下させるが、Cuと複合して含有させると、乾湿繰り返しの環境において保護性の高いさび層を形成させ、耐全面腐食性が向上する。ただし、Cr含有量が5.0%を超えると、その効果は飽和するばかりでなく、溶接性の低下やコスト増につながる。したがって、Cr含有量の上限は、5.0%とする。好ましい上限は4.5%、より好ましい上限は4.0%である。なお、Crを含有させることによる効果を安定的に得るためには、Cr含有量を0.5%以上とするのが好ましい。より好ましくは1.0%以上である。
(i) First group: Cr, Mo, Ti, Zr, Sb and Sn
Cr: 5.0% or less Cr can be contained as necessary. When Cr is contained alone, the corrosion resistance in an acid environment is lowered. However, when it is contained in combination with Cu, a highly protective rust layer is formed in a repeated wet and dry environment, and the overall corrosion resistance is improved. However, if the Cr content exceeds 5.0%, the effect is not only saturated, but also the weldability is reduced and the cost is increased. Therefore, the upper limit of the Cr content is 5.0%. A preferable upper limit is 4.5%, and a more preferable upper limit is 4.0%. In addition, in order to acquire the effect by containing Cr stably, it is preferable that Cr content shall be 0.5% or more. More preferably, it is 1.0% or more.
 Mo:1.0%以下
 Moは必要に応じて含有させることができる。Moは耐酸性を向上させる元素であり、酸性水による乾湿繰り返し環境における耐全面腐食性を向上させる効果がある。また、湿潤硫化水素環境においてSとともに防食性の硫化物層を形成して耐孔食性を向上させる効果もある。ただし、Moを1.0%を超えて含有させても、効果が飽和するばかりか、溶接性を損なうし、コストも嵩む。したがって、Moを含有させるときのMo含有量の上限は、1.0%とする。好ましい上限は0.5%であり、より好ましい上限は0.4%である。なお、Moを含有させることによる効果を安定的に得るためには、Moを0.01%以上含有させるのが好ましい。より好ましくは0.1%以上であり、さらに好ましくは0.2%以上である。
Mo: 1.0% or less Mo can be contained as necessary. Mo is an element that improves acid resistance, and has the effect of improving overall corrosion resistance in a dry and wet repeated environment with acidic water. In addition, there is an effect of improving the pitting resistance by forming a corrosion-resistant sulfide layer together with S in a wet hydrogen sulfide environment. However, even if Mo is contained in excess of 1.0%, the effect is saturated, weldability is impaired, and cost is increased. Therefore, the upper limit of the Mo content when Mo is contained is 1.0%. A preferable upper limit is 0.5%, and a more preferable upper limit is 0.4%. In addition, in order to acquire the effect by containing Mo stably, it is preferable to contain Mo 0.01% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more.
 Ti:0.2%以下
 Tiは必要に応じて含有させることができる。Tiは、鋼の強度を高める作用を有する。Tiには、鋼の靱性を向上させる作用や、TiSを形成することによって、腐食の起点となるMnSの生成を抑制し、耐全面腐食性及び耐孔食性を高める作用もある。さらに、TiNの分散により結晶粒の粗大化を抑制するので、大入熱溶接部の靭性が向上する。ただし、Tiを0.2%を超えて含有させても、前記の効果は飽和しコストが嵩むばかりである。したがって、Tiを含有させるときのTi含有量の上限は、0.2%とする。好ましい上限は0.15%であり、より好ましい上限は0.1%である。なお、Tiを含有させることによる効果を安定的に得るためには、Tiを0.005%以上含有させるのが好ましい。より好ましくは0.01%以上であり、さらに好ましくは0.015%以上である。
Ti: 0.2% or less Ti can be contained as necessary. Ti has the effect | action which raises the intensity | strength of steel. Ti also has an effect of improving the toughness of steel and an effect of suppressing the generation of MnS as a starting point of corrosion and increasing the resistance to general corrosion and pitting corrosion by forming TiS. Furthermore, since the coarsening of the crystal grains is suppressed by the dispersion of TiN, the toughness of the high heat input weld is improved. However, even if Ti is contained in excess of 0.2%, the above effect is saturated and the cost is increased. Therefore, the upper limit of the Ti content when Ti is contained is 0.2%. A preferable upper limit is 0.15%, and a more preferable upper limit is 0.1%. In addition, in order to acquire the effect by containing Ti stably, it is preferable to contain Ti 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.015% or more.
 Zr:0.2%以下
 Zrは必要に応じて含有させることができる。Zrは、Tiと同様、硫化物を優先的に形成し、MnSの生成を抑制する効果を有する。また、ZrはTiに比べ窒化物を形成しにくい元素であり、より効率よく硫化物が形成されるという特徴も有する。ただし、Zrを0.2%を超えて含有させると、靱性の低下を招く。したがって、Zrを含有させるときのZr含有量の上限は、0.2%とする。好ましい上限は0.15%であり、より好ましい上限は0.1%である。なお、Zrを含有させることによる効果を安定的に得るためには、Zrを0.005%以上含有させるのが好ましい。より好ましくは0.01%以上であり、さらに好ましくは0.02%以上である。
Zr: 0.2% or less Zr can be contained if necessary. Zr, like Ti, preferentially forms sulfides and has the effect of suppressing the generation of MnS. In addition, Zr is an element that hardly forms nitrides as compared with Ti, and has a feature that sulfides are formed more efficiently. However, when Zr is contained exceeding 0.2%, the toughness is reduced. Therefore, the upper limit of the Zr content when Zr is contained is 0.2%. A preferable upper limit is 0.15%, and a more preferable upper limit is 0.1%. In addition, in order to obtain stably the effect by containing Zr, it is preferable to contain Zr 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.02% or more.
