WO2012004473A1 - Acier inoxydable austéno-ferritique à usinabilité améliorée - Google Patents

Acier inoxydable austéno-ferritique à usinabilité améliorée Download PDF

Info

Publication number
WO2012004473A1
WO2012004473A1 PCT/FR2011/000394 FR2011000394W WO2012004473A1 WO 2012004473 A1 WO2012004473 A1 WO 2012004473A1 FR 2011000394 W FR2011000394 W FR 2011000394W WO 2012004473 A1 WO2012004473 A1 WO 2012004473A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
weight
hot
content
further characterized
Prior art date
Application number
PCT/FR2011/000394
Other languages
English (en)
Inventor
Jérôme Peultier
Amélie FANICA
Nicolas Renaudot
Christophe Bourgin
Eric Chauveau
Marc Mantel
Original Assignee
Arcelormittal Investigación Y Desarrollo Sl
Ugitech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/808,284 priority Critical patent/US9587286B2/en
Application filed by Arcelormittal Investigación Y Desarrollo Sl, Ugitech filed Critical Arcelormittal Investigación Y Desarrollo Sl
Priority to EP11751621.1A priority patent/EP2591134B1/fr
Priority to CN2011800337876A priority patent/CN103069031A/zh
Priority to ES11751621.1T priority patent/ES2534930T3/es
Priority to DK11751621.1T priority patent/DK2591134T3/en
Priority to CA2804320A priority patent/CA2804320C/fr
Priority to KR1020137003293A priority patent/KR20130034044A/ko
Priority to BR112013000264-6A priority patent/BR112013000264B1/pt
Priority to JP2013517431A priority patent/JP5972870B2/ja
Priority to AU2011275610A priority patent/AU2011275610B2/en
Priority to SI201130461T priority patent/SI2591134T1/sl
Publication of WO2012004473A1 publication Critical patent/WO2012004473A1/fr
Priority to US15/409,348 priority patent/US9797025B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to an austenitic ferritic stainless steel more particularly intended for the manufacture of structural elements for production plants of matter (chemistry, petrochemistry, paper, offshore) or of energy production, without however be limited.
  • This steel can more generally be used in substitution of a type 4301 stainless steel in many applications, for example, in previous industries or in the food industry, including parts made from formed son (welded grids ,. .) profiles (strainers ..), axes ... One could also make molded parts and forgings.
  • grades of stainless steel of type 1.4301 and 1.4307 are known, the annealed microstructure of which is essentially austenitic; in the cold worked state, they may further contain a variable proportion of hardening martensite.
  • These steels however, have high additions of nickel, the cost is generally prohibitive.
  • these grades may pose a problem from a technical point of view for certain applications because they have low tensile characteristics in the annealed state, especially with regard to the yield strength, and a low resistance to stress corrosion.
  • these austenitic grades have high thermal conductivity coefficients which, when used as reinforcement of concrete structures, prevent good thermal insulation.
  • Ferritic or ferritic-martensitic stainless steel grades are also known, the microstructure of which, for a defined range of heat treatments, is composed of ferrite and martensite, such as the 1.4017 grade of the EN10088 standard. These grades, with a chromium content generally less than 20%, have high mechanical tensile properties, but do not exhibit satisfactory corrosion resistance.
  • the object of the present invention is to overcome the disadvantages of the steels and manufacturing processes of the prior art by providing a stainless steel having, without excessive addition of expensive alloying elements such as nickel and molybdenum:
  • the invention firstly relates to an austenitic-ferritic stainless steel, the composition of which comprises, in% by weight: 0.01% ⁇ C ⁇ 0.10%
  • the remainder being iron and impurities resulting from the preparation and the microstructure consisting of austenite and 35 to 65% of ferrite by volume, preferably 35 to 55% ferrite by volume, the composition further respecting the following relationships:
  • IRCGCU % Cr + 3.3% Mo + 2% Cu + 16% N + 2.6% Ni - 0.7% Mn and 0 ⁇ IU ⁇ 6.0
  • the steel according to the invention has:
  • a second subject of the invention consists of a method for manufacturing a sheet, strip or hot-rolled steel coil according to the invention according to which:
  • said slug or said slab is rolled while hot at a temperature of between 150 and 1280 ° C. in order to obtain a sheet, a strip or a coil.
  • the method of manufacturing a hot-rolled steel sheet according to the invention comprises the steps of:
  • the method of manufacturing a steel hot-rolled bar or wire according to the invention comprises the steps of:
  • the method according to the invention further comprises the following characteristics, taken alone or in combination:
  • a hot-rolled bar obtained according to the invention is debited in pieces, then forging said billet between 1100 ° C. and 1280 ° C.
  • duplex stainless steel according to the invention comprises the contents defined below.
  • the carbon content of the grade is between 0.01% and 0.10%, and preferably less than 0.05% by weight. In fact, an excessively high content of this element degrades the resistance to localized corrosion by increasing the risk of precipitation of chromium carbides in the heat-affected zones of the welds.
  • the chromium content of the grade is between 20.0 and 24.0% by weight, and preferably between 21.5 and 24% by weight in order to obtain a good resistance to corrosion, which is at least equivalent to that obtained with the type 304 or 304L grades.
  • the nickel content of the grade is between 1.0 and 3.0% by weight, and is preferably less than or equal to 2.8% by weight.
  • This austenite forming element is added in order to obtain good resistance properties to the formation of corrosion cavities. Its addition also provides a good compromise resilience / ductility. It has indeed the advantage of translating the transition curve of the resilience to low temperatures, which is particularly advantageous for the manufacture of large bars or thick quarto plates for which the properties of resilience are important. Its content is limited to 3.0% because of its high price.
  • the nitrogen content of the grade is between 0.12% and 0.20%, and preferably between 0.12% and 0.18%, which generally implies that nitrogen is added to the steel. during the elaboration.
  • This austenite-forming element first participates in obtaining a two-phase ferrite / austenite steel containing a proportion of austenite suitable for good resistance to stress corrosion, but also to obtain high mechanical characteristics. It also makes it possible to limit the formation of ferrite in the thermally affected zone of the welded zones, which avoids the risk of embrittlement of these zones. Its maximum content is limited because, beyond 0.16% of nitrogen, defects appear on the continuous casting blooms. These defects consist of longitudinal depressions which in turn generate surface defects on the rolled bars which can be troublesome in some cases. Above 0.18%, the longitudinal depressions are very marked and there is also blistering related to exceeding the maximum amount of nitrogen that can remain in solution in the structure of this grade.
  • the manganese content of the grade is between 0.5% and 2.0% by weight, preferably between 0.5 and 1.9% by weight and more preferably between 0.5 and 1.8% by weight. in weight.
  • This element is austenite forming but only below 1150 ° C. At higher temperatures, it delays the formation of austenite upon cooling, resulting in excessive ferrite formation in the thermally affected areas of the welds, making them too resilient.
  • manganese if it is present in an amount greater than 2.0% in the grade, poses problems during the preparation and the refining of the grade, because it attacks certain refractories used for the pockets, which necessitates a more frequent replacement of these expensive elements and therefore more frequent interruptions of the process.
  • ferromanganese which are normally used to make up the composition, contain, in addition, notable levels of phosphorus, and also of selenium, which are not desired to be introduced into the steel and which are difficult to remove during refining the nuance.
  • Manganese disrupts this refining by limiting the possibility of decarburization. It also poses a problem further downstream in the process, since it deteriorates the corrosion resistance of the grade due to the formation of MnS manganese sulfides, and oxidized inclusions. It is preferred to limit it to less than 1, 9, or even less than 1, 8% by weight and more preferably less than 1, 6% by weight, since tests have shown that forgeability and more generally heat processing improved when its content was lowered. In particular, it has been possible to observe the formation of cracks rendering the grade unfit for hot rolling, for a content greater than 2.0%.
  • the copper an austenite-forming element, is present in a content of between 1.6 and 3.0% by weight, and preferably between 2.0 and 2.8% by weight, or even between 2.2 and 2 , 8% by weight. It participates in obtaining the desired two-phase austenitic-ferritic structure, making it possible to obtain better resistance to generalized corrosion without having to raise the nitrogen content of the grade to a level that is too high.
  • copper in solid solution improves the resistance to corrosion in a reducing acid medium. Below 1.6%, the nitrogen level required to have the desired two-phase structure begins to become too great to avoid the surface quality problems of the continuous casting blooms described above. Above 3.0%, segregation and / or copper precipitations begin to be risked, which can lead to localized corrosion resistance and loss of resilience during prolonged use (beyond one year) at the end of the year. above 200 ° C.
  • Molybdenum a ferrite-forming element
  • Molybdenum is an element which is present in the grade in a content of between 0.05 and 1.0%, or even between 0.05 and 0.5% by weight
  • tungsten is an optional element that can be added at a content of less than 0.15% by weight.
  • the contents of these two elements are such that the sum Mo + W / 2 is less than 1.0% by weight, preferably less than 0.5%, or even less than 0.4% by weight, and so particularly preferred less than 0.3% by weight.
  • the present inventors found that by keeping these two elements, as well as their sums, below the values indicated, we did not observe any weakening intermetallic precipitations, which makes it possible in particular to de-constrain the manufacturing process of the steel sheets or strips by allowing an air cooling of the sheets and strips after heat treatment or hot implementation. In addition, they observed that by controlling these elements within the limits claimed, the weldability of the grade was improved.
  • Silicon a ferrite-forming element, is present in a content of between 0.2% and 1.5% by weight, preferably less than 1.0% by weight. It is added to ensure a good deoxidation of the steel bath during the preparation, but its content is limited because of the risk of sigma phase formation in case of poor quenching after hot rolling.
  • Aluminum, a ferrite-forming element is an optional element which can be added to the grade in a content of less than 0.05% by weight and preferably of between 0.005% and 0.040% by weight in order to obtain inclusions of calcium aluminates with a low melting point. Its maximum content is limited in order to avoid excessive formation of aluminum nitrides.
  • Vanadium a ferrite-forming element
