WO2012002505A1 - Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same - Google Patents

Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same Download PDF

Info

Publication number
WO2012002505A1
WO2012002505A1 PCT/JP2011/065085 JP2011065085W WO2012002505A1 WO 2012002505 A1 WO2012002505 A1 WO 2012002505A1 JP 2011065085 W JP2011065085 W JP 2011065085W WO 2012002505 A1 WO2012002505 A1 WO 2012002505A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
conductive resin
ceramic
volume
boron nitride
Prior art date
Application number
PCT/JP2011/065085
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 大塚
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020127033394A priority Critical patent/KR101453352B1/en
Priority to JP2012522700A priority patent/JP5793494B2/en
Publication of WO2012002505A1 publication Critical patent/WO2012002505A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to a ceramic mixture and a ceramic-containing thermally conductive resin sheet using the ceramic mixture. More specifically, the present invention relates to a ceramic mixture that provides a highly thermally conductive resin sheet, and a thermally conductive resin sheet that is used to transfer heat from a heating element to a heat radiating member, particularly a semiconductor element, etc., using the ceramic mixture.
  • the present invention relates to a heat conductive resin sheet for forming a heat conductive resin layer that transmits heat from the heating element to a heat radiating member and also functions as an insulating layer.
  • the heat conductive resin layer that transfers heat from the heat generating part of the electric / electronic device to the heat radiating member has high heat conductivity, insulation, and adhesive properties.
  • a resin composition is used.
  • a thermosetting resin sheet or coating film containing an inorganic filler is used as a heat conductive resin layer provided between the back surface of a lead frame on which a power semiconductor element is mounted and a metal plate serving as a heat dissipation part.
  • a technique to be used is known (see, for example, Patent Document 1).
  • thermosetting resin sheet filled with highly heat conductive inorganic powder As a heat conductive resin layer interposed between a heat generating electronic component such as a CPU and a heat radiating fin, a thermosetting resin sheet filled with highly heat conductive inorganic powder is known (for example, patent document). 2). As disclosed in Patent Document 2, spherical alumina particles are easily dispersed as inorganic powder, can be highly filled, and are very useful as a heat conductive filler used for a heat conductive sheet. For this reason, it has been studied to change the organic matrix by changing the combination with other thermally conductive fillers or an organic matrix so that the thermally conductive fillers are filled more highly (for example, Patent Documents 3 and 4). reference).
  • the inorganic powder capable of exhibiting high heat dissipation characteristics is a mixed powder containing a predetermined spherical inorganic powder and a non-spherical inorganic powder having an average particle diameter smaller than that of the spherical inorganic powder, and the average particle diameter is Inorganic powders that are 5-50 ⁇ m are disclosed.
  • the same effect can be obtained with other inorganic powders by actually evaluating the combination selected from silica, alumina, silicon carbide, and aluminum nitride.
  • a high specific filler such as alumina is highly filled, the heat conductive resin sheet itself becomes heavy, which makes it difficult to reduce the size and weight of electronic devices.
  • Patent Document 6 discloses a thermal conductive resin sheet using a combination of silicon nitride having a particle diameter of 5 ⁇ m and boron nitride having a particle diameter of 7 ⁇ m. However, since the particle diameter of silicon nitride is too small, uniform dispersion is disclosed. However, there is a problem that it is not always possible to bring about the combined effect.
  • the document also discloses a thermal conductive resin sheet using silicon carbide and boron nitride, but a system using silicon carbide may have poor dielectric breakdown characteristics.
  • the present invention has been made under such circumstances, has a thermal conductivity superior to that of the conventional one, can reduce the weight of the sheet, is excellent in workability, and has a dielectric breakdown characteristic. It is an object of the present invention to provide a ceramic mixture that gives a good heat conductive resin sheet, and a ceramic-containing heat conductive resin sheet having the above properties using the ceramic mixture.
  • the flaky hexagonal boron nitride particles have high thermal conductivity, they are disadvantageous in that they are difficult to disperse in an organic matrix and have poor processability.
  • the scale-like hexagonal boron nitride particles can be easily dispersed and the workability is improved.
  • spherical alumina particles play a role as an aggregate, so that they are oriented in the thickness direction of the thermal conductive sheet.
  • thermo conductivity can be obtained. It was also found that excellent dielectric breakdown characteristics can be obtained by using alumina instead of silicon carbide having poor dielectric breakdown characteristics. Based on the above findings, a ceramic mixture containing, in a predetermined ratio, flaky hexagonal boron nitride particles having a specific particle size and spherical alumina particles having a specific particle size is used as a thermally conductive filler. As a result, the thermal conductivity is superior to that of using alumina particles and boron nitride particles alone, and the weight of the sheet can be reduced and the workability is excellent. It has been found that a resin sheet can be obtained.
  • the present invention is as follows.
  • [1] A mixture of spherical alumina particles having a volume-based D50 (50% by volume particle diameter) of 10 to 55 ⁇ m and flaky hexagonal boron nitride particles having a volume-based D50 of 30 ⁇ m or less, wherein the flaky shape
  • a ceramic-containing thermally conductive resin sheet obtained by molding a resin composition containing 10 to 70% by volume of an organic matrix and 30 to 90% by volume of the ceramic mixture according to [1] or [2].
  • the ceramic according to [3], wherein the volume-based D50 of the spherical alumina particles in the ceramic mixture is 45 to 55 ⁇ m, and the ceramic mixture is contained in the resin composition in a proportion of 70 to 80% by volume. Contains thermally conductive resin sheet.
  • the content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 6 to 25% by mass, and the ceramic mixture is contained in the resin composition in a ratio of 75 to 80% by volume [5].
  • a ceramic-containing thermally conductive resin sheet according to 1. [7] The ceramic-containing thermally conductive resin sheet according to [6], wherein the thermal conductivity is 7 W / m ⁇ K or more.
  • the content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 15 to 25% by mass, and the ceramic mixture is contained in the resin composition at a ratio of 70 to 80% by volume [5].
  • the ceramic which provides the heat conductive resin sheet which has the thermal conductivity superior to the past can reduce the weight of a sheet
  • FIG. 1A is a diagram illustrating a “scale-like” form of scaly hexagonal boron nitride particles.
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along line XX in FIG. Show.
  • the ceramic mixture of the present invention has a thermal conductivity superior to that of the prior art, can reduce the weight of the sheet, and provides a thermally conductive resin sheet for providing a thermally conductive resin sheet excellent in workability.
  • the alumina particles which is one of the two components constituting the ceramic mixture of the present invention, have good thermal conductivity and may be spherical or non-spherical.
  • spherical alumina particles having good fluidity are used as the alumina particles. Is used.
  • the spherical alumina particles refer to powders having a spherical shape or a shape close to a spherical shape among alumina powders.
  • spherical is evaluated by average sphericity.
  • the average sphericity can be measured as follows using a flow type particle image analyzer such as “FPIA-1000” manufactured by Sysmex Corporation.
  • FPIA-1000 the projected area
  • PM perimeter
  • the term “spherical” in the present invention means that the sphericity is in the range of 0.93 to 1.00, and if it is a normal commercial product and is clearly shown as spherical or spherical, this range is satisfied. .
  • the volume-based D50 of the spherical alumina particles needs to be 10 to 55 ⁇ m and is 25 to 55 ⁇ m from the viewpoint of the dispersibility of the ceramic mixture in the organic matrix, the performance of the obtained heat conductive resin sheet, and the like. It is preferably 45 to 55 ⁇ m. From the above viewpoint, spherical alumina particles having a sharp particle size distribution are preferred.
  • the volume-based D50 can be measured by a Coulter counter method, a laser diffraction scattering method, or the like.
  • spherical alumina particles it is preferable to measure by a Coulter counter method
  • flaky hexagonal boron nitride particles it is preferable to measure by a laser diffraction scattering method.
  • the flaky hexagonal boron nitride particles As the flaky hexagonal boron nitride particles as the other component constituting the ceramic mixture of the present invention, those having a volume-based D50 of 30 ⁇ m or less are used. When the volume-based D50 exceeds 30 ⁇ m, the heat conductive resin sheet from which the scaly particles can be easily oriented parallel to the thickness direction in the organic matrix is difficult to obtain desired heat conductivity.
  • the volume-based D50 of the flaky hexagonal boron nitride particles is preferably 5 to 30 ⁇ m, and more preferably 5 to 15 ⁇ m.
  • scale-like hexagonal boron nitride particles having a larger volume-based D50 within a range where the volume-based D50 does not exceed 30 ⁇ m, the interface between the particles is reduced and heat can be more easily transferred.
  • “scale-like” means the major axis L of the scale-like hexagonal boron nitride particles 10 as shown in the plan view of FIG. 1A and the XX cross-sectional view of FIG. 1A (FIG. 1).
  • (B)) means a form in which the ratio (aspect ratio (L: r)) to the thickness r (average thickness) of the particles 10 is 5: 1 to 20: 1.
  • the content of B 2 O 3 as an impurity inevitably mixed in the flaky hexagonal boron nitride is preferably 0.01 to 0.1% by mass, More preferably, it is -0.05 mass%.
  • the content of the flaky hexagonal boron nitride particles in the ceramic mixture of the present invention is required to be 5 to 30% by mass. When this content exceeds 30 mass%, the viscosity of the resin composition containing the organic matrix and the ceramic mixture increases, which causes a decrease in workability. In addition, since the scale-like hexagonal boron nitride particles are expensive, if this content exceeds 30% by mass, it becomes commercially disadvantageous. From such a viewpoint, the content of the flaky hexagonal boron nitride particles in the ceramic mixture is preferably 30% by mass or less. Moreover, if it is less than 5 mass%, the outstanding heat conductivity cannot be provided. The content is preferably 6 to 25% by mass, more preferably 10 to 25% by mass, further preferably 15 to 25% by mass, and particularly preferably 18 to 25% by mass.
  • the volume-based D50 of the spherical alumina particles is preferably 3 to 7 times, more preferably 4 to 6 times the volume-based D50 of the flaky hexagonal boron nitride particles.
  • the ratio is 3 to 7 times, it is possible to obtain a significantly higher thermal conductivity than when spherical alumina particles are used alone or scaly hexagonal boron nitride particles are used alone.
  • the spherical alumina particles and flaky hexagonal boron nitride particles described above are subjected to a surface treatment using various coupling agents, etc., as necessary, for the purpose of improving dispersibility in an organic matrix and improving processability. Also good.
  • Examples of the coupling agent include silane-based, titanate-based, and aluminum-based, among which silane-based coupling agents are preferable from the viewpoint of effects.
  • Examples of silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltri Ethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilinopropyltriethoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane and N- ⁇ - (N-vinyl Aminosilane compounds such as (benzylaminoethyl) - ⁇ -aminopropyltrieth
  • the ceramic-containing thermally conductive resin sheet of the present invention is formed by molding a resin composition containing 10 to 70% by volume of an organic matrix and 30 to 90% by volume of the ceramic mixture of the present invention described above. To do. If the ceramic mixture exceeds 90% by volume (organic matrix is less than 10% by volume), the organic matrix is too small to make it difficult to mold the resin composition, and the ceramic mixture is less than 30% by volume (organic matrix). If it exceeds 90% by volume), the fillers are less likely to come into contact with each other in the organic matrix, the thermal conductivity is lowered, and the thermal conductivity required for heat dissipation cannot be obtained.
  • the ceramic-containing thermally conductive resin sheet of the present invention excellent thermal conductivity, weight reduction of sheet weight, good workability and dielectric breakdown are either the following first aspect or second aspect. It is preferable in terms of characteristics. That is, in the first aspect, the content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 6 to 25% by mass, and the ceramic mixture is contained in the resin composition in a ratio of 75 to 80% by volume. This is a ceramic-containing thermally conductive resin sheet. By setting it as this aspect, heat conductivity can be 7 W / m * K or more.
  • the content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 15 to 25% by mass, and the ceramic mixture is contained in the resin composition at a ratio of 70 to 80% by volume.
  • This is a ceramic-containing thermally conductive resin sheet.
  • heat conductivity can be 9 W / m * K or more.
  • thermoly conductive resin sheet The organic matrix used in the ceramic-containing thermally conductive resin sheet of the present invention (hereinafter sometimes simply referred to as “thermally conductive resin sheet”) is the mechanical strength, heat resistance, and durability of the thermally conductive resin sheet. Depending on the required properties such as flexibility and flexibility, select from various thermosetting resins, thermoplastic resins, thermoplastic elastomers, etc. that are conventionally used as the organic matrix of the thermally conductive resin sheet Can be used. These organic matrices may be used singly or in combination of two or more. In the present invention, curable epoxy resins and curable silicone resins are particularly preferably used.
  • the curable epoxy resin used as the organic matrix in the heat conductive resin sheet of the present invention is an epoxy resin that is liquid at room temperature or a low softening point epoxy that is solid at room temperature from the viewpoint of dispersibility of the ceramic mixture in the organic matrix. Resins are preferred.
  • the curable epoxy resin is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, and an arbitrary one is appropriately selected from known compounds conventionally used as epoxy resins. Can be used. Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, glycidyl ethers of polycarboxylic acids, and epoxy resins obtained by epoxidation of cyclohexane derivatives.
  • epoxy resins from the viewpoints of heat resistance and workability, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and epoxy resins obtained by epoxidation of cyclohexane derivatives are suitable.
  • a curing agent for epoxy resin is usually used.
  • the curing agent for epoxy resin is not particularly limited, and any one of those conventionally used as curing agents for epoxy resins can be appropriately selected and used.
  • An anhydride system etc. are mentioned.
  • Preferable examples of the amine curing agent include dicyandiamide, aromatic diamines such as m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and m-xylylenediamine.
  • the phenolic curing agent include a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin, and a triazine-modified phenol novolak resin.
  • the acid anhydride curing agent include aliphatic acids such as alicyclic acid anhydrides such as methylhexahydrophthalic anhydride, aromatic acid anhydrides such as phthalic anhydride, and aliphatic dibasic acid anhydrides. And halogen-based acid anhydrides such as anhydride and chlorendic anhydride.
  • One of these curing agents may be used alone, or two or more thereof may be used in combination.
  • the amount of the epoxy resin curing agent used is usually about 0.5 to 1.5 equivalent ratio, preferably about 0.1 equivalent ratio to the curable epoxy resin, from the viewpoint of balance between curability and cured resin physical properties. It is selected in the range of 7 to 1.3 equivalent ratio.
  • the hardening accelerator for epoxy resins can be used together with the hardening
  • the hardening accelerator for epoxy resins There is no restriction
  • Examples thereof include imidazole compounds, 2,4,6-tris (dimethylaminomethyl) phenol, boron trifluoride amine complex, and triphenylphosphine.
  • These hardening accelerators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the epoxy resin curing accelerator used is usually about 0.1 to 10 parts by mass, preferably about 100 to 10 parts by mass, preferably 100 parts by mass of the curable epoxy resin, from the viewpoint of balance between curing acceleration and physical properties of the cured resin. It is selected in the range of 0.4 to 5 parts by mass.
  • a mixture of an addition reaction type silicone resin and a silicone-based crosslinking agent can be used.
  • the addition reaction type silicone resin include at least one selected from polyorganosiloxane having an alkenyl group as a functional group in the molecule.
  • Preferred examples of the polyorganosiloxane having an alkenyl group as a functional group in the molecule include polydimethylsiloxane having a vinyl group as a functional group, polydimethylsiloxane having a hexenyl group as a functional group, and a mixture thereof. .
  • silicone-based crosslinking agent examples include polyorganosiloxane having a structure in which at least two silicon and hydrogen are bonded in one molecule. Specific examples thereof include dimethylhydrogensiloxy group end-capped dimethylsiloxane-methylhydrogensiloxane copolymer, trimethylsiloxy group end-capped dimethylsiloxane-methylhydrogensiloxane copolymer, trimethylsiloxane group end-capped poly (methylhydrogen). Siloxane), poly (hydrogensilsesquioxane) and the like.
  • platinum compounds are usually used as the curing catalyst.
  • the platinum compounds include fine platinum, fine platinum adsorbed on a carbon powder carrier, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, palladium catalyst, rhodium catalyst, and the like. It is done.
  • the heat conductive resin sheet of the present invention can be produced, for example, as follows using an organic matrix and the ceramic mixture of the present invention.
  • a ceramic mixture having a concentration of about 59 to 80% by mass in which a ceramic mixture of the present invention comprising a mixture of spherical alumina particles of a predetermined ratio and flaky hexagonal boron nitride particles is dispersed in a suitable solvent.
  • a suspension of is prepared.
  • an organic matrix is added to the suspension so that the ceramic mixture is contained at a ratio of 30 to 90% by volume with respect to the total of the organic matrix and the ceramic mixture, thereby preparing a resin composition.
  • a curable epoxy resin When a curable epoxy resin is used as the main component of the organic matrix, a mixture of the curable epoxy resin, a curing agent for the epoxy resin, and a curing accelerator for the epoxy resin that is used as required is an organic matrix. Become. When a curable silicone resin is used as the main component of the organic matrix, a mixture of an addition reaction type silicone resin, a silicone-based crosslinking agent, and a curing catalyst becomes an organic matrix.
  • the ceramic mixture of the present invention is a mixture of spherical alumina particles and flaky hexagonal boron nitride particles, it can exhibit better thermal conductivity with lower filling than when spherical alumina particles are used.
  • the ceramic mixture is contained in an amount of 30 to 90% by volume based on the total of the organic matrix and the ceramic mixture, but is contained in a ratio of 70 to 80% by volume, or 75 to 80% by volume.
  • the volume-based content ratio (volume%, volume fraction) of the ceramic mixture, spherical alumina particles, and flaky hexagonal boron nitride particles is the specific gravity (3.98) of spherical alumina particles, flaky hexagonal It can be determined from the specific gravity (2.27) of the crystalline boron nitride particles and the specific gravity of the various resins used.
  • the resin composition prepared as described above can contain other additives as required in addition to the organic matrix and the ceramic mixture.
  • additives include plasticizers, pressure-sensitive adhesives, reinforcing agents, colorants, heat resistance improvers, and the like.
  • the resin composition is coated on a releasable film such as a resin film with a release layer with a normal coating machine, etc., and dried by a far-infrared radiation heater, hot air spraying, etc. to form a sheet Is done.
  • a releasable film such as a resin film with a release layer with a normal coating machine, etc.
  • a far-infrared radiation heater, hot air spraying, etc. to form a sheet Is done.
  • a melamine resin or the like is used as the resin film.
  • a polyester resin such as polyethylene terephthalate is used.
  • the resin sheet obtained above is further heated and cured under pressure as necessary to obtain the thermally conductive resin sheet of the present invention. It is done.
  • the thickness of the heat conductive resin sheet of the present invention thus obtained is preferably in the range of 0.1 to 10 mm, and more preferably in the range of 0.1 to 0.3 mm.
  • heat conductivity is 3 W / m * K or more, More preferably, it is 7 W / m * K or more, More preferably, it is 9 W / m * K or more.
  • the dielectric breakdown voltage which is an index of dielectric breakdown characteristics, is preferably 1.0 kV or higher, and more preferably 1.5 kV or higher.
  • the thermally conductive resin sheet of the present invention may be used by laminating or embedding a sheet-like, fibrous, or mesh-like member on one or both sides and in the sheet for the purpose of improving workability or reinforcing. .
  • the heat conductive resin sheet thus obtained is peeled off from the releasable film, or in the state where the releasable film is used as a protective film, the shape of the product for use as a heat conductive resin sheet can do.
  • the heat conductive resin sheet of this invention is good also as a structure which further provided the adhesive layer in the upper surface or lower surface of the heat conductive resin sheet, and this improves the convenience at the time of product use.
  • the heat conductive resin sheet of the present invention is used for transferring heat from heat-generating electronic components such as MPUs, power transistors, and transformers to heat-dissipating components such as heat-dissipating fins and heat-dissipating fans. Used by being sandwiched between heat dissipation components. As a result, heat transfer between the heat-generating electronic component and the heat-dissipating component is improved, and malfunction of the heat-generating electronic component can be significantly reduced.
  • the volume-based D50 of spherical alumina particles and flaky hexagonal boron nitride particles was measured using a particle size distribution meter.
  • measurement is performed using a model name “Granurometer 715” manufactured by Cirrus, and in the case of alumina particles, a volume standard using a model name “Multisizer” manufactured by Beckman Coulter. D50 was measured.
  • Thermal conductivity of thermal conductive resin sheet Measure the thermal diffusivity using the model name "Eye Phase Mobile” manufactured by Eye Phase Co., Ltd., and give the theoretical values of specific heat and density of each resin sheet. It is a value calculated by multiplying.
  • Examples 1 to 3 (1) Preparation of resin composition containing organic matrix and ceramic mixture
  • organic matrix liquid curable epoxy resin [manufactured by Japan Epoxy Resin, trade name “jER828”, bisphenol A type, epoxy equivalent of 184-194 g / eq, 25 A combination of 100 parts by mass with a specific gravity of 1.17] at 100 ° C. and 5 parts by mass of imidazole (trade name “2E4MZ-CN” manufactured by Shikoku Kasei Co., Ltd.) as a curing agent was used.
  • imidazole trade name “2E4MZ-CN” manufactured by Shikoku Kasei Co., Ltd.
  • spherical alumina particles made by Showa Titanium, trade name “CB”
  • scale-like hexagonal boron nitride particles made by Showa Denko, trade name “UHP-1”
  • volume-based D50 is 9 ⁇ m.
  • the spherical alumina particles three types having a volume-based D50 of 11 ⁇ m (may be described as “A10S”), 28 ⁇ m, and 51 ⁇ m (may be described as “A50S”) were used, respectively.
  • Example 1 using spherical alumina particles with D50 of 11 ⁇ m, Example 2 using Example 50 with spherical alumina particles with D50 of 28 ⁇ m, and using spherical alumina particles with D50 of 51 ⁇ m are used.
  • Example 3 was designated as Example 3.
  • MEK methyl ethyl ketone
  • the organic matrix is added to the ceramic mixture suspension so that the content of the ceramic mixture in the organic matrix becomes 70% by volume, and the mixture is stirred and mixed again with a homogenizer at a rotational speed of 5000 rpm for 10 minutes.
  • a resin composition was prepared.
  • thermally conductive resin sheet After the resin composition was applied on a release film cut to a width of 10.5 cm and a length of 13 cm with an applicator so that the cured film thickness was 500 ⁇ m or less, 40 It was allowed to stand for 30 minutes in a dryer set at ° C., and the solvent MEK was evaporated and dried to obtain three kinds of sheet-shaped resin compositions. Next, these three types of sheet-shaped resin compositions are pressure-bonded for 15 minutes at 120 ° C. and 1 MPa through different release films, respectively, thereby curing the sheet-shaped resin composition and three types of heat. A conductive resin sheet was produced. The thermal conductivity of the obtained three types of thermally conductive resin sheets was measured (average value of 30 points). The results are shown in Table 1 below.
  • Example 1 In Example 1 (1), spherical alumina particles (supra) [volume-based D50 of 28 ⁇ m (Example 4), 51 ⁇ m (Example 5)] and scaly hexagonal boron nitride were used as the ceramic mixture. The same operation as in Example 1 was performed except that a mixture of the particles (supra) with a mass ratio of 94: 6 was used and the content of the ceramic mixture was 80% by volume of the whole, and two kinds of heat A conductive resin sheet was produced. The thermal conductivity of the obtained two types of thermally conductive resin sheets was measured. The results are shown in Table 1 below.
  • Example 6 In Example 1 (1), as a ceramic mixture, a mixture of spherical alumina particles (supra) [volume-based D50 is 51 ⁇ m] and scaly hexagonal boron nitride particles (supra) 94: 6 A heat conductive resin sheet was produced in the same manner as in Example 1 except that the content of the ceramic mixture was 70% by volume of the whole. The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 1 below.
  • Example 7 In Example 1 (1), as a ceramic mixture, a mixture of spherical alumina particles (supra) [volume-based D50 is 51 ⁇ m] and scaly hexagonal boron nitride particles (supra) 79:21 A heat conductive resin sheet was produced in the same manner as in Example 1 except that the content of the ceramic mixture was 80% by volume of the total. The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 1 below.
  • Example 1 Preparation of Resin Composition Containing Organic Matrix and Spherical Alumina Particles
  • spherical alumina particles [volume-based D50 is 11 ⁇ m, 21 ⁇ m (“A20S”
  • a suspension of spherical alumina particles was prepared in the same manner as in Example 1 (1) except that only 4 types of 28 ⁇ m and 51 ⁇ m were used.
  • an example using a spherical alumina particle having a D50 of 11 ⁇ m is Comparative Example 1
  • an example using a spherical alumina particle having a D50 of 21 ⁇ m is a Comparative Example 2
  • a spherical alumina particle having a D50 of 28 ⁇ m is used.
  • the example used was Comparative Example 3, and the example using spherical alumina particles having a D50 of 51 ⁇ m was used as Comparative Example 4.
  • Example 1 (1) the same operation as in Example 1 (1) was performed except that an organic matrix was added to the suspension of spherical alumina particles so that the content of the spherical alumina particles in the organic matrix was 80% by volume. And four types of resin compositions were prepared.
  • the thermal conductivity in the thermally conductive resin sheets of Examples 1 to 7 of the present invention obtained using the ceramic mixture as the thermally conductive filler is determined by the amount of the ceramic mixture filled. They are in the range of 3.4 to 10.2 W / m ⁇ K at 70 volume% and 80 volume%, respectively.
  • the heat conductive resin sheet of the comparative example in which only 80% by volume of spherical alumina particles are filled as the heat conductive filler has a heat conductivity in the range of 3.8 to 4.7 W / m ⁇ K. is there.
  • the thermal conductivity of the thermally conductive resin sheet of the example and the comparative example when the volume-based D50 of the spherical alumina particles is 28 ⁇ m and 51 ⁇ m is compared, the thermal conductivity is obtained when the volume-based D50 of the spherical alumina particles is 28 ⁇ m.
  • the rates are 5.9 W / m ⁇ K and 5.3 W / m ⁇ K in Examples 2 and 4, respectively, while 3.3 W / m ⁇ K in Comparative Example 3, which is higher than that in Examples. Pretty low.
  • the thermal conductivities are 9.1 W / m ⁇ K and 10.2 W / m ⁇ K in Examples 3 and 7, respectively.
  • it is 4.7 W / m ⁇ K, which is significantly lower than that of the example.
  • Comparative Example 5 Preparation of resin composition containing organic matrix and spherical alumina particles A suspension of spherical alumina particles was prepared in the same manner as in Comparative Example 2 (1). Next, an operation similar to that in Comparative Example 2 (1) was performed except that an organic matrix was added to the suspension of spherical alumina particles so that the content of the spherical alumina particles in the organic matrix was 70% by volume. And a resin composition was prepared.
  • Example 6 Preparation of resin composition containing organic matrix and flaky hexagonal boron nitride particles
  • flaky hexagonal boron nitride particles [volume-based D50 Was used in the same manner as in Example 1 (1) except that only 9 ⁇ m] was used.
  • the same operation as in Example 1 (1) was performed except that an organic matrix was added to the suspension of spherical alumina particles so that the content of the spherical alumina particles in the organic matrix was 70% by volume.
  • a resin composition was prepared.
  • thermoelectric conductivity is hardly seen in the case of using a combination of spherical alumina with a small particle diameter instead of boron nitride or a filler using only boron nitride. It was.
  • Example 3 As the ceramic mixture, a mixture having a mass ratio of spherical alumina particles (supra) [volume-based D50 of 51 ⁇ m] and scaly hexagonal boron nitride particles (supra) is 97: 3, A heat conductive resin sheet was produced in the same manner as in Example 1 except that the content of the ceramic mixture was 70% by volume of the whole. The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 5 below.
  • Examples 8 to 14 and Comparative Examples 8 to 11 (1) Preparation of resin composition containing organic matrix and ceramic mixture
  • organic matrix liquid curable epoxy resin [manufactured by Japan Epoxy Resin, trade name “Epicoat 828”, bisphenol A type] 100 parts by mass, and curing agent Of 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name “Cureazole 2PN-CN”) was used in combination.
  • the particles described in Table 6 below were used as the ceramic mixture.
  • thermosetting resin composition of the resin sheet the same volume as the thermosetting resin composition, D R particulate silicon nitride filler 5 ⁇ m ⁇ SN-7: Electrochemical Industry Co., Ltd. ⁇ was added and premixed. This preliminary mixture was further kneaded with three rolls to obtain a compound in which the filler was uniformly dispersed in the solution of the thermosetting resin composition. Next, the above compound was applied onto a release treatment surface of a polyethylene terephthalate sheet having a single-sided release treatment with a thickness of 100 ⁇ m by a doctor blade method, followed by a heat drying treatment at 110 ° C. for 15 minutes. A stage-state thermally conductive resin sheet was prepared.
  • the said heat conductive resin sheet was heated at 120 degreeC for 1 hour, and 160 degreeC for 3 hours, and the heat conductive resin sheet was produced.
  • the thermal conductivity of the obtained heat conductive resin sheet was measured in the same manner as in Example 1 (30-point average value). The results are shown in Table 6 below.
  • thermally conductive resin sheet was bonded between a copper plate (40 ⁇ 40 ⁇ 5 mm 3 ) and an aluminum plate (30 ⁇ 30 ⁇ 5 mm 3 ) with an adhesive area of 30 ⁇ 30 mm 2 .
  • a test piece was prepared. The test piece was measured according to the withstand voltage test method of JIS C 2110 with a specified voltage of 1.5 kV and a specified time of 60 seconds. The case where dielectric breakdown did not occur was evaluated as acceptable ( ⁇ ), and the case where dielectric breakdown occurred was determined as unacceptable (x).
  • the heat conductive resin sheet was variously produced with the mixing
  • the ceramic mixture of the present invention is useful as a thermally conductive filler.
  • the heat conductive resin sheet of this invention obtained using this heat conductive filler is the heat dissipation components, such as a heat dissipation fin and a heat dissipation fan, for example, heat from heat generation electronic components, such as MPU, a power transistor, and a transformer. Can be used for heat transfer to.
  • the dielectric breakdown characteristics of the heat conductive resin sheet are good, it is possible to sufficiently cope with the thinning of the heat conductive resin sheet accompanying the downsizing of electronic devices and the like.

