WO2012002307A1 - 単眼立体撮像装置 - Google Patents

単眼立体撮像装置 Download PDF

Info

Publication number
WO2012002307A1
WO2012002307A1 PCT/JP2011/064639 JP2011064639W WO2012002307A1 WO 2012002307 A1 WO2012002307 A1 WO 2012002307A1 JP 2011064639 W JP2011064639 W JP 2011064639W WO 2012002307 A1 WO2012002307 A1 WO 2012002307A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
parallax correction
eye
eye image
parallax
Prior art date
Application number
PCT/JP2011/064639
Other languages
English (en)
French (fr)
Inventor
洋史 堀井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2012522612A priority Critical patent/JP5595499B2/ja
Priority to EP11800771.5A priority patent/EP2590421B1/en
Priority to CN201180031249.3A priority patent/CN102959969B/zh
Publication of WO2012002307A1 publication Critical patent/WO2012002307A1/ja
Priority to US13/718,619 priority patent/US9077976B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/225Image signal generators using stereoscopic image cameras using a single 2D image sensor using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/236Image signal generators using stereoscopic image cameras using a single 2D image sensor using varifocal lenses or mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to a monocular three-dimensional imaging device, and more particularly to a technique for forming an image for a left eye and an image for a right eye by forming subject images that have passed through different regions in a left-right direction of a photographing lens on an imaging element.
  • Patent Document 1 discloses a parallax image input device that can shoot a parallax image using a single photographing lens and an image sensor.
  • a single-eye 3D camera (hereinafter referred to as a pupil division method) that uses a single photographing lens to photograph a parallax image by separating a light beam that has passed through a single photographing lens into a plurality of light beams (pupil division) (hereinafter referred to as a pupil division method)
  • the parallax is 0 at the in-focus position, and the parallax is in accordance with the defocus amount at the non-focus position. Therefore, when the focus lens moves and the focus point changes, the parallax (hereinafter referred to as the parallax amount) changes according to the defocus amount.
  • the captured image for the left eye (hereinafter referred to as the image for the left eye) and the image for the right eye (hereinafter referred to as the image for the right eye) are displayed in a stereoscopic manner. It is possible to check whether a correct image has been shot.
  • the parallax amount of the focused subject becomes 0, and the position of the 3D playback image (the position of the virtual image) is the display surface. Matches. As the in-focus position is shifted to the back, the position where the parallax amount becomes 0 shifts to the back, and the subject in front appears to jump out of the display surface.
  • FIG. 20 is a diagram showing the relationship between the focus point and the amount of parallax, and the in-focus position is shifted to the back side in the order of FIG. 20A to FIG. 20C.
  • 20A is in focus on the tree (ie, the tree is set to the focus point)
  • FIG. 20B is in focus on the car (ie, the car is set to the focus point)
  • FIG. 20C shows a case where the house is in focus (that is, the house is set as the focus point).
  • the amount of parallax between the right-eye image and the left-eye image of the tree is 0, and the position of the car in the right-eye image is slightly behind the left-eye image.
  • the position of the house of the eye image is located on the back side with a larger amount of parallax than the car with respect to the image for the left eye.
  • the amount of parallax between the right-eye image and the left-eye image of the car is 0, and the position of the tree for the right-eye image is located on the near side with respect to the left-eye image.
  • the position of the image image house is located on the back side with respect to the image for the left eye.
  • the amount of parallax between the right-eye image and the left-eye image of the house is 0, and the position of the car in the right-eye image is located slightly in front of the left-eye image.
  • the position of the tree for the eye image is located on the near side with a larger amount of parallax than the car for the image for the left eye.
  • the focus position changes frequently that is, when the focus point changes, as in the case of the image sensor AF or the moving image continuous focus operation
  • the amount of projecting of the subject frequently moves back and forth.
  • the parallax amount of the car changes from the near side to the far side by changing the focus point as shown in FIGS. 20A to 20C. Therefore, the photographer may cause discomfort due to the change in the amount of parallax. This is a phenomenon peculiar to a pupil division type monocular 3D camera.
  • Patent Document 1 has no description regarding adjustment of the amount of parallax.
  • Japanese Patent Application Laid-Open No. 2002-90921 describes that the convergence angle is automatically controlled according to the subject distance to adjust the parallax amount
  • Japanese Patent Application Laid-Open No. 2003-107601 describes the zoom change. It describes that the amount of parallax is adjusted by changing the baseline length and the convergence angle.
  • Japanese Patent Laid-Open No. 8-317429 describes an invention for adjusting the amount of parallax by changing the cutout position when enlarging by electronic zoom, but for changing the amount of parallax accompanying the movement of the focus lens, I can not cope.
  • the present invention has been made in view of such circumstances, and even when the focus lens is moved, the parallax amount of the left-eye image and the right-eye image displayed in a three-dimensional manner can be kept constant so that the photographer can
  • An object of the present invention is to provide a monocular stereoscopic imaging device capable of reducing discomfort.
  • a monocular stereoscopic imaging device of the present invention is divided by a photographing optical system including a focus lens, a pupil dividing unit that divides a light beam that has passed through the photographing optical system into a plurality of light beams, and a pupil dividing unit.
  • Imaging means for receiving left and right eye images by respectively receiving a plurality of luminous fluxes, focus lens driving means for moving the focus position of the focus lens, and focusing of the focus lens by the focus lens driving means
  • the parallax correction amount is calculated by the parallax correction amount calculating means for calculating the parallax correction amount for keeping the parallax amount of the main subject of the left eye image and the right eye image constant, and the parallax correction amount is calculated by the parallax correction amount calculating means.
  • the parallax that corrects the parallax between the left-eye image and the right-eye image by moving at least one of the left-eye image and the right-eye image in the left-right direction by the calculated parallax correction amount is performed by the corrector, display means for recognizing the left-eye image and the right-eye image as a stereoscopic image, and the left-eye image and right-eye image acquired by the imaging means, or the parallax correction means. And output means for outputting the left-eye image and the right-eye image.
  • the “parallax amount of the main subject” refers to, for example, the parallax amount at the center position of the main subject in the image or the average parallax amount of the main subject.
  • the left eye image and the right eye image are captured by pupil division, the left eye image and the right eye image are moved when the focus lens is moved.
  • a parallax correction amount is calculated such that the parallax amount of the main subject of the image is kept constant, and at least one of the left-eye image and the right-eye image is moved in the left-right direction by the calculated parallax correction amount. Is done. Thereby, even when the focus position of the focus lens is moved, the parallax amount between the left-eye image and the right-eye image can be kept constant.
  • the main subject referred to in the present invention can be applied to various cases such as a subject at the center of the screen or a person detected by face detection.
  • the monocular stereoscopic imaging device of the present invention includes display means for recognizing and displaying the left-eye image and the right-eye image as a stereoscopic image, and the output means includes the left-eye image and the right eye acquired by the imaging means. It is preferable to output the image for the eye or the image for the left eye and the image for the right eye subjected to the parallax correction by the parallax correction unit to the display unit.
  • the right-eye image and the left-eye image after parallax correction are stereoscopically displayed.
  • the parallax amount of the left-eye image and the right-eye image displayed in a three-dimensional manner can be kept constant, and the discomfort of the photographer can be reduced.
  • the monocular stereoscopic imaging device of the present invention includes first recording means for recording a left-eye image and a right-eye image, and the output means includes a left-eye image and a right-eye image acquired by the imaging means.
  • the left-eye image and the right-eye image that have been subjected to parallax correction by the parallax correction unit are output to the first recording unit.
  • a right-eye image and a left-eye image after parallax correction are recorded.
  • an image that has been processed to keep the parallax amount between the left-eye image and the right-eye image constant can be stereoscopically displayed later or viewed on another stereoscopic display device.
  • the parallax correction amount calculation means calculates a parallax correction amount such that the parallax amount of the main subject is always zero.
  • a parallax correction amount that calculates the parallax amount of the main subject of the left-eye image and the right-eye image as 0 is calculated.
  • the photographer does not move differently from the normal eye movement, and the photographer's discomfort can be more reliably reduced.
  • the parallax correction amount calculating unit detects corresponding points of the main subject from each of the left-eye image and the right-eye image, and corresponds to the detected left-eye image. It is preferable to calculate a parallax correction amount that keeps the deviation amount between the point and the corresponding point of the right-eye image constant.
  • the corresponding point of the main subject is detected from each of the left eye image and the right eye image, and the deviation amount between the corresponding point of the left eye image and the corresponding point of the right eye image is determined.
  • a parallax correction amount that is kept constant is calculated. Thereby, when the in-focus position is not obtained, the parallax correction amount can be calculated even before the AF process is performed, for example.
  • the monocular three-dimensional imaging device of the present invention further includes a movement amount calculation unit that calculates a movement amount of the focus lens when the focus lens is moved by the focus lens driving unit.
  • the parallax correction amount calculation means preferably calculates the parallax correction amount based on the movement amount of the focus position of the focus lens calculated by the movement amount calculation means.
  • a focus position acquisition unit that acquires a focus position based on the position of the focus lens
  • a second recording unit that records the correlation between the focus position and the parallax correction amount
  • the parallax correction amount calculating means includes a parallax based on the in-focus position acquired by the in-focus position acquiring means and the correlation between the in-focus position recorded in the second recording means and the parallax correction amount. It is preferable to calculate the correction amount.