  • Vanadium is an optional element which may be present in the grade in an amount ranging from 0.02% to 0.5% by weight and preferably less than 0.2% by weight, so that to improve the resistance to crevice corrosion of steel. It may also be present as a residual element added when adding chromium.
  • Niobium a ferrite-forming element
  • Niobium is an optional element that may be present in the grade in an amount ranging from 0.001% to 0.5% by weight. It makes it possible to improve the mechanical tensile strength of the grade and its machinability via a better fractionation of the machining chips, thanks to the formation of fine niobium nitrides of type NbN or niobium and chromium type NbCrN (Phase Z). Its content is limited to limit the formation of coarse niobium nitrides.
  • Titanium a ferrite-forming element
  • Titanium is an optional element which may be present in the grade in an amount ranging from 0.001% to 0.5% by weight and preferably in an amount ranging from 0.001% to 0.3% by weight. weight. It improves the mechanical strength of the grade and its machinability through a better fractionation of machining chips, thanks to the formation of fine nitride titanium. Its content is limited in order to avoid the formation of clusters of titanium nitrides formed in liquid steel in particular.
  • Boron is an optional element that may be present in the grade according to the invention in an amount ranging from 0.0001% to 0.003% by weight, in order to improve its heat conversion.
  • Cobalt, austenite forming element is an optional element that may be present in the grade in an amount of from 0.02 to 0.5% by weight. This element is a residual brought by the raw materials. It is limited particularly because of the handling problems it can pose after irradiation of parts in nuclear facilities.
  • Rare earths are optional elements that may be present in the grade up to 0.1% by weight. These include cerium and lanthanum. The contents in these elements are limited because they are capable of forming unwanted intermetallics.
  • Calcium may also be present in the grade according to the invention in an amount ranging from 0.0001 to 0.03% by weight, and preferably greater than 0.0005% by weight, in order to control the nature of the inclusions. of oxides and improve machinability.
  • the content of this element is limited because it is likely to form with sulfur calcium sulphides which degrade the properties of corrosion resistance.
  • Magnesium addition up to a final content of 0.1% can be made to modify the nature of the sulfides and oxides.
  • the selenium is preferably maintained at less than 0.005% by weight because of its detrimental effect on the corrosion resistance.
  • This element is generally added to the grade as impurities in the ferromanganese ingots.
  • the oxygen content is preferably limited to 0.01% by weight in order to improve its forging ability and the resilience of its welds.
  • the sulfur is maintained at a content of less than 0.030% by weight and preferably less than 0.003% by weight.
  • this element forms sulphides with manganese or calcium, sulphides whose presence is detrimental to the resistance to corrosion. It is considered an impurity.
  • Phosphorus is maintained at less than 0.040% by weight and is considered an impurity.
  • the rest of the composition consists of iron and impurities.
  • zirconium, tin, arsenic, lead or bismuth may be present in a content of less than 0.100% by weight and preferably less than 0.030% by weight to avoid welding problems.
  • the arsenic may be present in a content of less than 0.030% by weight and preferably less than 0.020% by weight.
  • the lead may be present in a content of less than 0.002% by weight and preferably less than 0.0010% by weight.
  • the bismuth may be present in a content of less than 0.0002% by weight and preferably less than 0.00005% by weight.
  • Zirconium may be present at 0.02%.
  • the microstructure of the steel according to the invention in the annealed state, is composed of austenite and ferrite, which are preferably, after treatment of 1 hour at 1050 ° C., in a proportion of 35 to 65% by weight. ferrite volume and more preferably from 45 to 55% by volume of ferrite.
  • the IF number must be between 40 and 65.
  • the microstructure does not contain other phases which would be harmful for its mechanical properties in particular, such as the sigma phase and other intermetallic phases.
  • some of the austenite may have been converted to martensite, depending on the effective deformation temperature and the amount of cold deformation applied.
  • IRCGU> 32.0 and preferably> 34.0 with IRCGU % Cr + 3.3% Mo + 2% Cu + 16% N + 2.6% Ni - 0.7% Mn
  • the steel according to the invention can be prepared and manufactured in the form of hot-rolled sheets, also called quarto plates, but also in the form of hot-rolled strips, from slabs or ingots and also under Cold rolled strip form from hot rolled strip. It can also be hot rolled into bars or wire-machines or into profiles or forged; these products can then be hot-formed by forging or cold-formed into drawn bars or profiles or into drawn wires.
  • the steel according to the invention can also be implemented by molding followed or not by heat treatment.
  • This ingot, this slab or this bloom are generally obtained by melting the raw materials in an electric furnace, followed by a vacuum reflow of the AOD or VOD type with decarburization.
  • the grade can then be cast in the form of ingots, or in the form of slabs or blooms by continuous casting in a bottomless mold. It could also be envisaged to cast the shade directly in the form of thin slabs, in particular by continuous casting between counter-rotating rolls.
  • the ingot or slab or bloom After supplying the ingot or slab or bloom, it is optionally heated to reach a temperature between 1150 and 1280 ° C, but it is also possible to work directly on the slab that has just been continuously cast, in the hot casting.
  • the slab or the slab is then hot-rolled to obtain a so-called quarto sheet which generally has a thickness of between 5 and 100 mm.
  • the reduction rates generally used at this stage vary between 3 and 30%.
  • This sheet is then subjected to a solution heat treatment precipitates formed at this stage by reheating at a temperature between 900 and 1100 ° C, and then cooled.
  • the method according to the invention provides cooling by air quenching which is easier to implement than the cooling conventionally used for this type of shade, which is a faster cooling, using water. However, it remains possible to cool with water if desired.
  • This slow cooling, in air, is made possible thanks to the limited contents of nickel and molybdenum of the composition according to the invention which is not subject to the precipitation of intermetallic phases, harmful for its properties of use.
  • This cooling can in particular be carried out at speeds ranging from 0.1 to 2.7 ° C / s.
  • the quarto plate can be glued, cut and stripped, if it is desired to deliver it in this state.
  • This bare steel can also be rolled on a band train at thicknesses between 3 and 10 mm.
  • one or several hot rolls can be hot rolled on a multi-cage mill, in corrugated rolls, at a temperature of between 1150 and 1280 ° C. obtain a bar or a ring of wire rod or laminate.
  • the section ratio between the initial bloom and the final product is preferably greater than 3, so as to ensure the internal health of the rolled product.
  • laminated wire When laminated wire has been manufactured, it can be cooled by quenching in a ring of water at the outlet of the rolling mill or by quenching with water in coils spread on a conveyor after passing them. on a conveyor through a solution furnace at a temperature of between 850 ° C. and 1100 ° C.
  • Subsequent heat treatment in the oven may be optionally performed on these bars or crowns already treated in the hot rolling, if it is desired to complete the recrystallization of the structure and slightly lower the mechanical characteristics in traction.
  • the tensile properties Rp 0 , 2 and R m were determined according to the NFEN 10002-1 standard.
  • the KV resilience was determined at different temperatures according to the NF EN 10045 standard.
  • the test consists in finding the turning speed which generates 0.15 mm of undercut wear in 15 minutes of actual machining.
  • the test is made in regular turning passes with a coated carbide insert.
  • the frozen parameters are:
  • draft wear is measured by an optical system coupled to a camera at a magnification of * 32. This measurement is the area of the worn zone relative to the apparent length of this zone. If a notch wear greater than 0.45mm (3 times the VB value) occurs or a tip collapse occurs before 0.15mm wear is obtained, the value of the VB is considered 15/0, 15 is not accessible; then the maximum speed for which there is no flanking wear of 0.45mm or tip collapse in 15min will be determined and the result will be indicated that the VB-15 / 0.15 is greater than this value.
  • Vc m i n The determination of Vc m i n is done by a turning pass at increasing speed. It starts with a very low cutting speed V c (40m / min), and one goes up to a speed higher than Vb-i 5 / o, i5 regularly during the pass.
  • the cutting conditions are:
  • Vc m i n The curve obtained is monotonous decreasing in most cases.
  • the value of Vc m i n is that corresponding to an inflection of the curve.
  • the chips obtained are evaluated by comparing them with chip shapes predefined in the ISO 3685 "COM turning" standard.
  • the CFZ is the table area grouping the conditions in f and a p. for which the chips are well fragmented, which is quantified by counting the number of satisfactory combinations. In the context of the present invention, it is considered that a value of ZFC less than 15, measured under the conditions described above, is not in accordance with the invention.
  • the critical dissolution or activity current expressed in ⁇ / cm 2 in sulfuric acid medium at 2 mol / liter at 23 ° C. was determined.
  • a measurement of the abandonment potential for 900 seconds is first made; then, a potentiodynamic curve is plotted at a speed of 10 mV / min from -750 mV / ECS to + 1V / ECS.
  • the critical current corresponds to the maximum current of the peak highlighted before the passivity domain.
  • the comparative grades 6 to 8 and 12 show a formation of longitudinal depressions on the continuous casting blooms, while the grades 1 to 5 according to the invention were free, thus demonstrating the good flowability of the shade according to the invention.
  • the tensile yield strength of the tests according to the invention is much higher than 450 MPa, unlike what is observed for the comparative grade 9, for example.
  • Resilience values on sheets and bars of high thicknesses at 20 ° C. and -46 ° C. are also satisfactory and in particular better than that of comparative grades 6 and 7, for example.
  • the shades according to the invention all furthermore have good machinability both in terms of cutting speed and chip splitting zone.
  • the comparative grades 6 and 7, as well as 11 and 12, whose UI numbers are negative do not have a sufficient cutting speed
  • the comparative grade 10 whose UI index is greater than 6, 0 have an insufficient chip fractionation zone.
  • the generalized corrosion resistance of the shades according to the invention is very satisfactory, and in particular better than that of the comparative grade 8.
  • the shades according to the invention are the only ones to combine all the desired properties, namely a good flowability, a tensile yield strength greater than 400 or 450MPa in the annealed or dissolved state, good resilience on high thickness plates and bars, preferably greater than 100 J at 20 ° C and greater than 20 J at -46 ° C, high generalized corrosion resistance, and good machinability.