Abstract

A ceramic mixture of spherical alumina particles having a volumetric D50 of 10-55μm, and flake hexagonal boron nitride particles having a volumetric D50 of at most 30μm, wherein the content ratio of the flake hexagonal boron nitride particles is 5-30 mass%; and a ceramic-containing thermally-conductive resin sheet formed from a resin composition containing 10-70 vol% of an organic matrix and 30-90 vol% of the ceramic mixture.

Description

セラミックス混合物、及びそれを用いたセラミックス含有熱伝導性樹脂シートCeramic mixture and ceramic-containing thermally conductive resin sheet using the same
 本発明は、セラミックス混合物及びそれを用いたセラミックス含有熱伝導性樹脂シートに関する。さらに詳しくは、本発明は、高熱伝導性樹脂シートを与えるセラミックス混合物、及び該セラミックス混合物を用いてなる、発熱体から放熱部材へ熱を伝達させるために用いる熱伝導性樹脂シート、特に半導体素子等の発熱体からの熱を放熱部材に伝達させ、かつ絶縁層としても機能する熱伝導性樹脂層を形成するための熱伝導性樹脂シートに関するものである。 The present invention relates to a ceramic mixture and a ceramic-containing thermally conductive resin sheet using the ceramic mixture. More specifically, the present invention relates to a ceramic mixture that provides a highly thermally conductive resin sheet, and a thermally conductive resin sheet that is used to transfer heat from a heating element to a heat radiating member, particularly a semiconductor element, etc., using the ceramic mixture. The present invention relates to a heat conductive resin sheet for forming a heat conductive resin layer that transmits heat from the heating element to a heat radiating member and also functions as an insulating layer.
 近年、各種電子機器等に使用されているIC等の電子部品はその集積度が向上している。更に電子機器等の小型化の要求に対応するため、IC等の電子部品を小さなスペースに高密度に配置することにより、筐体内での発熱に対する放熱対策が大きな問題となっている。すなわち、IC等の電子部品は、温度が上昇すると電子部品の特性が変動して機器の誤作動の原因になったり電子部品自体が故障したりする。 In recent years, the degree of integration of electronic parts such as ICs used in various electronic devices has been improved. Furthermore, in order to meet the demand for downsizing of electronic devices and the like, heat radiation countermeasures against heat generation in the housing has become a big problem by arranging electronic components such as ICs in a small space with high density. In other words, when the temperature rises, the characteristics of the electronic component such as an IC may change the characteristics of the electronic component and cause malfunction of the device, or the electronic component itself may fail.
 一方で、高速化が進むCPUをはじめとする半導体ディバイス等から発生する発熱量が増大しているのに対し、各種電子機器等は、その装置の小型軽量化および薄型化が進展している。そのため、その性能および機能を維持するには、発生した熱を十分除去する必要があり、効率の良い放熱システムが要求されている。 On the other hand, while the amount of heat generated from semiconductor devices such as CPUs, which are increasing in speed, is increasing, various electronic devices have been made smaller and lighter and thinner. Therefore, in order to maintain the performance and function, it is necessary to sufficiently remove the generated heat, and an efficient heat dissipation system is required.
 電気・電子機器の発熱部から放熱部材へ熱を伝達させる熱伝導性樹脂層には、高熱伝導性、絶縁性、接着性の要求から、熱硬化性樹脂に無機充填材を添加した熱伝導性樹脂組成物が用いられている。
 例えばパワーモジュールにおいては、電力半導体素子を搭載したリードフレームの裏面と放熱部となる金属板との間に設ける熱伝導性樹脂層として、無機充填材を含有した熱硬化性樹脂シートや塗布膜を用いる技術が知られている(例えば、特許文献1参照)。
The heat conductive resin layer that transfers heat from the heat generating part of the electric / electronic device to the heat radiating member has high heat conductivity, insulation, and adhesive properties. A resin composition is used.
For example, in a power module, a thermosetting resin sheet or coating film containing an inorganic filler is used as a heat conductive resin layer provided between the back surface of a lead frame on which a power semiconductor element is mounted and a metal plate serving as a heat dissipation part. A technique to be used is known (see, for example, Patent Document 1).
 また、CPU等の発熱性電子部品と放熱フィンとの間に介在させる熱伝導性樹脂層として、高熱伝導性の無機粉体を充填した熱硬化性樹脂シートが知られている(例えば、特許文献2参照)。
 特許文献2にあるとおり無機粉体として球状アルミナ粒子は分散させやすく、高充填でき、熱伝導性シートに用いる熱伝導性充填材としては非常に有用である。そのため、その他の熱伝導性充填材との組合せによるものや有機マトリックスを変更して、熱伝導性充填材をより高充填させて高熱伝導にすることが検討されている(例えば特許文献3及び4参照)。
Further, as a heat conductive resin layer interposed between a heat generating electronic component such as a CPU and a heat radiating fin, a thermosetting resin sheet filled with highly heat conductive inorganic powder is known (for example, patent document). 2).
As disclosed in Patent Document 2, spherical alumina particles are easily dispersed as inorganic powder, can be highly filled, and are very useful as a heat conductive filler used for a heat conductive sheet. For this reason, it has been studied to change the organic matrix by changing the combination with other thermally conductive fillers or an organic matrix so that the thermally conductive fillers are filled more highly (for example, Patent Documents 3 and 4). reference).
 特許文献5では、高い放熱特性を発揮し得る無機粉末として、所定の球状無機質粉末と、この球状無機質粉末よりも平均粒子径が小さい非球状無機質粉末とを含む混合粉末からなり、平均粒子径が5~50μmである無機粉末を開示している。しかし、実際に評価を行っているのは、シリカ、アルミナ、炭化ケイ素、及び窒化アルミニウムから選ばれた組合せで、その他の無機粉末で同様な効果が得られるかどうかは不明である。
 また、アルミナのような比重の高いフィラーを高充填すると熱伝導性樹脂シート自体が重くなり、電子機器等の小型化・軽量化への対応が困難になるといった問題がある。
 さらに、電子機器等の小型化に伴い、熱伝導性樹脂シート薄膜化が進むと絶縁破壊特性が低下する可能性がある。また、高熱伝導性を有するとされている窒化アルミニウムは、大気中の水分に対して不安定で取り扱いが難しい上、高価であり、同じく熱伝導性に優れた炭化ケイ素は絶縁破壊特性が劣ることが問題であった。
 例えば、特許文献6には、粒径5μmの窒化珪素と粒径7μmの窒化硼素との併用系の熱伝導性樹脂シートが開示されているが、窒化珪素の粒径が小さ過ぎるために均一分散が困難な場合があり、必ずしも併用の効果をもたらすとは限らないという問題がある。また該文献には炭化珪素と窒化硼素との併用系の熱伝導性樹脂シートも開示されているが、炭化珪素を使用する系は絶縁破壊特性に劣る場合がある。
In Patent Document 5, the inorganic powder capable of exhibiting high heat dissipation characteristics is a mixed powder containing a predetermined spherical inorganic powder and a non-spherical inorganic powder having an average particle diameter smaller than that of the spherical inorganic powder, and the average particle diameter is Inorganic powders that are 5-50 μm are disclosed. However, it is unclear whether the same effect can be obtained with other inorganic powders by actually evaluating the combination selected from silica, alumina, silicon carbide, and aluminum nitride.
In addition, when a high specific filler such as alumina is highly filled, the heat conductive resin sheet itself becomes heavy, which makes it difficult to reduce the size and weight of electronic devices.
Furthermore, along with the downsizing of electronic devices and the like, if the thermal conductive resin sheet is made thinner, the dielectric breakdown characteristics may deteriorate. In addition, aluminum nitride, which is said to have high thermal conductivity, is unstable and difficult to handle due to moisture in the atmosphere, is expensive, and silicon carbide, which also has excellent thermal conductivity, has poor dielectric breakdown characteristics. Was a problem.
For example, Patent Document 6 discloses a thermal conductive resin sheet using a combination of silicon nitride having a particle diameter of 5 μm and boron nitride having a particle diameter of 7 μm. However, since the particle diameter of silicon nitride is too small, uniform dispersion is disclosed. However, there is a problem that it is not always possible to bring about the combined effect. The document also discloses a thermal conductive resin sheet using silicon carbide and boron nitride, but a system using silicon carbide may have poor dielectric breakdown characteristics.
特開2001-196495号公報JP 2001-196495 A 特開2003-253136号公報JP 2003-253136 A 特開平11-87958号公報Japanese Patent Laid-Open No. 11-87958 特開2000-1616号公報JP 2000-1616 A 特開2007-70474号公報JP 2007-70474 A 特許第4089636号公報Japanese Patent No. 4089636
 本発明は、このような状況下になされたものであり、従来以上に優れた熱伝導率を有すると共に、シート重量の軽量化を図ることができ、加工性にも優れ、かつ絶縁破壊特性が良好な熱伝導性樹脂シートを与えるセラミックス混合物、及び該セラミックス混合物を用いた上記性状を有するセラミックス含有熱伝導性樹脂シートを提供することを目的とするものである。 The present invention has been made under such circumstances, has a thermal conductivity superior to that of the conventional one, can reduce the weight of the sheet, is excellent in workability, and has a dielectric breakdown characteristic. It is an object of the present invention to provide a ceramic mixture that gives a good heat conductive resin sheet, and a ceramic-containing heat conductive resin sheet having the above properties using the ceramic mixture.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
 まず、鱗片状六方晶窒化ホウ素粒子は、高い熱伝導性を有しているものの、有機マトリックス中に分散させにくく、加工性が悪いという欠点がある。そこで、流動性の良好な球状アルミナ粒子と混合することにより、鱗片状六方晶窒化ホウ素粒子が分散させやすくなり、加工性が向上することを見出した。また、鱗片状六方晶窒化ホウ素粒子が面方向に高い熱伝導率を有するという特徴を利用し、球状アルミナ粒子に骨材としての役割を担わせることで、熱伝導性シートの厚み方向に配向させることで高い熱伝導率を得られることを見出した。また、絶縁破壊特性の劣る炭化ケイ素でなく、アルミナを用いることにより、優れた絶縁破壊特性が得られることが判った。
 上記のような知見より、特定の粒径を有する鱗片状六方晶窒化ホウ素粒子と、特定の粒径を有する球状アルミナ粒子とを、所定の割合で含むセラミックス混合物を、熱伝導性充填材として用いることにより、アルミナ粒子や窒化ホウ素粒子を単独で用いたときよりも、従来以上に優れた熱伝導率を有すると共に、シート重量の軽量化を図ることができ、かつ加工性にも優れる熱伝導性樹脂シートが得られることを見出した。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
First, although the flaky hexagonal boron nitride particles have high thermal conductivity, they are disadvantageous in that they are difficult to disperse in an organic matrix and have poor processability. Thus, it has been found that by mixing with spherical alumina particles having good fluidity, the scale-like hexagonal boron nitride particles can be easily dispersed and the workability is improved. In addition, by utilizing the feature that scaly hexagonal boron nitride particles have high thermal conductivity in the plane direction, spherical alumina particles play a role as an aggregate, so that they are oriented in the thickness direction of the thermal conductive sheet. It has been found that high thermal conductivity can be obtained. It was also found that excellent dielectric breakdown characteristics can be obtained by using alumina instead of silicon carbide having poor dielectric breakdown characteristics.
Based on the above findings, a ceramic mixture containing, in a predetermined ratio, flaky hexagonal boron nitride particles having a specific particle size and spherical alumina particles having a specific particle size is used as a thermally conductive filler. As a result, the thermal conductivity is superior to that of using alumina particles and boron nitride particles alone, and the weight of the sheet can be reduced and the workability is excellent. It has been found that a resin sheet can be obtained.
 すなわち、本発明は下記の通りである。
[1]体積基準のD50(50体積%粒径)が10~55μmである球状アルミナ粒子と、体積基準のD50が30μm以下の鱗片状六方晶窒化ホウ素粒子との混合物であって、前記鱗片状六方晶窒化ホウ素粒子の含有割合が5~30質量%であることを特徴とするセラミックス混合物。
[2] 鱗片状六方晶窒化ホウ素粒子の体積基準のD50が、5~30μmである[1]に記載のセラミックス混合物。
[3] 有機マトリックス10~70体積%と、[1]又は[2]に記載のセラミックス混合物30~90体積%とを含有する樹脂組成物を成形してなるセラミックス含有熱伝導性樹脂シート。
[4] 前記球状アルミナの体積基準のD50が、前記鱗片状六方晶窒化ホウ素粒子の体積基準のD50に対して3~7倍である、[3]に記載のセラミックス含有熱伝導性樹脂シート。
[5] 前記セラミックス混合物における前記球状アルミナ粒子の体積基準のD50が45~55μmであり、当該セラミックス混合物が前記樹脂組成物中に70~80体積%の割合で含まれる[3]に記載のセラミックス含有熱伝導性樹脂シート。
[6] 前記セラミックス混合物における前記鱗片状六方晶窒化ホウ素粒子の含有割合が6~25質量%であり、当該セラミックス混合物が前記樹脂組成物中に75~80体積%の割合で含まれる[5]に記載のセラミックス含有熱伝導性樹脂シート。
[7] 熱伝導率が7W/m・K以上である[6]に記載のセラミックス含有熱伝導性樹脂シート。
[8] 前記セラミックス混合物における前記鱗片状六方晶窒化ホウ素粒子の含有割合が15~25質量%であり、当該セラミックス混合物が前記樹脂組成物中に70~80体積%の割合で含まれる[5]に記載のセラミックス含有熱伝導性樹脂シート。
[9] 熱伝導率が9W/m・K以上である[8]に記載のセラミックス含有熱伝導性樹脂シート。
[10] 前記有機マトリックスが硬化性エポキシ樹脂を含む[4]~[9]のいずれかに記載のセラミックス含有熱伝導性樹脂シート。
[11] 前記有機マトリックスが硬化性シリコーン樹脂を含む[4]~[9]のいずれかに記載のセラミックス含有熱伝導性樹脂シート。
That is, the present invention is as follows.
[1] A mixture of spherical alumina particles having a volume-based D50 (50% by volume particle diameter) of 10 to 55 μm and flaky hexagonal boron nitride particles having a volume-based D50 of 30 μm or less, wherein the flaky shape A ceramic mixture, wherein the content of hexagonal boron nitride particles is 5 to 30% by mass.
[2] The ceramic mixture according to [1], wherein the volume-based D50 of the flaky hexagonal boron nitride particles is 5 to 30 μm.
[3] A ceramic-containing thermally conductive resin sheet obtained by molding a resin composition containing 10 to 70% by volume of an organic matrix and 30 to 90% by volume of the ceramic mixture according to [1] or [2].
[4] The ceramic-containing thermally conductive resin sheet according to [3], wherein the volume-based D50 of the spherical alumina is 3 to 7 times the volume-based D50 of the flaky hexagonal boron nitride particles.
[5] The ceramic according to [3], wherein the volume-based D50 of the spherical alumina particles in the ceramic mixture is 45 to 55 μm, and the ceramic mixture is contained in the resin composition in a proportion of 70 to 80% by volume. Contains thermally conductive resin sheet.
[6] The content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 6 to 25% by mass, and the ceramic mixture is contained in the resin composition in a ratio of 75 to 80% by volume [5]. A ceramic-containing thermally conductive resin sheet according to 1.
