WO2012005260A1 - 車両の左右輪駆動力配分制御装置 - Google Patents

車両の左右輪駆動力配分制御装置 Download PDF

Info

Publication number
WO2012005260A1
WO2012005260A1 PCT/JP2011/065394 JP2011065394W WO2012005260A1 WO 2012005260 A1 WO2012005260 A1 WO 2012005260A1 JP 2011065394 W JP2011065394 W JP 2011065394W WO 2012005260 A1 WO2012005260 A1 WO 2012005260A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
vehicle
speed
force difference
transient control
Prior art date
Application number
PCT/JP2011/065394
Other languages
English (en)
French (fr)
Inventor
鈴木 伸一
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN2011800316210A priority Critical patent/CN102958736A/zh
Priority to EP11803594.8A priority patent/EP2591941A4/en
Priority to US13/806,651 priority patent/US20130103228A1/en
Priority to JP2012523885A priority patent/JPWO2012005260A1/ja
Publication of WO2012005260A1 publication Critical patent/WO2012005260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/12Differential gearings without gears having orbital motion
    • F16H48/19Differential gearings without gears having orbital motion consisting of two linked clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3515Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with a clutch adjacent to traction wheel, e.g. automatic wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/16Axle differentials, e.g. for dividing torque between left and right wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H2048/204Control of arrangements for suppressing differential actions