Abstract

L'invention concerne une composition d'acier inoxydable austéno-ferritique, dont la composition comprend en % en poids : 0,01% ≤C ≤ 0,10%; 20,0% ≤ Cr ≤ 24,0%; 1,0% ≤ Ni ≤ 3,0%; 0,12% ≤ N ≤ 0,20%; 0,5% ≤ Mn ≤ 2,0%; 1,6% ≤ Cu ≤ 3,0%; 0,05% ≤ Mo ≤ 1,0%; W ≤ 0,15%; 0,05% ≤ Mo +W/2 ≤ 1,0%; 0,2% ≤ Si ≤ 1,5%; Al ≤ 0,05%; V ≤ 0,5%; Nb ≤ 0,5%; Ti ≤ 0,5%; B ≤ 0,003%; Co ≤ 0,5%; REM ≤ 0,1%; Ca ≤ 0,03%; Mg ≤ 0,1%; Se ≤ 0,005%; O ≤ 0,01%; S ≤ 0,030%; P ≤ 0,040% le reste étant du fer et des impuretés résultant de l'élaboration et la microstructure étant constituée d'austénite et de 35 à 65% de ferrite en volume, la composition respectant en outre les relations suivantes : 40 ≤ IF ≤ 65 avec IF = 10%Cr + 5,1%Mo + 1,4%Mn + 24,3%Si + 35%Nb + 71,5%Ti - 595,4%C - 245, 1%N - 9,3%Ni - 3,3%Cu - 99,8 et IRCGCU ≥ 32,0 avec IRCGCU = %Cr+ 3,3%Mo + 2%Cu +16%N + 2,6%Ni - 0,7%Mn et 0 ≤ IU ≤ 6,0 avec IU = 3%Ni + %Cu + %Mn -100%C -25%N - 2(%Cr + %Si) -6%Mo +45 ainsi qu'un procédé de fabrication de tôles, bandes, bobines, barres, fils, profilés, pièces forgées, pièces moulées en cet acier.