  • the relationship between the focus position and the parallax correction amount is recorded, the focus position calculated from the focus position of the focus lens, the recorded focus position, and the parallax correction amount.
  • the amount of parallax correction is calculated based on the correlation with. Thereby, it is possible to reliably calculate the amount of parallax correction that occurs when the focus position changes (the focus point changes).
  • the monocular stereoscopic imaging device of the present invention comprises a diaphragm for adjusting the amount of light incident on the imaging means via the photographing optical system, and an aperture value detection means for detecting the aperture value of the diaphragm, the second recording means
  • the plurality of correlations between the in-focus position and the parallax correction amount are recorded according to the aperture value of the aperture, and the parallax correction amount calculating unit is configured to output the second value based on the aperture value of the aperture detected by the aperture value detecting unit. It is preferable to determine the correlation between the in-focus position and the parallax correction amount used for calculating the parallax correction amount from the correlation between the in-focus position and the parallax correction amount recorded in the recording unit.
  • a plurality of correlations between the in-focus position and the parallax correction amount are recorded according to the aperture value of the aperture.
  • the aperture value of the aperture is detected, and based on the detected aperture value, the correlation between the in-focus position and the parallax correction amount used to calculate the parallax correction amount from the correlation between the plurality of in-focus positions and the parallax correction amount. Correlation is determined.
  • the photographing optical system includes a zoom lens, and includes a focal length detection unit that detects a focal length from the position of the zoom lens, and the second recording unit includes a focus position.
  • a plurality of correlations between the parallax correction amount and the parallax correction amount are recorded according to the focal length, and the parallax correction amount calculating means records the in-focus data recorded in the second recording means based on the focal length detected by the focal length detecting means. It is preferable to determine the correlation between the in-focus position used for calculating the parallax correction amount and the parallax correction amount from the correlation between the position and the parallax correction amount.
  • a plurality of correlations between the in-focus position and the parallax correction amount are recorded according to the focal length.
  • the focal length is detected from the position of the zoom lens, and based on the detected focal length, the in-focus position and the parallax correction used for calculating the parallax correction amount from the correlation between the plurality of in-focus positions and the parallax correction amount. Correlation with quantity is determined.
  • the depth of field becomes shallower as the zoom position moves to the telephoto side, and the amount of parallax tends to increase. This makes it possible to determine the focus position used to calculate the amount of parallax correction based on the focal length.
  • the correlation with the parallax correction amount can be changed. Therefore, an appropriate amount of parallax correction can be calculated according to the focal length.
  • the focus lens is adjusted via the focus lens driving unit so that the main subject is focused based on the left-eye image and the right-eye image acquired by the imaging unit.
  • An automatic focusing unit that moves a focal position; the imaging unit continuously acquires an image for the left eye and an image for the right eye; and the automatic focusing unit is configured to capture the image for the left eye and the image for the right eye by the imaging unit. It is preferable to continuously move the focus position of the focus lens while is continuously acquired.
  • the focus position of the focus lens is continuously moved so that the main subject is in focus.
  • the parallax amount of the left-eye image and the right-eye image displayed in three dimensions is kept constant during shooting of a live view image or a moving image that is a moving image displayed in real time on the LCD monitor. Pleasure can be reduced.
  • the focus lens is connected via the focus lens driving unit so that the main subject is focused based on the left-eye image and the right-eye image acquired by the imaging unit.
  • An automatic focusing unit that moves a focusing position; and a shooting instruction input unit that inputs a shooting instruction.
  • the imaging unit receives an image for the left eye and a right eye when the shooting instruction is input by the shooting instruction input unit.
  • Each image is acquired one by one, and it is preferable that the automatic focusing unit moves the focusing position of the focus lens before the imaging unit acquires one image for the left eye and one image for the right eye.
  • the focus lens is moved so that the main subject is in focus, and then one image for the left eye and one for the right eye are then obtained. Acquired one by one.
  • the parallax amount of the left-eye image and the right-eye image displayed in three dimensions can be kept constant, and the photographer's discomfort can be reduced.
  • the parallax correction unit moves the left-eye image to the right side when the focus lens is moved in the direction in which the focus position is closer by the focus lens driving unit.
  • the parallax correction is performed by moving the image to the left side, or moving the image for the left eye to the right side, and moving the image for the right eye to the left side. Is moved, the left-eye image is moved to the left, the right-eye image is moved to the right, or the left-eye image is moved to the left, and the right-eye image is moved to the right. It is preferable to perform correction.
  • the focus lens when the focus lens is moved in a direction in which the in-focus position is closer, (1) the left-eye image is moved to the right side, and (2) the right-eye image is moved to the left side.
  • the parallax correction is performed by moving, or (3) moving the left-eye image to the right side and moving the right-eye image to the left side.
  • the focus lens is moved in a direction in which the in-focus position is far away, (1) the left eye image is moved to the left side, (2) the right eye image is moved to the right side, or (3) the left eye is moved.
  • the parallax correction is performed by moving the image for the left side and the image for the right eye to the right side. Accordingly, the right eye image and the left eye image can be moved so as to cancel the change in the amount of parallax.
  • FIG. 1 is a front perspective view of a monocular stereoscopic imaging device 1 according to a first embodiment of the present invention.
  • Rear view of the monocular stereoscopic imaging device 1 The figure which shows the structural example of the phase difference CCD of the monocular three-dimensional imaging device 1.
  • the figure which showed one pixel of the main and sub pixel of a photographic lens, an aperture stop, and a phase difference CCD. 4 is a partially enlarged view of FIG. 4.
  • FIG. 5A shows a case where there is no pupil division
  • FIGS. 5B and 5C each show a case where there is pupil division.
  • FIGS. 6A to 6C are diagrams showing separation states of images formed on the image sensor due to differences in front pins, in-focus (best focus), and rear pins, respectively.
  • Block diagram inside the monocular stereoscopic imaging device 1 Flowchart of live view image shooting processing of the monocular stereoscopic imaging device 1 This is a display example when the amount of parallax is kept constant, and the in-focus position moves to the back side in the order of FIGS. 9A to 9C.
  • Flowchart of photographing preparation processing of the monocular stereoscopic imaging device 2 Flowchart of another example of photographing preparation processing of the monocular stereoscopic imaging device 2
  • Block diagram inside the monocular stereoscopic imaging device 3 Example of graph showing correlation between focus position and parallax correction amount A graph showing the amount of parallax when the in-focus position moves from the near side to the far side The figure explaining that the amount of parallax becomes constant when the graph shown in FIG.
  • Example of graph showing correlation between focus position and parallax correction amount Example of graph showing correlation between focus position and parallax correction amount
  • Flowchart of live view image shooting processing of the monocular stereoscopic imaging device 3 Internal block diagram of a modification of the monocular stereoscopic imaging device 20 is a display example showing a change in the amount of parallax when the in-focus position moves from the near side to the far side, and the in-focus position moves to the far side in the order of FIGS. 20A to 20C.
  • FIG. 1 is a perspective view showing an embodiment of a monocular stereoscopic imaging device 1 which is an imaging device according to a first embodiment of the present invention.
  • FIG. 2 is a rear view showing an embodiment of the monocular stereoscopic imaging device 1.
  • the monocular stereoscopic imaging device 1 is a digital camera that receives light passing through a lens by an imaging device, converts the light into a digital signal, and records the digital signal on a recording medium.
  • the camera body 10 of the monocular stereoscopic imaging device 1 is formed in a horizontally long rectangular box shape, and a lens unit 12, a strobe 21 and the like are disposed on the front surface thereof as shown in FIG.
  • a shutter button 22, a power / mode switch 24, a mode dial 26, and the like are disposed on the upper surface of the camera body 10.
  • a liquid crystal monitor 28, a zoom button 30, a cross button 32, a MENU / OK button 34, a playback button 36, a BACK button 38, and the like are disposed on the back of the camera body 10.
  • a camera body 10 (not shown) is provided with a tripod screw hole, a battery insertion portion having an openable / closable cover, and a memory card slot. A battery and a memory card are loaded in the battery insertion portion and the memory card slot, respectively.
  • the lens unit 12 is composed of a retractable zoom lens.
  • the lens unit 12 is extended from the camera body 10 by setting the camera mode to the photographing mode with the power / mode switch 24.
  • the zoom mechanism and the retracting mechanism of the lens unit 12 are well-known techniques, description of specific configurations thereof is omitted here.
  • the strobe 21 is for irradiating strobe light toward the main subject.
  • the shutter button 22 is composed of a two-stage stroke type switch composed of a so-called “half press” and “full press”.
  • the shutter button 22 is “half-pressed” to activate the AE / AF, and “full-press” to execute shooting. To do.
  • the shutter button 22 is “fully pressed” to perform projection.
  • the power / mode switch 24 has both a function as a power switch for turning on / off the power of the monocular stereoscopic imaging device 1 and a function as a mode switch for setting the mode of the monocular stereoscopic imaging device 1. ”,“ Reproduction position ”, and“ photographing position ”are slidably arranged.
  • the monocular three-dimensional imaging device 1 is turned on by sliding the power / mode switch 24 to the “reproduction position” or “photographing position”, and turned off by adjusting to the “OFF position”. Become. Then, the power / mode switch 24 is slid and set to “playback position” to set “playback mode”, and set to “shooting position” to set “shooting mode”.