Definitions

  • the present invention relates to an improvement proposal of a left and right wheel driving force distribution control device useful for a vehicle, particularly a four wheel drive vehicle.
  • a device as described in Patent Document 1 As a vehicle right / left wheel driving force distribution control device, a device as described in Patent Document 1, for example, has been proposed.
  • This proposed technology is used for transient control of the left and right wheel driving force distribution so that a target behavior change (usually a change in yaw rate) corresponding to a change in the vehicle driving state is realized.
  • a target behavior change usually a change in yaw rate
  • the left and right wheel drive force distribution is made so that the difference between the left and right wheels becomes large during high speed steering, thereby improving the transient response during high speed steering. is there.
  • the gain of the vehicle behavior (yaw rate) with respect to the steering speed differs depending on the vehicle speed, but the gain remains substantially the same in the region where the steering speed is low at any vehicle speed. It is known that the yaw moment larger than the yaw moment corresponding to the steering is generated when the frequency coincides with the yaw resonance frequency of the vehicle, and therefore tends to be higher than the gain at the time of low speed steering.
  • the above-described transient control technology for the left and right wheel driving force distribution described above performs the left and right wheel driving force distribution so that the driving force difference between the left and right wheels becomes larger as the steering operation becomes faster.
  • the transient control of the left and right wheel driving force distribution becomes excessive, and the vehicle behavior becomes unstable at an unnecessarily large yaw rate or the drivability deteriorates.
  • the present invention takes into consideration the fact that the gain of the vehicle behavior is high during high-speed steering, and at the time of high-speed steering, the transient control of the left and right wheel driving force distribution is weakened.
  • a right and left wheel driving force control device for a vehicle is proposed in which a large yaw rate is not generated in the vehicle so that the above-mentioned problem that vehicle behavior becomes unstable or drivability deteriorates can be solved. For the purpose.
  • the left and right wheel driving force distribution control device for a vehicle is:
  • Left and right driving force difference transient control calculating means is provided for calculating the transient control of the left and right driving force difference based on the transient control of the left and right driving force difference based on the driver's transient turning response request.
  • the left and right driving force difference transient control calculation means has a turning operation speed information detecting means for detecting information related to a turning operation speed that causes turning of the vehicle, and the turning operation speed information detected by the means is While the turning operation speed is equal to or higher than the set value, the amount of the transient control of the left / right driving force difference is corrected to be reduced to contribute to the left / right wheel driving force distribution control.
  • the transient control portion of the left and right driving force difference obtained based on the driver's transient turning response request is not used for the left and right wheel driving force distribution control as it is. While the turning operation speed information related to the turning operation speed that causes the turning of the vehicle indicates a turning operation speed higher than the setting, the above-mentioned transient control of the left and right driving force difference is reduced and contributed to the left and right wheel driving force distribution control. Therefore, the following effects can be obtained.
  • the transient control of the left and right driving force difference obtained based on the driver's transient turning response request is used as it is for the left and right wheel driving force distribution control, Since the behavior gain of the vehicle is high when the turning operation speed is fast, the amount of transient control of the left and right wheel driving force distribution becomes excessive, causing problems that the behavior of the vehicle becomes unstable and drivability deteriorates.
  • the transient control of the left / right driving force difference obtained based on the driver's transient turning response request is corrected to contribute to the left / right wheel driving force distribution control.
  • the amount of transient control for the left and right wheel driving force distribution does not become excessive. Accordingly, an unnecessarily large yaw rate is not generated when the turning operation speed is high, and the above-described problems that the behavior of the vehicle becomes unstable and the drivability deteriorates can be solved.
  • FIG. 1 is a schematic plan view showing a wheel drive system of a four-wheel drive vehicle including a left and right wheel drive force distribution control device according to an embodiment of the present invention, together with the four-wheel drive control system, when viewed from above the vehicle.
  • FIG. 2 is a functional block diagram showing the four-wheel drive controller in FIG.
  • FIG. 3 is a functional block diagram showing a transient control calculation unit in FIG.
  • FIG. 3 is a characteristic diagram illustrating a change characteristic of a left / right driving force difference transient control gain used in the transient control calculation unit in FIG. 2; It is a characteristic diagram which shows the yaw rate gain characteristic with respect to the steering frequency of a vehicle.
  • FIG. 3 is a flowchart showing a process when a left and right rear wheel target driving force calculation unit in FIG. 2 calculates a left and right rear wheel target driving force.
  • FIG. 1 is a schematic plan view showing a wheel drive system of a four-wheel drive vehicle provided with a left and right wheel drive force distribution control device according to an embodiment of the present invention, together with the four-wheel drive control system, as viewed from above the vehicle.
  • 1L and 1R respectively indicate left and right front wheels as main drive wheels
  • 2L and 2R respectively indicate left and right rear wheels as auxiliary drive wheels.
  • driving force means “torque value”, not power.
  • a transmission transaxle including a differential gear device 4a
  • the left and right front wheels 1L and 1R are used for driving.
  • a part of the driving force directed to the left and right front wheels 1L and 1R after being shifted by the transmission 4 is redirected by the transfer 6 and directed to the left and right rear wheels 2L and 2R.
  • the transmission system for this is configured as follows:
  • the transfer 6 includes a bevel gear set including an input side hypoid gear 6a and an output side hypoid gear 6b.
  • the input side hypoid gear 6a is coupled to the differential gear case 4a so as to rotate together with the differential gear case which is an input rotation member of the differential gear device 4a.
  • the front end of the propeller shaft 7 is coupled to the output side hypoid gear 6b, and the propeller shaft 7 extends rearward toward the left and right rear wheel driving force distribution unit 8.
  • the transfer 6 determines the gear ratio of the bevel gear set including the hypoid gear 6a and the output side hypoid gear 6b so that a part of the driving force directed to the left and right front wheels 1L and 1R is accelerated and output to the propeller shaft 7.
  • the left and right rear wheel driving force distribution unit 8 includes a center shaft 10 extending in the axial direction of the shafts 9L and 9R between the axle shafts 9L and 9R of the left and right rear wheels 2L and 2R.
  • the left and right rear wheel driving force distribution unit 8 is further disposed between the center shaft 10 and the left rear wheel axle shaft 9L, and the left rear wheel side clutch (the left auxiliary driving wheel side friction element) for controlling the coupling between the shafts 10 and 9L.
  • 11L Between the center shaft 10 and the right rear wheel axle shaft 9R, there is provided a right rear wheel side clutch (right auxiliary driving wheel side friction element) 11R for controlling coupling between the shafts 10 and 9R.
  • the rear end of the propeller shaft 7 extending from the transfer 6 to the rear of the vehicle and the center shaft 10 are drive-coupled via a bevel gear type final reduction gear 12 including an input side hypoid gear 12a and an output side hypoid gear 12b.
  • the speed reduction ratio of the final reduction gear 12 is related to the left and right front wheels 1L and 1R in relation to the speed increasing gear ratio of the transfer 6 (the speed increasing gear ratio of the bevel gear set including the hypoid gear 6a and the output side hypoid gear 6b).
  • the gear ratio is such that a part of the driving force toward the center shaft 10 is directed to increase the speed downward
  • the total gear ratio of the transfer 6 and the final reduction gear 12 is set so that the center shaft 10 rotates at an increased speed with respect to the left and right front wheels 1L and 1R.
  • the transfer speed is controlled so that the rotational speed of the center shaft 10 does not become lower than the rotational speed of the outer rear wheel 2L (or 2R) in the turning direction even during such turning, and the driving force distribution control is not disabled.
  • the total gear ratio of 6 and the final reduction gear 12 is determined as described above, and the center shaft 10 is rotated at a higher speed as described above. Due to the accelerated rotation of the center shaft 10, drive force distribution control described later can be performed as intended.
  • the rotational power from the engine 3 reaches the left and right front wheels 1L and 1R under the shift by the transmission (transaxle) 4, and drives these left and right front wheels 1L and 1R. .
  • the vehicle is capable of four-wheel drive traveling by driving the left and right front wheels 1L and 1R and driving the left and right rear wheels 2L and 2R.
  • the front and rear wheel drive force distribution control is performed via the total engagement force control of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R.
  • the left rear wheel side clutch is used to improve the turning performance of the vehicle and to control the behavior of the vehicle so that the actual behavior of the vehicle (actual yaw rate, etc.) is as intended according to the driving state and driving conditions of the vehicle.
  • the left and right wheel driving force distribution control can be performed through the engagement force control of the 11L and right rear wheel side clutch 11R.
  • the fastening force control system for the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is as follows.
  • Each of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is an electromagnetic type in which the fastening force is determined according to the supply current, and the fastening force of these clutches 11L and 11R is respectively a four wheel drive (4WD) controller 21.
  • the above-mentioned front and rear wheel driving force is controlled by electronically controlling the supply current to the clutches 11L and 11R so as to obtain the fastening force corresponding to the target driving force TcL and TcR of the left and right rear wheels 2L and 2R obtained as described later in It is assumed that distribution control and left and right wheel driving force distribution control are performed.