Description

Acier inoxydable austéno-ferritique à usinabilité améliorée
La présente invention est relative à un acier inoxydable austéno- ferritique plus particulièrement destiné à la fabrication d'éléments de structures pour des installations de production de matière (chimie, pétrochimie, papier, offshore) ou de production d'énergie, sans pour autant y être limité.
Cet acier peut plus généralement être utilisé en substitution d'un acier inoxydable de type 4301 dans de nombreuses applications, par exemple, dans les industries précédentes ou dans l'industrie agroalimentaire, incluant des pièces réalisées à partir de fils formés (grilles soudées,..) de profils (crépines..), des axes... On pourrait aussi réaliser des pièces moulées et des pièces forgées.
On connaît à cet effet les nuances d'acier inoxydable de type 1.4301 et 1.4307 dont la microstructure à l'état recuit est essentiellement austénitique ; à l'état écroui à froid, ils peuvent contenir en outre une proportion variable de martensite d'écrouissage. Ces aciers comportent cependant de fortes additions de nickel, dont le coût est généralement prohibitif. En outre, ces nuances peuvent poser problème d'un point de vue technique pour certaines applications car elles ont des caractéristiques de traction faibles à l'état recuit, notamment en ce qui concerne la limite d'élasticité, et une résistance peu élevée à la corrosion sous contrainte. Enfin ces nuances austénitiques ont des coefficients de conductivité thermique élevés qui font que, quand elles sont utilisées comme armatures de structures en béton, elles empêchent une bonne isolation thermique.
Plus récemment, sont apparues des nuances austéno-ferritique peu alliées dénommées 1.4162, qui comportent de faibles teneurs en nickel (moins de 3%), pas de molybdène, mais de fortes teneurs en azote pour compenser le faible taux de nickel de ces nuances en conservant la teneur en austénite recherchée. Afin de pouvoir ajouter des teneurs en azote pouvant être supérieures à 0,200%, il est alors nécessaire d'ajouter de fortes teneurs en manganèse. A de tels niveaux d'azote, on observe cependant la formation de dépressions longitudinales sur les blooms de coulée continue qui génèrent à leur tour des défauts de surface sur les barres laminées pouvant être gênants dans certains cas. La fabrication de telles nuances est donc rendue particulièrement délicate par cette faible coulabilité. En outre, ces nuances présentent une faible usinabilité.
On connaît également des nuances d'acier inoxydables dites ferritiques ou ferrito-martensitiques, dont la microstructure est, pour une plage définie de traitements thermiques, composée de ferrite et de martensite, telle la nuance 1.4017 de la norme EN10088. Ces nuances, à teneur en chrome généralement inférieure à 20%, présentent des caractéristiques mécaniques élevées en traction, mais ne présentent pas une résistance à la corrosion satisfaisante.
Le but de la présente invention est de remédier aux inconvénients des aciers et procédés de fabrication de l'art antérieur en mettant à disposition un acier inoxydable présentant, sans ajout excessif d'éléments d'alliage coûteux tels que le nickel et le molybdène :
- une bonne coulabilité,
- de bonnes caractéristiques mécaniques et en particulier une limite d'élasticité en traction supérieure à 400 voire 450MPa à l'état recuit ou mis en solution et une bonne résilience sur tôles et barres de fortes épaisseurs, de préférence supérieure à 100 J à 20°C et supérieure à 20 J à -46°C,
- une résistance à la corrosion généralisée élevée, et
- une bonne usinabilité.
A cet effet, l'invention a pour premier objet un acier inoxydable austéno-ferritique, dont la composition comprend en % en poids : 0,01% <C < 0,10%
20,0% < Cr < 24,0%
1,0% < Ni <3,0%
0,12% < N <0,20%
0,5% < Mn < 2,0%
1,6% <Cu < 3,0%
0,05% < Mo < 1,0%
W < 0,15%
0,05% < Mo +W/2 < 1,0%
0,2% < Si < 1,5%
Al< 0,05%
V < 0,5%
Nb < 0,5%
Ti < 0,5%
B < 0,003%
Co < 0,5%
REM < 0,1%
Ca< 0,03%
Mg < 0,1 %
Se< 0,005%
0< 0,01%
S < 0,030%
P < 0,040%
le reste étant du fer et des impuretés résultant de l'élaboration et la microstructure étant constituée d'austénite et de 35 à 65% de ferrite en volume, de préférence de 35 à 55% de ferrite en volume, la composition respectant en outre les relations suivantes :
40 < IF < 65, de préférence 45 < IF < 55
avec IF = 10%Cr + 5,1 %Mo + 1 ,4%Mn + 24,3%Si + 35%Nb + 71 ,5%Ti - 595,4%C - 245, 1%N - 9,3%Ni - 3,3%Cu - 99,8 et IRCGCU > 32,0, de préférence > 34,0
IRCGCU = %Cr+ 3,3%Mo + 2%Cu +16%N + 2,6%Ni - 0,7%Mn et 0 < IU < 6,0
avec IU = 3%Ni + %Cu + %Mn -100%C -25%N - 2(%Cr + %Si) -6%Mo +45.
Dans des modes de réalisation préférés, pris seuls ou en combinaison, l'acier selon l'invention présente :
- une teneur en azote comprise entre 0,12 et 0,18% en poids,
- une teneur en cuivre comprise entre 2,0 et 2,8% en poids,
- une teneur en molybdène inférieure à 0,5% en poids,
- une teneur en carbone inférieure à 0,05% en poids.
Un second objet de l'invention est constitué d'un procédé de fabrication d'une tôle, d'une bande ou d'une bobine laminée à chaud en acier selon l'invention selon lequel :
- on approvisionne un lingot ou une brame d'un acier de composition selon l'invention,
- on lamine ledit lingot ou ladite brame à chaud, à une température comprise entre 150 et 1280 °C pour obtenir une tôle, une bande ou une bobine.
Dans un mode de réalisation particulier, le procédé de fabrication d'une tôle laminée à chaud en acier selon l'invention, comprend les étapes consistant à:
- laminer ledit lingot ou ladite brame à chaud, à une température comprise entre 1150 et 1280 °C pour obtenir une tôle dite quarto, puis
- effectuer un traitement thermique à une température comprise entre 900 et 1100°C, et - refroidir ladite tôle par trempe à l'air.
Dans un autre mode de réalisation particulier, le procédé de fabrication d'une barre ou d'un fil laminés à chaud en acier selon l'invention, comprend les étapes consistant à:
- approvisionner un lingot ou un bloom de coulée continue d'un acier de composition selon l'invention,
- laminer à chaud ledit lingot ou ledit bloom, depuis une température comprise entre 1150 et 1280°C pour obtenir une barre que l'on refroidit à l'air ou une couronne de fil que l'on refroidit à l'eau,
- puis, facultativement à:
- effectuer un traitement thermique à une température comprise entre 900 et 1100°C, et
- à refroidir ladite barre ou ladite couronne par trempe.
Dans des modes de réalisation particuliers, le procédé selon l'invention comprend en outre les caractéristiques suivantes, prises seules ou en combinaison :
- on effectue un étirage à froid de ladite barre ou un tréfilage dudit fil, à l'issue du refroidissement,
- on effectue un profilage à froid d'une barre laminée à chaud obtenue selon l'invention,
- on débite en lopins une barre laminée à chaud obtenue selon l'invention, puis on effectue un forgeage dudit lopin entre 1100°C et 1280°C.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple. L'acier inoxydable duplex selon l'invention comprend les teneurs définies ci-dessous.
La teneur en carbone de la nuance est comprise entre 0,01% et 0,10%, et de préférence inférieure à 0,05% en poids. En effet, une teneur trop élevée en cet élément dégrade la résistance à la corrosion localisée en augmentant le risque de précipitation de carbures de chrome dans les zones affectées thermiquement des soudures.
La teneur en chrome de la nuance est comprise entre 20,0 et 24,0% en poids, et de préférence entre 21 ,5 et 24% en poids afin d'obtenir une bonne résistance à la corrosion, qui soit au moins équivalente à celle obtenue avec les nuances de type 304 ou 304L.
La teneur en nickel de la nuance est comprise entre 1 ,0 et 3,0% en poids, et est de préférence inférieure ou égale à 2,8% en poids. Cet élément formateur d'austénite est ajouté afin d'obtenir de bonnes propriétés de résistance à la formation de cavernes de corrosion. Son ajout permet également d'obtenir un bon compromis résilience / ductilité. Il présente en effet l'intérêt de translater la courbe de transition de la résilience vers les températures basses, ce qui est particulièrement avantageux pour la fabrication de grosses barres ou de tôles quarto épaisses pour lesquelles les propriétés de résilience sont importantes. On limite sa teneur à 3,0% du fait de son prix élevé.
La teneur en nickel étant limitée, dans l'acier selon l'invention, on a trouvé qu'il convenait, pour obtenir une teneur en austénite appropriée après traitement thermique entre 900°C et 1100°C, d'ajouter d'autres éléments formateurs d'austénite en quantités inhabituellement élevées et de limiter les teneurs en éléments formateurs de ferrite.
Ainsi, la teneur en azote de la nuance est comprise entre 0,12% et 0,20%, et de préférence entre 0,12% et 0,18%, ce qui implique généralement que l'azote soit ajouté dans l'acier lors de l'élaboration. Cet élément formateur d'austénite participe tout d'abord à l'obtention d'un acier biphasé ferrite/austénite contenant une proportion d'austénite appropriée à une bonne résistance à la corrosion sous tension, mais aussi à l'obtention de caractéristiques mécaniques élevées. Il permet encore de limiter la formation de ferrite dans la zone affectée thermiquement des zones soudées, ce qui évite les risques de fragilisation de ces zones. On limite sa teneur maximale car, au-delà de 0,16% d'azote, commencent à apparaître des défauts sur les blooms de coulée continue. Ces défauts consistent en des dépressions longitudinales qui génèrent à leur tour des défauts de surface sur les barres laminées pouvant être gênants dans certains cas. Au-delà de 0,18%, les dépressions longitudinales sont très marquées et on observe en outre des soufflures liées à un dépassement de la quantité maximale d'azote pouvant rester en solution dans la structure de cette nuance.