  • the mode dial 26 functions as shooting mode setting means for setting the shooting mode of the monocular stereoscopic imaging device 1, and the shooting mode of the monocular stereoscopic imaging device 1 is set to various modes depending on the setting position of the mode dial. For example, a “planar image capturing mode” for capturing a planar image, a “stereoscopic image capturing mode” for capturing a stereoscopic image (3D image), a “moving image capturing mode” for capturing a moving image, and a “stereoscopic panoramic image capturing”. 3D panorama shooting mode ".
  • the liquid crystal monitor 28 is a stereoscopic display means that can display a left-eye image and a right-eye image as a stereoscopic image having a predetermined directivity by a parallax barrier.
  • a parallax barrier having a pattern in which light transmitting portions and light shielding portions are alternately arranged at a predetermined pitch on the parallax barrier display layer of the liquid crystal monitor 28 is generated.
  • strip-shaped image fragments showing left and right images are alternately arranged and displayed on the lower image display surface.
  • nothing is displayed on the parallax barrier display layer, and one image is displayed as it is on the lower image display surface.
  • the form of the liquid crystal monitor 28 is not limited to this, and if a stereoscopic image is recognizable and displayed as a stereoscopic image, a special lens such as a lens that uses a lenticular lens or polarized glasses or liquid crystal shutter glasses is used. Thus, the image for the left eye and the image for the right eye can be viewed separately.
  • An organic EL monitor or the like may be used instead of the liquid crystal monitor.
  • the zoom button 30 functions as zoom instruction means for instructing zooming, and includes a zoom tele button 30T for instructing zooming to the telephoto side and a zoom wide button 30W for instructing zooming to the wide angle side.
  • the focal length of the lens unit 12 is changed by operating the zoom tele button 30T and the zoom wide button 30W in the shooting mode. Further, when the zoom tele button 30T and the zoom wide button 30W are operated in the reproduction mode, the image being reproduced is enlarged or reduced.
  • the cross button 32 is an operation unit for inputting instructions in four directions, up, down, left, and right, and is a button (cursor moving operation means) for selecting an item from the menu screen or instructing selection of various setting items from each menu.
  • the left / right key functions as a frame advance (forward / reverse feed) button in the playback mode.
  • the MENU / OK button 34 is an operation having both a function as a menu button for instructing to display a menu on the screen of the liquid crystal monitor 28 and a function as an OK button for instructing confirmation and execution of selection contents. Key.
  • the playback button 36 is a button for switching to a playback mode in which a still image or a moving image of a stereoscopic image (3D image) or a planar image (2D image) that has been captured and recorded is displayed on the liquid crystal monitor 28.
  • the BACK button 38 functions as a button for instructing to cancel the input operation or return to the previous operation state.
  • the lens unit 12 mainly includes a photographing lens 14, a diaphragm 16, and a solid-state imaging device (hereinafter referred to as “phase difference CCD”) 17 that is a phase difference image sensor.
  • phase difference CCD solid-state imaging device
  • the photographing lens 14 is an imaging optical system composed of a number of lenses including a focus lens and a zoom lens.
  • the diaphragm 16 is composed of, for example, five diaphragm blades, and is controlled in five stages in increments of 1AV from a diaphragm value F2.8 to F11, for example.
  • the image light indicating the subject is imaged on the light receiving surface of the phase difference CCD 17 via the photographing lens 14 and the diaphragm 16.
  • FIG. 3 is a diagram showing a configuration example of the phase difference CCD 17.
  • the phase difference CCD 17 has odd-numbered lines of pixels (main pixels) and even-numbered lines of pixels (sub-pixels) arranged in a matrix, and photoelectric conversion is performed in these main and sub-pixels.
  • the image signals for the two surfaces can be read independently.
  • FIG. 4 is a diagram showing the main lens and sub-pixels of the photographing lens 14 and the phase difference CCD 17 one by one
  • FIG. 5 is an enlarged view of the main part of FIG.
  • a light shielding member 17A is disposed on the front side (microlens L side) of the main pixel of the phase difference CCD 17, and a light shielding member 17B is disposed on the front side of the sub-pixel.
  • the light shielding members 17A and 17B function as pupil dividing members. As shown in FIG. 5A, the light beam passing through the exit pupil enters the normal CCD pixel (photodiode PD) via the microlens L without being restricted. As shown in FIG. 5B, the light shielding member 17A shields the right half of the light receiving surface of the main pixel (photodiode PD). Therefore, only the left side of the optical axis of the light beam passing through the exit pupil is received by the main pixel. As shown in FIG.
  • the light shielding member 17B shields the left half of the light receiving surface of the sub-pixel (photodiode PD). For this reason, only the right side of the optical axis of the light beam passing through the exit pupil is received by the sub-pixel.
  • FIGS. 6A to 6C are diagrams illustrating separation states of images formed on the image sensor by the difference in the focus lens between the front pin, the in-focus (best focus), and the rear pin, respectively.
  • the diaphragm 16 is omitted in order to compare the difference in separation due to focus.
  • the focused image of the pupil-divided images as shown in FIG. 6B is formed (matched) at the same position on the image sensor, but as shown in FIGS. 6A and 6C, the front pin and the rear The image serving as the pin is formed (separated) at different positions on the image sensor.
  • the phase difference CCD 17 having the above configuration is configured such that the main pixel and the sub-pixel have different regions (right half and left half) where the light beam is restricted by the light shielding members 17A and 17B.
  • the microlens L and the photodiode PD may be relatively shifted in the left-right direction, and the light flux incident on the photodiode PD may be limited by the shifting direction. Further, by providing one microlens for two pixels (main pixel and subpixel), the light flux incident on each pixel may be limited.
  • FIG. 7 is a block diagram of the monocular stereoscopic imaging device 1 according to the first embodiment of the present invention.
  • the monocular stereoscopic imaging device 1 records a captured image on a recording medium 54, and the operation of the entire device is centrally controlled by a central processing unit (CPU) 40.
  • CPU central processing unit
  • the monocular stereoscopic imaging device 1 is provided with operation units 48 such as a shutter button, a mode dial, a playback button, a MENU / OK key, a cross key, and a BACK key.
  • operation units 48 such as a shutter button, a mode dial, a playback button, a MENU / OK key, a cross key, and a BACK key.
  • a signal from the operation unit 48 is input to the CPU 40, and the CPU 40 controls each circuit of the monocular stereoscopic imaging device 1 based on the input signal. For example, lens driving control, aperture driving control, photographing operation control, image processing control, Image data recording / playback control, display control of the liquid crystal monitor 28 for stereoscopic display, and the like are performed.
  • the light beam that has passed through the photographic lens 14 and the diaphragm 16 is imaged on the phase difference CCD 17, and signal charges are accumulated in the phase difference CCD 17.
  • the signal charge accumulated in the phase difference CCD 17 is read as a voltage signal corresponding to the signal charge based on a read signal applied from the timing generator 45.
  • the voltage signal read from the phase difference CCD 17 is applied to the analog signal processing unit 60.
  • the analog signal processing section 60 performs correlated double sampling processing on the voltage signal output from the phase difference CCD 17 (for the purpose of reducing noise (particularly thermal noise) included in the output signal of the imaging device).
  • R, G, and B signals of each pixel are sampled and held by a process of obtaining accurate pixel data by taking the difference between the feedthrough component level and the pixel signal component level included in the output signal for each pixel. After that, it is added to the A / D converter 61.
  • the A / D converter 61 converts R, G, and B signals that are sequentially input into digital R, G, and B signals and outputs them to the image input controller 62.
  • the digital signal processing unit 63 performs predetermined processing such as offset control, gain control processing including white balance correction and sensitivity correction, gamma correction processing, YC processing, etc., on the digital image signal input via the image input controller 62. Perform signal processing.
  • predetermined processing such as offset control, gain control processing including white balance correction and sensitivity correction, gamma correction processing, YC processing, etc.
  • the main image data read from the main pixels of the odd lines of the phase difference CCD 17 is processed as image data for the left eye
  • the sub image data read from the sub pixels of the even lines is processed as the image data for right eye.
  • the left-eye image data and right-eye image data (3D image data) processed by the digital signal processing unit 63 are input to the VRAM 50.
  • the VRAM 50 includes an A area and a B area for recording 3D image data each representing a 3D image for one frame.
  • 3D image data representing a 3D image for one frame is rewritten alternately in the A area and the B area.
  • the written 3D image data is read from an area other than the area in which the 3D image data is rewritten in the A area and the B area of the VRAM 50.
  • the 3D image data read from the VRAM 50 is processed into strip-shaped image fragments by the 3D image signal processing unit 64, encoded by the video encoder 66, and output to the stereoscopic display liquid crystal monitor 28 provided on the back of the camera. As a result, 3D subject images are continuously displayed on the display screen of the liquid crystal monitor 28.
  • the CCD 40 starts the AF operation and the AE operation, moves the focus lens in the optical axis direction via the lens driving unit 47, and Control is performed so that the focus lens comes to the in-focus position.
  • the AF processing unit 42 is a part that performs contrast AF processing or phase difference AF processing.
  • contrast AF processing is performed, a high-frequency component of image data in a predetermined focus area is extracted from at least one of left-eye image data and right-eye image data, and the high-frequency component is integrated.
  • an AF evaluation value indicating the in-focus state is calculated.
  • AF control is performed by controlling the focus lens in the photographic lens 14 so that the AF evaluation value is maximized.