  • a signal from the lateral acceleration sensor 29 for detecting the lateral acceleration Gy of the vehicle is input.
  • the four-wheel drive controller 21 calculates the left rear wheel target drive force TcL and the right rear wheel target drive force TcR for front and rear wheel drive force distribution control and left and right wheel drive force distribution control, which will be described in detail later. Operate, Assume that the fastening force (current) of the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is electronically controlled so that the driving forces of the left and right rear wheels 2L, 2R coincide with the target driving forces TcL, TcR.
  • ⁇ Driving force distribution control The procedure for determining the front and rear wheel driving force distribution control and the left and right wheel driving force distribution control executed by the four-wheel drive controller 21, that is, the left rear wheel target driving force TcL and the right rear wheel target driving force TcR will be described below.
  • the four-wheel drive controller 21 is as shown in FIG. 2 in a functional block diagram, and includes an input signal processing unit 31, a rear wheel total driving force calculating unit 32, a left and right rear wheel driving force difference calculating unit 33, The feedback control unit 34 and the left and right rear wheel target driving force calculation unit 35 are configured.
  • the input signal processing unit 31 includes a wheel speed sensor group 22, an accelerator opening sensor 23, a steering angle sensor 24, a transmission output rotation sensor 25, an engine rotation sensor 26, a yaw rate sensor 27, a longitudinal acceleration sensor 28, and a lateral acceleration sensor 29. Noise is removed from the detection signal, and preprocessing is performed so that it can be used for later-described computation.
  • the engine torque Te is estimated by the engine torque estimating unit 36 using the engine speed Ne and the accelerator opening APO.
  • the transmission gear ratio calculation unit 37 calculates the transmission gear ratio ⁇ using the engine speed Ne and the transmission output speed No.
  • the rear wheel total driving force calculation unit 32 obtains a total driving force target value rTcLR (hereinafter referred to as total driving force rTcLR) for the left and right rear wheels 2L and 2R as follows, for example.
  • rTcLR total driving force target value rTcLR
  • the input torque Ti to the differential gear device 4a is calculated from the engine torque Te and the transmission gear ratio ⁇ .
  • the left and right front wheel average speeds and the left and right rear wheel average speeds are obtained based on the signals from the wheel speed sensor group 22 (wheel speed Vw), and the left and right front wheels 1L, 1R estimated by the comparison between them, In accordance with the acceleration Gx and the accelerator opening APO, it is determined how much of the input torque Ti should be directed to the left and right rear wheels 2L, 2R, and the total driving force rTcLR for these rear wheels is determined.
  • the total driving force rTcLR to the rear wheels needs to be increased to suppress the driving slip as the degree of the front wheel slip increases, and the driver increases as the longitudinal acceleration Gx and the accelerator opening APO increase. Since driving force is required, the total driving force rTcLR for the rear wheels is increased to meet this demand.
  • the left and right rear wheel driving force difference calculating unit 33 includes a steady control calculating unit 33a and a transient control calculating unit 33b, and calculates a driving force difference target value r ⁇ TcLR between the left and right rear wheels 2L and 2R (hereinafter referred to as a driving force difference r ⁇ TcLR). For example, it is obtained as follows.
  • the steady control calculation unit 33a obtains the left and right rear wheel driving force difference steady control c ⁇ TcLR for the vehicle turning behavior that the driver regularly requests as follows.
  • the longitudinal acceleration Gx generated in the vehicle is estimated from the engine torque Te and the transmission gear ratio ⁇
  • the lateral acceleration Gy generated in the vehicle is estimated from the steering angle ⁇ and the wheel speed Vw (vehicle speed VSP).
  • the difference between the left and right rear wheel driving force required to eliminate the understeer state of the vehicle (a state where the actual turning behavior is insufficient with respect to the target turning behavior) as determined from the combination of the estimated longitudinal acceleration Gx and lateral acceleration Gy Determined as wheel drive force difference steady control c ⁇ TcLR.
  • the reason why the estimated value is used instead of the detected value of the longitudinal acceleration Gx and the estimated value is used instead of the detected value of the lateral acceleration Gy is that the steady-state control calculation unit 33a is a feedforward control system and the detected value is a result value. This is because the estimated value matches the actual state of control.
  • the transient control calculation unit 33b is a left-right rear wheel driving force difference transient control for a turning response that a driver transiently requests based on the change speed of the steering angle ⁇ under the current wheel speed Vw (vehicle speed VSP).
  • the minute d ⁇ TcLR is obtained as follows.
  • the transient control calculation unit 33b includes a target yaw rate calculation unit 41, a differential calculation unit 42, a left and right driving force difference transient control calculation value calculation unit 43, and a left and right driving force difference transient control gain calculation unit 45. And consist of
  • the target yaw rate calculation unit 41 calculates the target yaw rate t ⁇ desired by the driver from the wheel speed Vw (vehicle speed VSP) and the steering angle ⁇ for the vehicle turning operation, and sets this as an upper limit by the lateral acceleration Gy And output.
  • the differential calculator 42 performs a differential operation on the target yaw rate t ⁇ to obtain a change speed dt ⁇ of the target yaw rate (a turning response that is transiently requested by the driver through the driving operation). Therefore, the target yaw rate calculation unit 41 and the differential calculator 42 constitute the target behavior change speed calculation means in the present invention.
  • the target yaw rate t ⁇ is obtained from the steering angle ⁇ for the vehicle turning operation as described above. Therefore, the target yaw rate t ⁇ includes information related to the turning operation that causes the turning of the vehicle, and the change rate dt ⁇ of the target yaw rate is the turning operation. Contains information about the speed of Therefore, the target yaw rate calculation unit 41 and the differential calculator 42 that calculate the change rate dt ⁇ of the target yaw rate also constitute the turning operation speed information detection means in the present invention.
  • the left / right driving force difference transient control calculation value calculation unit 43 calculates the left / right rear wheel drive that is a basic target value for the turning response that the driver transiently requests from the change speed dt ⁇ of the target yaw rate t ⁇ .
  • the force difference transient control calculation value dd ⁇ TcLR is obtained by map search. Therefore, the left / right driving force difference transient control calculation value calculation unit 43 constitutes a left / right driving force difference transient control calculation unit in the present invention.
  • the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR has a larger value corresponding to the higher turning speed dt ⁇ of the target yaw rate t ⁇ , since a higher turning response is desired.
  • the reason why the change rate dt ⁇ of the target yaw rate t ⁇ is used instead of the change rate of the yaw rate detection value ⁇ is that the transient control calculation unit 33b is a feedforward control system, and the estimated value is larger than the detection value ⁇ as a result value. This is because the target yaw rate t ⁇ that matches the actual condition of control.
  • the left / right driving force difference transient control gain calculation unit 45 sets the left / right driving force difference transient control gain ⁇ , and the left / right driving force difference transient control gain ⁇ is set to the above-described left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR. It is used to calculate the left and right rear wheel driving force difference transient control d ⁇ TcLR by multiplying. Accordingly, the left / right driving force difference transient control gain calculation unit 45, together with the left / right driving force difference transient control calculation value calculation unit 43, constitutes the left / right driving force difference transient control calculation unit in the present invention.
  • the left / right driving force difference transient control gain calculator 45 searches the left / right driving force difference transient control gain ⁇ from the change speed dt ⁇ of the target yaw rate t ⁇ based on, for example, the map shown in FIG. As shown in FIG. 4, the left / right driving force difference transient control gain ⁇ is a positive value that varies between 0 and 1 according to the change rate dt ⁇ of the target yaw rate t ⁇ , and the target yaw rate t ⁇ change rate dt ⁇ is ⁇ 1 or more.
  • the target yaw rate high speed change region where dt ⁇ ⁇ ⁇ 1 will be described.
  • the gain of the vehicle behavior (yaw rate) with respect to the steering frequency f (steering speed) varies depending on the vehicle speed VSP, but under almost any vehicle speed VSP, In the low region (low speed steering) where the steering frequency f is lower than a certain steering frequency f1, the substantially same yaw rate gain is maintained.
  • the steering frequency f matches the yaw resonance frequency of the vehicle, and a yaw moment greater than the yaw moment corresponding to steering is generated. Therefore, it tends to be higher than the yaw rate gain in the low frequency range (during low speed steering).
  • the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR obtained by the calculation unit 43 is a large value corresponding to a high turning response request as the change speed dt ⁇ of the target yaw rate t ⁇ is high.
  • the transient control of the left and right wheel driving force distribution is performed in the high frequency range (at high speed steering) higher than the steering frequency f1 where the yaw rate gain is higher than in the low frequency range (at low speed steering) less than the steering frequency f1. It becomes excessive and causes problems that vehicle behavior becomes unstable or drivability deteriorates at an unnecessarily large yaw rate.
  • the left / right driving force difference transient control gain ⁇ is for solving this problem. For this reason, the left / right driving force difference transient control gain ⁇ is set so that ⁇ ⁇ 1 in FIG. The region corresponds to a high frequency region (high-speed steering region) of the steering frequency f1 or higher in FIG.
  • the transient control calculation unit 33b multiplies the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR by the left and right rear wheel driving force difference transient control gain d ⁇ TcLR.
  • the left and right rear wheel driving force difference transient control component d ⁇ TcLR is obtained by using the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR as the gain ⁇ , which is the basic target value for the turning response transiently requested by the driver. Corresponds to the lowered one.