 Sb:0.3%以下
 Sbは必要に応じて含有させることができる。Sbは、乾湿繰り返し環境での耐全面腐食性を向上させるとともに耐酸性を高める作用を有する。さらに、孔食部のpHが低い環境における耐食性を向上させることにより、耐孔食性を向上させる作用も有する。ただし、Sbを0.3%を超えて含有させても、前記の効果は飽和する。したがって、Sbを含有させるときのSb含有量の上限は、0.3%とする。好ましい上限は0.25%であり、より好ましい上限は0.2%である。なお、Sbを含有させることによる効果を安定的に得るためには、Sbを0.03%以上含有させるのが好ましい。より好ましくは0.05%以上である。
Sb: 0.3% or less Sb can be contained as required. Sb has the effect of improving the overall corrosion resistance in a wet and dry repeated environment and increasing the acid resistance. Furthermore, it has the effect | action which improves pitting corrosion resistance by improving the corrosion resistance in the environment where the pH of a pitting part is low. However, even if Sb is contained in excess of 0.3%, the above effect is saturated. Therefore, the upper limit of the Sb content when Sb is contained is 0.3%. A preferable upper limit is 0.25%, and a more preferable upper limit is 0.2%. In addition, in order to obtain stably the effect by containing Sb, it is preferable to contain Sb 0.03% or more. More preferably, it is 0.05% or more.
 Sn:0.3%以下
 Snは必要に応じて含有させることができる。Snは、酸環境における耐食性を向上させる元素であり、酸性水による乾湿繰り返し環境での耐全面腐食性を向上させる作用を有する。また、孔食部のpHが低い環境における耐食性を向上させることにより耐孔食性を向上させる作用も有する。ただし、Snを0.3%を超えて含有させても、前記の効果は飽和するばかりでなく、母材および大入熱溶接継手の靭性が著しく劣化する。したがって、Snを含有させるときのSn含有量の上限は、0.3%とする。好ましい上限は0.25%であり、より好ましい上限0.2%である。なお、Snを含有させることによる効果を安定的に得るためには、Snを0.01%以上含有させるのが好ましい。より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。
Sn: 0.3% or less Sn can be contained as necessary. Sn is an element that improves the corrosion resistance in an acid environment, and has the effect of improving the overall corrosion resistance in a dry and wet repeated environment with acidic water. Moreover, it has the effect | action which improves pitting corrosion resistance by improving the corrosion resistance in the environment where the pH of a pitting corrosion part is low. However, even if Sn is contained in excess of 0.3%, the above effect is not only saturated, but the toughness of the base metal and the high heat input welded joint is significantly deteriorated. Therefore, the upper limit of the Sn content when Sn is contained is 0.3%. A preferable upper limit is 0.25%, and a more preferable upper limit is 0.2%. In addition, in order to acquire the effect by containing Sn stably, it is preferable to contain 0.01% or more of Sn. More preferably, it is 0.02% or more, More preferably, it is 0.03% or more.
 (ii) 第2のグループ:Nb、VおよびB
 Nb:0.1%以下
 Nbは必要に応じて含有させることができる。Nbは、鋼の強度を高める作用を有する元素である。ただし、Nbを0.1%を超えて含有させると、靱性が劣化する。したがって、Nbを含有させるときのNb含有量の上限は、0.1%とする。好ましい上限は0.08%であり、より好ましい上限は0.05%である。なお、Nbを含有させることによる効果を安定的に得るためには、Nbを0.001%以上含有させるのが好ましい。より好ましくは0.005%以上であり、さらに好ましくは0.01%以上である。
(ii) Second group: Nb, V and B
Nb: 0.1% or less Nb can be contained as necessary. Nb is an element having an effect of increasing the strength of steel. However, when Nb exceeds 0.1%, toughness deteriorates. Therefore, the upper limit of the Nb content when Nb is contained is 0.1%. A preferable upper limit is 0.08%, and a more preferable upper limit is 0.05%. In addition, in order to obtain the effect by containing Nb stably, it is preferable to contain Nb 0.001% or more. More preferably, it is 0.005% or more, More preferably, it is 0.01% or more.
 V:0.2%以下
 Vは必要に応じて含有させることができる。Vは、鋼の強度を高める作用を有する元素である。ただしVを0.2%を超えて含有させると、靱性及び溶接性が劣化する。したがって、Vを含有させるときのV含有量の上限は、0.2%とする。好ましい上限は0.15%である。なお、Vを含有させることによる効果を安定的に得るためには、Vを0.005%以上含有させるのが好ましい。より好ましくは0.01%以上である。
V: 0.2% or less V can be contained as necessary. V is an element having an effect of increasing the strength of steel. However, when V is contained exceeding 0.2%, toughness and weldability deteriorate. Therefore, the upper limit of the V content when V is contained is 0.2%. A preferable upper limit is 0.15%. In addition, in order to acquire the effect by containing V stably, it is preferable to contain V 0.005% or more. More preferably, it is 0.01% or more.