  • the phase difference AF process the phase difference between the image data corresponding to the main pixel and the sub-pixel in the predetermined focus area of the image data for the left eye and the image data for the right eye is detected.
  • a defocus amount is obtained based on information indicating the phase difference.
  • AF control is performed by controlling the focus lens in the photographic lens 14 so that the defocus amount becomes zero.
  • the CPU 40 moves the zoom lens back and forth in the optical axis direction via the lens driving unit 47 as necessary to change the focal length.
  • the image data output from the A / D converter 61 when the shutter button 22 is half-pressed is taken into the AE / AWB detection unit 44.
  • the AE / AWB detection unit 44 integrates the G signals of the entire screen, or integrates the G signals that are weighted differently at the center and the periphery of the screen, and outputs the integrated value to the CPU 40.
  • the CPU 40 calculates the brightness of the subject (shooting Ev value) from the integrated value input from the AE / AWB detection unit 44, and based on this shooting Ev value, the aperture value of the diaphragm 16 and the electronic shutter (shutter speed of the phase difference CCD 17).
  • the aperture 16 is controlled via the aperture drive unit 46 based on the determined aperture value, and the phase difference CCD 17 via the timing generator 45 based on the determined shutter speed. To control the charge accumulation time.
  • Two pieces of image data temporarily recorded in the VRAM 50 are appropriately read out by the digital signal processing unit 63, and here, predetermined signal processing including generation processing (YC processing) of luminance data and color difference data of the image data is performed. Is done.
  • the YC processed image data (YC data) is recorded in the VRAM 50 again.
  • the two pieces of YC data are respectively output to the compression / decompression processing unit 65, and after predetermined compression processing such as JPEG (Joint Photographic Experts Group) is executed, they are recorded again in the VRAM 50.
  • the 3D image signal processing unit 64 From the two YC data (compressed data) recorded in the VRAM 50, the 3D image signal processing unit 64 generates a multi-picture file (MP file: a file in a format in which a plurality of images are connected), and the MP file is The data is read by the media controller 52 and recorded on the recording medium 54.
  • MP file a file in a format in which a plurality of images are connected
  • the AF operation is performed not only when the shutter button 22 is pressed (half-pressed) in the first stage but also when the right-eye image data and the left-eye image data are continuously captured.
  • Examples of the case where the right-eye image data and the left-eye image data are continuously photographed include a case where a live view image is photographed and a case where a moving image is photographed.
  • the AF processing unit 42 continuously calculates the AF evaluation value while continuously capturing the right-eye image data and the left-eye image data, and continuously calculates the focus lens position. Continuous AF to be controlled is performed. In this case, according to the movement of the focus lens position, the parallax amounts of the right-eye image and the left-eye image that are continuously displayed on the display screen of the liquid crystal monitor 28 change.
  • the parallax correction amount calculation unit 67 continuously displays the right eye image, the left eye image, and the right eye displayed on the display screen of the liquid crystal monitor 28 during phase difference AF. A change in the amount of parallax between the image for use and the image for the left eye is calculated. The reference at this time is when the parallax amount of the main subject is zero. That is, the parallax correction amount calculation unit 67 obtains the parallax amount of the main subject of the right-eye image and the left-eye image displayed on the display screen of the liquid crystal monitor 28, and is necessary to set the parallax amount to zero. A parallax correction amount is calculated.
  • the main subject is a subject in the center of the AF area, a subject in the center of the screen, a human or pet face detected by a face detection unit (not shown), or a subject specified by input from the operation unit 48.
  • a method for detecting the face of a human or a pet by the face detection unit is already known, and a description thereof will be omitted.
  • the calculation of the parallax amount of the main subject of the right-eye image and the left-eye image displayed on the display screen of the liquid crystal monitor 28 is based on the shift amount of the corresponding point between the right-eye image data and the left-eye image data. Is calculated. For example, when an image as shown in FIG. 20 is taken and the main subject is a car, first, the parallax correction amount calculating unit 67 first determines the characteristics of the main subject from either the left-eye image or the right-eye image. A point (for example, the position of the rear end of the car) is detected, and a corresponding point corresponding to the feature point is detected from the other image. Thereby, a corresponding point is detected from each of the right-eye image data and the left-eye image data.
  • the parallax correction amount calculation unit 67 then detects the corresponding points detected from the right-eye image data and the left-eye image data (here, feature points of the right-eye image data (here, the rear end of the vehicle). (Position) and left-right image position data of the left eye image data) are calculated as the amount of parallax correction.
  • the parallax correction amount calculated by the parallax correction amount calculation unit 67 is output to the parallax correction unit 68.
  • the parallax correction amount calculation unit 67 calculates the necessary parallax correction amount so that the parallax amount of the main subject is maintained at 0, but the parallax correction amount caused by the movement of the focus lens is caused.
  • the parallax amount of the main subject may be kept constant, and the parallax amount of the main subject is not limited to zero.
  • the parallax amount of the main subject is not 0, for example, when the parallax amount of the main subject is kept constant in a state where the parallax amount is in the direction of protruding from the display surface, The movement of the eye facing (converging eye movement) will be made (becoming a cross-eyed eye).
  • the image is actually displayed on the display surface, it is necessary to focus the eyes on the display surface. In other words, the photographer performs the centering of the eyes to see what has jumped out to the front, and focuses on a display surface that has not popped out to the front. This is different from the operation of (focusing close at the same time and aligning the eyes). Therefore, even if the parallax amount of the main subject is kept constant, if the parallax amount of the main subject is not 0, the photographer is tired.
  • the parallax correction amount calculation unit 67 calculates the necessary parallax correction amount so that the parallax amount of the main subject is maintained at zero. Is desirable.
  • the parallax correction unit 68 moves at least one of the right-eye image data and the left-eye image data in the left-right direction by the parallax correction amount calculated by the parallax correction amount calculation unit 67. As a result, the distance between the main subject of the right-eye image and the main subject of the left-eye image is changed, and as a result, the distance between the main subject of the right-eye image and the main subject of the left-eye image is kept constant.
  • the parallax correction is performed by sagging (it is kept at 0 in this embodiment).
  • the parallax correction amount has not only the size but also direction information.
  • the direction information is a direction in which the right-eye image data and the left-eye image data are brought closer to each other, or a direction in which the right-eye image data and the left-eye image data are moved away from each other.
  • the relationship between the information on the direction of the parallax correction amount and the moving direction of the focus lens, the information on the direction of the parallax correction amount, and the method of parallax correction will be described.
  • the position where the parallax amount is 0 is far away (behind). Accordingly, the subject moves forward, that is, the subject of the right-eye image data moves to the left, and the main subject of the left-eye image data moves to the right. Therefore, the parallax correction amount is calculated in the direction in which the right-eye image data is on the right side and the left-eye image data is on the left side, that is, the right-eye image data and the left-eye image data are separated.
  • the position where the parallax amount is 0 is close (shifts forward). Therefore, the subject moves in the back direction, that is, the subject of the right-eye image data moves to the left side, and the main subject of the left-eye image data moves to the right side. Therefore, the parallax correction amount in the direction in which the right-eye image data is on the left side and the left-eye image data is on the right side, that is, the direction in which the right-eye image data and the left-eye image data are brought closer is calculated.
  • the parallax correction unit 68 (1) converts the left-eye image data to the left (2) Move the right-eye image data to the right by A, (3) Move the right-eye image data to the right side, and the left-eye image data to the left side by A / 2.
  • the parallax correction of the image data for the right eye and the image data for the left eye is performed so that the parallax amount becomes 0 by any of the above methods.
  • the parallax correction unit 68 (1) (2) Move the right-eye image data to the left by B, (3) Move the right-eye image data to the right and the left-eye image data to the left by B / 2.
  • the parallax correction of the image data for the right eye and the image data for the left eye is performed so that the parallax amount becomes 0 by any of the methods of moving.
  • the monocular stereoscopic imaging device 1 can record and reproduce not only moving images and still images, but also audio.
  • the microphone 57 inputs the transmission voice
  • the speaker 56 outputs the reception voice
  • the voice input / output circuit 55 encodes the voice input from the microphone and decodes the received voice.
  • FIG. 8 is a flowchart showing the flow of live view image shooting and display processing.
  • the CPU 40 drives the photographing lens 14 and the diaphragm 16 to the initial positions (step S10), and initially sets the parallax correction amount at this time to 0 (step S11).
  • CPU 40 determines whether or not an instruction to start capturing a live view image is input from operation unit 48 (step S12). If an instruction to start capturing the live view image is not input (NO in step S12), the CPU 40 turns off the liquid crystal monitor 28 (step S13).
  • step S12 When an instruction to start shooting the live view image is input (YES in step S12), the subject light that has passed through the shooting lens 14 is focused on the light receiving surface of the phase difference CCD 17 via the diaphragm 16.
  • the signal charge stored in the main pixel and subpixel of the phase difference CCD 17 by the timing generator 45 is sequentially read out at a predetermined frame rate as a voltage signal (image signal) corresponding to the signal charge, and the analog signal processing unit 60,
  • the image data is sequentially input to the digital signal processing unit 63 via the A / D converter 61 and the image input controller 62, and left-eye image data and right-eye image data are sequentially generated.
  • the generated left-eye image data and right-eye image data are sequentially input to the VRAM 50.