  • the left and right driving force difference transient control gain ⁇ is 1 in the middle / low speed change region of dt ⁇ ⁇ 1, and the higher the target yaw rate change rate dt ⁇ in the target yaw rate fast change region of dt ⁇ ⁇ ⁇ 1. Since it is gradually lowered from 1 and 0 when dt ⁇ ⁇ ⁇ 2, The left and right rear wheel driving force difference transient control amount d ⁇ TcLR is made the same as the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR in the middle / low speed change range of dt ⁇ ⁇ 1, and in the target yaw rate high speed change region of dt ⁇ ⁇ ⁇ 1. As the target yaw rate change speed dt ⁇ increases, the target yaw rate gradually decreases from the value in the middle / low speed change region of dt ⁇ ⁇ 1, and is set to 0 when dt ⁇ ⁇ ⁇ 2.
  • the left and right rear wheel drive force difference calculation unit 33 in FIG. 2 is obtained by the steady control calculation unit 33a as described above by the right and left rear wheel drive force difference steady control component c ⁇ TcLR and by the transient control calculation unit 33b as described above.
  • the sum of the left and right rear wheel driving force difference transient control amount d ⁇ TcLR is determined as the left and right rear wheel driving force difference r ⁇ TcLR that should be the target when the vehicle turns.
  • the actual turning behavior (actual yaw rate ⁇ ) actually generated by the vehicle due to the left / right rear wheel driving force difference r ⁇ TcLR is the target turning behavior requested by the driver through steering operation due to disturbances such as crosswinds. May not match (target yaw rate t ⁇ ).
  • the feedback control unit 34 corrects the rear wheel total driving force rTcLR and the rear wheel driving force difference r ⁇ TcLR as follows when the actual yaw rate ⁇ and the target yaw rate t ⁇ do not coincide with each other to obtain a final rear wheel total.
  • the driving force TcLR and the rear wheel driving force difference ⁇ TcLR are configured as follows.
  • the feedback control unit 34 includes a target yaw rate calculation unit 34a, a yaw rate deviation calculation unit 34b, and a feedback control coefficient calculation unit 34c.
  • the target yaw rate calculation unit 34a calculates a target yaw rate t ⁇ desired by the driver from the steering angle ⁇ , the lateral acceleration Gy, and the vehicle speed VSP obtained based on the wheel speed Vw.
  • the feedback control coefficient calculation unit 34c is in an excessive oversteer state where the actual yaw rate ⁇ exceeds the dead zone with respect to the target yaw rate t ⁇ , or the actual yaw rate ⁇ exceeds the dead zone with respect to the target yaw rate t ⁇ .
  • the feedback control coefficient K1 is used to calculate the final rear wheel total driving force TcLR after correction by multiplying the rear wheel total driving force rTcLR
  • the feedback control coefficient K2 is used to determine the final rear wheel driving force difference ⁇ TcLR after correction by multiplying the rear wheel driving force difference r ⁇ TcLR.
  • the feedback control coefficient calculation unit 34c determines the oversteer state ( ⁇ > t ⁇ + dead zone) in order to eliminate the adverse effects caused by the four-wheel drive driving, the total rear wheel driving force rTcLR And the feedback control coefficient K2 for the rear wheel driving force difference r ⁇ TcLR is also set to 0.
  • the feedback control coefficient calculation unit 34c determines that the understeer state ( ⁇ ⁇ t ⁇ dead zone) is not caused even by four-wheel drive driving, the feedback control coefficient calculation unit 34c has a disadvantage caused by setting a driving force difference between the left and right rear wheels. Therefore, the feedback control coefficient K1 for the rear wheel total driving force rTcLR is set to 1, and the feedback control coefficient K2 for the rear wheel driving force difference r ⁇ TcLR is set to 0.
  • the feedback control coefficient calculation unit 34c sets a driving force difference between the left and right rear wheels when the neutral steer state (t ⁇ dead zone ⁇ ⁇ ⁇ t ⁇ + dead zone) is determined and no adverse effect is caused by four-wheel drive driving. Therefore, the feedback control coefficient K1 for the rear wheel total driving force rTcLR is set to 1, and the feedback control coefficient K2 for the rear wheel driving force difference r ⁇ TcLR is also set to 1.
  • the left and right rear wheel target driving force calculation unit 35 satisfies both the left and right rear wheel total driving force TcLR and the left and right rear wheel driving force difference ⁇ TcLR, which should be the final target after correction, by the process shown in FIG.
  • the left rear wheel target driving force TcL and the right rear wheel target driving force TcR are obtained.
  • step S11 the final rear wheel total driving force TcLR corrected by the feedback control is read
  • step S12 the final left and right rear wheel driving force difference ⁇ TcLR corrected by the feedback control is read.
  • step S13 the right and left equal distribution amount TcLR / 2 of the rear wheel total driving force TcLR read in step S11 is obtained.
  • step S14 the right and left equal distribution amount ⁇ TcLR / of the rear wheel driving force difference ⁇ TcLR read in step S12. Ask for 2.
  • the target driving force TcOUT for the rear wheel outside the turning direction and the target driving force TcIN for the rear wheel inside the turning direction are used to achieve both the rear wheel total driving force TcLR and the rear wheel driving force difference ⁇ TcLR. These are the driving force of the rear wheel outside the turning direction and the driving force of the rear wheel inside the turning direction.
  • step S21 based on the outer wheel side target driving force TcOUT of the turning direction outer rear wheel and the inner wheel side target driving force TcIN of the turning direction inner rear wheel obtained as described above, the left rear wheel target driving force TcL and the right
  • the rear wheel target driving force TcR is determined according to the following procedure. First, in step S21, it is determined whether the vehicle is turning left or right based on the steering angle ⁇ and the yaw rate ⁇ .
  • step S22 the target driving force TcIN of the left rear wheel that is the inner wheel in the turning direction is set to the target driving force TcIN of the inner wheel and the target drive of the right rear wheel that is the outer wheel in the turning direction.
  • the outer ring side target driving force TcOUT is set to the force TcR.
  • step S23 the outer wheel side target driving force TcOUT is set to the target driving force TcL of the left rear wheel that is the outer wheel in the turning direction, and the right rear wheel that is the inner wheel in the turning direction.
  • the target driving force TcIN on the inner ring side is set to the target driving force TcR.
  • the four-wheel drive controller 21 in FIG. 1 has the left rear wheel target drive force TcL and the right rear determined by the computing unit 35 in FIG.
  • the current supplied to the left rear wheel side clutch 11L and the right rear wheel side clutch 11R is controlled so as to correspond to the wheel target driving force TcR.
  • the transient control calculation unit 33b is configured as described above with reference to FIG. 3, and the driver calculates the current wheel speed Vw (vehicle speed) from the change speed dt ⁇ of the target yaw rate t ⁇ in the left / right driving force difference transient control calculation value calculation unit 43.
  • the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR which is the basic target value for the turning response that is transiently requested by the steering speed (turning operation speed)
  • the left and right driving force difference transient control gain calculation unit 45 the left and right driving force difference transient control gain ⁇ corresponding to the change rate dt ⁇ of the target yaw rate t ⁇ , that is, less than 1 in the target yaw rate fast change region of dt ⁇ ⁇ ⁇ 1 as illustrated in FIG.
  • the left and right driving force difference transient control gain ⁇ The left and right rear wheel drive force difference transient control calculation value dd ⁇ TcLR is multiplied by the left and right drive force difference transient control gain ⁇ to obtain the left and right rear wheel drive force difference transient control component d ⁇ TcLR, which is used for left and right wheel (left and right rear wheel) drive force distribution control. To contribute.
  • the left and right rear wheel driving force difference transient control gain d ⁇ TcLR is set to less than 1 in the target yaw rate high speed change region (dt ⁇ ⁇ ⁇ 1).
  • the left and right driving force difference transient control gain ⁇ is gradually decreased from 1 as the target yaw rate change speed dt ⁇ increases in the target yaw rate high speed change region (dt ⁇ ⁇ ⁇ 1).
  • the reduction correction of the left and right rear wheel driving force difference transient control amount d ⁇ TcLR is gradually performed, so that the shock and uncomfortable feeling associated with the reduction correction can be avoided.
  • the left and right driving force difference transient control gain ⁇ is set to 0 in the region of dt ⁇ ⁇ ⁇ 2 in the target yaw rate fast change region (dt ⁇ ⁇ ⁇ 1).
  • the left and right rear wheel driving force difference transient control amount d ⁇ TcLR is set to 0, and the effect (1) can be further ensured.
  • the left and right driving force difference transient control gain ⁇ is set to less than 1, and the left and right rear wheel driving force difference transient control amount d ⁇ TcLR is corrected to decrease. Since the region (dt ⁇ ⁇ ⁇ 1) corresponds to the high frequency region (high-speed steering region) that is higher than the steering frequency f1 shown in FIG. The above left and right rear wheel driving force difference transient control d ⁇ TcLR is not reduced when it is unnecessary or not required, and the above effect is achieved without causing any adverse effects. Can do.
  • the left and right driving force difference transient control gain ⁇ is determined according to the target yaw rate change speed dt ⁇ as shown in FIG. Any information relating to the speed of the turning operation that causes the turning of the vehicle may be used. For example, as described along the horizontal axis in FIG. 4, the left-right driving force difference transient control gain ⁇ according to the change speed (steering speed) d ⁇ of the steering angle ⁇ . May be determined.
  • the target yaw rate calculation unit 41 and the differential calculation unit 42 are already present in the transient control calculation unit 33b, and the target yaw rate change speed dt ⁇ is obtained from these, so this target yaw rate change rate dt ⁇ is obtained. It is advantageous in terms of cost to obtain the left and right driving force difference transient control gain ⁇ according to the yaw rate change speed dt ⁇ .
  • the target yaw rate calculating unit 41 and the differential calculating unit 42 in FIG. 3 use the change angle dt ⁇ of the target yaw rate t ⁇ desired by the driver from the steering angle ⁇ and the vehicle speed VSP. Swift response requested transiently by operation)
  • the left and right driving force difference transient control calculation value calculation unit 43 calculates the left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR (for the turning response transiently requested by the driver from the change speed dt ⁇ of the target yaw rate t ⁇ ).
  • the transient component of the left and right rear wheel driving force difference The left and right rear wheel driving force difference transient control calculation value dd ⁇ TcLR (transient component of the left and right rear wheel driving force difference) has the same effect as long as it responds to the transient turning response request by the driver (driving operation). Needless to say, it may be determined not only based on the steering angle ⁇ and the vehicle speed VSP described above but also based on other factors and by other procedures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Retarders (AREA)