[7] The ceramic-containing thermally conductive resin sheet according to [6], wherein the thermal conductivity is 7 W / m · K or more.
[8] The content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 15 to 25% by mass, and the ceramic mixture is contained in the resin composition at a ratio of 70 to 80% by volume [5]. A ceramic-containing thermally conductive resin sheet according to 1.
[9] The ceramic-containing thermally conductive resin sheet according to [8], wherein the thermal conductivity is 9 W / m · K or more.
[10] The ceramic-containing thermally conductive resin sheet according to any one of [4] to [9], wherein the organic matrix includes a curable epoxy resin.
[11] The ceramic-containing thermally conductive resin sheet according to any one of [4] to [9], wherein the organic matrix includes a curable silicone resin.
 本発明によれば、従来以上に優れた熱伝導率を有すると共に、シート重量の軽量化を図ることができ、加工性にも優れ、かつ絶縁破壊特性が良好な熱伝導性樹脂シートを与えるセラミックス混合物、及び該セラミックス混合物を用いてなる上記性状を有する熱伝導性樹脂シートを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ceramic which provides the heat conductive resin sheet which has the thermal conductivity superior to the past, can reduce the weight of a sheet | seat, is excellent in workability, and has a favorable dielectric breakdown characteristic. It is possible to provide a thermally conductive resin sheet having the above-described properties using the mixture and the ceramic mixture.
鱗片状六方晶窒化ホウ素粒子の「鱗片状」の形態を説明する図であり、図1(A)は平面図を示し、図1(B)は図1(A)におけるX-X断面図を示す。FIG. 1A is a diagram illustrating a “scale-like” form of scaly hexagonal boron nitride particles. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line XX in FIG. Show.
 まず、本発明のセラミックス混合物について説明する。
[セラミックス混合物]
 本発明のセラミックス混合物は、従来以上に優れた熱伝導率を有すると共に、シート重量の軽量化を図ることができ、かつ加工性にも優れる熱伝導性樹脂シートを提供するための熱伝導性充填材であり、体積基準のD50が10~55μmである球状アルミナ粒子と、体積基準のD50が30μm以下の鱗片状六方晶窒化ホウ素粒子との混合物であって、前記鱗片状六方晶窒化ホウ素粒子の含有割合が5~30質量%であることを特徴とする。
First, the ceramic mixture of the present invention will be described.
[Ceramic mixture]
The ceramic mixture of the present invention has a thermal conductivity superior to that of the prior art, can reduce the weight of the sheet, and provides a thermally conductive resin sheet for providing a thermally conductive resin sheet excellent in workability. A mixture of spherical alumina particles having a volume-based D50 of 10 to 55 μm and flaky hexagonal boron nitride particles having a volume-based D50 of 30 μm or less, the flaky hexagonal boron nitride particles The content is 5 to 30% by mass.
(球状アルミナ粒子)
 本発明のセラミックス混合物を構成する2つの成分の中の一方の成分であるアルミナ粒子は、熱伝導性が良好であり、球状や非球状のものがある。本発明のセラミックス混合物においては、もう一方の成分である後述の鱗片状六方晶窒化ホウ素粒子が有機マトリックス中に分散させにくい点を考慮して、このアルミナ粒子として、流動性の良好な球状アルミナ粒子を用いる。ここで、球状アルミナ粒子とは、アルミナ粉末のうち粒子形状が球状ないし、球状に近い形状をなす粉末をいう。
(Spherical alumina particles)
The alumina particles, which is one of the two components constituting the ceramic mixture of the present invention, have good thermal conductivity and may be spherical or non-spherical. In the ceramic mixture of the present invention, in view of the difficulty of dispersing the later-described flaky hexagonal boron nitride particles as the other component in the organic matrix, spherical alumina particles having good fluidity are used as the alumina particles. Is used. Here, the spherical alumina particles refer to powders having a spherical shape or a shape close to a spherical shape among alumina powders.
 なお、本発明において、「球状」とは、平均球形度で評価される。平均球形度は、例えばシスメチックス社製商品名「FPIA-1000」等のフロー式粒子像分析装置を用い、次のようにして測定することができる。まず、粒子像から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表示できる。そこで試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定するとPM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出できる。これを任意に選ばれた100個以上の粒子について測定し、その平均値を平均球形度とする。本発明における「球状」とは、上記球形度が0.93~1.00の範囲にあるものをいい、通常の市販品で球状または球形と明示されているものであれば、この範囲を満たす。 In the present invention, “spherical” is evaluated by average sphericity. The average sphericity can be measured as follows using a flow type particle image analyzer such as “FPIA-1000” manufactured by Sysmex Corporation. First, the projected area (A) and the perimeter (PM) of the particle are measured from the particle image. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle has a spherical shape. The degree can be calculated as sphericity = A / B = A × 4π / (PM) 2 . This is measured for 100 or more particles arbitrarily selected, and the average value is defined as the average sphericity. The term “spherical” in the present invention means that the sphericity is in the range of 0.93 to 1.00, and if it is a normal commercial product and is clearly shown as spherical or spherical, this range is satisfied. .
 当該球状アルミナ粒子の体積基準のD50は、セラミックス混合物の有機マトリックスに対する分散性や、得られる熱伝導性樹脂シートの性能等の観点から、10~55μmであることを要し、25~55μmであることが好ましく、45~55μmであることがより好ましい。また、上記観点から粒度分布のシャープな球状アルミナ粒子が好ましい。
 なお、本発明において体積基準のD50は、コールター・カウンター法やレーザ回折散乱法等によって測定することができる。例えば、球状アルミナ粒子の場合は、コールター・カウンター法により測定し、鱗片状六方晶窒化ホウ素粒子の場合は、レーザ回折散乱法により測定することが好ましい。
The volume-based D50 of the spherical alumina particles needs to be 10 to 55 μm and is 25 to 55 μm from the viewpoint of the dispersibility of the ceramic mixture in the organic matrix, the performance of the obtained heat conductive resin sheet, and the like. It is preferably 45 to 55 μm. From the above viewpoint, spherical alumina particles having a sharp particle size distribution are preferred.
In the present invention, the volume-based D50 can be measured by a Coulter counter method, a laser diffraction scattering method, or the like. For example, in the case of spherical alumina particles, it is preferable to measure by a Coulter counter method, and in the case of flaky hexagonal boron nitride particles, it is preferable to measure by a laser diffraction scattering method.
(鱗片状六方晶窒化ホウ素粒子)
 本発明のセラミックス混合物を構成するもう一方の成分である鱗片状六方晶窒化ホウ素粒子としては、体積基準のD50が30μm以下のものが用いられる。体積基準のD50が30μmを超えると、有機マトリックス中で鱗片状粒子が厚み方向に対して平行に配向しやすくなり得られる熱伝導性樹脂シートは所望の熱伝導性が得られにくい。
 当該鱗片状六方晶窒化ホウ素粒子の体積基準のD50は、5~30μmであることが好ましく、5~15μmであることがより好ましい。体積基準のD50が5μm未満であると、有機マトリックス及びセラミックス混合物を含む樹脂組成物の粘度が上昇してしまい、加工性が低下する場合がある。
 体積基準のD50が30μmを超えない範囲で、より大きな体積基準のD50を持った鱗片状六方晶窒化ホウ素粒子を用いることで、粒子間の界面が少なくなり熱をより伝えやすくなるといった効果を奏する。
 ここで、「鱗片状」とは、図1(A)の平面図に示すような、鱗片状六方晶窒化ホウ素粒子10の長径Lと、図1(A)のX-X断面図(図1(B))に示すような当該粒子10の厚みr(平均厚み)との比(アスペクト比(L:r))が5:1~20:1である形態を意味する。
(Scale-like hexagonal boron nitride particles)
As the flaky hexagonal boron nitride particles as the other component constituting the ceramic mixture of the present invention, those having a volume-based D50 of 30 μm or less are used. When the volume-based D50 exceeds 30 μm, the heat conductive resin sheet from which the scaly particles can be easily oriented parallel to the thickness direction in the organic matrix is difficult to obtain desired heat conductivity.
The volume-based D50 of the flaky hexagonal boron nitride particles is preferably 5 to 30 μm, and more preferably 5 to 15 μm. When the volume-based D50 is less than 5 μm, the viscosity of the resin composition containing the organic matrix and the ceramic mixture increases, and the workability may decrease.
By using scale-like hexagonal boron nitride particles having a larger volume-based D50 within a range where the volume-based D50 does not exceed 30 μm, the interface between the particles is reduced and heat can be more easily transferred. .
Here, “scale-like” means the major axis L of the scale-like hexagonal boron nitride particles 10 as shown in the plan view of FIG. 1A and the XX cross-sectional view of FIG. 1A (FIG. 1). (B)) means a form in which the ratio (aspect ratio (L: r)) to the thickness r (average thickness) of the particles 10 is 5: 1 to 20: 1.
 当該鱗片状六方晶窒化ホウ素中に不純物(例えば、B23)が多く含まれていると、硬化を必要とする有機マトリックスを用いる場合、硬化阻害の要因となる。また、得られる熱伝導性樹脂シートの熱伝導性が低下する要因となる。このような観点から、当該鱗片状六方晶窒化ホウ素中に不可避的に混入される不純物のB23の含有量は、0.01~0.1質量%であることが好ましく、0.01~0.05質量%であることがより好ましい。 When a large amount of impurities (for example, B 2 O 3 ) is contained in the flaky hexagonal boron nitride, when an organic matrix that requires curing is used, it becomes a factor of inhibition of curing. Moreover, it becomes a factor by which the heat conductivity of the obtained heat conductive resin sheet falls. From such a viewpoint, the content of B 2 O 3 as an impurity inevitably mixed in the flaky hexagonal boron nitride is preferably 0.01 to 0.1% by mass, More preferably, it is -0.05 mass%.
 本発明のセラミックス混合物における当該鱗片状六方晶窒化ホウ素粒子の含有量は、5~30質量%であることを要する。この含有量が30質量%を超えると、有機マトリックス及びセラミックス混合物を含む樹脂組成物の粘度が増大して、加工性を低下させる要因となる。また、鱗片状六方晶窒化ホウ素粒子は高価であるため、この含有量が30質量%を超えると、商業的にも不利となる。このような観点から、セラミックス混合物における当該鱗片状六方晶窒化ホウ素粒子の含有量は30質量%以下が好ましい。また、5質量%未満では、優れた熱伝導性を付与することができない。含有量は6~25質量%が好ましく、10~25質量%がより好ましく、15~25質量%がさらに好ましく、18~25質量%が特に好ましい。 The content of the flaky hexagonal boron nitride particles in the ceramic mixture of the present invention is required to be 5 to 30% by mass. When this content exceeds 30 mass%, the viscosity of the resin composition containing the organic matrix and the ceramic mixture increases, which causes a decrease in workability. In addition, since the scale-like hexagonal boron nitride particles are expensive, if this content exceeds 30% by mass, it becomes commercially disadvantageous. From such a viewpoint, the content of the flaky hexagonal boron nitride particles in the ceramic mixture is preferably 30% by mass or less. Moreover, if it is less than 5 mass%, the outstanding heat conductivity cannot be provided. The content is preferably 6 to 25% by mass, more preferably 10 to 25% by mass, further preferably 15 to 25% by mass, and particularly preferably 18 to 25% by mass.
 球状アルミナ粒子の体積基準のD50が鱗片状六方晶窒化ホウ素粒子の体積基準のD50に対して、3~7倍であることが好ましく、4~6倍であることがより好ましい。3~7倍であることで、球状アルミナ粒子単独使用や鱗片状六方晶窒化ホウ素粒子の単独使用の場合に比べて、顕著に高い熱伝導率を得ることができる。 The volume-based D50 of the spherical alumina particles is preferably 3 to 7 times, more preferably 4 to 6 times the volume-based D50 of the flaky hexagonal boron nitride particles. When the ratio is 3 to 7 times, it is possible to obtain a significantly higher thermal conductivity than when spherical alumina particles are used alone or scaly hexagonal boron nitride particles are used alone.
 前述した球状アルミナ粒子や鱗片状六方晶窒化ホウ素粒子は、有機マトリックスに対する分散性を高め、加工性を向上させる等の目的で、必要に応じ、各種カップリング剤等を用いて表面処理を施してもよい。 The spherical alumina particles and flaky hexagonal boron nitride particles described above are subjected to a surface treatment using various coupling agents, etc., as necessary, for the purpose of improving dispersibility in an organic matrix and improving processability. Also good.
(カップリング剤)
 カップリング剤としては、シラン系、チタネート系、アルミニウム系等が挙げられるが、これらの中で効果の点から、シラン系カップリング剤が好ましい。シラン系カップリング剤としては、特にγ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシランおよびN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン等のアミノシラン化合物が好ましく用いられる。
(Coupling agent)
Examples of the coupling agent include silane-based, titanate-based, and aluminum-based, among which silane-based coupling agents are preferable from the viewpoint of effects. Examples of silane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, and γ- (2-aminoethyl) aminopropyltri Ethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane and N-β- (N-vinyl Aminosilane compounds such as (benzylaminoethyl) -γ-aminopropyltriethoxysilane are preferably used.
 次に、本発明のセラミックス含有熱伝導性樹脂シートについて説明する。
[セラミックス含有熱伝導性樹脂シート]
 本発明のセラミックス含有熱伝導性樹脂シートは、有機マトリックス10~70体積%と、既述の本発明のセラミックス混合物30~90体積%とを含有する樹脂組成物を成形してなることを特徴とする。
 セラミックス混合物が90体積%超(有機マトリックスが10体積%未満)では、有機マトリックスがあまりにも少ないために樹脂組成物の成形が困難となってしてしまい、セラミックス混合物が30体積%未満(有機マトリックスが90体積%超)では、フィラー同士が有機マトリックス内で接触しにくくなり、熱伝導特性が低下し、放熱に必要とされる熱伝導率が得られなくなってしてしまう。
Next, the ceramic-containing thermally conductive resin sheet of the present invention will be described.
[Ceramics-containing thermally conductive resin sheet]
The ceramic-containing thermally conductive resin sheet of the present invention is formed by molding a resin composition containing 10 to 70% by volume of an organic matrix and 30 to 90% by volume of the ceramic mixture of the present invention described above. To do.
If the ceramic mixture exceeds 90% by volume (organic matrix is less than 10% by volume), the organic matrix is too small to make it difficult to mold the resin composition, and the ceramic mixture is less than 30% by volume (organic matrix). If it exceeds 90% by volume), the fillers are less likely to come into contact with each other in the organic matrix, the thermal conductivity is lowered, and the thermal conductivity required for heat dissipation cannot be obtained.
 本発明のセラミックス含有熱伝導性樹脂シートにおいては、下記第1の態様及び第2の態様のいずれかであることが、優れた熱伝導率、シート重量の軽量化、良好な加工性及び絶縁破壊特性の点から好ましい。
 すなわち、第1の態様は、セラミックス混合物における鱗片状六方晶窒化ホウ素粒子の含有割合が6~25質量%であり、当該セラミックス混合物が前記樹脂組成物中に75~80体積%の割合で含まれるセラミックス含有熱伝導性樹脂シートである。かかる態様とすることで、熱伝導率を7W/m・K以上とすることができる。