La teneur en manganèse de la nuance est comprise entre 0,5% et 2,0% en poids, de préférence entre 0,5 et 1 ,9% en poids et de façon plus particulièrement préférée entre 0,5 et 1 ,8% en poids. Cet élément est formateur d'austénite mais uniquement en dessous de 1150°C. A des températures plus élevées, il retarde la formation de l'austénite au refroidissement, entraînant une formation de ferrite trop importante dans les zones affectées thermiquement des soudures, ce qui les rend trop peu résilientes. Par ailleurs, le manganèse, s'il est présent en quantité supérieure à 2,0% dans la nuance, pose des problèmes lors de l'élaboration et de l'affinage de la nuance, car il attaque certains réfractaires utilisées pour les poches, ce qui nécessite un remplacement plus fréquent de ces éléments coûteux et donc des interruptions plus fréquentes du procédé. Les apports de ferromanganèse que l'on utilise normalement pour mettre à composition la nuance, contiennent en outre des teneurs notables en phosphore, et également en sélénium, dont on ne souhaite pas l'introduction dans l'acier et qui sont difficiles à retirer lors de l'affinage de la nuance. Le manganèse perturbe par ailleurs cet affinage en limitant la possibilité de décarburation. Il pose également problème plus en aval dans le procédé, car il détériore la résistance à la corrosion de la nuance en raison de la formation de sulfures de manganèse MnS, et d'inclusions oxydées. On préfère le limiter à moins de 1 ,9, voire moins de 1 ,8 % en poids et de façon plus particulièrement préférée à moins de 1 ,6% en poids, car des essais ont montré que la forgeabilité et plus généralement l'aptitude à la transformation à chaud s'améliorait lorsque l'on diminue sa teneur. En particulier, on a pu observer la formation de criques rendant la nuance inapte au laminage à chaud, pour une teneur supérieure à 2,0%.
Le cuivre, élément formateur d'austénite, est présent en une teneur comprise entre 1 ,6 et 3,0% en poids, et de préférence compris entre 2,0 et 2,8% en poids, voire entre 2,2 et 2,8% en poids. Il participe à l'obtention de la structure biphasée austéno-ferritique souhaitée, permettant d'obtenir une meilleure résistance à la corrosion généralisée sans être obligé de monter le taux d'azote de la nuance à un niveau trop élevé. Par ailleurs, le cuivre en solution solide améliore la résistance à la corrosion en milieu acide réducteur. Au dessous de 1 ,6%, le taux d'azote nécessaire pour avoir la structure biphasée souhaitée commence à devenir trop important pour éviter les problèmes de qualité de surface des blooms de coulée continue décrits ci-dessus. Au dessus de 3,0%, on commence à risquer des ségrégations et/ou des précipitations de cuivre pouvant générer des chutes de la résistance à la corrosion localisée et des baisses de résilience en utilisation prolongée (au-delà d'un an) au dessus de 200°C.
Le molybdène, élément formateur de ferrite, est un élément qui est présent dans la nuance en une teneur comprise entre 0,05 et 1 ,0%, voire comprise entre 0,05 et 0,5% en poids, tandis que le tungstène est un élément optionnel qui peut être ajouté à une teneur inférieure à 0,15% en poids. On préfère cependant ne pas ajouter de tungstène, pour des raisons de coût, ce qui limite alors sa teneur à 0,05% en poids en tant que résiduel.
Par ailleurs, les teneurs en ces deux éléments sont telles que la somme Mo+W/2 est inférieure à 1 ,0% en poids, de préférence inférieure à 0,5%, voire inférieure à 0,4% en poids et de façon particulièrement préférée inférieure à 0,3% en poids. En effet, les présents inventeurs ont constaté qu'en maintenant ces deux éléments, ainsi que leurs sommes, sous les valeurs indiquées, on n'observait pas de précipitations d'intermétalliques fragilisants, ce qui permet notamment de dé-contraindre le procédé de fabrication des tôles ou bandes d'acier en autorisant un refroidissement à l'air des tôles et bandes après traitement thermique ou mise en œuvre à chaud. En outre, ils ont observé qu'en contrôlant ces éléments dans les limites revendiquées, on améliorait l'aptitude au soudage de la nuance.
Le silicium, élément formateur de ferrite, est présent en une teneur comprise entre 0,2% et 1 ,5 % en poids, de préférence inférieure à 1 ,0% en poids. Il est ajouté pour assurer une bonne désoxydation du bain d'acier lors de l'élaboration, mais sa teneur est limitée en raison du risque de formation de phase sigma en cas de trempe de mauvaise qualité après laminage à chaud.
L'aluminium, élément formateur de ferrite, est un élément optionnel qui peut être ajouté à la nuance en une teneur inférieure à 0,05 % en poids et de préférence comprise entre 0,005 % et 0,040 % en poids afin d'obtenir des inclusions d'aluminates de calcium à bas point de fusion. On limite sa teneur maximale afin d'éviter une formation excessive de nitrures d'aluminium.
Le vanadium, élément formateur de ferrite, est un élément optionnel qui peut être présent dans la nuance en une quantité pouvant aller de 0,02% à 0,5% en poids et de préférence inférieure à 0,2% en poids, afin d'améliorer la tenue à la corrosion caverneuse de l'acier. Il peut également être présent en tant qu'élément résiduel apporté lors de l'ajout de chrome.
Le niobium, élément formateur de ferrite, est un élément optionnel qui peut être présent dans la nuance en une quantité pouvant aller de 0,001% à 0,5% en poids. Il permet d'améliorer la résistance mécanique à la traction de la nuance et son usinabilité via un meilleur fractionnement des copeaux d'usinage, grâce à la formation de fins nitrures de niobium de type NbN ou de niobium et de chrome de type NbCrN (Phase Z). On limite sa teneur pour limiter la formation de nitrures de niobium grossiers.
Le titane, élément formateur de ferrite, est un élément optionnel qui peut être présent dans la nuance en une quantité pouvant aller de 0,001% à 0,5% en poids et de préférence en une quantité pouvant aller de 0,001 à 0,3% en poids. Il permet d'améliorer la résistance mécanique de la nuance et son usinabilité via un meilleur fractionnement des copeaux d'usinage, grâce à la formation de fin nitrures de titane. On limite sa teneur afin d'éviter la formation d'amas de nitrures de titane formés dans l'acier liquide notamment.
Le bore est un élément optionnel qui peut être présent dans la nuance selon l'invention en une quantité pouvant aller de 0,0001% à 0,003% en poids, afin d'améliorer sa transformation à chaud.
Le cobalt, élément formateur d'austénite est un élément optionnel qui peut être présent dans la nuance en une quantité pouvant aller de 0,02 à 0,5% en poids. Cet élément est un résiduel apporté par les matières premières. On le limite notamment en raison des problèmes de manutention qu'il peut poser après irradiation des pièces dans des installations nucléaires.
Les terres rares (désignées par REM) sont des éléments optionnels qui peuvent être présents dans la nuance à hauteur de 0,1 % en poids. On citera notamment le cérium et le lanthane. On limite les teneurs dans ces éléments car ils sont susceptibles de former des intermétalliques non souhaités.
On pourra également trouver dans la nuance selon l'invention du calcium, en une quantité pouvant aller de 0,0001 à 0,03% en poids, et de préférence supérieure à 0,0005 % en poids, afin de maîtriser la nature des inclusions d'oxydes et d'améliorer l'usinabilité. On limite la teneur de cet élément car il est susceptible de former avec le soufre des sulfures de calcium qui dégradent les propriétés de résistance à la corrosion.
Une addition de magnésium à concurrence d'une teneur finale de 0,1 % peut être faite pour modifier la nature des sulfures et des oxydes. Le sélénium est de préférence maintenu à moins de 0,005% en poids en raison de son effet néfaste sur la résistance à la corrosion. Cet élément est en général apporté dans la nuance en tant qu'impuretés des lingots de ferromanganèse.
La teneur en oxygène est de préférence limitée à 0,01% en poids, afin d'améliorer son aptitude au forgeage et la résilience de ses soudures.
Le soufre est maintenu à une teneur inférieure à 0,030% en poids et de préférence à une teneur inférieure à 0,003% en poids. Comme on l'a vu précédemment, cet élément forme des sulfures avec le manganèse ou le calcium, sulfures dont la présence est néfaste pour la résistance à la corrosion. Il est considéré comme une impureté.
Le phosphore est maintenu à une teneur inférieure à 0,040% en poids et est considéré comme une impureté.
Le reste de la composition est constitué de fer et d'impuretés. Outre celles déjà mentionnées plus haut, on citera notamment le zirconium, l'étain, l'arsenic, le plomb ou le bismuth. L'étain peut être présent en une teneur inférieure à 0,100% en poids et préférence inférieure à 0,030% en poids pour éviter les problèmes de soudage. L'arsenic peut être présent en une teneur inférieure à 0,030 % en poids et de préférence inférieure à 0,020% en poids. Le plomb peut être présent en une teneur inférieure à 0,002% en poids et de préférence inférieure à 0,0010% en poids. Le bismuth peut être présent en une teneur inférieure à 0,0002% en poids et de préférence inférieure à 0,00005% en poids. Le zirconium peut être présent à concurrence de 0,02 %.
La microstructure de l'acier selon l'invention, à l'état recuit, est composée d'austénite et de ferrite, qui sont de préférence, après traitement de 1 h à 1050°C, dans une proportion de 35 à 65% en volume de ferrite et de façon plus particulièrement préférée de 45 à 55% en volume de ferrite.
Les présents inventeurs ont aussi trouvé que la formule suivante rend convenablement compte de la teneur en ferrite à 1050°C : IF = 10%Cr + 5,1%Mo + 1 ,4%Mn + 24,3%Si + 35%Nb + 71 ,5%Ti - 595,4%C - 245, 1%N - 9,3%Ni - 3,3%Cu - 99,8
Ainsi, pour obtenir une proportion de ferrite comprise entre 35 et 65% à 1050°C, l'indice IF doit être compris entre 40 et 65.
A l'état recuit, la microstructure ne contient pas d'autres phases qui seraient nocives pour ses propriétés mécaniques notamment, telles que la phase sigma et autres phases intermétalliques. A l'état écroui à froid, une partie de l'austénite peut avoir été convertie en martensite, en fonction de la température effective de déformation et de la quantité de déformation à froid appliquée.
Par ailleurs, les présents inventeurs ont constaté que, lorsque les pourcentages en poids de chrome, molybdène, cuivre, azote, nickel et manganèse respectent la relation ci-dessous, les nuances concernées présentent une bonne résistance à la corrosion généralisée :
IRCGU > 32,0 et de préférence > 34,0 avec IRCGU = %Cr+ 3,3%Mo + 2%Cu +16%N + 2,6%Ni - 0,7%Mn
Enfin, les présents inventeurs ont constaté que, lorsque les pourcentages en poids de nickel, cuivre, manganèse, carbone, azote, chrome, silicium et molybdène respectent la relation ci-dessous, les nuances concernées présentent une bonne usinabilité:
0 < IU < 6,0
avec IU = 3%Ni + %Cu + %Mn -100%C -25%N - 2(%Cr + %Si) -6%Mo +45. D'une façon générale, l'acier selon l'invention peut être élaboré et fabriqué sous forme de tôles laminées à chaud, encore appelées tôles quarto, mais aussi sous forme de bandes laminées à chaud, à partir de brames ou lingots et également sous forme de bande laminées à froid à partir de bandes laminées à chaud. Il peut aussi être laminé à chaud en barres ou fils-machine ou en profils ou forgés ; ces produits peuvent être ensuite transformés à chaud par forgeage ou à froid en barres ou profils étirés ou en fils tréfilés. L'acier selon l'invention peut aussi être mis en œuvre par moulage suivi ou non de traitement thermique.