Abstract

 算出部43で目標ヨーレート変化速度dtφから、運転者が現在の車輪速Vw(車速)のもとで操舵速度により過渡的に要求している旋回応答のための基本的な目標値である左右後輪駆動力差過渡制御演算値ddΔTcLRを求める。演算部45で目標ヨーレート変化速度dtφから、目標ヨーレート高速変化域において1未満となる左右駆動力差過渡制御ゲインαを求める。ddΔTcLRにαを乗じて左右後輪駆動力差過渡制御分dΔTcLRを求め、これを左右輪駆動力配分制御に資する。これにより、ヨーレートゲインが上昇される高速操舵時に、左右駆動力差の過渡制御分が低下補正されることとなり、この過渡制御分によるヨーレートの上乗せが抑制されて、車両挙動が不安定になるのを防止することができる。

Description

車両の左右輪駆動力配分制御装置
 本発明は、車両、特に四輪駆動車両に有用な、左右輪駆動力配分制御装置の改良提案に関するものである。
 車両の左右輪駆動力配分制御装置としては従来、例えば特許文献1に記載のようなものが提案されている。
 この提案技術は、車両運転状態の変化に応じた目標挙動変化(通常はヨーレートの変化)が実現されるよう左右輪駆動力配分を過渡制御するに際し、
 運転者によるステアリング操作速度に応じ、高速操舵時は左右輪駆動力配分を左右輪間の差が大きくなるようなものとなし、これにより高速操舵時の過渡応答を向上させ得るようにしたものである。
特許第3116685号明細書
 しかし、操舵速度に対する車両挙動(ヨーレート)のゲインは、車速ごとに異なるものの何れの車速のもとでも、操舵速度が低い領域で略同じゲインを保ち、或る操舵速度以上の高速操舵時に、操舵周波数が車両のヨー共振周波数と一致して、操舵に対応したヨーモーメントよりも大きなヨーモーメントが発生することから、低速操舵時のゲインよりも高くなる傾向にあることが知られている。
 しかし上記した従来の左右輪駆動力配分の過渡制御技術は、操舵操度が速い時ほど左右輪間の駆動力差が大きくなるよう左右輪駆動力配分を行うため、
 操舵速度に対する車両挙動(ヨーレート)のゲインが高くなる高速操舵時に、左右輪駆動力配分の過渡制御が過大となり、不必要に大きなヨーレートで車両挙動が不安定になったり、運転性が悪化するという問題を生ずる。
 本発明は、上記のごとく高速操舵時に車両挙動のゲインが高くなるという実情を考慮し、この高速操舵時は左右輪駆動力配分の過渡制御を弱めるようにすることで、当該高速操舵時に不必要に大きなヨーレートが発生することのないようにし、これにより車両挙動が不安定になったり、運転性が悪化するという上記の問題を解消し得るようにした車両の左右輪駆動力制御装置を提案することを目的とする。
 上記した目的のため、本発明による車両の左右輪駆動力配分制御装置は、
 車輪駆動力を左右駆動輪へ制御下に分配出力する車両の左右輪駆動力配分制御装置に対し、
 運転者の過渡的な旋回応答要求に基づき左右駆動力差の過渡制御分に基づき左右駆動力差の過渡制御分を演算する左右駆動力差過渡制御分演算手段を設ける。
 そして上記の左右駆動力差過渡制御分演算手段が、車両の転向を生起させる転向操作の速度に関した情報を検出する転向操作速度情報検出手段を有し、該手段で検出した転向操作速度情報が設定以上の転向操作速度を示す間、前記左右駆動力差の過渡制御分を低下補正して前記左右輪駆動力配分制御に資するよう構成したことを特徴とするものである。
 上記した本発明の左右輪駆動力配分制御装置にあっては、運転者の過渡的な旋回応答要求に基づき求めた左右駆動力差の過渡制御分をそのまま左右輪駆動力配分制御に用いず、
 車両の転向を生起させる転向操作の速度に関した転向操作速度情報が、設定以上の転向操作速度を示す間、上記左右駆動力差の過渡制御分を低下補正して左右輪駆動力配分制御に資するため、以下の効果が奏し得られる。
 運転者の過渡的な旋回応答要求に基づき求めた左右駆動力差の過渡制御分をそのまま左右輪駆動力配分制御に用いると、
 転向操作速度が速い時に車両の挙動ゲインが高いことから、左右輪駆動力配分の過渡制御分が過大となって、車両の挙動が不安定になったり、運転性が悪化するという問題を生ずる。
 しかし本発明によれば、転向操作速度が速い時は、運転者の過渡的な旋回応答要求に基づき求めた左右駆動力差の過渡制御分を低下補正して左右輪駆動力配分制御に資するため、
 転向操作速度が速い時に車両の挙動ゲインが高くなっても、左右輪駆動力配分の過渡制御分が過大になることがない。
 従って、転向操作速度が速い時に不必要に大きなヨーレートが発生することがなく、これにより車両の挙動が不安定になったり、運転性が悪化するという上記の問題を解消することができる。
本発明の一実施例になる左右輪駆動力配分制御装置を具えた四輪駆動車両の車輪駆動系を車両上方から見て、四輪駆動制御システムと共に示す概略平面図である。 図1における四輪駆動コントローラを示す機能別ブロック線図である。 図2における過渡制御演算部を示す機能別ブロック線図である。 図2における過渡制御演算部で用いる左右駆動力差過渡制御ゲインの変化特性を例示する特性線図である。 車両の操舵周波数に対するヨーレートゲイン特性を示す特性線図である。 図2における左右後輪目標駆動力演算部が左右後輪目標駆動力を演算するときのプロセスを示すフローチャートである。
 1L,1R 左右前輪(左右主駆動輪)
 2L,2R 左右後輪(左右副駆動輪)
 3 エンジン
 4 変速機(トランスアクスル)
 5L,5R 左右前輪アクスルシャフト
 6 トランスファー
 7 プロペラシャフト
 8 左右後輪駆動力配分ユニット
 9L,9R 左右後輪アクスルシャフト
 10 センターシャフト
 11L 左後輪側クラッチ(左副駆動輪側クラッチ)
 11R 右後輪側クラッチ(右副駆動輪側クラッチ)
 12 終減速機
 21 四輪駆動コントローラ
 22 車輪速センサ
 23 アクセル開度センサ
 24 操舵角センサ
 25 変速機出力回転センサ
 26 エンジン回転センサ
 27 ヨーレートセンサ
 28 前後加速度センサ
 29 横加速度センサ
 31 入力信号処理部
 32 後輪合計駆動力演算部
 33 左右後輪駆動力差演算部
 33a 定常制御演算部
 33b 過渡制御演算部
 34 フィードバック制御部
 35 左右後輪目標駆動力演算部
 41 目標ヨーレート演算部(目標挙動変化速度演算手段:転向操作速度情報検出手段)
 42 微分演算器(目標挙動変化速度演算手段:転向操作速度情報検出手段)
 43 左右駆動力差過渡制御演算値算出部(左右駆動力差過渡制御分演算手段)
 45 左右駆動力差過渡制御ゲイン演算部(左右駆動力差過渡制御分演算手段)
 以下、この発明の実施例を添付の図面に基づいて説明する。
<構成>
 図1は、本発明の一実施例になる左右輪駆動力配分制御装置を具えた四輪駆動車両の車輪駆動系を車両上方から見て、四輪駆動制御システムと共に示す概略平面図である。
 図中、1L,1Rはそれぞれ、主駆動輪としての左右前輪を示し、2L,2Rはそれぞれ、副駆動輪としての左右後輪を示す。
 なお、本明細書中において「駆動力」と称するは、パワーではなくて、「トルク値」を意味するものとする。
 3は、原動機としてのエンジンで、エンジン3からの回転動力は変速機(ディファレンシャルギヤ装置4aを含むトランスアクスル)4により変速して、左右アクスルシャフト5L,5Rを介し左右前輪1L,1Rに向かわせ、これら左右前輪1L,1Rの駆動に供する。
 変速機4により変速された後に左右前輪1L,1Rへ向かう駆動力の一部を、トランスファー6により方向変換して左右後輪2L,2Rに向かわせるが、そのための伝動系を以下のような構成となす。
 トランスファー6は入力側ハイポイドギヤ6aおよび出力側ハイポイドギヤ6bより成る傘歯車組を具える。
 入力側ハイポイドギヤ6aは、ディファレンシャルギヤ装置4aの入力回転メンバであるディファレンシャルギヤケースと共に回転するようこれに結合する。
 出力側ハイポイドギヤ6bにはプロペラシャフト7の前端を結合し、このプロペラシャフト7を左右後輪駆動力配分ユニット8に向け後方へ延在させる。
 なおトランスファー6は、左右前輪1L,1Rに向かう駆動力の一部を増速してプロペラシャフト7へ出力するよう、ハイポイドギヤ6aおよび出力側ハイポイドギヤ6bより成る傘歯車組のギヤ比を決定する。
 プロペラシャフト7への増速回転動力は、左右後輪駆動力配分ユニット8による後述の制御下で左右後輪2L,2Rへ分配出力する。
 そのため左右後輪駆動力配分ユニット8は、左右後輪2L,2Rのアクスルシャフト9L,9R間において、これらシャフト9L,9Rの軸線方向に延在するセンターシャフト10を具える。
 左右後輪駆動力配分ユニット8は更に、センターシャフト10および左後輪アクスルシャフト9L間にあって、これらシャフト10,9L間を結合制御するための左後輪側クラッチ(左副駆動輪側摩擦要素)11Lと、
 センターシャフト10および右後輪アクスルシャフト9R間にあって、これらシャフト10,9R間を結合制御するための右後輪側クラッチ(右副駆動輪側摩擦要素)11Rとを具える。
 トランスファー6から車両後方へ延在するプロペラシャフト7の後端と、センターシャフト10との間は、入力側ハイポイドギヤ12aおよび出力側ハイポイドギヤ12bより成る傘歯車式終減速機12を介して駆動結合する。
 なお該終減速機12の減速比は、トランスファー6の前記した増速ギヤ比(ハイポイドギヤ6aおよび出力側ハイポイドギヤ6bより成る傘歯車組の増速ギヤ比)との関連において、左右前輪1L,1Rに向かう駆動力の一部をセンターシャフト10へ増速下に向かわせるようなギヤ比とし、
 本実施例においては、左右前輪1L,1Rに対してセンターシャフト10が増速回転されるように、トランスファー6および終減速機12のトータルギヤ比を設定する。
 かようにトランスファー6および終減速機12のトータルギヤ比を決定する理由を以下に説明する。
 上記センターシャフト10の増速回転を行わせない場合、左右後輪2L,2Rのうち、旋回走行中に外輪となる後輪2L(または2R)の回転速度がセンターシャフト10の回転速度よりも高速となる。
 この状態で旋回方向外輪となる後輪2L(または2R)側におけるクラッチ11L(または11R)を締結するとき、当該後輪の高い回転速度が、低速回転しているセンターシャフト10に引き摺られ、センターシャフト10の回転速度まで低下されることとなる。
 このことは、センターシャフト10から旋回方向外側の後輪2L(または2R)へ駆動力を伝達することができないことを意味し、結果として狙い通りの駆動力配分制御が不可能になり、四輪駆動制御にとって不都合を生ずる。
 そこで本実施例においては、かかる旋回走行中もセンターシャフト10の回転速度が旋回方向外側後輪2L(または2R)の回転速度未満になって駆動力配分制御が不能になることのないよう、トランスファー6および終減速機12のトータルギヤ比を上記のごとくに決定して、センターシャフト10を上記の通り増速回転させるようになす。
 かかるセンターシャフト10の増速回転により、後述する駆動力配分制御を狙い通りに遂行し得る。
 上記した四輪駆動車両の車輪駆動系にあっては、エンジン3からの回転動力が変速機(トランスアクスル)4による変速下で左右前輪1L,1Rに達し、これら左右前輪1L,1Rを駆動する。
 この間、左右前輪1L,1Rに向かう駆動力の一部がトランスファー6から順次、プロペラシャフト7、および終減速機12を経てセンターシャフト10へ増速下に達し、
 この増速分だけクラッチ11L,11Rがスリップするようこれらクラッチ11L,11Rを締結力制御しつつ、左右後輪2L,2Rを駆動する。
 かくて車両は、左右前輪1L,1Rの駆動、および、左右後輪2L,2Rの駆動により、四輪駆動走行が可能である。
 従って上記の四輪駆動車両においては、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力制御が必要である。
 上記の四輪駆動車両においては更に、車両の発進性能や加速性能を向上させるために、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの合計締結力制御を介して前後輪駆動力配分制御を行い得るようになすほか、