  • the CPU 40 changes the aperture amount (F value) of the diaphragm 16 via the diaphragm driving unit 46 based on the left-eye image data and the right-eye image data. Further, the CPU 40 performs zooming via the lens driving unit 47 in response to an input from the operation unit 48.
  • CPU 40 determines whether or not to perform continuous AF (step S14). Whether or not to perform continuous AF is set via the operation unit 48 and is recorded in a recording means in the CPU 40. The CPU 40 makes a determination based on this setting information.
  • the CPU 40 sequentially outputs the left-eye image data and the right-eye image data from the VRAM 50 and inputs them to the 3D image signal processing unit 64.
  • the image signal processing unit 64 generates a luminance / color difference signal and outputs the signal to the liquid crystal monitor 28 via the video encoder 66.
  • a parallax barrier is generated, and strip-like image fragments of left-eye image data and right-eye image data are alternately arranged and displayed on the lower image display surface ( Step S22). By sequentially performing this process, an image picked up by the main pixel and sub-pixel of the phase difference CCD 17 is displayed in real time.
  • the AF processing unit 42 performs continuous AF based on the left-eye image data and right-eye image data (step S15).
  • the parallax correction amount calculation unit 67 determines whether the in-focus position has changed due to continuous AF (step S16).
  • the parallax correction amount calculation unit 67 calculates the parallax correction amount from the left-eye image data and the right-eye image data (step S17).
  • the parallax correction unit 68 outputs the image data for the left eye and the image data for the right eye from the VRAM 50, and the image data for the left eye and the image data for the right eye are output based on the parallax correction amount calculated by the parallax correction amount calculation unit 67. At least one is moved in the left-right direction and output to the 3D image signal processing unit 64 (step S18).
  • the parallax correction unit 68 outputs the left-eye image data and the right-eye image data from the VRAM 50, and the parallax correction amount of the immediately previous frame (the parallax correction amount calculated immediately before by the parallax correction amount calculation unit 67).
  • the parallax correction amount calculation unit 67 has not calculated the parallax correction amount
  • at least one of the left-eye image data and the right-eye image data is calculated based on the parallax correction amount initially set in step S11).
  • the image is moved in the left-right direction and input to the 3D image signal processing unit 64 (step S19).
  • the parallax correction amount is 0, as a result, the left-eye image data and the right-eye image data are not moved.
  • the image signal processing unit 64 generates a luminance / color difference signal for the left-eye image data and the right-eye image data after being moved in the left-right direction by the parallax correction unit 68, and the signal is liquid crystal via the video encoder 66.
  • the data is output to the monitor 28.
  • a parallax barrier is generated, and strip-like image fragments of left-eye image data and right-eye image data are alternately arranged and displayed on the lower image display surface ( Step S20).
  • CPU 40 determines whether or not an instruction to end the shooting operation of the live view image is input from operation unit 48 (step S21). If an instruction to end the shooting operation of the live view image is not input (NO in step S21), the processes in steps S15 to S21 are repeated. If an instruction to end the live view image shooting operation is input (YES in step S21), this process ends.
  • the parallax amount of the image captured by the main pixel and sub-pixel of the phase difference CCD 17 is corrected so that the parallax amount of the main subject is constant, and is displayed in real time.
  • FIG. 9 is an example of a display image when the amount of parallax is corrected.
  • FIG. 9A shows a focus point on a tree
  • FIG. 9B shows a focus point on a car
  • FIG. 9C shows a focus point on a house. This is the case.
  • the parallax amount is corrected so that the parallax amount of the main subject, that is, the car, becomes 0. Therefore, regardless of the actual focus point (in all of FIGS. 9A to 9C), the liquid crystal monitor 28 includes An image in which the amount of parallax of the car is 0 is displayed. Accordingly, the amount of parallax does not change abruptly, and the photographer can comfortably view the stereoscopic image.
  • the photographer can confirm the shooting angle of view by viewing the moving image (live view image) displayed in real time on the liquid crystal monitor 28.
  • an S1 ON signal is input to the CPU 40, and the CPU 40 performs an AE / AF operation via the AF processing unit 42 and the AE / AWB detection unit 44.
  • the AF processing unit 42 performs the AF operation by the phase difference AF process.
  • an S2ON signal is input to the CPU 40, and the CPU 40 starts photographing and recording processing. That is, the phase difference CCD 17 is exposed with the shutter speed and aperture value determined based on the photometric result.
  • Two pieces of image data output from the main pixel and subpixel of the phase difference CCD 17 are taken into the VRAM 50 via the analog signal processing unit 60, the A / D converter 61, and the image input controller 62, and the 3D image signal. After being converted into a luminance / color difference signal in the processing unit 64, it is stored in the VRAM 50.
  • the image data for the left eye stored in the VRAM 50 is added to the compression / decompression processing unit 65, compressed in accordance with a predetermined compression format (for example, JPEG format), and then stored in the VRAM 50.
  • a predetermined compression format for example, JPEG format
  • An MP file is generated from the two pieces of compressed data recorded in the VRAM 50, and the MP file is recorded on the recording medium 54 via the media controller 52. As a result, a stereoscopic image is captured and recorded.
  • the monocular stereoscopic imaging apparatus 1 can capture both a planar image and a stereoscopic image.
  • photographing a planar image it is only necessary to photograph using only the main pixel of the phase difference CCD 17. Since the details of the photographing process are the same as those for photographing a stereoscopic image, description thereof is omitted.
  • the image recorded on the recording medium 54 as described above can be reproduced and displayed on the liquid crystal monitor 28 by setting the mode of the monocular stereoscopic imaging device 1 to the reproduction mode with the reproduction button.
  • the CPU 40 When the playback mode is set, the CPU 40 outputs a command to the media controller 52 to read out the image file recorded last on the recording medium 54.
  • the compressed image data of the read image file is added to the compression / decompression processing unit 65, decompressed to an uncompressed luminance / color difference signal, and then output to the liquid crystal monitor 28 via the video encoder 66.
  • the frame advance of the image is performed by operating the left and right keys of the cross key.
  • the right key of the cross key is pressed, the next image file is read from the recording medium 54 and displayed on the liquid crystal monitor 28.
  • the left key of the cross key is pressed, the previous image file is read from the recording medium 54 and reproduced and displayed on the liquid crystal monitor 28.
  • the parallax amount between the right-eye image and the left-eye image can be kept constant regardless of the movement of the focus lens even during the display of the live view image. Pleasure can be reduced.
  • the shooting and display of the live view image has been described as an example.
  • the right-eye image data and the left-eye image data are continuously acquired and continuous AF is performed, for example, a moving image It can also be applied during shooting.
  • the difference between Live View image shooting and movie shooting is that, when shooting Live View images, right-eye image data and left-eye image data are not recorded continuously, but in the case of movie shooting.
  • the processing shown in FIG. 8 only in that the processing is performed to record the continuously captured right-eye image data and left-eye image data on the recording medium 54 or the like. Note that the processing for recording the right-eye image data and the left-eye image data continuously captured on the recording medium 54 is already known, and thus the description thereof is omitted.
  • the parallax amount between the right-eye image and the left-eye image can always be constant not only during moving image shooting but also when stereoscopic display is performed after moving image shooting. This can reduce viewer discomfort.
  • the parallax amount is constant during shooting of the live view image.
  • the parallax amount is not limited to during shooting of the live view image.
  • the amount of parallax may always change.
  • the amount of parallax is adjusted during AF processing in the shooting preparation stage of still image shooting.
  • the monocular stereoscopic imaging device 2 according to the second embodiment will be described. Since the entire configuration of the imaging apparatus is the same as that of the first embodiment, description thereof will be omitted, and only description of the operation of the imaging apparatus will be described. Further, in the description of the operation of the imaging apparatus, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the subject light that has passed through the photographic lens 14 forms an image on the light receiving surface of the phase difference CCD 17 through the diaphragm 16.
  • the signal charge stored in the phase difference CCD 17 is sequentially read out by the timing generator 45 as a voltage signal (image signal) corresponding to the signal charge at a predetermined frame rate, and the analog signal processing unit 60, the A / D converter 61,
  • the image data is sequentially input to the digital signal processing unit 63 via the image input controller 62, and left-eye image data and right-eye image data are sequentially generated.
  • the generated left-eye image data and right-eye image data are sequentially input to the VRAM 50. In this case, so-called pan focus is performed while the focus lens is moved to a standard focus position (in this embodiment, the initial position).
  • the left-eye image data and the right-eye image data are sequentially output from the VRAM 50, a luminance / color difference signal is generated by the 3D image signal processing unit 64, and the signal is output to the liquid crystal monitor 28 via the video encoder 66.
  • a parallax barrier is generated, and strip-shaped image fragments of left-eye image data and right-eye image data are alternately arranged and displayed on the lower image display surface.
  • an image picked up by the main pixel and subpixel of the phase difference CCD 17 is displayed in real time.
  • the photographer can confirm the shooting angle of view by viewing the image displayed on the liquid crystal monitor 28 in real time.
  • FIG. 10 is a flowchart showing the flow of the shooting preparation process for still image shooting. This process is performed after the shutter button is pressed halfway and the S1 ON signal is input to the CPU 40. Also in this case, the signal charge stored in the phase difference CCD 17 is sequentially read out at a predetermined frame rate as a voltage signal (image signal) corresponding to the signal charge, and the analog signal processing unit 60, the A / D converter 61, The image data is sequentially input to the digital signal processing unit 63 via the image input controller 62, and left-eye image data and right-eye image data are sequentially generated.