 また、第2の態様は、セラミックス混合物における前記鱗片状六方晶窒化ホウ素粒子の含有割合が15~25質量%であり、当該セラミックス混合物が前記樹脂組成物中に70~80体積%の割合で含まれるセラミックス含有熱伝導性樹脂シートである。かかる態様とすることで、熱伝導率を9W/m・K以上とすることができる。
In the ceramic-containing thermally conductive resin sheet of the present invention, excellent thermal conductivity, weight reduction of sheet weight, good workability and dielectric breakdown are either the following first aspect or second aspect. It is preferable in terms of characteristics.
That is, in the first aspect, the content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 6 to 25% by mass, and the ceramic mixture is contained in the resin composition in a ratio of 75 to 80% by volume. This is a ceramic-containing thermally conductive resin sheet. By setting it as this aspect, heat conductivity can be 7 W / m * K or more.
In the second aspect, the content ratio of the flaky hexagonal boron nitride particles in the ceramic mixture is 15 to 25% by mass, and the ceramic mixture is contained in the resin composition at a ratio of 70 to 80% by volume. This is a ceramic-containing thermally conductive resin sheet. By setting it as this aspect, heat conductivity can be 9 W / m * K or more.
(有機マトリックス)
 本発明のセラミックス含有熱伝導性樹脂シート(以下、単に「熱伝導性樹脂シート」と称することがある。)に用いられる有機マトリックスは、熱伝導性樹脂シートの機械的強度、耐熱性、耐久性、柔軟性、可撓性等の要求特性に応じて、従来熱伝導性樹脂シートの有機マトリックスとして使用されている各種の熱硬化性樹脂、熱可塑性樹脂、熱可塑性エラストマー等の中から、適宜選択して用いることができる。これらの有機マトリックスは、一種用いてもよく、二種以上を組み合わせて用いてもよいが、本発明においては、特に硬化性エポキシ樹脂や、硬化性シリコーン樹脂が好適に用いられる。
(Organic matrix)
The organic matrix used in the ceramic-containing thermally conductive resin sheet of the present invention (hereinafter sometimes simply referred to as “thermally conductive resin sheet”) is the mechanical strength, heat resistance, and durability of the thermally conductive resin sheet. Depending on the required properties such as flexibility and flexibility, select from various thermosetting resins, thermoplastic resins, thermoplastic elastomers, etc. that are conventionally used as the organic matrix of the thermally conductive resin sheet Can be used. These organic matrices may be used singly or in combination of two or more. In the present invention, curable epoxy resins and curable silicone resins are particularly preferably used.
<硬化性エポキシ樹脂>
 本発明の熱伝導性樹脂シートにおいて有機マトリックスとして用いられる硬化性エポキシ樹脂としては、セラミックス混合物の有機マトリックスに対する分散性の観点から、常温で液状のエポキシ樹脂や、常温で固体状の低軟化点エポキシ樹脂が好ましい。
 この硬化性エポキシ樹脂としては、一分子中に2個以上のエポキシ基を有する化合物であれば特に制限されず、従来エポキシ樹脂として使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。このようなエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ポリカルボン酸のグリシジルエーテル、シクロヘキサン誘導体のエポキシ化により得られるエポキシ樹脂等が挙げられる。これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。前記エポキシ樹脂の中では、耐熱性、及び作業性等の観点からは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、シクロヘキサン誘導体のエポキシ化により得られるエポキシ樹脂が好適である。
<Curable epoxy resin>
The curable epoxy resin used as the organic matrix in the heat conductive resin sheet of the present invention is an epoxy resin that is liquid at room temperature or a low softening point epoxy that is solid at room temperature from the viewpoint of dispersibility of the ceramic mixture in the organic matrix. Resins are preferred.
The curable epoxy resin is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, and an arbitrary one is appropriately selected from known compounds conventionally used as epoxy resins. Can be used. Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, glycidyl ethers of polycarboxylic acids, and epoxy resins obtained by epoxidation of cyclohexane derivatives. These may be used individually by 1 type, and may be used in combination of 2 or more types. Among the epoxy resins, from the viewpoints of heat resistance and workability, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and epoxy resins obtained by epoxidation of cyclohexane derivatives are suitable.
<エポキシ樹脂用硬化剤>
 硬化性エポキシ樹脂を硬化させるために、通常エポキシ樹脂用硬化剤が用いられる。
 このエポキシ樹脂用硬化剤としては、特に制限はなく、従来エポキシ樹脂の硬化剤として使用されているものの中から、任意のものを適宜選択して用いることができ、例えばアミン系、フェノール系、酸無水物系等が挙げられる。
 アミン系硬化剤としては、例えばジシアンジアミドや、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、m-キシリレンジアミン等の芳香族ジアミン等が好ましく挙げられる。
 フェノール系硬化剤としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、トリアジン変性フェノールノボラック樹脂等が好ましく挙げられる。また、酸無水物系硬化剤としては、例えばメチルヘキサヒドロ無水フタル酸等の脂環式酸無水物、無水フタル酸等の芳香族酸無水物、脂肪族二塩基酸無水物等の脂肪族酸無水物、クロレンド酸無水物等のハロゲン系酸無水物等が挙げられる。
 これらの硬化剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。このエポキシ樹脂用硬化剤の使用量は、硬化性及び硬化樹脂物性のバランス等の点から、前記硬化性エポキシ樹脂に対する当量比で、通常0.5~1.5当量比程度、好ましくは0.7~1.3当量比の範囲で選定される。
<Curing agent for epoxy resin>
In order to cure the curable epoxy resin, a curing agent for epoxy resin is usually used.
The curing agent for epoxy resin is not particularly limited, and any one of those conventionally used as curing agents for epoxy resins can be appropriately selected and used. For example, amine-based, phenol-based, acid-based, and the like. An anhydride system etc. are mentioned.
Preferable examples of the amine curing agent include dicyandiamide, aromatic diamines such as m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and m-xylylenediamine.
Preferable examples of the phenolic curing agent include a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin, and a triazine-modified phenol novolak resin. Examples of the acid anhydride curing agent include aliphatic acids such as alicyclic acid anhydrides such as methylhexahydrophthalic anhydride, aromatic acid anhydrides such as phthalic anhydride, and aliphatic dibasic acid anhydrides. And halogen-based acid anhydrides such as anhydride and chlorendic anhydride.
One of these curing agents may be used alone, or two or more thereof may be used in combination. The amount of the epoxy resin curing agent used is usually about 0.5 to 1.5 equivalent ratio, preferably about 0.1 equivalent ratio to the curable epoxy resin, from the viewpoint of balance between curability and cured resin physical properties. It is selected in the range of 7 to 1.3 equivalent ratio.
<エポキシ樹脂用硬化促進剤>
 本発明において、エポキシ樹脂用硬化剤と共に、必要に応じてエポキシ樹脂用硬化促進剤を併用することができる。
 このエポキシ樹脂用硬化促進剤としては、特に制限はなく、従来エポキシ樹脂の硬化促進剤として使用されているものの中から、任意のものを適宜選択して用いることができる。例えば、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、2,4,6-トリス(ジメチルアミノメチル)フェノール、三フッ化ホウ素アミン錯体、トリフェニルホスフィン等が挙げられる。
 これらの硬化促進剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。このエポキシ樹脂用硬化促進剤の使用量は、硬化促進性及び硬化樹脂物性のバランス等の点から、前記硬化性のエポキシ樹脂100質量部に対し、通常0.1~10質量部程度、好ましくは0.4~5質量部の範囲で選定される。
<Curing accelerator for epoxy resin>
In this invention, the hardening accelerator for epoxy resins can be used together with the hardening | curing agent for epoxy resins as needed.
There is no restriction | limiting in particular as this hardening accelerator for epoxy resins, From the things conventionally used as a hardening accelerator of an epoxy resin, arbitrary things can be selected suitably and can be used. For example, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, etc. Examples thereof include imidazole compounds, 2,4,6-tris (dimethylaminomethyl) phenol, boron trifluoride amine complex, and triphenylphosphine.
These hardening accelerators may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the epoxy resin curing accelerator used is usually about 0.1 to 10 parts by mass, preferably about 100 to 10 parts by mass, preferably 100 parts by mass of the curable epoxy resin, from the viewpoint of balance between curing acceleration and physical properties of the cured resin. It is selected in the range of 0.4 to 5 parts by mass.
<硬化性シリコーン樹脂>
 硬化性シリコーン樹脂としては、付加反応型シリコーン樹脂とシリコーン系架橋剤との混合物を用いることができる。付加反応型シリコーン樹脂としては、例えば分子中に官能基としてアルケニル基を有するポリオルガノシロキサンの中から選ばれる少なくとも1種を挙げることができる。上記の分子中に官能基としてアルケニル基を有するポリオルガノシロキサンの好ましいものとしては、ビニル基を官能基とするポリジメチルシロキサン、ヘキセニル基を官能基とするポリジメチルシロキサン及びこれらの混合物等が挙げられる。
<Curable silicone resin>
As the curable silicone resin, a mixture of an addition reaction type silicone resin and a silicone-based crosslinking agent can be used. Examples of the addition reaction type silicone resin include at least one selected from polyorganosiloxane having an alkenyl group as a functional group in the molecule. Preferred examples of the polyorganosiloxane having an alkenyl group as a functional group in the molecule include polydimethylsiloxane having a vinyl group as a functional group, polydimethylsiloxane having a hexenyl group as a functional group, and a mixture thereof. .
 シリコーン系架橋剤としては、例えば一分子中に少なくとも2個のケイ素と水素とが結合した構造を有するポリオルガノシロキサンが挙げられる。この具体例としては、ジメチルハイドロジェンシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキサン基末端封鎖ポリ(メチルハイドロジェンシロキサン)、ポリ(ハイドロジェンシルセスキオキサン)等が挙げられる。 Examples of the silicone-based crosslinking agent include polyorganosiloxane having a structure in which at least two silicon and hydrogen are bonded in one molecule. Specific examples thereof include dimethylhydrogensiloxy group end-capped dimethylsiloxane-methylhydrogensiloxane copolymer, trimethylsiloxy group end-capped dimethylsiloxane-methylhydrogensiloxane copolymer, trimethylsiloxane group end-capped poly (methylhydrogen). Siloxane), poly (hydrogensilsesquioxane) and the like.
 また、硬化触媒としては、通常白金系化合物が用いられる。この白金系化合物の例としては、微粒子状白金、炭素粉末担体上に吸着された微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、パラジウム触媒、ロジウム触媒等が挙げられる。 Also, platinum compounds are usually used as the curing catalyst. Examples of the platinum compounds include fine platinum, fine platinum adsorbed on a carbon powder carrier, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, palladium catalyst, rhodium catalyst, and the like. It is done.
(熱伝導性樹脂シートの作製)
 本発明の熱伝導性樹脂シートは、有機マトリックスと本発明のセラミックス混合物を用い、例えば下記のようにして作製することができる。
 まず、所定の割合の球状アルミナ粒子と、鱗片状六方晶窒化ホウ素粒子との混合物からなる本発明のセラミックス混合物を、適当な溶媒中に分散させてなる、濃度59~80質量%程度のセラミックス混合物の懸濁液を調製する。
 次いで、この懸濁液に、有機マトリックスを、該有機マトリックスとセラミックス混合物との合計に対し前記セラミックス混合物が30~90体積%の割合で含まれるように加え、樹脂組成物を調製する。
 有機マトリックスの主成分として、硬化性エポキシ樹脂を用いる場合には、この硬化性エポキシ樹脂と、エポキシ樹脂用硬化剤と、必要に応じて用いられるエポキシ樹脂用硬化促進剤との混合物が有機マトリックスとなる。
 また、有機マトリックスの主成分として、硬化性シリコーン樹脂を用いる場合には、付加反応型シリコーン樹脂と、シリコーン系架橋剤と、硬化触媒との混合物が有機マトリックスとなる。
(Preparation of heat conductive resin sheet)
The heat conductive resin sheet of the present invention can be produced, for example, as follows using an organic matrix and the ceramic mixture of the present invention.
First, a ceramic mixture having a concentration of about 59 to 80% by mass, in which a ceramic mixture of the present invention comprising a mixture of spherical alumina particles of a predetermined ratio and flaky hexagonal boron nitride particles is dispersed in a suitable solvent. A suspension of is prepared.
Next, an organic matrix is added to the suspension so that the ceramic mixture is contained at a ratio of 30 to 90% by volume with respect to the total of the organic matrix and the ceramic mixture, thereby preparing a resin composition.
When a curable epoxy resin is used as the main component of the organic matrix, a mixture of the curable epoxy resin, a curing agent for the epoxy resin, and a curing accelerator for the epoxy resin that is used as required is an organic matrix. Become.
When a curable silicone resin is used as the main component of the organic matrix, a mixture of an addition reaction type silicone resin, a silicone-based crosslinking agent, and a curing catalyst becomes an organic matrix.
 熱伝導性充填材として球状アルミナ粒子を単独で用いる場合、所望の熱伝導性を有する樹脂シートを得るには、有機マトリックス中に少なくとも50体積%、好ましくは80体積%以上の高充填が必要となる。しかし、本発明のセラミックス混合物は、球状アルミナ粒子と鱗片状六方晶窒化ホウ素粒子との混合物であるため、球状アルミナ粒子を用いる場合より低充填で良好な熱伝導性を発揮させることができる。
 より良好な熱伝導性を得るために、セラミックス混合物を、有機マトリックスとセラミックス混合物との合計に対し30~90体積%含有させるが、70~80体積%、又は75~80体積%の割合で含有させることで、さらに優れた熱伝導率を有する熱伝導性樹脂シートが得られる。
 なお、本発明において、セラミックス混合物、球状アルミナ粒子及び鱗片状六方晶窒化ホウ素粒子の体積基準の含有割合(体積%、体積分率)は、球状アルミナ粒子の比重(3.98)、鱗片状六方晶窒化ホウ素粒子の比重(2.27)、及び使用する各種樹脂の比重から求めることができる。
When spherical alumina particles are used alone as the heat conductive filler, high filling of at least 50% by volume, preferably 80% by volume or more is required in the organic matrix in order to obtain a resin sheet having desired heat conductivity. Become. However, since the ceramic mixture of the present invention is a mixture of spherical alumina particles and flaky hexagonal boron nitride particles, it can exhibit better thermal conductivity with lower filling than when spherical alumina particles are used.
In order to obtain better thermal conductivity, the ceramic mixture is contained in an amount of 30 to 90% by volume based on the total of the organic matrix and the ceramic mixture, but is contained in a ratio of 70 to 80% by volume, or 75 to 80% by volume. By making it, the heat conductive resin sheet which has the further outstanding heat conductivity is obtained.