 車両の旋回性能を向上させたり、車両の実挙動(実ヨーレートなど)が車両の運転状態や走行条件に応じた目標通りのものとなるようにする挙動制御を行うために、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力制御を介して左右輪駆動力配分制御を行い得るようになす。
 そのため、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力制御システムを以下のようなものとする。
 左後輪側クラッチ11Lおよび右後輪側クラッチ11Rはそれぞれ、供給電流に応じて締結力を決定される電磁式とし、これらクラッチ11L,11Rの締結力がそれぞれ、四輪駆動(4WD)コントローラ21で後述のごとくに求めた左右後輪2L,2Rの目標駆動力TcL,TcRに対応した締結力となるよう当該クラッチ11L,11Rへの供給電流を電子制御することで、上記の前後輪駆動力配分制御および左右輪駆動力配分制御を行うものとする。
 四輪駆動コントローラ21には、上記した左後輪2Lの目標駆動力TcLおよび右後輪2Rの目標駆動力TcRを演算するために、
 車輪1L,1R,2L,2Rの車輪速Vwを個々に検出する車輪速センサ群22からの信号と、
 アクセルペダル踏み込み量であるアクセル開度APOを検出するアクセル開度センサ23からの信号と、
 ステアリングホイール操舵角θを検出する操舵角センサ24からの信号と、
 変速機出力回転数Noを検出する変速機出力回転センサ25からの信号と、
 エンジン回転数Neを検出するエンジン回転センサ26からの信号と、
 車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ27からの信号と、
 車両の前後加速度Gxを検出する前後加速度センサ28からの信号と、
 車両の横加速度Gyを検出する横加速度センサ29からの信号とをそれぞれ入力する。
 四輪駆動コントローラ21は、これら入力情報を基に、後で詳述する前後輪駆動力配分制御および左右輪駆動力配分制御用の左後輪目標駆動力TcLおよび右後輪目標駆動力TcRを演算し、
 左右後輪2L,2Rの駆動力がこれら目標駆動力TcL,TcRに一致するよう、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力(電流)を電子制御するものとする。
<駆動力配分制御>
 四輪駆動コントローラ21が実行する前後輪駆動力配分制御および左右輪駆動力配分制御、つまり左後輪目標駆動力TcLおよび右後輪目標駆動力TcRの決定要領を、以下に説明する。
 四輪駆動コントローラ21は、機能別ブロック線図で示すと図2に示すごときもので、入力信号処理部31と、後輪合計駆動力演算部32と、左右後輪駆動力差演算部33と、フィードバック制御部34と、左右後輪目標駆動力演算部35とで構成する。
 入力信号処理部31は、車輪速センサ群22、アクセル開度センサ23、操舵角センサ24、変速機出力回転センサ25、エンジン回転センサ26、ヨーレートセンサ27、前後加速度センサ28、 横加速度センサ29の検出信号からノイズを除去すると共に、後述の演算に用い得るよう前処理する。
 かように前処理した信号のうち、エンジン回転数Neおよびアクセル開度APOを用いて、エンジントルク推定部36でエンジントルクTeを推定し、
 またエンジン回転数Neおよび変速機出力回転数Noを用いて、変速機ギヤ比演算部37で変速機ギヤ比γを演算する。
 後輪合計駆動力演算部32は、左右後輪2L,2Rへの合計駆動力目標値rTcLR(以下、合計駆動力rTcLRと言う)を例えば以下のように求める。
 先ずエンジントルクTeおよび変速機ギヤ比γからディファレンシャルギヤ装置4aへの入力トルクTiを演算する。
 次いで、車輪速センサ群22からの信号(車輪速Vw)を基に左右前輪平均速および左右後輪平均速をそれぞれ求め、両者の比較により推定した左右前輪1L,1Rの駆動スリップ程度や、前後加速度Gxや、アクセル開度APOに応じ、上記入力トルクTiのうちのどの程度を左右後輪2L,2Rに向かわせるべきかを決定して、これら後輪への合計駆動力rTcLRとする。
 なお後輪への合計駆動力rTcLRは、上記前輪スリップの程度が高いほど、この駆動スリップ抑制のために大きくする必要があり、また前後加速度Gxおよびアクセル開度APOが大きいほど、運転者が大きな駆動力を要求していることから、これに応えるため後輪への合計駆動力rTcLRを大きくする。
 左右後輪駆動力差演算部33は、定常制御演算部33aおよび過渡制御演算部33bを具え、左右後輪2L,2R間の駆動力差目標値rΔTcLR(以下、駆動力差rΔTcLRと言う)を例えば以下のように求める。
 定常制御演算部33aは、運転者が定常的に要求している車両旋回挙動のための左右後輪駆動力差定常制御分cΔTcLRを以下のようにして求める。
 エンジントルクTeと、変速機ギヤ比γとから、車両に発生している前後加速度Gxを推定し、操舵角θおよび車輪速Vw(車速VSP)から車両に発生している横加速度Gyを推定し、これら推定した前後加速度Gxおよび横加速度Gyの組み合わせから判る車両のアンダーステア状態(目標旋回挙動に対し実旋回挙動が不足する状態)を解消するのに必要な左右後輪駆動力差を、左右後輪駆動力差定常制御分cΔTcLRとして定める。
 ここで、前後加速度Gxの検出値ではなく推定値、また横加速度Gyの検出値ではなく推定値を用いる理由は、定常制御演算部33aがフィードフォワード制御系であって、結果値である検出値よりも、推定値の方が制御の実態にマッチしているためである。
 かくして左右後輪駆動力差定常制御分cΔTcLRは、操舵角θが0近辺を示す(車輪非転舵状態である)間は、横加速度Gy=0に起因して0に保たれ、また、
 操舵角θが0近辺でない(車輪転舵状態である)間は、操舵角θが大きいほど、また車輪速Vw(車速VSP)が高いほど、横加速度Gyが大きくなって車両のアンダーステア傾向が強くなることから、左右後輪駆動力差定常制御分cΔTcLRは大きくなり、更に、
 前後加速度Gxが大きいほど、車両のアンダーステア傾向が強くなることから、左右後輪駆動力差定常制御分cΔTcLRは大きくなる。
 過渡制御演算部33bは、運転者が現在の車輪速Vw(車速VSP)のもとで操舵角θの変化速度により過渡的に要求している旋回応答のための左右後輪駆動力差過渡制御分dΔTcLRを以下のようにして求める。
 この過渡制御演算部33bは図3に示すように、目標ヨーレート演算部41と、微分演算器42と、左右駆動力差過渡制御演算値算出部43と、左右駆動力差過渡制御ゲイン演算部45とで構成する。
 目標ヨーレート演算部41は、車輪速Vw(車速VSP)と、車両転向操作のための操舵角θとから、運転者が希望している目標ヨーレートtφを演算し、これを横加速度Gyにより上限設定して出力する。
 微分演算器42は、この目標ヨーレートtφを微分演算して該目標ヨーレートの変化速度dtφ(運転者が運転操作により過渡的に要求している旋回応答)を求める。
 従って目標ヨーレート演算部41および微分演算器42は、本発明における目標挙動変化速度演算手段を構成する。
 なお目標ヨーレートtφは、上記のごとく車両転向操作のための操舵角θから求めたものであり、従って車両の転向を生起させる転向操作に係わる情報を含み、該目標ヨーレートの変化速度dtφは転向操作の速度に関した情報を内包する。
 よって、目標ヨーレートの変化速度dtφを演算する目標ヨーレート演算部41および微分演算器42は、本発明における転向操作速度情報検出手段をも構成する。
 左右駆動力差過渡制御演算値算出部43は、上記した目標ヨーレートtφの変化速度dtφから、運転者が過渡的に要求している旋回応答のための基本的な目標値である左右後輪駆動力差過渡制御演算値ddΔTcLRをマップ検索により求める。
 従って左右駆動力差過渡制御演算値算出部43は、本発明における左右駆動力差過渡制御分演算手段を構成する。
 この左右後輪駆動力差過渡制御演算値ddΔTcLRは、目標ヨーレートtφの変化速度dtφが高いほど、高い旋回応答を希望していることから、これに対応して大きな値となる。
 ここで、ヨーレート検出値φの変化速度ではなく目標ヨーレートtφの変化速度dtφを用いる理由は、過渡制御演算部33bがフィードフォワード制御系であって、結果値である検出値φよりも、推定値である目標ヨーレートtφの方が制御の実態にマッチしているためである。
 左右駆動力差過渡制御ゲイン演算部45は左右駆動力差過渡制御ゲインαを設定するもので、この左右駆動力差過渡制御ゲインαは、上記した左右後輪駆動力差過渡制御演算値ddΔTcLRに乗じて左右後輪駆動力差過渡制御分dΔTcLRを求めるのに用いる。
 従って左右駆動力差過渡制御ゲイン演算部45は、左右駆動力差過渡制御演算値算出部43と共に、本発明における左右駆動力差過渡制御分演算手段を構成する
 左右駆動力差過渡制御ゲイン演算部45は、例えば図4に示すマップを基に目標ヨーレートtφの変化速度dtφから左右駆動力差過渡制御ゲインαを検索する。
 図4に示すように左右駆動力差過渡制御ゲインαは、目標ヨーレートtφの変化速度dtφに応じ0から1までの間で変化する正値で、目標ヨーレートtφの変化速度dtφがφ1以上の目標ヨーレート高速変化域において、目標ヨーレートtφの変化速度dtφが速いほど小さくなり、dtφ=φ2の時0になり、dtφ<φ1の目標ヨーレート低速変化域において1を保つものとする。
 ここでdtφ≧φ1の目標ヨーレート高速変化域について説明する。
 図5に例示するごとく、操舵周波数f(操舵速度)に対する車両挙動(ヨーレート)のゲインは、車速VSPごとに異なるものの何れの車速VSPのもとでも概ね、
 操舵周波数fが或る操舵周波数f1未満の低い領域(低速操舵)で、略同じヨーレートゲインを保ち、
 或る操舵周波数f1以上の高速操舵時(但し、実用操舵速度の範囲内)において、操舵周波数fが車両のヨー共振周波数と一致して操舵に対応したヨーモーメントよりも大きなヨーモーメントが発生することから、低周波域での(低速操舵時の)ヨーレートゲインよりも高くなる傾向にある。
 演算部43で求めた左右後輪駆動力差過渡制御演算値ddΔTcLRは前記したように、目標ヨーレートtφの変化速度dtφが高いほど、高旋回応答要求に呼応した大きな値であり、これをそのまま駆動力差過渡制御分dΔTcLRとして左右輪間駆動力差の過渡制御に用いたのでは、
 図5に示すごとくヨーレートゲインが、操舵周波数f1未満の低周波域(低速操舵時)におけるよりも高くなる操舵周波数f1以上の高周波域(高速操舵時)において、左右輪駆動力配分の過渡制御が過大となり、不必要に大きなヨーレートで車両挙動が不安定になったり、運転性が悪化するという問題を生ずる。
 左右駆動力差過渡制御ゲインαはこの問題を解消するためのもので、このため図4において左右駆動力差過渡制御ゲインαをα<1となるように設定するdtφ≧φ1の目標ヨーレート高速変化域は、図5の操舵周波数f1以上の高周波域(高速操舵域)に対応させる。
 そして過渡制御演算部33bは図3に示すように、上記左右駆動力差過渡制御ゲインαを前記した左右後輪駆動力差過渡制御演算値ddΔTcLRに乗じて左右後輪駆動力差過渡制御分dΔTcLRを求める。
 従って左右後輪駆動力差過渡制御分dΔTcLRは、運転者が過渡的に要求している旋回応答のための基本的な目標値である左右後輪駆動力差過渡制御演算値ddΔTcLRをゲインαに応じ低下させたものに相当する。
 ところで左右駆動力差過渡制御ゲインαが図4に示すごとく、dtφ<φ1の目標ヨーレート中・低速変化域において1であり、dtφ≧φ1の目標ヨーレート高速変化域において目標ヨーレート変化速度dtφが速いほど1から徐々に低下され、dtφ≧φ2で0であることから、
 左右後輪駆動力差過渡制御分dΔTcLRは、dtφ<φ1の目標ヨーレート中・低速変化域において左右後輪駆動力差過渡制御演算値ddΔTcLRと同じにされ、dtφ≧φ1の目標ヨーレート高速変化域において、目標ヨーレート変化速度dtφが速いほど、dtφ<φ1の目標ヨーレート中・低速変化域における値から徐々に低下され、dtφ≧φ2において0にされる。