  • the CPU 40 stops the photographic lens 14 and the diaphragm 16 while being driven to the same positions as when shooting the live view image (step S30), and initially sets the parallax correction amount at this time to 0 (step S31).
  • the CPU 40 performs the phase difference AF for moving the focus lens and acquiring the in-focus position.
  • the parallax correction amount calculation unit 67 determines whether or not the focus lens has been moved in the phase difference AF process (step S32).
  • the parallax correction amount calculation unit 67 calculates the parallax correction amount from the left-eye image data and the right-eye image data (step S33).
  • the parallax correction unit 68 outputs the image data for the left eye and the image data for the right eye from the VRAM 50, and the image data for the left eye and the image data for the right eye are output based on the parallax correction amount calculated by the parallax correction amount calculation unit 67. At least one is moved in the left-right direction and input to the 3D image signal processing unit 64 (step S34).
  • the parallax correction unit 68 outputs the left-eye image data and the right-eye image data from the VRAM 50, and the parallax correction amount of the immediately previous frame (the parallax correction amount calculated immediately before by the parallax correction amount calculation unit 67).
  • the parallax correction amount calculation unit 67 has not calculated the parallax correction amount
  • at least one of the left-eye image data and the right-eye image data is calculated based on the parallax correction amount initially set in step S31).
  • the image is moved in the left-right direction and input to the 3D image signal processing unit 64 (step S35).
  • the parallax correction amount is 0, as a result, the left-eye image data and the right-eye image data are not moved.
  • the 3D image signal processing unit 64 generates a luminance / color difference signal for the left-eye image data and the right-eye image data after being moved in the left-right direction by the parallax correction unit 68, and the signal is transmitted via the video encoder 66. It is output to the liquid crystal monitor 28. On the liquid crystal monitor 28, a parallax barrier is generated, and strip-like image fragments of left-eye image data and right-eye image data are alternately arranged and displayed on the lower image display surface ( Step S36).
  • the CPU 40 determines whether or not AF is completed from the operation unit 48, that is, whether or not the in-focus position is determined (step S37). If the in-focus position has not been determined (NO in step S37), the processes in steps S32 to S36 are repeated. If the in-focus position has been determined (YES in step S37), this process ends.
  • the parallax amount is corrected so that the parallax amount of the main subject becomes constant and the image captured by the main pixel and the sub-pixel of the phase difference CCD 17 is displayed in real time.
  • CPU 40 moves the focus position of the focus lens to the determined focus position.
  • the AE / AWB detection unit 44 performs AE processing.
  • an S2ON signal is input to the CPU 40, and the CPU 40 starts photographing and recording processing. That is, the phase difference CCD 17 is exposed with the shutter speed and aperture value determined based on the photometric result.
  • the CPU 40 reads the signal charge from the selected pixel among the pixels A to D via the CCD driving unit 33.
  • Two pieces of image data respectively output from the selected pixel of the main pixel and the sub-pixel of the phase difference CCD 17 are an analog signal processing unit 60, an A / D converter 61, an image
  • the data is taken into the VRAM 50 via the input controller 62, converted into a luminance / color difference signal by the 3D image signal processing unit 64, and then stored in the VRAM 50.
  • the image data for the left eye stored in the VRAM 50 is added to the compression / decompression processing unit 65, compressed in accordance with a predetermined compression format (for example, JPEG format), and then stored in the VRAM 50.
  • a predetermined compression format for example, JPEG format
  • An MP file is generated from the two pieces of compressed data recorded in the VRAM 50, and the MP file is recorded on the recording medium 54 via the media controller 52. As a result, a stereoscopic image is captured and recorded.
  • the image for the right eye and the left eye of the main subject are changed.
  • the amount of parallax with the image for use can be made constant at all times, the photographer's discomfort can be reduced, and comfortable viewing of a stereoscopic image can be realized.
  • the parallax correction amount is calculated based on the distance between the corresponding points, the parallax correction amount can be set even when the in-focus position is not known (that is, before the AF processing ends). Can be calculated.
  • the parallax correction amount when the photographing lens 14 is in the initial position is initially set to 0 (step S31), but the initial setting value of the parallax correction amount is not limited to this.
  • FIG. 11 is a flowchart showing the flow of AF processing when the initial setting value of the parallax correction amount is set to a value at which the parallax amount of the main subject becomes zero.
  • the CPU 40 stops the photographic lens 14 and the diaphragm 16 while driving them to the same positions as when shooting the live view image (step S30).
  • the CPU 40 detects a main subject (in this embodiment, a subject located at the center of the screen).
  • the parallax correction amount calculation unit 67 calculates a value at which the parallax amount of the main subject between the right-eye image data and the left-eye image data is 0, and the calculated parallax correction amount is set as an initially set parallax correction amount. (Step S40). Therefore, in this case, the parallax amount is corrected so that the main subject becomes 0 before the focus lens moves.
  • the CPU 40 performs the phase difference AF for moving the focus lens and acquiring the in-focus position.
  • the parallax correction amount calculation unit 67 determines whether or not the focus lens has been moved in the phase difference AF process (step S32).
  • the parallax correction amount calculation unit 67 calculates the parallax correction amount from the left-eye image data and the right-eye image data. Then, the parallax correction amount calculation unit 67 calculates the final parallax correction amount by adding the calculated parallax correction amount and the parallax correction amount initially set in step S40 (step S41).
  • the parallax correction unit 68 moves at least one of the left-eye image data and the right-eye image data acquired from the VRAM 50 in the left-right direction based on the parallax correction amount calculated by the parallax correction amount calculation unit 67 in step S41. Input to the 3D image signal processing unit 64 (step S42).
  • parallax correction amount calculation unit the parallax correction amount of the immediately preceding frame. If the parallax correction amount 67 calculated immediately before or the parallax correction amount calculation unit 67 has not calculated the parallax correction amount, the parallax correction amount is moved in the horizontal direction based on the parallax correction amount initially set in step S40, Input to the 3D image signal processing unit 64 (step S43).
  • a luminance / color difference signal is generated from the left-eye image data and the right-eye image data after being moved in the left-right direction by the parallax correction unit 68, and is output to the liquid crystal monitor 28.
  • a parallax barrier is generated, and strip-like image fragments of left-eye image data and right-eye image data are alternately arranged and displayed on the lower image display surface ( Step S36).
  • the CPU 40 determines whether or not AF is completed from the operation unit 48, that is, whether or not the in-focus position is determined (step S37). If the in-focus position has not been determined (NO in step S37), the processes in steps S32 to S36 are repeated. If the in-focus position has been determined (YES in step S37), this process ends.
  • the parallax amount between the image for the right eye and the image for the left eye can always be made constant before and during the AF operation.
  • phase difference AF is performed in the still image shooting preparation process.
  • the phase difference AF is performed as the shooting preparation process before moving image (including the live view image) shooting, This can also be applied when the focus lens is not moved during moving image shooting.
  • the parallax amount of the main subject of the right-eye image and the left-eye image is calculated based on the shift amount of the corresponding point between the right-eye image data and the left-eye image data.
  • the method of calculating the parallax amount of the main subject of the right-eye image and the left-eye image is not limited to this.
  • the parallax amount of the main subject of the right-eye image and the left-eye image is calculated from the movement amount of the focus lens.
  • the monocular stereoscopic imaging device 3 according to the third embodiment will be described.
  • symbol is attached
  • FIG. 12 is a block diagram showing an embodiment of the monocular stereoscopic imaging device 3 according to the third embodiment of the present invention.
  • the parallax correction amount calculation unit 67A continuously displays the right eye image, the left eye image, and the right eye displayed on the display screen of the liquid crystal monitor 28 during phase difference AF. The change in the parallax amount between the image for use and the image for the left eye is calculated. The reference at this time is when the parallax amount of the main subject is zero. That is, the parallax correction amount calculation unit 67A obtains the parallax amount of the main subject of the right-eye image and the left-eye image displayed on the display screen of the liquid crystal monitor 28, and is necessary to set the parallax amount to zero. A parallax correction amount is calculated.
  • the main subject refers to a subject in the center of the AF area, a human or pet face detected by a face detection unit (not shown), a subject specified by input from the operation unit 48, or the like. Note that a method for detecting the face of a human or a pet by the face detection unit is already known, and a description thereof will be omitted.
  • the calculated parallax correction amount is output to the parallax correction unit 68.
  • the calculation of the parallax amount of the main subject of the image for the right eye and the image for the left eye displayed on the display screen of the liquid crystal monitor 28 is calculated based on the movement amount of the focus lens.
  • a correlation between the amount of movement of the focus lens from the initial position and the amount of change of the in-focus position is recorded. Accordingly, the parallax correction amount calculation unit 67A can calculate how and how much the in-focus position has changed (hereinafter referred to as the in-focus position change amount) from the amount of movement of the focus lens from the initial position. .
  • the parallax correction amount calculation unit 67A calculates the parallax correction amount based on the amount of change in the focus position calculated from the amount of movement of the focus lens from the initial position and a graph indicating the correlation between the focus position and the parallax correction amount. decide. For example, in the case where FIG. 13 is used as the correlation between the in-focus position and the parallax correction amount, when the in-focus position moves by a toward the near side, the disparity correction amount calculating unit 67A sets “b toward the near side”. The parallax correction amount is determined.