In the present invention, the volume-based content ratio (volume%, volume fraction) of the ceramic mixture, spherical alumina particles, and flaky hexagonal boron nitride particles is the specific gravity (3.98) of spherical alumina particles, flaky hexagonal It can be determined from the specific gravity (2.27) of the crystalline boron nitride particles and the specific gravity of the various resins used.
 上記のようにして調製された樹脂組成物には、有機マトリックス及びセラミックス混合物以外に、必要に応じてその他添加剤を含むことができる。その他添加剤としては、例えば可塑剤、粘着剤、補強剤、着色剤、耐熱向上剤等が挙げられる。 The resin composition prepared as described above can contain other additives as required in addition to the organic matrix and the ceramic mixture. Examples of other additives include plasticizers, pressure-sensitive adhesives, reinforcing agents, colorants, heat resistance improvers, and the like.
 樹脂組成物は、通常のコーティング機等で、離型層付き樹脂フィルム等の離型性フィルム等の上に塗工され、遠赤外線輻射ヒーター、温風吹付け等によって乾燥されることにより、シート化される。
 離型層としては、メラミン樹脂等が用いられる。また、樹脂フィルムとしては、ポリエチレンテレフタレート等のポリエステル樹脂等が用いられる。
The resin composition is coated on a releasable film such as a resin film with a release layer with a normal coating machine, etc., and dried by a far-infrared radiation heater, hot air spraying, etc. to form a sheet Is done.
As the release layer, a melamine resin or the like is used. As the resin film, a polyester resin such as polyethylene terephthalate is used.
 一方、有機マトリックスが硬化性マトリックスである場合には、前記で得られた樹脂シートを、必要に応じて加圧下にさらに加熱処理して硬化させることにより、本発明の熱伝導性樹脂シートが得られる。 On the other hand, when the organic matrix is a curable matrix, the resin sheet obtained above is further heated and cured under pressure as necessary to obtain the thermally conductive resin sheet of the present invention. It is done.
 このようにして得られた本発明の熱伝導性樹脂シートの厚さは、0.1~10mmの範囲であることが好ましく、0.1~0.3mmの範囲であることがより好ましい。
 また、本発明の熱伝導性樹脂シートにおいては、好ましくは熱伝導率が3W/m・K以上、より好ましくは7W/m・K以上、さらに好ましくは9W/m・K以上である。
 さらに、絶縁破壊特性の指標である絶縁破壊電圧は、1.0kV以上であることが好ましく、1.5kV以上であることがより好ましい。
 本発明の熱伝導性樹脂シートは、その片面又は両面及びシート内に、作業性向上や補強目的でシート状、繊維状、網目状の部材を積層したり、埋没させたりして用いてもよい。
The thickness of the heat conductive resin sheet of the present invention thus obtained is preferably in the range of 0.1 to 10 mm, and more preferably in the range of 0.1 to 0.3 mm.
Moreover, in the heat conductive resin sheet of this invention, Preferably heat conductivity is 3 W / m * K or more, More preferably, it is 7 W / m * K or more, More preferably, it is 9 W / m * K or more.
Furthermore, the dielectric breakdown voltage, which is an index of dielectric breakdown characteristics, is preferably 1.0 kV or higher, and more preferably 1.5 kV or higher.
The thermally conductive resin sheet of the present invention may be used by laminating or embedding a sheet-like, fibrous, or mesh-like member on one or both sides and in the sheet for the purpose of improving workability or reinforcing. .
 このように得られた熱伝導性樹脂シートは、離型性フィルムから剥がし、あるいは、離型性フィルムを保護フィルムとした状態で、熱伝導性樹脂シートとしての使用に供するための製品の形とすることができる。
 また、本発明の熱伝導性樹脂シートは、粘着性層を熱伝導性樹脂シートの上面または下面にさらに設けた構成としてもよく、これにより、製品使用時の利便性が高まる。
The heat conductive resin sheet thus obtained is peeled off from the releasable film, or in the state where the releasable film is used as a protective film, the shape of the product for use as a heat conductive resin sheet can do.
Moreover, the heat conductive resin sheet of this invention is good also as a structure which further provided the adhesive layer in the upper surface or lower surface of the heat conductive resin sheet, and this improves the convenience at the time of product use.
 本発明の熱伝導性樹脂シートは、例えばMPUやパワートランジスタ、トランス等の発熱性電子部品からの熱を放熱フィンや放熱ファン等の放熱部品に伝熱させるために使用され、発熱性電子部品と放熱部品の間に挟み込まれて使用される。これによって、発熱性電子部品と放熱部品間の伝熱が良好となり、発熱性電子部品の誤作動を著しく軽減させることができる。 The heat conductive resin sheet of the present invention is used for transferring heat from heat-generating electronic components such as MPUs, power transistors, and transformers to heat-dissipating components such as heat-dissipating fins and heat-dissipating fans. Used by being sandwiched between heat dissipation components. As a result, heat transfer between the heat-generating electronic component and the heat-dissipating component is improved, and malfunction of the heat-generating electronic component can be significantly reduced.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、球状アルミナ粒子及び鱗片状六方晶窒化ホウ素粒子の体積基準のD50、並びに各例で得られた熱伝導性樹脂シートの熱伝導率は、下記の方法により測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
The volume-based D50 of the spherical alumina particles and the flaky hexagonal boron nitride particles and the thermal conductivity of the thermally conductive resin sheet obtained in each example were measured by the following methods.
(1)球状アルミナ粒子及び鱗片状六方晶窒化ホウ素粒子の体積基準のD50の測定は粒度分布計を用いて行なった。鱗片状六方晶窒化ホウ素粒子の場合は、シーラス社製、機種名「グラニュロメーター715」を用いて測定し、アルミナ粒子の場合は、ベックマンコールター社製、機種名「Multisaizer」を用いて体積基準のD50を測定した。 (1) The volume-based D50 of spherical alumina particles and flaky hexagonal boron nitride particles was measured using a particle size distribution meter. In the case of flaky hexagonal boron nitride particles, measurement is performed using a model name “Granurometer 715” manufactured by Cirrus, and in the case of alumina particles, a volume standard using a model name “Multisizer” manufactured by Beckman Coulter. D50 was measured.
(2)熱伝導性樹脂シートの熱伝導率
 (株)アイフェイズ社製、機種名「アイフェイズ・モバイル」により、熱拡散率を測定し、それにそれぞれの樹脂シートの比熱と密度の理論値を掛けることにより算出した値である。
(2) Thermal conductivity of thermal conductive resin sheet Measure the thermal diffusivity using the model name "Eye Phase Mobile" manufactured by Eye Phase Co., Ltd., and give the theoretical values of specific heat and density of each resin sheet. It is a value calculated by multiplying.
実施例1~3
(1)有機マトリックスとセラミックス混合物を含む樹脂組成物の調製
 有機マトリックスとして、液状硬化性エポキシ樹脂[ジャパンエポキシレジン社製、商品名「jER828」、ビスフェノールA型、エポキシ当量184-194g/eq、25℃における比重1.17]100質量部と、硬化剤としてのイミダゾール[四国化成社製、商品名「2E4MZ-CN」]5質量部との併用物を用いた。また、セラミックス混合物として、球状アルミナ粒子[昭和タイタニウム社製、商品名「CB」]と、鱗片状六方晶窒化ホウ素粒子[昭和電工社製、商品名「UHP-1」、体積基準のD50が9μm、アスペクト比(L:r)が8:1(n=30)]との質量比79:21との混合物を用いた。
 なお、球状アルミナ粒子としては、体積基準のD50が11μm(「A10S」と記すことがある)、28μm及び51μm(「A50S」と記すことがある)の3種のものをそれぞれ用いた。また、下記表1に示すとおり、D50が11μmの球状アルミナ粒子を用いた例を実施例1、D50が28μmの球状アルミナ粒子を用いた例を実施例2、D50が51μmの球状アルミナ粒子を用いた例を実施例3とした。
Examples 1 to 3
(1) Preparation of resin composition containing organic matrix and ceramic mixture As organic matrix, liquid curable epoxy resin [manufactured by Japan Epoxy Resin, trade name “jER828”, bisphenol A type, epoxy equivalent of 184-194 g / eq, 25 A combination of 100 parts by mass with a specific gravity of 1.17] at 100 ° C. and 5 parts by mass of imidazole (trade name “2E4MZ-CN” manufactured by Shikoku Kasei Co., Ltd.) as a curing agent was used. In addition, as a ceramic mixture, spherical alumina particles [made by Showa Titanium, trade name “CB”], scale-like hexagonal boron nitride particles [made by Showa Denko, trade name “UHP-1”, and volume-based D50 is 9 μm. A mixture with an aspect ratio (L: r) of 8: 1 (n = 30)] and a mass ratio of 79:21 was used.
In addition, as the spherical alumina particles, three types having a volume-based D50 of 11 μm (may be described as “A10S”), 28 μm, and 51 μm (may be described as “A50S”) were used, respectively. In addition, as shown in Table 1 below, Example 1 using spherical alumina particles with D50 of 11 μm, Example 2 using Example 50 with spherical alumina particles with D50 of 28 μm, and using spherical alumina particles with D50 of 51 μm are used. Example 3 was designated as Example 3.
 ホモジナイザー用ステンレス製容器に、前記のセラミックス混合物100質量部と、メチルエチルケトン(MEK)45質量部を加え(A50Sを用いた場合)、ホモジナイザーで回転数5000rpmの条件で2分間撹拌・混合して、セラミックス混合物の懸濁液を調製した。(MEKはアプリケータで塗布可能な粘度に調整するために用いるため、それぞれの系によって量は異なる。よって以後はMEKの量に関する記載は割愛する。)
 次いで、このセラミックス混合物の懸濁液に、前記の有機マトリックスを、該有機マトリックス中のセラミックス混合物の含有量が70体積%となるように加え、再びホモジナイザーで回転数5000rpmの条件で10分間撹拌混合して、樹脂組成物を調製した。
100 parts by mass of the ceramic mixture and 45 parts by mass of methyl ethyl ketone (MEK) are added to a stainless steel container for homogenizer (when A50S is used), and the mixture is stirred and mixed with a homogenizer at a rotational speed of 5000 rpm for 2 minutes. A suspension of the mixture was prepared. (Because MEK is used to adjust the viscosity so that it can be applied with an applicator, the amount varies depending on the system. Therefore, the description regarding the amount of MEK is omitted hereinafter.)
Next, the organic matrix is added to the ceramic mixture suspension so that the content of the ceramic mixture in the organic matrix becomes 70% by volume, and the mixture is stirred and mixed again with a homogenizer at a rotational speed of 5000 rpm for 10 minutes. Thus, a resin composition was prepared.
(2)熱伝導性樹脂シートの作製
 横10.5cm、縦13cmに切り取った離型フィルム上に、前記樹脂組成物をアプリケータにより、硬化膜厚が500μm以下となるように塗布したのち、40℃に設定した乾燥機の中に30分間静置して、溶媒のMEKを蒸発させて乾燥させ、3種のシート状樹脂組成物を得た。
 次いで、この3種のシート状樹脂組成物を、それぞれ別の離型フィルムを介して、120℃、1MPaの条件で15分間圧着することにより、シート状樹脂組成物を硬化させ、3種の熱伝導性樹脂シートを作製した。
 得られた3種の熱伝導性樹脂シートの熱伝導率を測定した(30点の平均値)。その結果を、下記表1に示す。
(2) Production of thermally conductive resin sheet After the resin composition was applied on a release film cut to a width of 10.5 cm and a length of 13 cm with an applicator so that the cured film thickness was 500 μm or less, 40 It was allowed to stand for 30 minutes in a dryer set at ° C., and the solvent MEK was evaporated and dried to obtain three kinds of sheet-shaped resin compositions.
Next, these three types of sheet-shaped resin compositions are pressure-bonded for 15 minutes at 120 ° C. and 1 MPa through different release films, respectively, thereby curing the sheet-shaped resin composition and three types of heat. A conductive resin sheet was produced.
The thermal conductivity of the obtained three types of thermally conductive resin sheets was measured (average value of 30 points). The results are shown in Table 1 below.
実施例4,5
 実施例1(1)において、セラミックス混合物として、球状アルミナ粒子(前出)[体積基準のD50が28μm(実施例4)、51μm(実施例5)の2種]と、鱗片状六方晶窒化ホウ素粒子(前出)との質量比94:6との混合物を用い、セラミック混合物の含有量が全体の80体積%となるようにした以外は実施例1と同様な操作を行い、2種の熱伝導性樹脂シートを作製した。
 得られた2種の熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表1に示す。
Examples 4 and 5
In Example 1 (1), spherical alumina particles (supra) [volume-based D50 of 28 μm (Example 4), 51 μm (Example 5)] and scaly hexagonal boron nitride were used as the ceramic mixture. The same operation as in Example 1 was performed except that a mixture of the particles (supra) with a mass ratio of 94: 6 was used and the content of the ceramic mixture was 80% by volume of the whole, and two kinds of heat A conductive resin sheet was produced.
The thermal conductivity of the obtained two types of thermally conductive resin sheets was measured. The results are shown in Table 1 below.
実施例6
 実施例1(1)において、セラミックス混合物として、球状アルミナ粒子(前出)[体積基準のD50が51μm]と、鱗片状六方晶窒化ホウ素粒子(前出)との質量比94:6との混合物を用い、セラミック混合物の含有量が全体の70体積%となるようにした以外は実施例1と同様な操作を行い、熱伝導性樹脂シートを作製した。
 得られた熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表1に示す。
Example 6
In Example 1 (1), as a ceramic mixture, a mixture of spherical alumina particles (supra) [volume-based D50 is 51 μm] and scaly hexagonal boron nitride particles (supra) 94: 6 A heat conductive resin sheet was produced in the same manner as in Example 1 except that the content of the ceramic mixture was 70% by volume of the whole.
The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 1 below.
実施例7
 実施例1(1)において、セラミックス混合物として、球状アルミナ粒子(前出)[体積基準のD50が51μm]と、鱗片状六方晶窒化ホウ素粒子(前出)との質量比79:21との混合物を用い、セラミック混合物の含有量が全体の80体積%となるようにした以外は実施例1と同様な操作を行い、熱伝導性樹脂シートを作製した。
 得られた熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表1に示す。
Example 7
In Example 1 (1), as a ceramic mixture, a mixture of spherical alumina particles (supra) [volume-based D50 is 51 μm] and scaly hexagonal boron nitride particles (supra) 79:21 A heat conductive resin sheet was produced in the same manner as in Example 1 except that the content of the ceramic mixture was 80% by volume of the total.
The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
比較例1~4
(1)有機マトリックスと球状アルミナ粒子を含む樹脂組成物の調製
 実施例1(1)において、セラミックス混合物の代わりに、球状アルミナ粒子(前出)[体積基準のD50が11μm、21μm(「A20S」と記すことがある)、28μm、51μmの4種]のみを用いた以外は、実施例1(1)と同様にして、球状アルミナ粒子の懸濁液を調製した。
 なお、下記表2に示すとおり、D50が11μmの球状アルミナ粒子を用いた例を比較例1、D50が21μmの球状アルミナ粒子を用いた例を比較例2、D50が28μmの球状アルミナ粒子を用いた例を比較例3、D50が51μmの球状アルミナ粒子を用いた例を比較例4とした。
Comparative Examples 1 to 4
(1) Preparation of Resin Composition Containing Organic Matrix and Spherical Alumina Particles In Example 1 (1), instead of the ceramic mixture, spherical alumina particles (supra) [volume-based D50 is 11 μm, 21 μm (“A20S” A suspension of spherical alumina particles was prepared in the same manner as in Example 1 (1) except that only 4 types of 28 μm and 51 μm were used.