 図2の左右後輪駆動力差演算部33は、定常制御演算部33aで前記のごとくに求めた左右後輪駆動力差定常制御分cΔTcLRと、過渡制御演算部33bで上記のごとくに求めた左右後輪駆動力差過渡制御分dΔTcLRとの和値を、車両旋回挙動時の目標とすべき左右後輪駆動力差rΔTcLRと定める。
 ただし、かかる左右後輪駆動力差rΔTcLRの付与により車両が実際に発生する実旋回挙動(実ヨーレートφ)は、横風などの外乱により、運転者がステアリング操作により要求している上記の目標旋回挙動(目標ヨーレートtφ)と一致しないことがある。
 フィードバック制御部34は、これら実ヨーレートφと目標ヨーレートtφとが一致しない場合に、上記の後輪合計駆動力rTcLRおよび後輪駆動力差rΔTcLRを以下のごとくに補正して最終的な後輪合計駆動力TcLRおよび後輪駆動力差ΔTcLRとなすもので、以下のように構成する。
 つまりフィードバック制御部34は、目標ヨーレート演算部34aと、ヨーレート偏差演算部34bと、フィードバック制御係数演算部34cとを具え、
 目標ヨーレート演算部34aは、操舵角θと、横加速度Gyと、車輪速Vwを基に求めた車速VSPとから、運転者が希望している目標ヨーレートtφを演算する。
 ヨーレート偏差演算部34bは、この目標ヨーレートtφと、検出した実ヨーレートφとの間におけるヨーレート偏差Δφ(=φ-tφ)を演算する。
 フィードバック制御係数演算部34cは、上記のヨーレート偏差Δφを基に、目標ヨーレートtφに対し実ヨーレートφが不感帯を超えて過剰なオーバーステア状態か、目標ヨーレートtφに対し実ヨーレートφが不感帯を超えて不足しているアンダーステア状態か、実ヨーレートφが目標ヨーレートtφに対し前後不感帯内にあるニュートラルステア状態かを判定し、
 この判定結果を基に後輪合計駆動力rTcLR用のフィードバック制御係数K1(0または1)、および後輪駆動力差rΔTcLR用のフィードバック制御係数K2(0または1)をそれぞれ決定する。
 フィードバック制御係数K1は、後輪合計駆動力rTcLRに乗じて補正後の最終的な後輪合計駆動力TcLRを求めるのに用い、
 フィードバック制御係数K2は、後輪駆動力差rΔTcLRに乗じて補正後の最終的な後輪駆動力差ΔTcLRを求めるのに用いる。
 これらフィードバック制御係数K1,K2の決定に際しフィードバック制御係数演算部34cは、オーバーステア状態(φ>tφ+不感帯)と判定するとき、四輪駆動走行による弊害を排除するために、後輪合計駆動力rTcLR用のフィードバック制御係数K1を0とし、後輪駆動力差rΔTcLR用のフィードバック制御係数K2も0とする。
 フィードバック制御係数K1=0は、補正後の最終的な後輪合計駆動力TcLRを0となし、フィードバック制御係数K2=0は、補正後の最終的な後輪駆動力差ΔTcLRも0となして、車両を二輪駆動走行させることを意味し、これにより、オーバーステア状態で四輪駆動走行されることによる弊害を排除することができる。
 フィードバック制御係数演算部34cは、アンダーステア状態(φ<tφ-不感帯)と判定するとき、四輪駆動走行によっても弊害を生ずることがないものの、左右後輪間に駆動力差を設定することによる弊害を排除するために、後輪合計駆動力rTcLR用のフィードバック制御係数K1を1とし、後輪駆動力差rΔTcLR用のフィードバック制御係数K2を0とする。
 フィードバック制御係数K1=1は、補正後の最終的な後輪合計駆動力TcLRをTcLR=rTcLRとなし、フィードバック制御係数K2=0は、補正後の最終的な後輪駆動力差ΔTcLRを0となして、車両を四輪駆動走行させるも左右後輪間に駆動力差を設定しないことを意味し、これにより、アンダーステア状態で四輪駆動走行による優れた走破性を享受しつつ、左右後輪間に駆動力差が設定されることによる弊害を排除することができる。
 フィードバック制御係数演算部34cは、ニュートラルステア状態(tφ-不感帯≦φ≦tφ+不感帯)と判定するとき、四輪駆動走行によっても弊害を生ずることがないし、左右後輪間に駆動力差を設定することによる弊害もないため、後輪合計駆動力rTcLR用のフィードバック制御係数K1を1とし、後輪駆動力差rΔTcLR用のフィードバック制御係数K2も1とする。
 フィードバック制御係数K1=1は、補正後の最終的な後輪合計駆動力TcLRをTcLR=rTcLRとなし、フィードバック制御係数K2=1は、補正後の最終的な後輪駆動力差ΔTcLRをΔTcLR=rΔTcLRとなして、車両を四輪駆動走行させると共に、左右後輪間に駆動力差を設定することを意味する。
 左右後輪目標駆動力演算部35は、図6に示すプロセスにより、上記した補正後の最終的な目標とすべき左右後輪合計駆動力TcLRと左右後輪駆動力差ΔTcLRとの双方を満足する左後輪目標駆動力TcLおよび右後輪目標駆動力TcRを求める。
 ステップS11においては、前記のフィードバック制御により補正した最終的な後輪合計駆動力TcLRを読み込み、
 ステップS12においては、前記のフィードバック制御により補正した最終的な左右後輪駆動力差ΔTcLRを読み込む。
 ステップS13においては、ステップS11で読み込んだ後輪合計駆動力TcLRの左右均等配分量TcLR/2を求め、ステップS14においては、ステップS12で読み込んだ後輪駆動力差ΔTcLRの左右均等配分量ΔTcLR/2を求める。
 ステップS15においては、後輪合計駆動力左右均等配分量TcLR/2に後輪駆動力差左右均等配分量ΔTcLR/2を加算して、旋回方向外側後輪の目標駆動力TcOUT(=TcLR/2+ΔTcLR/2)を求める。
 ステップS16においては、後輪合計駆動力左右均等配分量TcLR/2から後輪駆動力差左右均等配分量ΔTcLR/2を減算して、旋回方向内側後輪の目標駆動力TcIN(=TcLR/2-ΔTcLR/2)を求める。
 かようにして求めた旋回方向外側後輪の目標駆動力TcOUTおよび旋回方向内側後輪の目標駆動力TcINは、後輪合計駆動力TcLRと後輪駆動力差ΔTcLRとの双方を達成するための旋回方向外側後輪の駆動力および旋回方向内側後輪の駆動力である。
 ステップS21以降においては、上記のごとくに求めた旋回方向外側後輪の外輪側目標駆動力TcOUTおよび旋回方向内側後輪の内輪側目標駆動力TcINを基に、左後輪目標駆動力TcLおよび右後輪目標駆動力TcRを以下の要領により決定する。
 先ずステップS21において、操舵角θやヨーレートφに基づき、車両の旋回走行が左旋回か、右旋回かを判定する。
 左旋回であれば、ステップS22において、旋回方向内側輪となる左後輪の目標駆動力TcLに上記の内輪側目標駆動力TcINをセットすると共に、旋回方向外側輪となる右後輪の目標駆動力TcRに上記の外輪側目標駆動力TcOUTをセットする。
 逆に右旋回であれば、ステップS23において、旋回方向外側輪となる左後輪の目標駆動力TcLに上記の外輪側目標駆動力TcOUTをセットすると共に、旋回方向内側輪となる右後輪の目標駆動力TcRに上記の内輪側目標駆動力TcINをセットする。
 図1の四輪駆動コントローラ21は左後輪側クラッチ11Lおよび右後輪側クラッチ11Rの締結力がそれぞれ、図2の演算部35で上記のごとく決定した左後輪目標駆動力TcLおよび右後輪目標駆動力TcRに対応したものとなるよう、左後輪側クラッチ11Lおよび右後輪側クラッチ11Rへの供給電流を制御する。
<効果>
 上述した本実施例になる車両の左右輪(左右後輪)駆動力配分制御によれば、以下のような効果が得られる。
 (1) 過渡制御演算部33bを図3につき前述したような構成とし、左右駆動力差過渡制御演算値算出部43において目標ヨーレートtφの変化速度dtφから、運転者が現在の車輪速Vw(車速VSP)のもとで操舵速度(転向操作速度)により過渡的に要求している旋回応答のための基本的な目標値である左右後輪駆動力差過渡制御演算値ddΔTcLRを求め、
 左右駆動力差過渡制御ゲイン演算部45において目標ヨーレートtφの変化速度dtφに応じた左右駆動力差過渡制御ゲインα、つまり図4に例示するごとくdtφ≧φ1の目標ヨーレート高速変化域において1未満となる左右駆動力差過渡制御ゲインαを求め、
 左右後輪駆動力差過渡制御演算値ddΔTcLRに左右駆動力差過渡制御ゲインαを乗じて左右後輪駆動力差過渡制御分dΔTcLRを求め、これを左右輪(左右後輪)駆動力配分制御に資する。
 このため本実施例においては、dtφ≧φ1の目標ヨーレート高速変化域で(高速操舵時に)、α<1により左右後輪駆動力差過渡制御分dΔTcLRが低下されて、左右輪(左右後輪)駆動力配分の過渡制御が弱められることとなり、
 当該目標ヨーレート高速変化域で(高速操舵時に)、図5につき前述したごとくヨーレート周波数ゲインが高くなっても、左右輪駆動力配分の過渡制御量が過大となるのを防止することができる。
 従って、当該目標ヨーレート高速変化域で(高速操舵時に)、つまり対応する高速操舵時(高速転向操作時)に、不必要に大きなヨーレートが発生することがなく、これにより車両挙動が不安定になったり、運転性が悪化するという前記の問題を解消することができる。
 (2)更に本実施例においては、図4に示すごとく目標ヨーレート高速変化域(dtφ≧φ1)で左右駆動力差過渡制御ゲインαを1未満にして、左右後輪駆動力差過渡制御分dΔTcLRの低下補正により、左右輪(左右後輪)駆動力配分の過渡制御を弱めるに際し、
 左右駆動力差過渡制御ゲインαを、目標ヨーレート高速変化域(dtφ≧φ1)で目標ヨーレート変化速度dtφの上昇につれ1から徐々に低下させるようにしたため、
 上記左右後輪駆動力差過渡制御分dΔTcLRの低下補正が徐々に行われることとなって、この低下補正に伴うショックや違和感を回避することができる。
 (3)また本実施例においては、図4に示すごとく目標ヨーレート高速変化域(dtφ≧φ1)のうち、dtφ≧φ2の領域で、左右駆動力差過渡制御ゲインαを0にするため、この領域で左右後輪駆動力差過渡制御分dΔTcLRが0にされることとなり、前記(1)の効果を更に確実なものにすることができる。
 (4)更に本実施例においては、上記のごとく左右駆動力差過渡制御ゲインαを1未満にして、左右後輪駆動力差過渡制御分dΔTcLRの低下補正を行う、図4の目標ヨーレート高速変化域(dtφ≧φ1)を、図5に示したヨーレートゲインが高くなる操舵周波数f1以上の高周波域(高速操舵域)に対応させたため、
 上記した左右後輪駆動力差過渡制御分dΔTcLRの低下が、不要な時に行われたり、必要な時に行われなかったりすることがなく、これらによる弊害を生ずることなしに上記の効果を達成することができる。
<他の実施例>
 なお上記した実施例では、図4に示すごとく左右駆動力差過渡制御ゲインαを目標ヨーレート変化速度dtφに応じて定めるようにしたが、これに限られず、
 車両の転向を生起させる転向操作の速度に関した情報であれば何でもよく、例えば図4の横軸に併記した通り操舵角θの変化速度(操舵速度)dθに応じ左右駆動力差過渡制御ゲインαを定めるようにしてもよい。
 ただ図示例では、図3に示すように過渡制御演算部33b内に目標ヨーレート演算部41および微分演算器42が既存しており、これらで目標ヨーレート変化速度dtφを求めていることから、この目標ヨーレート変化速度dtφに応じて左右駆動力差過渡制御ゲインαを求める方がコスト上有利である。
 また上記した実施例においては、図3の目標ヨーレート演算部41および微分演算器42で、操舵角θおよび車速VSPから、運転者が希望している目標ヨーレートtφの変化速度dtφ(運転者が運転操作により過渡的に要求している旋回応答)を求め、
 左右駆動力差過渡制御演算値算出部43で、当該目標ヨーレートtφの変化速度dtφから、運転者が過渡的に要求している旋回応答のための左右後輪駆動力差過渡制御演算値ddΔTcLR(左右後輪駆動力差の過渡成分)を求めたが、
 左右後輪駆動力差過渡制御演算値ddΔTcLR(左右後輪駆動力差の過渡成分)は、運転者(運転操作)による過渡旋回応答要求に応じたものでありさえすれば同様な効果を奏することができ、上記した操舵角θおよび車速VSPだけでなく、それ以外の因子に基づき、また上記以外の要領により求めたものであってもよいのは言うまでもない。