  • FIG. 13 is an example of a graph showing the correlation between the in-focus position and the parallax correction amount.
  • the focal length is within a predetermined range near the middle, and the F value is within a predetermined range that is an appropriate shooting range.
  • 13 is a graph showing the correlation between the in-focus position and the parallax correction amount when there is a certain case (that is, the application range of the graph of FIG. 13 is the focal length and the F value is within a certain range centered on a predetermined value). is there.
  • the correlation between the in-focus position and the parallax correction amount is proportional, and as the in-focus position moves from the near side to the far side, the parallax correction amount from the near side to the far side increases with a constant slope.
  • the graph shown in FIG. 13 is set so as to cancel the parallax amount of the right-eye image and the left-eye image due to the change in the focus position.
  • the position where the parallax amount becomes 0 shifts to the back side, so that the parallax amount of the tree for the right eye image and the left eye image is Move to the near side at a certain rate. That is, the tree displayed on the liquid crystal monitor 28 pops out at a certain rate.
  • FIG. 14 is a graph showing this correlation. In FIG.
  • the parallax amount of the main subject of the right-eye image and the left-eye image becomes the parallax amount toward the near side. Increases at a constant rate.
  • FIG. 16 is a graph showing the correlation between the focus position and the parallax correction amount at various focal lengths
  • FIG. 17 is a graph showing the correlation between the focus position and the parallax correction amount at various F values.
  • the application range of each graph is a case where the focal length and the F value are within a certain range around a certain value.
  • the zoom lens When the zoom lens is moved and the position of the zoom lens (zoom position), that is, the focal length becomes the telephoto side, the depth of field becomes shallower and the amount of parallax tends to increase. Therefore, in order to calculate an appropriate amount of parallax correction according to the focal length, the amount of change in the amount of parallax correction relative to the amount of change when the in-focus position changes as the focal length becomes telephoto (the slope of the graph) Need to be larger. Therefore, the slope of the graph indicating the correlation between the in-focus position and the parallax correction amount varies as shown in FIG. 16 depending on the focal length.
  • the graph showing the correlation between the in-focus position and the parallax correction amount shown in FIG. 16 and 17 exemplify the case of three graphs, more graphs with different focal lengths and F values may be recorded.
  • the parallax correction amount calculation unit 67A acquires the focal length and the brightness of the subject, and which graph of the plurality of graphs recorded in the recording area is used as a graph indicating the correlation between the in-focus position and the parallax correction amount. To decide. Accordingly, it is possible to calculate a parallax correction amount such that the parallax amount of the subject is always zero regardless of the subject condition, the optical condition, and the like.
  • the correlation between the in-focus position and the parallax correction amount is not limited to the graphs as shown in FIGS. 13, 16, and 17, and a table in which the correlation between the in-focus position and the parallax correction amount is displayed in a list format is recorded. You may do it.
  • FIG. 18 is a flowchart showing the flow of shooting and display processing of the live view image of the monocular stereoscopic imaging device 3. Since the difference from the live view image capturing process of the monocular stereoscopic imaging device 1 is only step S50, step S50 will be described.
  • step S16 If the parallax correction amount calculation unit 67 determines whether or not the focus position has been changed by continuous AF (step S16), if the focus position has changed (YES in step S16), the focus lens is moved. This is a case where the in-focus subject, that is, the focus point changes.
  • the parallax correction amount calculation unit 67 calculates the parallax correction amount based on the movement amount of the focus lens (step S50).
  • step S50 the process of step S50 will be described in detail.
  • the parallax correction amount calculation unit 67 acquires the movement amount from the initial position of the focus lens, the focal length (which is calculated from the zoom position), and the F value via the CPU 40.
  • the parallax correction amount calculation unit 67 determines which graph to use from among the graphs indicating the correlation between the plurality of in-focus positions recorded in the recording area and the parallax correction amount based on the focal length and the F value. decide.
  • the parallax correction amount calculation unit 67 calculates the amount of change in the focus position based on the amount of movement of the focus lens from the initial position.
  • the amount of change in the focus position is the amount of change between the focus position before step S50 is performed and the focus position after the focus lens is moved.
  • the parallax correction amount is calculated based on the calculation result and a graph indicating the correlation between the determined in-focus position and the parallax correction amount.
  • step S50 if the focus lens has already been moved from the initial position, the amount of movement from the position of the immediately preceding focus lens may be calculated if the amount of change in the focus position is obtained. Then, the movement amount from the initial position may be calculated.
  • the parallax amount of the image captured by the main pixel and sub-pixel of the phase difference CCD 17 is corrected so that the parallax amount of the main subject is constant according to the subject conditions and optical conditions, and is displayed in real time.
  • the amount of parallax between the right-eye image and the left-eye image can be kept constant regardless of the movement of the focus lens, regardless of the subject conditions, optical conditions, and the like. Pleasure can be reduced.
  • the shooting and display of the live view image has been described as an example.
  • image data for the right eye and image data for the left eye are continuously acquired and In the case of performing the numerical AF, for example, it can be applied also during moving image shooting.
  • a graph indicating the correlation between the in-focus position and the parallax correction amount is recorded.
  • a graph indicating the relationship between the movement amount of the focus lens and the parallax correction amount is recorded, and The parallax correction amount may be obtained directly from the movement amount.
  • the amount of change in the focus position is obtained from the amount of movement of the focus lens, and the amount of parallax correction is calculated from the amount of change in the focus position.
  • the amount of change in the focus position can be calculated, Calculation of the movement amount of the focus lens is not essential.
  • the left-eye image data and the right-eye image data that have been moved in the left-right direction by the parallax correction unit 68 are displayed on the liquid crystal via the 3D image signal processing unit 64 and the video encoder.
  • the left-eye image data and the right-eye image data that have been output to the monitor 28 but have been moved in the left-right direction by the parallax correction unit 68 are recorded on the recording medium 54, a recording means (not shown) inside the monocular stereoscopic imaging device, and the monocular stereoscopic imaging device. It may be output to an external recording means or the like connected to and recorded.
  • the parallax amount of the left-eye image and the right-eye image can be kept constant regardless of the movement of the focus lens even when stereoscopic display is performed by a monocular stereoscopic imaging device or other display means. Pleasure can be reduced.
  • the present invention is not limited to the CCD.
  • the present invention is also applicable to other image sensors such as CMOS.
  • the monocular three-dimensional imaging device that divides the light beam by the light shielding members 17A and 17B provided on the microlens L side of the phase difference CCD 17 has been described as an example, but as shown in FIG.
  • the present invention can also be applied to a monocular three-dimensional imaging apparatus using a photographing lens 12 ′ including a relay lens that splits a luminous flux. Further, by providing one microlens for two pixels (main pixel and subpixel), the light flux incident on each pixel may be limited.