In addition, as shown in Table 2 below, an example using a spherical alumina particle having a D50 of 11 μm is Comparative Example 1, an example using a spherical alumina particle having a D50 of 21 μm is a Comparative Example 2, and a spherical alumina particle having a D50 of 28 μm is used. The example used was Comparative Example 3, and the example using spherical alumina particles having a D50 of 51 μm was used as Comparative Example 4.
 次いで、この球状アルミナ粒子の懸濁液に、有機マトリックスを、該有機マトリックス中の球状アルミナ粒子の含有量が80体積%になるように加えた以外は、実施例1(1)と同様な操作を行い、4種の樹脂組成物を調製した。 Subsequently, the same operation as in Example 1 (1) was performed except that an organic matrix was added to the suspension of spherical alumina particles so that the content of the spherical alumina particles in the organic matrix was 80% by volume. And four types of resin compositions were prepared.
(2)熱伝導性樹脂シートの作製
 前記(1)で得た4種の樹脂組成物を用い、実施例1(2)と同様な操作を行い、4種の熱伝導性樹脂シートを作製した。
 得られた4種の熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表2に示す。
(2) Preparation of heat conductive resin sheet Using the four resin compositions obtained in (1) above, the same operation as in Example 1 (2) was performed to prepare four heat conductive resin sheets. .
The thermal conductivity of the obtained four types of thermally conductive resin sheets was measured. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から分かるように、熱伝導性充填材としてセラミックス混合物を用いて得られた実施例1~7の本発明の熱伝導性樹脂シートにおける熱伝導率は、セラミックス混合物の充填量がそれぞれ70体積%、80体積%において3.4~10.2W/m・Kの範囲にある。
 これに対し、熱伝導性充填材として球状アルミナ粒子のみを80体積%充填してなる比較例の熱伝導性樹脂シートは、熱伝導率が3.8~4.7W/m・Kの範囲である。
As can be seen from Tables 1 and 2, the thermal conductivity in the thermally conductive resin sheets of Examples 1 to 7 of the present invention obtained using the ceramic mixture as the thermally conductive filler is determined by the amount of the ceramic mixture filled. They are in the range of 3.4 to 10.2 W / m · K at 70 volume% and 80 volume%, respectively.
On the other hand, the heat conductive resin sheet of the comparative example in which only 80% by volume of spherical alumina particles are filled as the heat conductive filler has a heat conductivity in the range of 3.8 to 4.7 W / m · K. is there.
 球状アルミナ粒子の体積基準のD50が28μm及び51μmの場合の実施例と比較例の熱伝導性樹脂シートの熱伝導率を比べると、球状アルミナ粒子の体積基準のD50が28μmの場合で、熱伝導率は、実施例2及び4ではそれぞれ5.9W/m・K及び5.3W/m・Kであるのに対し、比較例3では3.3W/m・Kであり、実施例に比べてかなり低い。 When the thermal conductivity of the thermally conductive resin sheet of the example and the comparative example when the volume-based D50 of the spherical alumina particles is 28 μm and 51 μm is compared, the thermal conductivity is obtained when the volume-based D50 of the spherical alumina particles is 28 μm. The rates are 5.9 W / m · K and 5.3 W / m · K in Examples 2 and 4, respectively, while 3.3 W / m · K in Comparative Example 3, which is higher than that in Examples. Pretty low.
 また、球状アルミナ粒子の体積基準のD50が51μmの場合で、熱伝導率は、実施例3及び7ではそれぞれ9.1W/m・K及び10.2W/m・Kであるのに対し、比較例4では4.7W/m・Kであり、実施例に比べて著しく低い。
 このことから、球状アルミナ粒子と鱗片状六方晶窒化ホウ素粒子との混合物である本発明のセラミックス混合物は、球状アルミナ粒子単独のものに比べて、熱伝導性充填材として優れていることが分かる。
Further, when the volume-based D50 of the spherical alumina particles is 51 μm, the thermal conductivities are 9.1 W / m · K and 10.2 W / m · K in Examples 3 and 7, respectively. In Example 4, it is 4.7 W / m · K, which is significantly lower than that of the example.
From this, it can be seen that the ceramic mixture of the present invention, which is a mixture of spherical alumina particles and flaky hexagonal boron nitride particles, is superior as a thermally conductive filler compared to the spherical alumina particles alone.
比較例5
(1)有機マトリックスと球状アルミナ粒子を含む樹脂組成物の調製
 比較例2(1)と同様にして、球状アルミナ粒子の懸濁液を調製した。
 次いで、この球状アルミナ粒子の懸濁液に、有機マトリックスを、該有機マトリックス中の球状アルミナ粒子の含有量が70体積%になるように加えた以外は、比較例2(1)と同様な操作を行い、樹脂組成物を調製した。
Comparative Example 5
(1) Preparation of resin composition containing organic matrix and spherical alumina particles A suspension of spherical alumina particles was prepared in the same manner as in Comparative Example 2 (1).
Next, an operation similar to that in Comparative Example 2 (1) was performed except that an organic matrix was added to the suspension of spherical alumina particles so that the content of the spherical alumina particles in the organic matrix was 70% by volume. And a resin composition was prepared.
(2)熱伝導性樹脂シートの作製
 前記(1)で得た樹脂組成物を用い、比較例2(2)と同様な操作を行い、熱伝導性樹脂シートを作製した。得られた熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表3に示す。
(2) Preparation of heat conductive resin sheet Using the resin composition obtained in (1) above, the same operation as in Comparative Example 2 (2) was performed to prepare a heat conductive resin sheet. The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
比較例6
(1)有機マトリックスと鱗片状六方晶窒化ホウ素粒子を含む樹脂組成物の調製
 実施例1(1)において、セラミックス混合物の代わりに、鱗片状六方晶窒化ホウ素粒子(前出)[体積基準のD50が9μm]のみを用いた以外は、実施例1(1)と同様にして、球状アルミナ粒子の懸濁液を調製した。
 次いで、この球状アルミナ粒子の懸濁液に、有機マトリックスを、該有機マトリックス中の球状アルミナ粒子の含有量が70体積%になるように加えた以外は、実施例1(1)と同様な操作を行い、樹脂組成物を調製した。
Comparative Example 6
(1) Preparation of resin composition containing organic matrix and flaky hexagonal boron nitride particles In Example 1 (1), instead of the ceramic mixture, flaky hexagonal boron nitride particles (supra) [volume-based D50 Was used in the same manner as in Example 1 (1) except that only 9 μm] was used.
Subsequently, the same operation as in Example 1 (1) was performed except that an organic matrix was added to the suspension of spherical alumina particles so that the content of the spherical alumina particles in the organic matrix was 70% by volume. And a resin composition was prepared.
(2)熱伝導性樹脂シートの作製
 前記(1)で得た樹脂組成物を用い、実施例1(2)と同様な操作を行い、熱伝導性樹脂シートを作製した。得られた熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表4に示す。
(2) Production of thermally conductive resin sheet Using the resin composition obtained in (1) above, the same operation as in Example 1 (2) was performed to produce a thermally conductive resin sheet. The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4から分かるように、窒化ホウ素の代わりに小粒子径の球状アルミナを組み合わせたものや、窒化ホウ素だけでフィラーとしたものは、殆ど熱電伝導性の改善が見られないことが判った。 As can be seen from Tables 3 and 4, it can be seen that the improvement in thermoelectric conductivity is hardly seen in the case of using a combination of spherical alumina with a small particle diameter instead of boron nitride or a filler using only boron nitride. It was.
比較例7
 実施例3において、セラミックス混合物として、球状アルミナ粒子(前出)[体積基準のD50が51μm]と、鱗片状六方晶窒化ホウ素粒子(前出)との質量比が97:3の混合物を用い、セラミック混合物の含有量が全体の70体積%となるようにした以外は実施例1と同様な操作を行い、熱伝導性樹脂シートを作製した。
 得られた熱伝導性樹脂シートの熱伝導率を測定した。その結果を下記表5に示す。
Comparative Example 7
In Example 3, as the ceramic mixture, a mixture having a mass ratio of spherical alumina particles (supra) [volume-based D50 of 51 μm] and scaly hexagonal boron nitride particles (supra) is 97: 3, A heat conductive resin sheet was produced in the same manner as in Example 1 except that the content of the ceramic mixture was 70% by volume of the whole.
The thermal conductivity of the obtained heat conductive resin sheet was measured. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、窒化ホウ素の質量比が本願の下限値未満の3質量%のものは熱伝導率の改善があまり見られないことが判った。 As can be seen from Table 5, it was found that the thermal conductivity of the boron nitride having a mass ratio of less than the lower limit of 3% by mass is less improved.
実施例8~14及び比較例8~11
(1)有機マトリックスとセラミックス混合物を含む樹脂組成物の調製
 有機マトリックスとして、液状硬化性エポキシ樹脂[ジャパンエポキシレジン社製、商品名「エピコート828」、ビスフェノールA型]100質量部と、硬化剤としての1-シアノエチル-2-メチルイミダゾール[四国化成社製、商品名「キュアゾール2PN-CN」]1質量部との併用物を用いた。また、セラミックス混合物として、下記表6に記載粒子を用いた。
Examples 8 to 14 and Comparative Examples 8 to 11
(1) Preparation of resin composition containing organic matrix and ceramic mixture As organic matrix, liquid curable epoxy resin [manufactured by Japan Epoxy Resin, trade name “Epicoat 828”, bisphenol A type] 100 parts by mass, and curing agent Of 1-cyanoethyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name “Cureazole 2PN-CN”) was used in combination. Moreover, the particles described in Table 6 below were used as the ceramic mixture.
 ホモジナイザー用ステンレス製容器に、前記のセラミックス混合物(下記表7に示す配合)と、メチルエチルケトン(MEK)101質量部を加え、ホモジナイザーで回転数5000rpmの条件で2分間撹拌・混合して、セラミックス混合物の懸濁液を調製した。
 次いで、このセラミックス混合物の懸濁液に、前記の有機マトリックスを、該有機マトリックス中のセラミックス混合物の含有量が下記表6に示す量となるように加え、再びホモジナイザーで回転数5000rpmの条件で10分間撹拌混合して、樹脂組成物を調製した。
To the stainless steel container for homogenizer, add 101 parts by mass of the ceramic mixture (formulation shown in Table 7 below) and methyl ethyl ketone (MEK), and stir and mix for 2 minutes with a homogenizer at a rotational speed of 5000 rpm. A suspension was prepared.
Next, the organic matrix is added to the suspension of the ceramic mixture so that the content of the ceramic mixture in the organic matrix becomes the amount shown in Table 6 below, and the suspension is again mixed with a homogenizer at a rotational speed of 5000 rpm. The resin composition was prepared by stirring and mixing for a minute.
(2)熱伝導性樹脂シートの作製
上記熱硬化性樹脂組成物の溶液に、上記熱硬化性樹脂組成物と同体積の、DRが5μmで粒子状の窒化珪素充填剤{SN-7:電気化学工業(株)}を添加し、予備混合した。この予備混合物をさらに、三本ロールにて混練し、上記熱硬化性樹脂組成物の溶液中に、上記充填剤を均一に分散させたコンパウンドを得た。
次に、上記コンパウンドを厚さ100μmの片面離型処理したポリエチレンテレフタレートシートの離型処理面上にドクターブレード法で塗布し、110℃で15分間の加熱乾燥処理をし、厚さが80μmでBステージ状態の熱伝導性樹脂シートを作製した。
 次に、上記熱伝導性樹脂シートを120℃で1時間と160℃で3時間の加熱を行い、熱伝導性樹脂シートを作製した。
 得られた熱伝導性樹脂シートの熱伝導率を実施例1等と同様にして測定した(30点の平均値)。その結果を、下記表6に示す。
(2) thermal conductivity in a solution of Preparation The thermosetting resin composition of the resin sheet, the same volume as the thermosetting resin composition, D R particulate silicon nitride filler 5μm {SN-7: Electrochemical Industry Co., Ltd.} was added and premixed. This preliminary mixture was further kneaded with three rolls to obtain a compound in which the filler was uniformly dispersed in the solution of the thermosetting resin composition.
Next, the above compound was applied onto a release treatment surface of a polyethylene terephthalate sheet having a single-sided release treatment with a thickness of 100 μm by a doctor blade method, followed by a heat drying treatment at 110 ° C. for 15 minutes. A stage-state thermally conductive resin sheet was prepared.
Next, the said heat conductive resin sheet was heated at 120 degreeC for 1 hour, and 160 degreeC for 3 hours, and the heat conductive resin sheet was produced.
The thermal conductivity of the obtained heat conductive resin sheet was measured in the same manner as in Example 1 (30-point average value). The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
熱伝導性樹脂シートの絶縁破壊特性の評価
 銅板(40×40×5mm3)とアルミニウム板(30×30×5mm3)の間に30×30mm2の接着面積で熱伝導性樹脂シートを接着した試験片を作製した。試験片をJIS C 2110の耐電圧試験方法に準拠して、規定電圧を1.5kV,規定時間を60秒として測定した。絶縁破壊しなかった場合を合格(○)とし、絶縁破壊した場合を不合格(×)とした。
 なお、熱伝導性樹脂シートは、実施例1に準じて、下記表7に示す配合にて各種作製した。また、実施例1と同様にして熱伝導性樹脂シートの熱伝導率も測定した。結果を下記表7に示す。
Evaluation of dielectric breakdown characteristics of thermally conductive resin sheet A thermally conductive resin sheet was bonded between a copper plate (40 × 40 × 5 mm 3 ) and an aluminum plate (30 × 30 × 5 mm 3 ) with an adhesive area of 30 × 30 mm 2 . A test piece was prepared. The test piece was measured according to the withstand voltage test method of JIS C 2110 with a specified voltage of 1.5 kV and a specified time of 60 seconds. The case where dielectric breakdown did not occur was evaluated as acceptable (◯), and the case where dielectric breakdown occurred was determined as unacceptable (x).
In addition, according to Example 1, the heat conductive resin sheet was variously produced with the mixing | blending shown in Table 7 below. Moreover, it carried out similarly to Example 1, and also measured the heat conductivity of the heat conductive resin sheet. The results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のセラミックス混合物は、熱伝導性充填材として有用である。そして、この熱伝導性充填材を用いて得られた本発明の熱伝導性樹脂シートは、例えばMPUやパワートランジスタ、トランス等の発熱性電子部品からの熱を放熱フィンや放熱ファン等の放熱部品に伝熱させるために使用することができる。また、熱伝導性樹脂シートの絶縁破壊特性が良好であるため、電子機器等の小型化に伴う熱伝導性樹脂シート薄膜化に十分対応することができる。 The ceramic mixture of the present invention is useful as a thermally conductive filler. And the heat conductive resin sheet of this invention obtained using this heat conductive filler is the heat dissipation components, such as a heat dissipation fin and a heat dissipation fan, for example, heat from heat generation electronic components, such as MPU, a power transistor, and a transformer. Can be used for heat transfer to. Moreover, since the dielectric breakdown characteristics of the heat conductive resin sheet are good, it is possible to sufficiently cope with the thinning of the heat conductive resin sheet accompanying the downsizing of electronic devices and the like.
10・・・鱗片状六方晶窒化ホウ素粒子
L・・・長径
r・・・厚み
10 ... scale-like hexagonal boron nitride particles L ... major axis r ... thickness