 B:0.01%以下
 Bは必要に応じて含有させることができる。Bは、鋼の強度を高める作用を有する元素である。ただし、Bを0.01%を超えて含有させると、靱性が劣化する。したがって、Bを含有させるときのB含有量の上限は、0.01%とする。好ましい上限は0.008%であり、より好ましい上限は0.005%である。なお、Bを含有させることによる効果を安定的に得るためには、Bを0.0002%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。
B: 0.01% or less B can be contained if necessary. B is an element having an effect of increasing the strength of steel. However, when B exceeds 0.01%, toughness deteriorates. Therefore, the upper limit of the B content when B is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, in order to acquire the effect by containing B stably, it is preferable to contain B 0.0002% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.0008% or more.
 (iii) 第3のグループ:Ca、MgおよびREM
 Ca:0.01%以下
 Caは必要に応じて含有させることができる。Caは、腐食反応時に水に溶けてアルカリ性となり鋼材界面のpH低下を抑制する作用がある。このため、裸鋼および塗装部の耐食性が向上する。ただし、Caを0.01%を超えて含有させても、この効果が飽和する。したがって、Caを含有させるときのCa含有量の上限は、0.01%とする。好ましい上限は0.008%であり、より好ましい上限は0.005%である。なお、Caを含有させることによる効果を安定的に得るためには、Caを0.0002%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、さらに好ましくは0.001%以上である。
(iii) Third group: Ca, Mg and REM
Ca: 0.01% or less Ca can be contained as necessary. Ca dissolves in water at the time of a corrosion reaction and becomes alkaline, and has an action of suppressing pH reduction at the steel material interface. For this reason, the corrosion resistance of bare steel and a coating part improves. However, this effect is saturated even if Ca is contained exceeding 0.01%. Therefore, the upper limit of the Ca content when Ca is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, in order to acquire the effect by containing Ca stably, it is preferable to contain 0.0002% or more of Ca. More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more.
 Mg:0.01%以下
 Mgは必要に応じて含有させることができる。MgもCaと同様に、腐食反応時の鋼材界面のpH低下を抑制することにより耐食性を向上させる効果がある。ただし、Mgを0.01%を超えて含有させても、その効果が飽和する。したがって、Mgを含有させるときのMg含有量の上限は、0.01%とする。好ましい上限は0.008%であり、より好ましい上限は0.005%である。なお、Mgを含有させることによる効果を安定的に得るためには、Mgを0.0002%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、さらに好ましくは0.001%以上である。
Mg: 0.01% or less Mg can be contained as required. Mg, like Ca, has the effect of improving the corrosion resistance by suppressing the pH drop at the steel material interface during the corrosion reaction. However, the effect is saturated even if Mg is contained exceeding 0.01%. Therefore, the upper limit of the Mg content when Mg is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, in order to acquire the effect by containing Mg stably, it is preferable to contain Mg 0.0002% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more.
 REM:0.01%以下
 REMは必要に応じて含有させることができる。REMは、鋼の溶接性を向上させる効果がある。ただし、REMを0.01%を超えて含有させてもこの効果が飽和するだけでなく、鋼材のコストが上昇する。したがって、REMを含有させるときのREM含有量の上限は、0.01%とする。好ましい上限は0.008%であり、より好ましい上限は0.005%である。なお、REMを含有させることによる効果を安定的に得るためには、REMを0.0001%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、さらに好ましくは0.001%以上である。
REM: 0.01% or less REM can be contained as necessary. REM has the effect of improving the weldability of steel. However, even if REM exceeds 0.01%, not only this effect is saturated but also the cost of the steel material increases. Therefore, the upper limit of the REM content when REM is contained is 0.01%. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, in order to acquire the effect by containing REM stably, it is preferable to contain REM 0.0001% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more.
 ここで、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種または2種以上を含有させることができる。なお、REMの含有量はこれらの元素の合計含有量を意味する。 Here, REM is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained. Note that the content of REM means the total content of these elements.
 (B)硫化物層について
 硫化物層は鋼材にCu、W、NiあるいはさらにMoを含有し、カーゴオイルタンクの底板環境下で使用することで形成される。したがって、鋼材出荷時には硫化物層を形成しておく必要はない。カーゴオイルタンク用の底板鋼材として使用することで使用初期にはHSおよびClの攻撃を受け一定の孔食が進むが、一定期間経過後、硫化物層が形成される。硫化物層は、鋼材界面でのHS濃度を低減し、鋼のアノード溶解を抑制するとともに、特にカチオン選択性を有するW硫化物あるいはさらにMo硫化物はClの透過を抑制する。これにより孔食の進行が鈍化し耐食性が向上する。
(B) Sulfide layer A sulfide layer contains Cu, W, Ni, or Mo further in steel materials, and is formed by using it in the bottom plate environment of a cargo oil tank. Therefore, it is not necessary to form a sulfide layer when shipping steel. Cargo to use the initial by using as a bottom plate steel oil tank H 2 S and Cl - proceeds constant pitting attack of, after a certain period of time, the sulfide layer is formed. Sulfide layer reduces the concentration of H 2 S in the steel material surface, suppresses the anodic dissolution of steel, W sulfide or even Mo sulfide particular a cation selective is Cl - inhibiting the transmission of. This slows down the progress of pitting corrosion and improves corrosion resistance.