Afin d'obtenir les meilleures performances possibles, on utilisera de préférence le procédé selon l'invention qui comprend tout d'abord l'approvisionnement d'un lingot, d'une brame ou d'un bloom d'acier ayant une composition conforme à l'invention.
Ce lingot, cette brame ou ce bloom sont généralement obtenus par fusion des matières premières dans un four électrique, suivi d'une refusion sous vide de type AOD ou VOD avec décarburation. On peut ensuite couler la nuance sous forme de lingots, ou sous forme de brames ou blooms par coulée continue dans une lingotière sans fond. On pourrait également envisager de couler la nuance directement sous forme de brames minces, en particulier par coulée continue entre cylindres contrarotatifs.
Après approvisionnement du lingot ou de la brame ou du bloom, on procède éventuellement à un réchauffage pour atteindre une température comprise entre 1150 et 1280 °C, mais il est aussi possible de travailler directement sur la brame venant d'être coulée en continu, dans la chaude de coulée.
Dans le cas de la fabrication de tôles, on lamine ensuite à chaud la brame ou le lingot pour obtenir une tôle dite quarto qui présente généralement une épaisseur comprise entre 5 et 100 mm. Les taux de réduction généralement employés à ce stade varient entre 3 et 30%. Cette tôle est ensuite soumise à un traitement thermique de remise en solution des précipités formés à ce stade par réchauffage à une température comprise entre 900 et 1100 °C, puis refroidie.
Le procédé selon l'invention prévoit un refroidissement par trempe à l'air qui est plus facile à mettre en œuvre que le refroidissement classiquement utilisé pour ce type de nuance, qui est un refroidissement plus rapide, à l'aide d'eau. Il reste cependant possible de procéder à un refroidissement à l'eau si on le souhaite.
Ce refroidissement lent, à l'air, est notamment rendu possible grâce aux teneurs limitées en nickel et molybdène de la composition selon l'invention qui n'est pas sujette à la précipitation de phases intermétalliques, nocives pour ses propriétés d'usage. Ce refroidissement peut en particulier être effectué à des vitesses allant de 0,1 à 2,7°C/s.
A l'issue du laminage à chaud, la tôle quarto peut être planée, découpée et décapée, si on souhaite la livrer dans cet état.
On peut également laminer cet acier nu sur un train à bande à des épaisseurs comprises entre 3 et 10mm.
Dans le cas de la fabrication de produits longs à partir de lingots ou de blooms, on peut laminer à chaud en une ou plusieurs chaudes sur un laminoir multi-cages, en cylindres cannelés, à une température comprise entre 1150 et 1280°C, pour obtenir une barre ou une couronne de fil machine ou laminé. Le rapport de section entre le bloom initial et le produit final est de préférence supérieur à 3, de façon à assurer la santé interne du produit laminé.
Lorsque l'on a fabriqué une barre, celle-ci est refroidie en sortie de laminage par simple étalement à l'air.
Lorsque l'on a fabriqué du fil laminé, celui-ci peut être refroidi, par trempe en couronne dans un bac d'eau en sortie de laminoir ou bien par trempe à l'eau en spires étalées sur convoyeur après passage de celles-ci sur convoyeur à travers un four de mise en solution à température comprise entre 850°C et 1100°C.
Un traitement thermique ultérieur en four, entre 900°C et 1100°C, peut être pratiqué optionnellement sur ces barres ou couronnes déjà traitées dans la chaude de laminage, si l'on souhaite achever la recristallisation de la structure et abaisser légèrement les caractéristiques mécaniques en traction.
A l'issue du refroidissement de ces barres ou de ces couronnes de fils, on pourra procéder à différents traitements de mise en forme à chaud ou à froid, en fonction de l'usage final du produit. Ainsi, on pourra procéder à un étirage à froid des barres ou à un tréfilage des fils, à l'issue du refroidissement.
On pourra également profiler à froid les barres laminées à chaud, ou bien encore fabriquer des pièces après avoir débité les barres en lopins et les avoir forgées.
Exemples
Différentes coulées ont été élaborées puis transformées en barres de différents diamètres et caractérisées.
Propriétés mécaniques
Les propriétés de traction Rp0,2 et Rm ont été déterminées selon la norme NFEN 10002-1. La résilience KV a été déterminée à différentes températures suivant la norme NF EN 10045.
Essais de tournage
Ils sont effectués sur un tour RAMO RTN30 de 28kW tournant à maximum 5800 tr/min, équipé d'une platine d'effort Kistler. Tous les essais sont réalisés à sec. La plaquette de référence utilisée est la plaquette STELLRAM SP0819 CNMG120408E-4E, considérée comme optimale pour les inox Duplex. Ces essais permettent de déterminer deux valeurs caractéristiques du niveau d'usinabilité d'une nuance :
- une vitesse de tournage VBi5 0,i5 exprimée en m/min (plus la Bi5/0,i5 est élevé, meilleure est l'usinabilité),
- une zone de fractionnement de copeaux ZFC (plus la ZFC est grande, meilleure est l'usinabilité).
1. Détermination de VBifi/n iS
Le test consiste à trouver la vitesse de tournage qui génère 0,15 mm d'usure en dépouille en 15 min d'usinage effectif. L'essai est fait en passes régulières de chariotage avec une plaquette en carbure revêtu. Les paramètres figés sont :
- profondeur de passe ap = 1 ,5 mm
- avance f = 0,25 mm/tr
Au cours de ces essais, l'usure en dépouille est mesurée par un système optique couplé à une caméra, à un grossissement de *32. Cette mesure est la surface de la zone usée rapportée à la longueur apparente de cette zone. Dans le cas où une usure en entaille supérieure à 0,45mm (3 fois la valeur du VB) apparaît ou un effondrement de pointe survient avant l'obtention de l'usure de 0,15mm en dépouille, on considère que la valeur du VB 15/0, 15 n'est pas accessible ; on déterminera alors la vitesse maximale pour laquelle il n'y a ni usure en dépouille de 0,45mm, ni effondrement de pointe en 15min et l'on indiquera comme résultat que le VB-15/0,15 est supérieur à cette valeur.
Dans le cadre de la présente invention, on considère qu'une valeur de VBi5/o,i5 inférieure à 220 m/min, mesurée dans les conditions décrites ci- dessus, n'est pas conforme à l'invention. 2. Détermination de ZFC
Avant de déterminer la valeur de ZFC, il faut définir la vitesse de coupe minimale, Vcmin.
2.1) Evaluation de Vcmin
La détermination du Vcmin se fait par une passe de chariotage à vitesse croissante. On démarre par une vitesse de coupe Vc très basse (40m/min), et on monte à une vitesse supérieure à Vb-i5/o,i5 de manière régulière au cours de la passe. L'enregistrement des efforts Kc permet de tracer en direct une courbe Kc = f(Vc).
Les conditions de coupe sont :
- profondeur de passe ap = 1 ,5 mm
- avance f = 0,25 mm/tr
- outil rodé par une passe de chariotage dans les conditions
Figure imgf000018_0001
La courbe obtenue est monotone décroissante dans la plupart des cas. La valeur de Vcmin est celle correspondant à une inflexion de la courbe.
2.2) Evaluation de ZFC
A une vitesse égale à 120% de Vcmin, on réalise des essais de 6 secondes d'usinage à vitesse constante, en faisant varier les conditions de coupe. On balaie ainsi un tableau d'avances (de 0,1 mm/tr à 0,4 mm/tr par pas de 0,05 mm/tr) et de profondeurs de passe (de 0,5 mm à 4mm par pas de 0,5 mm).
Pour chacune des 56 combinaisons f - ap, on évalue les copeaux obtenus en les comparant à des formes de copeaux prédéfinies dans la norme du « C.O.M. tournage » ISO 3685. La ZFC est la zone du tableau regroupant les conditions en f et ap pour lesquelles les copeaux sont bien fragmentés, que l'on quantifie en comptant le nombre de combinaisons satisfaisantes. Dans le cadre de la présente invention, on considère qu'une valeur de ZFC inférieure à 15, mesurée dans les conditions décrites ci-dessus, n'est pas conforme à l'invention.
Essais de corrosion
On a déterminé le courant critique de dissolution ou d'activité exprimé en μΑ/cm2 en milieu acide sulfurique à 2 Moles / litre à 23°C. Une mesure du potentiel d'abandon pendant 900 secondes est d'abord réalisée ; ensuite, une courbe potentio-dynamique est tracée à la vitesse de 10 mV/min à partir de -750 mV/ECS jusqu'au +1V/ECS. Sur la courbe de polarisation ainsi obtenue, le courant critique correspond au courant maximum du pic mis en évidence préalablement au domaine de passivité.
Les tableaux ci-dessous résument les compositions testées et les résultats des caractérisations faites sur les produits obtenus.
Tableau 1 : Compositions chimiques des essais
Figure imgf000020_0001
* selon l'invention
Tableau 2 : Barres de diamètre 73 mm
Figure imgf000021_0001
* : selon l'invention
ne : non évalué
Tableau 3 : Barres de diamètre 5.5 mm
Figure imgf000021_0002
* selon l'invention
On constate tout d'abord que les nuances comparatives 6 à 8 et 12 présentent une formation de dépressions longitudinales sur les blooms de coulée continue, tandis que les nuances 1 à 5 selon l'invention en étaient exemptes, démontrant ainsi la bonne coulabilité de la nuance selon l'invention.
En outre, la limite d'élasticité en traction des essais selon l'invention est bien supérieure à 450MPa contrairement à ce que l'on observe pour la nuance comparative 9, par exemple.
Les valeurs de résilience sur tôles et barres de fortes épaisseurs à 20°C comme à -46°C sont également satisfaisantes et en particulier meilleure que celle des nuances comparatives 6 et 7, par exemple.
Les nuances selon l'invention présentent en outre toutes une bonne usinabilité tant en terme de vitesse de coupe que zone de fractionnement des copeaux. Au contraire, on constate que les nuances comparatives 6 et 7, ainsi que 11 et 12, dont les indices IU sont négatifs ne présentent pas une vitesse de coupe suffisante, tandis que la nuance comparative 10 dont l'indice IU est supérieur à 6,0 présentent une zone de fractionnement des copeaux insuffisante.
La résistance à la corrosion généralisée des nuances selon l'invention est très satisfaisante, et en particulier meilleure que celle de la nuance comparative 8.
On constate donc que les nuances selon l'invention sont les seules à réunir l'ensemble des propriétés recherchées, à savoir une bonne coulabilité, une limite d'élasticité en traction supérieure à 400 voire 450MPa à l'état recuit ou mis en solution, une bonne résilience sur tôles et barres de fortes épaisseurs, de préférence supérieure à 100 J à 20°C et supérieure à 20 J à -46°C, une résistance à la corrosion généralisée élevée, et une bonne usinabilité.