Claims (4)

  1.  体積基準のD50が10~55μmである球状アルミナ粒子と、体積基準のD50が30μm以下の鱗片状六方晶窒化ホウ素粒子との混合物であって、前記鱗片状六方晶窒化ホウ素粒子の含有割合が5~30質量%であることを特徴とするセラミックス混合物。 A mixture of spherical alumina particles having a volume-based D50 of 10 to 55 μm and flaky hexagonal boron nitride particles having a volume-based D50 of 30 μm or less, wherein the content ratio of the flaky hexagonal boron nitride particles is 5 Ceramic mixture, characterized in that it is ˜30% by mass.
  2.  鱗片状六方晶窒化ホウ素粒子の体積基準のD50が、5~30μmである請求項1に記載のセラミックス混合物。 2. The ceramic mixture according to claim 1, wherein the volume-based D50 of the flaky hexagonal boron nitride particles is 5 to 30 μm.
  3.  有機マトリックス10~70体積%と、請求項1に記載のセラミックス混合物30~90体積%とを含有する樹脂組成物を成形してなるセラミックス含有熱伝導性樹脂シート。 A ceramic-containing thermally conductive resin sheet obtained by molding a resin composition containing 10 to 70% by volume of an organic matrix and 30 to 90% by volume of the ceramic mixture according to claim 1.
  4.  前記球状アルミナの体積基準のD50が、前記鱗片状六方晶窒化ホウ素粒子の体積基準のD50に対して3~7倍である、請求項3に記載のセラミックス含有熱伝導性樹脂シート。 The ceramic-containing thermally conductive resin sheet according to claim 3, wherein the volume-based D50 of the spherical alumina is 3 to 7 times the volume-based D50 of the flaky hexagonal boron nitride particles.
PCT/JP2011/065085 2010-07-02 2011-06-30 Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same WO2012002505A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127033394A KR101453352B1 (en) 2010-07-02 2011-06-30 Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same
JP2012522700A JP5793494B2 (en) 2010-07-02 2011-06-30 Ceramic mixture and ceramic-containing thermally conductive resin sheet using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-151937 2010-07-02
JP2010151937 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012002505A1 true WO2012002505A1 (en) 2012-01-05