 EPMA(電子プローブマイクロアナライザー)による分析では、硫化物層は内側(鋼材側)からMo硫化物、Cu硫化物、W硫化物、Ni硫化物の順に形成されることが判明した。このような順に硫化物層が生成したのは、各硫化物の溶解度と、孔食進展速度から見積もったCu,W,Ni,Moイオン濃度からの硫化物形成のための臨界S2-濃度を計算すると、当該濃度がMo,Cu,W,Niの順となるためと考えられる。 Analysis by EPMA (Electron Probe Microanalyzer) revealed that the sulfide layer is formed in the order of Mo sulfide, Cu sulfide, W sulfide, and Ni sulfide from the inside (steel material side). The sulfide layer was formed in this order because of the solubility of each sulfide and the critical S 2− concentration for sulfide formation from the Cu, W, Ni, and Mo ion concentrations estimated from the pitting corrosion growth rate. When calculated, the concentration is considered to be in the order of Mo, Cu, W, and Ni.
 硫化物層が一旦形成されてしまえば、この上に通常鋼材表面に形成される鉄さび(β-FeOOH)層が形成されていても構わない。鉄さび層にはHS濃度を低減する効果やClの透過を抑制する効果はないが、鉄さび層を透過したHSとClは硫化物層で遮断されるので、優れた耐食性を発揮する。 Once the sulfide layer is formed, an iron rust (β-FeOOH) layer that is normally formed on the surface of the steel material may be formed thereon. The iron rust layer does not have the effect of reducing the H 2 S concentration or the effect of suppressing the permeation of Cl , but H 2 S and Cl that have permeated the iron rust layer are blocked by the sulfide layer, so that excellent corrosion resistance is achieved Demonstrate.
 硫化物層はカーゴオイルタンクの清掃などにより部分的に損傷を受けることもある。このような場合でも、使用により再度硫化物層が形成されるので、耐食性が低下することはない。 The sulfide layer may be partially damaged by cleaning the cargo oil tank. Even in such a case, since the sulfide layer is formed again by use, the corrosion resistance is not lowered.
 以上、硫化物層について説明したが、本発明の鋼材は硫化物層が形成されないタンク天板部としても使用できるものであり、全面腐食環境下で使用する場合は母材自体の耐食性により腐食の進行を抑制できる。 Although the sulfide layer has been described above, the steel material of the present invention can also be used as a tank top plate portion where a sulfide layer is not formed, and when used in a full corrosive environment, the corrosion resistance of the base material itself causes corrosion. Progress can be suppressed.
 (C)防食皮膜について
 上記に説明した本発明の鋼材は、そのまま使用しても良好な耐食性を示し、腐食代を少なくすることができる。しかし、その表面を有機樹脂や金属からなる防食被膜で覆った場合には、防食被膜の耐久性が向上し、耐食性が一段と向上し、カーゴオイルタンク用耐食鋼材として使用するのにより好適となる。
(C) About anticorrosion film The steel material of the present invention described above exhibits good corrosion resistance even when used as it is, and can reduce the corrosion allowance. However, when the surface is covered with an anticorrosion coating made of an organic resin or metal, the durability of the anticorrosion coating is improved and the corrosion resistance is further improved, which is more suitable for use as a corrosion resistant steel material for cargo oil tanks.
 ここで、有機樹脂からなる防食被膜としては、ビニルブチラール系、エポキシ系、ウレタン系、フタル酸系等の樹脂被膜、金属からなる防食被膜としては、ZnやAl等のメッキ被膜や溶射被膜を挙げることができる。 Here, examples of the anticorrosion coating made of an organic resin include vinyl butyral, epoxy, urethane, and phthalic acid resin coatings, and examples of the anticorrosion coating made of metal include a plating coating and a thermal spray coating of Zn or Al. be able to.
 また、防食被膜の耐久性が向上するのは、下地である本発明鋼材の腐食が著しく抑制される結果として、防食被膜欠陥部からの下地鋼材腐食に起因する防食被膜のふくれや剥離が抑制されるためであると考えられる。 In addition, the durability of the anticorrosion film is improved because the corrosion of the steel material of the present invention, which is the base, is remarkably suppressed. This is considered to be because of this.
 上記の防食被膜で覆う処理は通常の方法で行えばよい。また、必ずしも鋼材の全面に防食被膜を施す必要はなく、腐食環境に曝される面としての鋼材の片面だけを防食処理してもよい。あるいは、腐食環境に曝される部分としての鋼材の一部だけを防食処理してもよい。 The treatment with the above anticorrosion coating may be performed by a usual method. Moreover, it is not always necessary to apply the anticorrosion coating to the entire surface of the steel material, and only one surface of the steel material as the surface exposed to the corrosive environment may be subjected to the anticorrosion treatment. Alternatively, only a part of the steel material that is exposed to the corrosive environment may be subjected to anticorrosion treatment.
 (D)製造方法について
 本発明の鋼材は、以下のようにして製造が可能である。ただし、本発明の鋼材の製造方法はこの製造方法に限定されるものではない。
(D) Manufacturing Method The steel material of the present invention can be manufactured as follows. However, the manufacturing method of the steel material of the present invention is not limited to this manufacturing method.