Claims

REVENDICATIONS
1. Acier inoxydable austéno-ferritique, dont la composition comprend en % en poids :
0,01% < C < 0,10%
20,0% < Cr < 24,0%
1 ,0% < Ni < 3,0%
0,12% < N < 0,20%
0,5%≤Mn < 2,0%
1 ,6% ≤Cu < 3,0%
0,05% < Mo < 1 ,0%
W < 0,15%
0,05% < Mo +W/2 < 1 ,0%
0,2%≤ Si < 1 ,5%
Al < 0,05%
V < 0,5%
Nb < 0,5 %
Ti < 0,5%
B < 0,003%
Co < 0,5%
REM < 0,1%
Ca < 0,03 %
Mg < 0,1 %
Se < 0,005%
0 < 0,01%
S < 0,030%
P < 0,040%
le reste étant du fer et des impuretés résultant de l'élaboration et la microstructure étant constituée d'austénite et de 35 à 65% de ferrite en volume, la composition respectant en outre les relations suivantes :
40 < IF < 65 avec IF = 10%Cr + 5,1 %Mo + 1 ,4%Mn + 24,3%Si + 35%Nb + 71 ,5%Ti - 595,4%C - 245, 1%N - 9,3%Ni - 3,3%Cu - 99,8 et IRCGCU > 32,0
avec IRCGCU = %Cr+ 3,3%Mo + 2%Cu +16%N + 2,6%Ni - 0,7%Mn et 0 < IU < 6,0
avec IU = 3%Ni + %Cu + %Mn -100%C -25%N - 2(%Cr + %Si) -6%Mo +45.
2. Acier selon la revendication 1 , caractérisé en outre en ce que :
IRCGU > 34.
3. Acier selon les revendications 1 ou 2, caractérisé en outre en ce que la proportion de ferrite est comprise entre 35 et 55% en volume.
4. Acier selon l'une quelconque des revendications 1 à 3, caractérisé en outre en ce que
45 < IF < 55
5. Acier selon l'une quelconque des revendications 1 à 4, caractérisé en outre en ce que la teneur en azote est comprise entre 0,12 et 0,18% en poids.
6. Acier selon l'une quelconque des revendications 1 à 5, caractérisé en outre en ce que la teneur en cuivre est comprise entre 2,0 et 2,8% en poids.
7. Acier selon l'une quelconque des revendications 1 à 6, caractérisé en outre en ce que la teneur en molybdène est inférieure à 0,5% en poids.
8. Acier selon l'une quelconque des revendications 1 à 7, caractérisé en outre en ce que la teneur en carbone est inférieure à 0,05% en poids.
9. Procédé de fabrication d'une tôle, d'une bande ou d'une bobine laminée à chaud en acier selon l'une quelconque des revendications 1 à 8, selon lequel :
- on approvisionne un lingot ou une brame d'un acier de composition selon l'une quelconque des revendications 1 à 8,
- on lamine ledit lingot ou ladite brame à chaud, à une température comprise entre 1150 et 1280 °C pour obtenir une tôle, une bande ou une bobine.
10. Procédé de fabrication d'une tôle laminée à chaud en acier selon la revendication 9, selon lequel :
- on lamine ledit lingot ou ladite brame à chaud, à une température comprise entre 1150 et 1280 °C pour obtenir une tôle dite quarto, puis
- on effectue un traitement thermique à une température comprise entre 900 et 1100°C, et
- on refroidit ladite tôle par trempe à l'air.
11. Procédé de fabrication d'une barre ou d'un fil laminés à chaud en acier selon l'une quelconque des revendications 1 à 8, selon lequel :
- on approvisionne un lingot ou un bloom de coulée continue d'un acier de composition selon l'une quelconque des revendications 1 à 8,
- on lamine à chaud ledit lingot ou ledit bloom, depuis une température comprise entre 1150 et 1280°C pour obtenir une barre que l'on refroidit à l'air ou une couronne de fil que l'on refroidit à l'eau, puis, facultativement :
- on effectue un traitement thermique à une température comprise entre 900 et 1100°C, et
- on refroidit ladite barre ou ladite couronne par trempe.
12. Procédé de fabrication selon la revendication 11 , selon lequel on effectue un étirage à froid de ladite barre ou un tréfilage dudit fil, à l'issue du refroidissement.
13. Procédé de fabrication d'un profilé en acier, selon lequel on effectue un profilage à froid d'une barre laminée à chaud obtenue par le procédé selon la revendication 11.
14. Procédé de fabrication d'une pièce forgée en acier, selon lequel on débite en lopins une barre laminée à chaud obtenue par le procédé selon la revendication 11 , puis on effectue un forgeage dudit lopin entre 1100°C et 1280°C.
PCT/FR2011/000394 2010-07-07 2011-07-05 Acier inoxydable austéno-ferritique à usinabilité améliorée WO2012004473A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA2804320A CA2804320C (fr) 2010-07-07 2011-07-05 Acier inoxydable austeno-ferritique a usinabilite amelioree
EP11751621.1A EP2591134B1 (fr) 2010-07-07 2011-07-05 Acier inoxydable austéno-ferritique à usinabilité améliorée
CN2011800337876A CN103069031A (zh) 2010-07-07 2011-07-05 具有改善的可机加工性的奥氏体-铁素体不锈钢
ES11751621.1T ES2534930T3 (es) 2010-07-07 2011-07-05 Acero inoxidable austeno-ferrítico de maquinabilidad mejorada
DK11751621.1T DK2591134T3 (en) 2010-07-07 2011-07-05 Austenitic-ferritic stainless steel with improved machinability
US13/808,284 US9587286B2 (en) 2010-07-07 2011-07-05 Austenite-ferrite stainless steel of improved machinability
KR1020137003293A KR20130034044A (ko) 2010-07-07 2011-07-05 향상된 절삭성을 갖는 오스테나이트-페라이트 스테인리스강
AU2011275610A AU2011275610B2 (en) 2010-07-07 2011-07-05 Austenitic-ferritic stainless steel having improved machinability
JP2013517431A JP5972870B2 (ja) 2010-07-07 2011-07-05 機械加工性を向上させたオーステナイト−フェライトステンレス鋼
BR112013000264-6A BR112013000264B1 (pt) 2010-07-07 2011-07-05 Aço inoxidável austeno-ferrítico, processo de fabricação de uma chapa, de uma cinta ou de uma bobina laminada a quente em aço, processo de fabricação de uma barra ou de um fio laminado a quente em aço, processo de fabricação de um perfilado em aço e processo de fabricação de uma peça forjada em aço
SI201130461T SI2591134T1 (sl) 2010-07-07 2011-07-05 Avstenitno-feritno nerjavno jeklo z izboljšano obdelovalnostjo
US15/409,348 US9797025B2 (en) 2010-07-07 2017-01-18 Method for manufacturing austenite-ferrite stainless steel with improved machinability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRPCT/FR2010/000498 2010-07-07
PCT/FR2010/000498 WO2012004464A1 (fr) 2010-07-07 2010-07-07 Acier inoxydable austéno-ferritique à usinabilité améliorée

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/808,284 A-371-Of-International US9587286B2 (en) 2010-07-07 2011-07-05 Austenite-ferrite stainless steel of improved machinability
US15/409,348 Division US9797025B2 (en) 2010-07-07 2017-01-18 Method for manufacturing austenite-ferrite stainless steel with improved machinability

Publications (1)

Publication Number Publication Date
WO2012004473A1 true WO2012004473A1 (fr) 2012-01-12

Family

ID=43858298

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2010/000498 WO2012004464A1 (fr) 2010-07-07 2010-07-07 Acier inoxydable austéno-ferritique à usinabilité améliorée
PCT/FR2011/000394 WO2012004473A1 (fr) 2010-07-07 2011-07-05 Acier inoxydable austéno-ferritique à usinabilité améliorée