Family

ID=45402208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065085 WO2012002505A1 (en) 2010-07-02 2011-06-30 Ceramic mixture, and ceramic-containing thermally-conductive resin sheet using same

Country Status (4)

Country Link
JP (1) JP5793494B2 (en)
KR (1) KR101453352B1 (en)
TW (1) TWI520926B (en)
WO (1) WO2012002505A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159759A (en) * 2012-02-08 2013-08-19 Nitto Denko Corp Thermally conductive sheet
JP2013234275A (en) * 2012-05-10 2013-11-21 Kisco Ltd Heat-dissipating resin composition, molding and illuminating device
WO2014208694A1 (en) * 2013-06-27 2014-12-31 日立化成株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and led device
JP2015117260A (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Organic-inorganic composite composition, molding, and sheet
JP2016155937A (en) * 2015-02-24 2016-09-01 デンカ株式会社 Thermal conductive particle composition, method for producing thermal conductive particle composition, thermal conductive resin composition, and thermal conductive resin cured body
EP3290453A4 (en) * 2015-05-22 2018-10-31 Hitachi Chemical Co., Ltd. Epoxy resin composition, thermoconductive material precursor, b-stage sheet, prepreg, heat-dissipating material, laminated plate, metal substrate, and printed circuit board
JP2019029269A (en) * 2017-08-01 2019-02-21 東洋インキScホールディングス株式会社 Thermally-conductive insulating sheet and composite member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101612497B1 (en) 2014-07-14 2016-04-14 (주)동국알앤에스 Complex glomeration ceramic having high thermal dissipation and method thereof
WO2019049707A1 (en) * 2017-09-06 2019-03-14 デンカ株式会社 Thermally conductive sheet
KR102534715B1 (en) * 2018-05-09 2023-05-18 주식회사 엘지화학 Organic-inorganic complexed filler, composite comprising thereof, and method for manufacturing organic-inorganic complexed filler
WO2024080455A1 (en) * 2022-10-14 2024-04-18 삼도에이티에스(주) Highly heat-dissipating sheet of polymer composite material and method for manufacturing same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461253A (en) * 1977-10-25 1979-05-17 Hitachi Cable Ltd Electrical insulator having improved thermal conductivity
JPS55102636A (en) * 1979-01-31 1980-08-06 Hitachi Cable Ltd Highly heat-conductive resin composition
JPS56856A (en) * 1979-06-15 1981-01-07 Showa Denko Kk Heat-resistant rubber composition
JPS57151980A (en) * 1981-03-17 1982-09-20 Hitachi Cable Ltd Thermally conductive rubber roll
JPS59136954A (en) * 1983-01-25 1984-08-06 Hitachi Cable Ltd Thermal conductive electric insulating sheet
JPS6280911A (en) * 1985-10-03 1987-04-14 昭和電工株式会社 Heat sink sheet
JPH04198265A (en) * 1990-11-26 1992-07-17 Toyobo Co Ltd Resin composition for sealing electronic part
JPH0516296A (en) * 1991-07-09 1993-01-26 Toyo Takasago Kandenchi Kk High heat dissipation material composition
JPH08236884A (en) * 1995-02-27 1996-09-13 Nippon Rika Kogyosho:Kk Metal board for circuit
JPH09296114A (en) * 1996-04-30 1997-11-18 Denki Kagaku Kogyo Kk Silicone rubber composition and its use
JP2004161856A (en) * 2002-11-12 2004-06-10 Achilles Corp Composition for thermally conductive resin molding and molding obtained therefrom
JP2008510878A (en) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ Thermally conductive composition and production method thereof
JP2009144010A (en) * 2007-12-12 2009-07-02 Tomoegawa Paper Co Ltd Adhesive film and method for producing the same
JP2009173855A (en) * 2007-12-27 2009-08-06 Daiso Co Ltd Thermosetting resin composition
JP2010505027A (en) * 2006-09-28 2010-02-18 シーメンス エナジー インコーポレイテッド Morphological shape of filler for electrical insulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807995B2 (en) * 2002-03-05 2006-08-09 ポリマテック株式会社 Thermally conductive sheet
JP5073179B2 (en) * 2005-06-09 2012-11-14 株式会社住友金属エレクトロデバイス Aluminum nitride sintered compact for storing light-emitting elements

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461253A (en) * 1977-10-25 1979-05-17 Hitachi Cable Ltd Electrical insulator having improved thermal conductivity
JPS55102636A (en) * 1979-01-31 1980-08-06 Hitachi Cable Ltd Highly heat-conductive resin composition
JPS56856A (en) * 1979-06-15 1981-01-07 Showa Denko Kk Heat-resistant rubber composition
JPS57151980A (en) * 1981-03-17 1982-09-20 Hitachi Cable Ltd Thermally conductive rubber roll
JPS59136954A (en) * 1983-01-25 1984-08-06 Hitachi Cable Ltd Thermal conductive electric insulating sheet
JPS6280911A (en) * 1985-10-03 1987-04-14 昭和電工株式会社 Heat sink sheet
JPH04198265A (en) * 1990-11-26 1992-07-17 Toyobo Co Ltd Resin composition for sealing electronic part
JPH0516296A (en) * 1991-07-09 1993-01-26 Toyo Takasago Kandenchi Kk High heat dissipation material composition
JPH08236884A (en) * 1995-02-27 1996-09-13 Nippon Rika Kogyosho:Kk Metal board for circuit
JPH09296114A (en) * 1996-04-30 1997-11-18 Denki Kagaku Kogyo Kk Silicone rubber composition and its use
JP2004161856A (en) * 2002-11-12 2004-06-10 Achilles Corp Composition for thermally conductive resin molding and molding obtained therefrom
JP2008510878A (en) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ Thermally conductive composition and production method thereof
JP2010505027A (en) * 2006-09-28 2010-02-18 シーメンス エナジー インコーポレイテッド Morphological shape of filler for electrical insulation
JP2009144010A (en) * 2007-12-12 2009-07-02 Tomoegawa Paper Co Ltd Adhesive film and method for producing the same
JP2009173855A (en) * 2007-12-27 2009-08-06 Daiso Co Ltd Thermosetting resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159759A (en) * 2012-02-08 2013-08-19 Nitto Denko Corp Thermally conductive sheet
JP2013234275A (en) * 2012-05-10 2013-11-21 Kisco Ltd Heat-dissipating resin composition, molding and illuminating device
WO2014208694A1 (en) * 2013-06-27 2014-12-31 日立化成株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and led device
JPWO2014208694A1 (en) * 2013-06-27 2017-02-23 日立化成株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and LED device
US9745411B2 (en) 2013-06-27 2017-08-29 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and LED device
JP2015117260A (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Organic-inorganic composite composition, molding, and sheet
JP2016155937A (en) * 2015-02-24 2016-09-01 デンカ株式会社 Thermal conductive particle composition, method for producing thermal conductive particle composition, thermal conductive resin composition, and thermal conductive resin cured body
EP3290453A4 (en) * 2015-05-22 2018-10-31 Hitachi Chemical Co., Ltd. Epoxy resin composition, thermoconductive material precursor, b-stage sheet, prepreg, heat-dissipating material, laminated plate, metal substrate, and printed circuit board
US10584228B2 (en) 2015-05-22 2020-03-10 Hitachi Chemical Company, Ltd. Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
US11840619B2 (en) 2015-05-22 2023-12-12 Resonac Corporation Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
JP2019029269A (en) * 2017-08-01 2019-02-21 東洋インキScホールディングス株式会社 Thermally-conductive insulating sheet and composite member

Also Published As

Publication number Publication date
KR20130051456A (en) 2013-05-20
JP5793494B2 (en) 2015-10-14
KR101453352B1 (en) 2014-10-22
TWI520926B (en) 2016-02-11
TW201215583A (en) 2012-04-16
JPWO2012002505A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5793494B2 (en) Ceramic mixture and ceramic-containing thermally conductive resin sheet using the same
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP5184543B2 (en) Thermally conductive sheet and power module
JP6022061B2 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
JP5036696B2 (en) Thermally conductive sheet and power module
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP2018104260A (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
WO2012070289A1 (en) Thermal conductive sheet and power module
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP6418348B1 (en) Composite material
JP2016108457A (en) Resin composition and method for producing the same
JP7389014B2 (en) insulation heat dissipation sheet
TWI751632B (en) Inorganic particle-dispersed resin composition and method for producing inorganic particle-dispersed resin composition
JP2011178961A (en) Resin composition, heat-conductive sheet, method for producing the sheet, and power module
JP2002003831A (en) Member for heat radiation
JP2008255186A (en) Heat-conductive resin sheet and power module
JP5791488B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JP2023024739A (en) Thermosetting resin composition, and cured product thereof, laminate, metal base substrate and power module
JP2022059058A (en) Thermosetting material
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
JP5653280B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JP2016079353A (en) High thermal conduction organic-inorganic composite material, method for producing the same, and organic-inorganic composite film
JP2019167436A (en) Resin composition, semiconductor device and method for producing semiconductor device
JP2017107888A (en) Method for manufacturing compound for thermally conductive sheet, compound for thermally conductive sheet, and power module
WO2022118873A1 (en) Thermally-conductive resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522700

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127033394

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800967

Country of ref document: EP

Kind code of ref document: A1