 Sの含有量を低く抑えるとともに製鋼段階でのRH、DH、電磁撹拌等を実施した本発明で規定する組成を有するスラブを作製する。 Slab having a composition defined in the present invention, in which the content of S is kept low and RH, DH, electromagnetic stirring, etc. are performed in the steelmaking stage.
 このスラブを、加熱温度が1100℃~1200℃程度、圧延1パス当たりの圧下率が3%以上、圧延仕上げ温度が700~900℃程度となる条件で熱間圧延する。圧延終了後は、大気中において放冷するか、またはAr点以上の温度から少なくとも570℃程度までの温度域を冷却速度5℃/s以上で冷却し、その後大気中放冷する。以上の工程を通して、本発明の鋼材を製造することができる。なお、上記した温度はすべて鋼材の表面部における温度である。 This slab is hot-rolled under the conditions that the heating temperature is about 1100 ° C. to 1200 ° C., the rolling reduction per rolling is 3% or more, and the rolling finish temperature is about 700 to 900 ° C. After the rolling is finished, it is allowed to cool in the air, or a temperature range from a temperature of Ar 3 or higher to at least about 570 ° C. is cooled at a cooling rate of 5 ° C./s or higher, and then cooled in the air. Through the above steps, the steel material of the present invention can be manufactured. In addition, all the above-mentioned temperature is the temperature in the surface part of steel materials.
 表1に示す化学組成を有する23種類の鋼を真空溶解炉を用いて溶製し、150kg鋼塊とした後、通常の方法で熱間鍛造して厚さが60mmのブロックを作製した。 23 types of steel having the chemical composition shown in Table 1 were melted using a vacuum melting furnace to form a 150 kg steel ingot, and then hot forged by an ordinary method to produce a block having a thickness of 60 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次いで、上記ブロックを、1120℃で1時間加熱してから熱間圧延し、850℃で厚さ20mmに仕上げ、その後室温まで大気中で放冷した。 Next, the block was heated at 1120 ° C. for 1 hour, hot-rolled, finished to a thickness of 20 mm at 850 ° C., and then allowed to cool to room temperature.
 前記厚さが20mmの各鋼板から、幅が25mm、長さが50mm、厚さが4mmの試験片を採取し、実船のデッキ裏環境を模擬した腐食試験に供した。なお、この腐食試験はカーゴタンク気相部を想定したものである。ここで、特に鋼種1の発明例に係る供試鋼については、変性エポキシ系塗料をスプレー塗布により約200μmの防食被膜を形成した上で、防食被膜に十字の疵をつけて一部地金を露出し、同様の腐食試験に供した。 A test piece having a width of 25 mm, a length of 50 mm, and a thickness of 4 mm was taken from each steel plate having a thickness of 20 mm and subjected to a corrosion test simulating the environment behind the deck of an actual ship. This corrosion test assumes a cargo tank gas phase. Here, in particular, for the test steel according to the invention example of steel type 1, a modified epoxy paint is spray-coated to form an anticorrosion film of about 200 μm, and a cross bark is attached to the anticorrosion film to partially bullion. Exposed and subjected to a similar corrosion test.
 すなわち、図1の天板試験に見るとおり、イオン交換水を下部の1/3部分に入れたガラス容器を準備する一方、採取した試験片を下面に取り付けたガス供給口を有するアクリル製の蓋によって上記ガラス容器の開口上端を密閉した。 That is, as shown in the top plate test of FIG. 1, an acrylic lid having a gas supply port with a sample specimen attached to the lower surface while preparing a glass container in which ion exchange water is placed in the lower third portion. Was used to seal the upper end of the glass container.
 次いで、密閉後のガラス容器を恒温槽内に設置し、50℃×20時間→25℃×4時間の温度サイクルを56日間付与した。その際、ガラス容器内の気相部にはカーゴタンク内の腐食性ガスをシミュレートし、前記のガス供給口より、次に示す組成のガスAを吹き込んだ。
[ガスA]体積%で、5%O-13%CO-0.01%SO-0.05%HS-残N
 56日間の腐食試験の後、各試験片の減少質量から「mm/年」単位での腐食速度(全面腐食速度)を求めた。表2に、上記の試験結果を「試験1」として示す。なお、表2中、防食被膜を形成した供試鋼(鋼種1(被膜あり))については、地金露出部の腐食速度を求めた。
Next, the sealed glass container was placed in a thermostatic bath, and a temperature cycle of 50 ° C. × 20 hours → 25 ° C. × 4 hours was applied for 56 days. At that time, the corrosive gas in the cargo tank was simulated in the gas phase portion in the glass container, and the gas A having the following composition was blown from the gas supply port.
[Gas A] 5% by volume, 5% O 2 -13% CO 2 -0.01% SO 2 -0.05% H 2 S-residual N 2
After the 56-day corrosion test, the corrosion rate (total corrosion rate) in units of “mm / year” was determined from the reduced mass of each specimen. Table 2 shows the test result as “Test 1”. In Table 2, for the test steel (steel type 1 (with coating)) on which the anticorrosion coating was formed, the corrosion rate of the bare metal exposed portion was determined.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本試験は、実施例1と同様の試験片を用い、実船の底板部を想定した試験を施したものである。 This test was conducted using the same test piece as in Example 1 and assuming the bottom plate of an actual ship.