Claims (7)

  1.  車輪駆動力を左右駆動輪へ制御下に分配出力する車両の左右輪駆動力配分制御装置において、
     運転者の過渡的な旋回応答要求に基づき左右駆動力差の過渡制御分を演算する左右駆動力差過渡制御分演算手段を設け、
     該左右駆動力差過渡制御分演算手段は、車両の転向を生起させる転向操作の速度に関した情報を検出する転向操作速度情報検出手段を有し、該手段で検出した転向操作速度情報が設定以上の転向操作速度を示す間、前記左右駆動力差の過渡制御分を低下補正して前記左右輪駆動力配分制御に資するよう構成したことを特徴とする車両の左右輪駆動力配分制御装置。
  2.  請求項1に記載された車両の左右輪駆動力配分制御装置において、
     前記設定以上の転向操作速度は、該転向操作速度に対する挙動ゲインが高くなる転向操作速度域の転向操作速度であることを特徴とする車両の左右輪駆動力配分制御装置。
  3.  請求項1または2に記載された車両の左右輪駆動力配分制御装置において、
     前記転向操作速度情報検出手段は操舵速度を検出するものであり、
     前記左右駆動力差過渡制御分演算手段は、該検出した操舵速度が設定速度以上である間、前記左右駆動力差の過渡制御分を低下補正するものであることを特徴とする車両の左右輪駆動力配分制御装置。
  4.  請求項1または2に記載された車両の左右輪駆動力配分制御装置において、
     前記転向操作速度情報検出手段として、車両運転状態の変化に応じた目標挙動の変化速度を演算する目標挙動変化速度演算手段を流用し、
     前記左右駆動力差過渡制御分演算手段は、該目標挙動変化速度演算手段で演算した目標挙動の変化速度が設定速度以上である間、前記左右駆動力差の過渡制御分を低下補正するものであることを特徴とする車両の左右輪駆動力配分制御装置。
  5.  請求項1~4のいずれか1項に記載された車両の左右輪駆動力配分制御装置において、
     前記左右駆動力差過渡制御分演算手段は、前記左右駆動力差過渡制御分の低下補正を前記転向操作速度の上昇につれ徐々に行うものであることを特徴とする車両の左右輪駆動力配分制御装置。
  6.  請求項1~5のいずれか1項に記載された車両の左右輪駆動力配分制御装置において、
     前記左右駆動力差過渡制御分演算手段は、前記左右駆動力差過渡制御分を最終的に0にして該左右駆動力差過渡制御分の前記低下補正を行うものであることを特徴とする車両の左右輪駆動力配分制御装置。
  7.  請求項1~6のいずれか1項に記載された左右輪駆動力配分制御装置において、
     前記運転者の過渡的な旋回応答要求は、車両運転状態の変化に応じた目標挙動の変化速度であり、該目標挙動の変化速度を演算する目標挙動変化速度演算手段を設け、
     前記左右駆動力差過渡制御分演算手段は、該目標挙動変化速度演算手段で演算した目標挙動の変化速度を実現するための左右駆動力差の過渡制御分を演算し、前記転向操作速度情報検出手段で検出した転向操作速度情報が前記設定以上の転向操作速度を示す間、該演算した左右駆動力差の過渡制御分に対する前記低下補正を行って前記左右輪駆動力配分制御に資するものであることを特徴とする車両の左右輪駆動力配分制御装置。
PCT/JP2011/065394 2010-07-09 2011-07-05 車両の左右輪駆動力配分制御装置 WO2012005260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800316210A CN102958736A (zh) 2010-07-09 2011-07-05 车辆的左右轮驱动分配控制装置
EP11803594.8A EP2591941A4 (en) 2010-07-09 2011-07-05 DEVICE FOR CONTROLLING THE TORQUE DISTRIBUTION ON THE LEFT AND RIGHT WHEELS OF A VEHICLE
US13/806,651 US20130103228A1 (en) 2010-07-09 2011-07-05 Left-right wheel drive force distribution control apparatus for a vehicle
JP2012523885A JPWO2012005260A1 (ja) 2010-07-09 2011-07-05 車両の左右輪駆動力配分制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010156661 2010-07-09
JP2010-156661 2010-07-09

Publications (1)

Publication Number Publication Date
WO2012005260A1 true WO2012005260A1 (ja) 2012-01-12

Family

ID=45441238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065394 WO2012005260A1 (ja) 2010-07-09 2011-07-05 車両の左右輪駆動力配分制御装置

Country Status (5)

Country Link
US (1) US20130103228A1 (ja)
EP (1) EP2591941A4 (ja)
JP (1) JPWO2012005260A1 (ja)
CN (1) CN102958736A (ja)
WO (1) WO2012005260A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150087854A (ko) * 2012-12-26 2015-07-30 도요타지도샤가부시키가이샤 차량의 제어 장치
CN108313062A (zh) * 2018-01-25 2018-07-24 中国第汽车股份有限公司 一种分布式驱动电动车的扭矩分配控制方法和系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658717B2 (ja) * 2012-08-09 2015-01-28 富士重工業株式会社 4輪駆動車の制御装置
JP5981584B2 (ja) * 2015-02-19 2016-08-31 本田技研工業株式会社 車両
JP6663333B2 (ja) * 2016-09-23 2020-03-11 株式会社Subaru 車両の制御装置及び車両の制御方法
DE102017200551B4 (de) 2017-01-16 2018-10-04 Ford Global Technologies, Llc Verfahren zum Betreiben eines Kraftfahrzeugs mit zuschaltbaren Allradantrieb
DE102019204174A1 (de) * 2019-03-26 2020-10-01 Ford Global Technologies, Llc Verfahren zum Betrieb eines Kraftfahrzeugs mit zuschaltbaren Allradantrieb

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127258A (ja) * 1994-10-31 1996-05-21 Nissan Motor Co Ltd 車両のヨーイング運動量制御装置
JP3116685B2 (ja) 1993-10-14 2000-12-11 三菱自動車工業株式会社 車両用左右駆動力調整装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161256A (ja) * 1984-01-31 1985-08-22 Nissan Motor Co Ltd 車両の補助操舵方法
JP4267495B2 (ja) * 2004-03-31 2009-05-27 本田技研工業株式会社 4輪駆動車両の駆動力制御方法
JP4618105B2 (ja) * 2005-11-11 2011-01-26 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP4816732B2 (ja) * 2005-12-01 2011-11-16 トヨタ自動車株式会社 運転支援システムおよび運転支援方法
JP4955482B2 (ja) * 2007-08-07 2012-06-20 日産自動車株式会社 四輪駆動車の駆動力配分制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116685B2 (ja) 1993-10-14 2000-12-11 三菱自動車工業株式会社 車両用左右駆動力調整装置
JPH08127258A (ja) * 1994-10-31 1996-05-21 Nissan Motor Co Ltd 車両のヨーイング運動量制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2591941A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150087854A (ko) * 2012-12-26 2015-07-30 도요타지도샤가부시키가이샤 차량의 제어 장치
KR101687928B1 (ko) * 2012-12-26 2016-12-19 도요타지도샤가부시키가이샤 차량의 제어 장치
US9592825B2 (en) 2012-12-26 2017-03-14 Toyota Jidosha Kabushiki Kaisha Vehicle control system
CN108313062A (zh) * 2018-01-25 2018-07-24 中国第汽车股份有限公司 一种分布式驱动电动车的扭矩分配控制方法和系统
CN108313062B (zh) * 2018-01-25 2019-09-03 中国第一汽车股份有限公司 一种分布式驱动电动车的扭矩分配控制方法和系统

Also Published As

Publication number Publication date
CN102958736A (zh) 2013-03-06
JPWO2012005260A1 (ja) 2013-09-05
EP2591941A1 (en) 2013-05-15
EP2591941A4 (en) 2014-07-16
US20130103228A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5257414B2 (ja) 四輪駆動車両の駆動力配分制御装置
WO2012005260A1 (ja) 車両の左右輪駆動力配分制御装置
JP5246351B2 (ja) 四輪駆動車両の駆動力配分制御装置
JP5464273B2 (ja) 車両の左右輪駆動力配分制御装置
JP5447670B2 (ja) 車両の左右輪駆動力配分制御装置
JP5848150B2 (ja) 車両に働く駆動力を制御する制御装置
JP5454688B2 (ja) 車両の左右輪駆動力配分制御装置
JP5429082B2 (ja) 車両の左右輪駆動力配分制御装置
JP5299368B2 (ja) 車両の左右輪駆動力配分制御装置
JP2005289162A (ja) 4輪駆動車両の駆動力制御方法
JPH0386636A (ja) 4輪駆動車の不等トルク配分制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031621.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011803594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806651

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012523885

Country of ref document: JP

Kind code of ref document: A