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/000498 WO2012004464A1 (fr) 2010-07-07 2010-07-07 Acier inoxydable austéno-ferritique à usinabilité améliorée

Country Status (12)

Country Link
US (2) US9587286B2 (fr)
EP (1) EP2591134B1 (fr)
JP (1) JP5972870B2 (fr)
KR (1) KR20130034044A (fr)
CN (2) CN103069031A (fr)
AU (1) AU2011275610B2 (fr)
BR (1) BR112013000264B1 (fr)
CA (1) CA2804320C (fr)
DK (1) DK2591134T3 (fr)
ES (1) ES2534930T3 (fr)
SI (1) SI2591134T1 (fr)
WO (2) WO2012004464A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055010A1 (fr) * 2012-10-05 2014-04-10 Sandvik Intellectual Property Ab Câble d'alimentation électrique aérien
EP3008222A4 (fr) * 2013-06-13 2017-02-15 Outokumpu Oyj Acier inoxydable duplex ferritique et austénitique

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836619B2 (ja) * 2011-03-28 2015-12-24 新日鐵住金ステンレス株式会社 耐酸性良好な二相ステンレス鋼
CN103014559B (zh) * 2012-12-26 2015-04-29 振石集团东方特钢股份有限公司 一种节镍型双相不锈钢及其制备工艺
US9475107B2 (en) * 2013-02-05 2016-10-25 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle axle component
TWI512115B (zh) * 2014-11-05 2015-12-11 China Steel Corp 沃斯田鐵系合金鋼材之製造方法
CN104561820B (zh) * 2015-02-10 2016-06-15 苏州劲元油压机械有限公司 一种用于防盗门的不锈钢及其热处理方法
CN105506510A (zh) * 2015-12-03 2016-04-20 浙江腾龙精线有限公司 一种不锈钢丝的生产工艺
WO2017105943A1 (fr) 2015-12-14 2017-06-22 Swagelok Company Pièces forgées en acier inoxydable fortement allié sans hypertrempe
KR101756701B1 (ko) * 2015-12-23 2017-07-12 주식회사 포스코 가공성이 향상된 오스테나이트계 스테인리스강
TWI606120B (zh) * 2016-08-24 2017-11-21 中國鋼鐵股份有限公司 沃斯田鐵系合金鋼材之表面處理方法
CN106756625A (zh) * 2016-12-16 2017-05-31 安徽宝恒新材料科技有限公司 一种高机械性能不锈钢板
JP2018179161A (ja) * 2017-04-14 2018-11-15 内山工業株式会社 金属環
CN108796385A (zh) * 2018-06-15 2018-11-13 酒泉钢铁(集团)有限责任公司 一种含钛耐蚀耐磨低成本打壳锤头材料及使用该材料制备锤头的方法
EP3640352A1 (fr) * 2018-10-17 2020-04-22 AB Sandvik Materials Technology Procédé de production d'un tube en acier inoxydable duplex
CN110042303B (zh) * 2019-04-09 2020-05-05 东北大学 一种400MPa级细晶粒热轧钢筋及其生产工艺
CN112247038B (zh) * 2020-11-12 2021-05-28 阳春新钢铁有限责任公司 一种线材轧钢件及其轧钢件生产工艺
CN114182078A (zh) * 2021-12-03 2022-03-15 上海电气上重铸锻有限公司 一种高强度奥氏体轴类大锻件的制备方法
CN115430996A (zh) * 2022-09-20 2022-12-06 苏州雷格姆海洋石油设备科技有限公司 海上fpso关键零部件大型锻造双相不锈钢特殊管件制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700174A1 (fr) * 1993-01-07 1994-07-08 Gerard Jacques Matériaux et procédés pour la réalisation de structures porteuses, et de leurs accessoires, à hautes caractéristiques mécaniques et corrosion, notamment dans le domaine du cycle.
EP0750053A1 (fr) * 1994-12-16 1996-12-27 Sumitomo Metal Industries, Ltd. Acier inoxydable duplex presentant une remarquable resistance a la corrosion
EP2050832A1 (fr) * 2006-08-08 2009-04-22 Nippon Steel &amp; Sumikin Stainless Steel Corporation Acier inoxydable à deux phases
EP2258885A1 (fr) * 2008-03-26 2010-12-08 Nippon Steel & Sumikin Stainless Steel Corporation Acier inoxydable duplex faiblement allié dans lequel les zones affectées par la chaleur de soudage présentent une bonne résistance à la corrosion et une bonne ténacité

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867748A1 (fr) * 2006-06-16 2007-12-19 Industeel Creusot Acier inoxydable duplex
SE530848C2 (sv) * 2007-01-19 2008-09-30 Sandvik Intellectual Property Pansar för ballistiskt skydd som innefattar duplext rostfritt stål samt skottsäker väst innefattande detta pansar
JP5511208B2 (ja) * 2009-03-25 2014-06-04 新日鐵住金ステンレス株式会社 耐食性の良好な省合金二相ステンレス鋼材とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700174A1 (fr) * 1993-01-07 1994-07-08 Gerard Jacques Matériaux et procédés pour la réalisation de structures porteuses, et de leurs accessoires, à hautes caractéristiques mécaniques et corrosion, notamment dans le domaine du cycle.
EP0750053A1 (fr) * 1994-12-16 1996-12-27 Sumitomo Metal Industries, Ltd. Acier inoxydable duplex presentant une remarquable resistance a la corrosion
EP2050832A1 (fr) * 2006-08-08 2009-04-22 Nippon Steel &amp; Sumikin Stainless Steel Corporation Acier inoxydable à deux phases
EP2258885A1 (fr) * 2008-03-26 2010-12-08 Nippon Steel & Sumikin Stainless Steel Corporation Acier inoxydable duplex faiblement allié dans lequel les zones affectées par la chaleur de soudage présentent une bonne résistance à la corrosion et une bonne ténacité

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055010A1 (fr) * 2012-10-05 2014-04-10 Sandvik Intellectual Property Ab Câble d'alimentation électrique aérien
EP3008222A4 (fr) * 2013-06-13 2017-02-15 Outokumpu Oyj Acier inoxydable duplex ferritique et austénitique
US11566309B2 (en) 2013-06-13 2023-01-31 Outokumpu Oyj Duplex ferritic austenitic stainless steel

Also Published As

Publication number Publication date
CA2804320C (fr) 2015-04-28
JP2013535567A (ja) 2013-09-12
ES2534930T3 (es) 2015-04-30
EP2591134A1 (fr) 2013-05-15
JP5972870B2 (ja) 2016-08-17
EP2591134B1 (fr) 2015-01-21
AU2011275610A1 (en) 2013-01-24
AU2011275610B2 (en) 2014-06-05
CA2804320A1 (fr) 2012-01-12
US9587286B2 (en) 2017-03-07
CN106119737A (zh) 2016-11-16
US9797025B2 (en) 2017-10-24
KR20130034044A (ko) 2013-04-04
DK2591134T3 (en) 2015-04-20
CN103069031A (zh) 2013-04-24
BR112013000264A2 (pt) 2016-05-24
SI2591134T1 (sl) 2015-05-29
BR112013000264B1 (pt) 2018-04-24
US20170121789A1 (en) 2017-05-04
WO2012004464A1 (fr) 2012-01-12
US20130174948A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
EP2591134B1 (fr) Acier inoxydable austéno-ferritique à usinabilité améliorée
EP2038445B1 (fr) Acier inoxydable duplex
EP1844173B1 (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese et toles ainsi produites
CA2617879C (fr) Procede de fabrication de toles d&#39;acier presentant une haute resistance et une excellente ductilite, et toles ainsi produites
CA2533023C (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
EP2630269B1 (fr) Tole d&#39;acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l&#39;industrie automobile
EP1994192A1 (fr) Procédé de fabrication de tôles d&#39;acier à tres hautes caracteristiques de resistance, de ductilite et de tenacite, et tôles ainsi produites
CA2834967A1 (fr) Procede de fabrication d&#39;acier martensitique a tres haute limite elastique et tole ou piece ainsi obtenue
CA2714218C (fr) Procede de fabrication de toles d&#39;acier inoxydable austenitique a hautes caracteristiques mecaniques, et toles ainsi obtenues
WO2016151390A1 (fr) Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
EP0748877A1 (fr) Procédé de réalisation d&#39;une bande de tÔle d&#39;acier laminée à chaud à très haute limite d&#39;élasticité et tÔle d&#39;acier obtenue
FR2525239A1 (fr) Tubes d&#39;acier ayant des proprietes ameliorees, applicables a la fois pour la construction et l&#39;exploitation miniere et procede pour les preparer a partir d&#39;aciers microallies combines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033787.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11751621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2804320

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013517431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011751621

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011275610

Country of ref document: AU

Date of ref document: 20110705

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137003293

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808284

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000264

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000264

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130104