 すなわち、図2の底板試験に見るとおり、40℃の10%NaCl溶液を入れたガラス容器を準備し、腐食試験片を溶液中に浸漬させる。 That is, as seen in the bottom plate test of FIG. 2, a glass container containing a 10% NaCl solution at 40 ° C. is prepared, and a corrosion test piece is immersed in the solution.
 次いで、密閉後のガラス容器を恒温槽内に設置し、28日間浸漬試験を実施した。ガス供給口より、次に示す組成のガスBを吹き込んだ。
[ガスB]体積%で、5%O-13%CO-0.01%SO-0.2%HS-残N
 なお、腐食試験片は鋼板より採取した試験片の上に、5mm径の円型の部分を除き模擬オイルコート(原油とさびの混合物)を塗布することにより作製した。
Next, the sealed glass container was placed in a thermostatic bath, and an immersion test was performed for 28 days. Gas B having the following composition was blown from the gas supply port.
[Gas B] 5% by volume, 5% O 2 -13% CO 2 -0.01% SO 2 -0.2% H 2 S-residual N 2
The corrosion test piece was prepared by applying a simulated oil coat (mixture of crude oil and rust) on a test piece taken from a steel plate except for a 5 mm diameter circular portion.
 孔食深さの測定は、試験後の腐食試験片において、孔食発生部の深さを、孔食の発生していない部分すなわち模擬オイルコート塗布部分を基準としマイクロメータを用いて実施した。ここでは、孔食発生部において深さの最も大きい値を孔食深さとして採用した。 The measurement of pitting corrosion depth was carried out using a micrometer based on the portion where pitting corrosion did not occur, that is, the simulated oil coat application portion, in the corrosion test piece after the test. Here, the maximum value of the depth at the pitting corrosion occurrence portion was adopted as the pitting corrosion depth.
 28日間の腐食試験の後、各試験片の孔食深さから「mm/年」単位での孔食速度を求めた。表2に、上記の試験結果を「試験2」として示す。なお、実施例1と同様に、表2中、防食被膜を形成した供試鋼(鋼種1(被膜あり))については、地金露出部の腐食速度を求めた。 After the 28-day corrosion test, the pitting corrosion rate in units of “mm / year” was determined from the pitting depth of each test piece. Table 2 shows the test results as “Test 2”. As in Example 1, in Table 2, the corrosion rate of the bare metal exposed portion was determined for the test steel (steel type 1 (with coating)) on which the anticorrosion coating was formed.
 実施例1と同様に作製した厚さが20mmの各鋼板から、幅が40mm、長さが50mm、厚さが4mmの試験片を採取し、カーゴタンク底板の孔食内の環境を模擬した試験を実施した。 A test was taken from each steel plate having a thickness of 20 mm produced in the same manner as in Example 1, and a test piece having a width of 40 mm, a length of 50 mm, and a thickness of 4 mm was taken to simulate the environment in the pitting corrosion of the cargo tank bottom plate. Carried out.
 すなわち、図3の酸浸漬試験に見るとおり、30℃の10%NaCl溶液にHClを添加し、pHを0.85に調整した溶液中に試験片を浸漬させた。試験期間は72時間であり、溶液の劣化による腐食への影響を最小限にするため、24時間ごとに溶液を交換した。 That is, as seen in the acid immersion test of FIG. 3, HCl was added to a 10% NaCl solution at 30 ° C., and the test piece was immersed in a solution adjusted to pH 0.85. The test period was 72 hours, and the solution was changed every 24 hours in order to minimize the impact on corrosion due to solution degradation.
 72時間の腐食試験後、各試験片の減少質量から「mm/年」単位での腐食速度を求めた。表3に、上記の試験結果を「試験3」として示す。なお、実施例1と同様に、表2中、防食被膜を形成した供試鋼(鋼種1(被膜あり))については、地金露出部の腐食速度を求めた。 After the 72-hour corrosion test, the corrosion rate in “mm / year” was determined from the reduced mass of each test piece. Table 3 shows the test result as “Test 3”. As in Example 1, in Table 2, the corrosion rate of the bare metal exposed portion was determined for the test steel (steel type 1 (with coating)) on which the anticorrosion coating was formed.
 表2に示す腐食試験結果からもわかるように、比較例21については合金元素が適切に添加されていないため試験1、2および3において耐食性が十分でない。また比較例22はP量が適切でないため試験3における耐食性が低い。 As can be seen from the corrosion test results shown in Table 2, in Comparative Example 21, the corrosion resistance is not sufficient in Tests 1, 2, and 3 because the alloy elements are not appropriately added. In Comparative Example 22, the corrosion resistance in Test 3 is low because the amount of P is not appropriate.
 一方で、本発明例(1~20)は試験1、2、3とも良好な耐食性を示すことがわかる。 On the other hand, it can be seen that the inventive examples (1 to 20) show good corrosion resistance in Tests 1, 2 and 3.
 本発明によれば、全面腐食や局部腐食に対する抵抗性に優れたカーゴオイルタンク用耐食性鋼材を提供することができる。 According to the present invention, it is possible to provide a corrosion-resistant steel material for cargo oil tanks having excellent resistance to general corrosion and local corrosion.

Claims (7)

  1.  質量%で、C:0.01~0.2%、Si:0.01~1.0%、Mn:0.05~2.0%、P:0.002~0.1%、S:0.01%以下、Cu:0.01~2.0%、Ni:0.01~1.0%、W:0%を超え0.01%未満、Al:0.1%以下を含有し、残部Fe及び不純物からなることを特徴とする、カーゴオイルタンク用耐食鋼材。 In mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.0%, Mn: 0.05 to 2.0%, P: 0.002 to 0.1%, S: 0.01% or less, Cu: 0.01 to 2.0%, Ni: 0.01 to 1.0%, W: more than 0% and less than 0.01%, Al: containing 0.1% or less Further, a corrosion-resistant steel material for cargo oil tanks, comprising the balance Fe and impurities.
  2.  質量%で、Feの一部に代えて、Cr:5.0%以下、Mo:1.0%以下、Ti:0.2%以下、Zr:0.2%以下、Sb:0.3%以下およびSn:0.3%以下のうちの1種または2種以上を含有することを特徴とする、請求項1に記載のカーゴオイルタンク用耐食鋼材。 In mass%, instead of part of Fe, Cr: 5.0% or less, Mo: 1.0% or less, Ti: 0.2% or less, Zr: 0.2% or less, Sb: 0.3% The corrosion resistant steel material for a cargo oil tank according to claim 1, characterized in that it contains one or more of the following and Sn: 0.3% or less.
  3.  質量%で、Feの一部に代えて、Nb:0.1%以下、V:0.2%以下およびB:0.01%以下のうちの1種または2種以上を含有することを特徴とする、請求項1または2に記載のカーゴオイルタンク用耐食鋼材。 It is characterized by containing one or more of Nb: 0.1% or less, V: 0.2% or less, and B: 0.01% or less in place of part of Fe in mass%. The corrosion-resistant steel material for cargo oil tanks according to claim 1 or 2.
  4.  質量%で、Feの一部に代えて、Ca:0.01%以下、Mg:0.01%以下およびREM:0.01%以下のうちの1種または2種以上を含有することを特徴とする、請求項1から3までのいずれかに記載のカーゴオイルタンク用耐食鋼材。 It is characterized by containing one or more of Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.01% or less in place of part of Fe in mass%. The corrosion-resistant steel material for cargo oil tanks according to any one of claims 1 to 3.
  5.  表面にCu、NiおよびWの硫化物あるいはさらにMoの硫化物の層を有することを特徴とする、請求項1から4までのいずれかに記載のカーゴオイルタンク用耐食鋼材。 The corrosion-resistant steel material for cargo oil tanks according to any one of claims 1 to 4, wherein the surface has a sulfide layer of Cu, Ni and W or further a sulfide of Mo.
  6.  表面が防食皮膜によって被覆されていることを特徴とする、請求項1から4までのいずれかに記載のカーゴオイルタンク用耐食鋼材。 The corrosion-resistant steel material for cargo oil tanks according to any one of claims 1 to 4, wherein the surface is coated with an anticorrosion film.
  7.  Cu、NiおよびWの硫化物あるいはさらにMoの硫化物からなる中間層を介して、表面が防食皮膜によって被覆されていることを特徴とする、請求項1から4までのいずれかに記載のカーゴオイルタンク用耐食鋼材。 The cargo according to any one of claims 1 to 4, wherein the surface is coated with an anticorrosion film through an intermediate layer made of a sulfide of Cu, Ni and W or further a sulfide of Mo. Corrosion resistant steel for oil tanks.
PCT/JP2011/065595 2010-07-09 2011-07-07 Corrosion-resistant steel material for cargo oil tank WO2012005327A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800051436A CN102686760A (en) 2010-07-09 2011-07-07 Corrosion-resistant steel material for cargo oil tank
JP2011550372A JP4941620B2 (en) 2010-07-09 2011-07-07 Corrosion resistant steel for cargo oil tanks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010156698 2010-07-09
JP2010-156698 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005327A1 true WO2012005327A1 (en) 2012-01-12

Family

ID=45441304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065595 WO2012005327A1 (en) 2010-07-09 2011-07-07 Corrosion-resistant steel material for cargo oil tank

Country Status (4)

Country Link
JP (1) JP4941620B2 (en)
KR (1) KR20120035935A (en)
CN (1) CN102686760A (en)
WO (1) WO2012005327A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166992A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Corp Steel material excellent in corrosion resistance
JP2016027206A (en) * 2015-09-03 2016-02-18 新日鐵住金株式会社 Steel materials having excellent corrosion resistance
CN107904487A (en) * 2017-11-03 2018-04-13 钢铁研究总院 A kind of polynary chrome molybdenum carbon dioxide corrosion resistant oil well pipe and its manufacture method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923820A (en) * 2012-11-09 2013-02-13 无锡电站辅机厂 Resin trap
CN103194679B (en) * 2013-04-07 2015-01-21 南京钢铁股份有限公司 Steel plate for structure with excellent marine atmospheric corrosion resistance and production method thereof
CN103451575B (en) * 2013-08-23 2015-07-01 苏州长盛机电有限公司 Copper-iron alloy material
CN103643175A (en) * 2013-11-12 2014-03-19 铜陵市肆得科技有限责任公司 Alloy steel material for valve core and preparation method thereof
CN103695773B (en) * 2013-12-11 2015-10-28 武汉钢铁(集团)公司 Yield strength is 690MPa level fire resistant and weather resistant anti-shock construction(al)steel and production method thereof
CN103695772B (en) * 2013-12-11 2015-12-30 武汉钢铁(集团)公司 Yield strength is 550MPa level fire resistant and weather resistant anti-shock construction(al)steel and production method thereof
CN103866188B (en) * 2014-03-31 2016-01-20 武汉钢铁(集团)公司 Yield strength is 460MPa level fire-resistant corrosion-resistant anti-seismic steel for building and production method
CN104836418A (en) * 2015-05-14 2015-08-12 江苏有能新能源有限公司 Frequency converter source chamber
CN104879572B (en) * 2015-06-09 2017-07-14 倍德力能源装备(江苏)有限公司 A kind of spring support hanging frame fitting fastening and preparation method thereof
CN105042191B (en) * 2015-06-09 2017-07-14 倍德力能源装备(江苏)有限公司 A kind of anti-corrosion and high strength suspension and support component and its manufacturing process
CN105039872A (en) * 2015-06-09 2015-11-11 倍德力能源装备(江苏)有限公司 High-temperature-resisting high-strength spring hanger
CN107904512A (en) * 2017-12-15 2018-04-13 苏州赛斯德工程设备有限公司 A kind of anticorrosion steel and its processing technology
CN111270135A (en) * 2020-02-17 2020-06-12 本钢板材股份有限公司 Economical weathering steel produced by strengthening RE-P and preparation process thereof
CN113637891B (en) * 2020-04-27 2022-07-19 宝山钢铁股份有限公司 Alkali-brittleness-resistant low alloy steel, plate, welded pipe and seamless pipe and manufacturing method thereof
CN115466903A (en) * 2022-07-13 2022-12-13 海峡(晋江)伞业科技创新中心有限公司 High-strength special steel and production process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325439A (en) * 2004-04-14 2005-11-24 Sumitomo Metal Ind Ltd Steel material for cargo oil tank
JP2007262441A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Steel for crude oil tank and its production method
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2010043342A (en) * 2008-08-18 2010-02-25 Nippon Steel Corp Weld joint for crude oil tank excellent in corrosion resistance and ductile fracture resistance
JP2010150620A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Anticorrosive coated steel material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946864A (en) * 2004-04-14 2007-04-11 住友金属工业株式会社 Steel product for cargo oil tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325439A (en) * 2004-04-14 2005-11-24 Sumitomo Metal Ind Ltd Steel material for cargo oil tank
JP2007262441A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Steel for crude oil tank and its production method
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2010043342A (en) * 2008-08-18 2010-02-25 Nippon Steel Corp Weld joint for crude oil tank excellent in corrosion resistance and ductile fracture resistance
JP2010150620A (en) * 2008-12-26 2010-07-08 Jfe Steel Corp Anticorrosive coated steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166992A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Corp Steel material excellent in corrosion resistance
JP2016027206A (en) * 2015-09-03 2016-02-18 新日鐵住金株式会社 Steel materials having excellent corrosion resistance
CN107904487A (en) * 2017-11-03 2018-04-13 钢铁研究总院 A kind of polynary chrome molybdenum carbon dioxide corrosion resistant oil well pipe and its manufacture method

Also Published As

Publication number Publication date
JPWO2012005327A1 (en) 2013-09-05
JP4941620B2 (en) 2012-05-30
KR20120035935A (en) 2012-04-16
CN102686760A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4941620B2 (en) Corrosion resistant steel for cargo oil tanks
JP5145897B2 (en) Corrosion resistant steel for cargo oil tanks
JP4502075B1 (en) Corrosion resistant steel for crude oil tankers
JP4449691B2 (en) Steel material for cargo oil tanks
JP4811277B2 (en) Corrosion resistant steel for holding coal and ore carrier
JP5453840B2 (en) Marine steel with excellent corrosion resistance
JP2007270196A (en) Steel material for cargo oil tank
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4525687B2 (en) Corrosion resistant steel for ships
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP2000017381A (en) Corrosion resistant steel for shipbuilding
JP2010064110A (en) Welded joint for hold of ore/coal carrier
JP3753088B2 (en) Steel material for cargo oil tanks
JP2011021248A (en) Steel for ship having excellent coating corrosion resistance
JP2010285673A (en) Steel for ship excellent in coating film-blistering resistance
JP2012092404A (en) Steel for ship having excellent coating corrosion resistance
JP2005290479A (en) Steel material for bottom plate of crude oil tank
JP4243863B2 (en) Welded joint for crude oil tank and crude oil tank
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP6645462B2 (en) Steel material and method of manufacturing the same
JP2013019049A (en) Corrosion-resistant steel material for ship ballast tank having excellent corrosion resistance and method for producing the same
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP5862166B2 (en) Corrosion-resistant steel for ship outfitting
JP2011094184A (en) Highly corrosion resistant painted steel
JP2011162849A (en) Zinc primer-coated corrosion resistant steel material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005143.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011550372

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003522

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803661

Country of ref document: EP

Kind code of ref document: A1