  • 1, 2, 3 Monocular stereoscopic imaging device
  • 14 photographing lens
  • 16 aperture
  • 17A, 17B light shielding member
  • 17 phase difference CCD
  • 40 CPU
  • 45 timing generator
  • 46 aperture drive unit
  • 47 Lens drive unit
  • 54 recording medium
  • 67, 67A parallax correction amount calculation unit
  • 68 parallax correction unit

Abstract

本発明は、フォーカスレンズが移動された場合においても、立体表示された左眼用画像9及び右眼用画像の視差量を一定に保つことで撮影者の不快感を軽減することができる。コンティニュアスAFにより合焦位置が変化した場合(ステップS16でYES)には、視差補正量算出部67は左眼用画像データ及び右眼用画像データから視差補正量を算出(ステップS17)し、視差補正部68は視差補正量算出部67が算出した視差補正量に基づいて左眼用画像データ及び右眼用画像データの少なくとも一方を左右方向に移動させる(ステップS18)。合焦位置が変化していない場合(ステップS16でNO)には、直前のフレームの視差補正量に基づいて左眼用画像データ及び右眼用画像データの少なくとも一方を左右方向に移動させる(ステップS19)。これにより、リアルタイムに表示される画像の主要被写体の視差量が一定となるように視差量が補正される。

Description

単眼立体撮像装置
 本発明は単眼立体撮像装置に係り、特に撮影レンズの左右方向の異なる領域を通過した被写体像をそれぞれ撮像素子に結像させ、左眼用の画像及び右眼用の画像を取得する技術に関する。
 特許文献1には、単一の撮影レンズ及び撮像素子を用いて視差画像を撮影することができる視差画像入力装置が開示されている。
 このように単一の撮影レンズを用い、単一の撮影レンズを通過した光束を複数の光束に分離すること(瞳分割)により視差画像を撮影する(以下、瞳分割方式という)単眼3Dカメラ(単眼立体撮像装置)では、合焦位置において視差が0となり、また、非合焦位置においてデフォーカス量に応じた視差となる。そのため、フォーカスレンズが移動し、フォーカスポイントが変更すると、デフォーカス量に応じて視差(以下、視差量という)が変更することとなる。
特開平10-42314号公報
 一般的に単眼3Dカメラによる撮影時には、撮影された左眼用の画像(以下、左眼用画像という)及び右眼用の画像(以下、右眼用画像という)を立体表示して、どのような画像が撮影されているかを確認できるようになっている。
 瞳分割方式の単眼3Dカメラでは、手前にある被写体に合焦すると、合焦している被写体(手前にある被写体)の視差量は0となり、3D再生像の位置(虚像の位置)は表示面と一致する。合焦位置を奥にずらしていくにつれて、視差量が0となる位置が奥にずれ、手前にある被写体が表示面から飛びだしてくるように見える。
 図20は、フォーカスポイントと視差量との関係を示す図であり、図20Aから図20Cの順で合焦位置が奥側にずれている。図20Aは木に合焦している(すなわち、木がフォーカスポイントに設定されている)場合、図20Bは車に合焦している(すなわち、車がフォーカスポイントに設定されている)場合、図20Cは家に合焦している(すなわち、家がフォーカスポイントに設定されている)場合である。
 図20Aの場合には木の右眼用画像と左眼用画像との視差量は0であり、右眼用画像の車の位置は左眼用画像に対して少し奥側に位置し、右眼用画像の家の位置は左眼用画像に対して車より大きな視差量で奥側に位置している。図20Bの場合には車の右眼用画像と左眼用画像との視差量は0であり、右眼用画像の木の位置は左眼用画像に対して手前側に位置し、右眼用画像の家の位置は左眼用画像に対して奥側に位置している。図20Cの場合には家の右眼用画像と左眼用画像との視差量は0であり、右眼用画像の車の位置は左眼用画像に対して少し手前側に位置し、右眼用画像の木の位置は左眼用画像に対して車より大きな視差量で手前側に位置している。
 撮像素子AFや動画のコンティニュアスフォーカス動作のように、頻繁に合焦位置が変わる、すなわちフォーカスポイントが変わる動作をすると、被写体の飛出し量が頻繁に前後に動くことになる。例えば、撮影者が車に注目しているとすると、図20A~20Cのようにフォーカスポイントが変わることにより車の視差量が手前側から奥側へと変わることとなる。そのため、視差量の変化により撮影者が不快感を引き起こす可能性がある。これは、瞳分割方式の単眼3Dカメラに特有の現象である。
 しがしながら、特許文献1には、視差量の調整に関する記載はない。
 また、特開2002-90921号公報には、被写体距離に応じて輻輳角を自動的に制御して視差量を調整することが記載され、特開2003-107601号公報には、ズーム変更に伴い基線長、輻輳角を変化させて視差量を調整することが記載されている。しかしながら、これらは少なくとも2つの撮像系を用いて視差画像を撮影する2眼以上の多眼3Dカメラに特有の方法であり、単眼3Dカメラに適用することはできない。
 さらに、特開平8-317429号公報には、電子ズームによる拡大を行う時に切り出し位置を変えることで視差量を調整する発明が記載されているが、フォーカスレンズの移動に伴う視差量の変更には対応できない。
 本発明はこのような事情に鑑みてなされたもので、フォーカスレンズが移動された場合においても、立体表示された左眼用画像及び右眼用画像の視差量を一定に保つことで撮影者の不快感を軽減することができる単眼立体撮像装置を提供することを目的とする。
 上記目的を達成するため、本発明の単眼立体撮像装置は、フォーカスレンズを含む撮影光学系と、撮影光学系を通過した光束を複数の光束に分割する瞳分割手段と、瞳分割手段により分割された複数の光束をそれぞれ受光して左眼用画像及び右眼用画像を取得する撮像手段と、フォーカスレンズの合焦位置を移動させるフォーカスレンズ駆動手段と、フォーカスレンズ駆動手段によりフォーカスレンズの合焦位置が移動した際に、左眼用画像及び右眼用画像の主要被写体の視差量を一定に保つ視差補正量を算出する視差補正量算出手段と、視差補正量算出手段により視差補正量が算出されると、算出された視差補正量だけ左眼用画像及び右眼用画像の少なくとも一方を左右方向に移動させて左眼用画像及び右眼用画像の視差補正を行う視差補正手段と、左眼用画像及び右眼用画像を立体画像として認識可能に表示させる表示手段と、撮像手段により取得された左眼用画像及び右眼用画像、又は視差補正手段により視差補正が行われた左眼用の画像及び右眼用の画像を出力する出力手段と、を備えたことを特徴とする。なお、ここでいう「主要被写体の視差量」とは、例えば、画像内の主要被写体の中心位置における視差量であったり、主要被写体の平均的な視差量を言うものである。
 上述の単眼立体撮像装置によれば、瞳分割により左眼用画像と右眼用画像とが撮影される場合に、フォーカスレンズの合焦位置が移動されると、左眼用画像及び右眼用画像の主要被写体の視差量が一定に保たれるような視差補正量が算出され、算出された視差補正量だけ左眼用画像及び右眼用画像の少なくとも一方を左右方向に移動させて視差補正が行われる。これにより、フォーカスレンズの合焦位置が移動された場合においても、左眼用画像及び右眼用画像の視差量を一定に保つようにすることができる。なお、本発明でいう主要被写体は、画面中央にある被写体や顔検出により検出される人物等様々な場合に適用できる。
 また、本発明の単眼立体撮像装置は、左眼用画像及び右眼用画像を立体画像として認識可能に表示させる表示手段を備え、出力手段は、撮像手段により取得された左眼用画像及び右眼用画像、又は視差補正手段により視差補正が行われた左眼用画像及び右眼用画像を表示手段に出力することが好ましい。
 かかる単眼立体撮像装置によれば、視差補正後の右目用画像、左眼用画像が立体表示される。これにより、フォーカスレンズが移動された場合においても、立体表示された左眼用画像及び右眼用画像の視差量を一定に保ち、撮影者の不快感を軽減することができる。
 更に、本発明の単眼立体撮像装置は、左眼用画像及び右眼用画像を記録する第1の記録手段を備え、出力手段は、撮像手段により取得された左眼用画像及び右眼用画像、又は視差補正手段により視差補正が行われた左眼用画像及び右眼用画像を第1の記録手段に出力することが好ましい。
 かかる単眼立体撮像装置によれば、視差補正後の右目用画像、左眼用画像が記録される。これにより、左眼用画像及び右眼用画像の視差量を一定に保つような処理が行なわれた画像を後で立体表示させたり、他の立体表示装置で閲覧したりすることができる。
 更にまた、本発明の単眼立体撮像装置において、視差補正量算出手段は、主要被写体の視差量が常に0となるような視差補正量を算出することが好ましい。
 かかる単眼立体撮像装置によれば、フォーカスレンズが移動されると、左眼用画像及び右眼用画像の主要被写体の視差量を0とする視差補正量が算出される。これにより、撮影者が通常の目の動きと異なる動きをすることがなくなり、撮影者の不快感をより確実に軽減することができる。
 加えて、本発明の単眼立体撮像装置において、視差補正量算出手段は、左眼用画像及び右眼用画像のそれぞれから主要被写体の対応点を検出し、当該検出された左眼用画像の対応点と右眼用画像の対応点とのずれ量を一定に保つ視差補正量を算出することが好ましい。
 かかる単眼立体撮像装置によれば、主要被写体の対応点が左眼用画像及び右眼用画像のそれぞれから検出され、左眼用画像の対応点と右眼用画像の対応点とのずれ量を一定に保つ視差補正量が算出される。これにより、合焦位置が求まっていない場合、例えばAF処理が行われる前においても視差補正量を算出することができる。
 加えてまた、本発明の単眼立体撮像装置において、フォーカスレンズ駆動手段によりフォーカスレンズの合焦位置を移動した際に、フォーカスレンズの合焦位置の移動量を算出する移動量算出手段を更に備え、視差補正量算出手段は、移動量算出手段により算出されたフォーカスレンズの合焦位置の移動量に基づいて視差補正量を算出することが好ましい。
 かかる単眼立体撮像装置によれば、フォーカスレンズの合焦位置が移動されると、フォーカスレンズの合焦位置の移動量が算出され、フォーカスレンズの合焦位置の移動量に基づいて視差補正量が算出される。これにより、フォーカスレンズの合焦位置が移動することにより発生する視差補正量を確実に算出することができる。
 また、本発明の単眼立体撮像装置において、フォーカスレンズの位置に基づいて合焦位置を取得する合焦位置取得手段と、合焦位置と視差補正量との相関が記録された第2の記録手段と、を備え、視差補正量算出手段は、合焦位置取得手段により取得された合焦位置と、第2の記録手段に記録された合焦位置と視差補正量との相関とに基づいて視差補正量を算出することが好ましい。
 かかる単眼立体撮像装置によれば、合焦位置と視差補正量との関係が記録されており、フォーカスレンズの合焦位置より算出された合焦位置と、記録された合焦位置と視差補正量との相関とに基づいて視差補正量が算出される。これにより、合焦位置が変化(フォーカスポイントが変化)することにより発生する視差補正量を確実に算出することができる。
 更に、本発明の単眼立体撮像装置において、撮影光学系を介して撮像手段に入射する光量を調整する絞りと、絞りの絞り値を検出する絞り値検出手段と、を備え、第2の記録手段には、合焦位置と視差補正量との相関が絞りの絞り値に応じて複数記録され、視差補正量算出手段は、絞り値検出手段により検出された絞りの絞り値に基づいて、第2の記録手段に複数記録された合焦位置と視差補正量との相関のなかから視差補正量の算出に用いる合焦位置と視差補正量との相関を決定することが好ましい。
 かかる単眼立体撮像装置によれば、合焦位置と視差補正量との相関が絞りの絞り値に応じて複数記録されている。絞りの絞り値が検出され、検出された絞り値に基づいて、複数記録された合焦位置と視差補正量との相関のなかから視差補正量の算出に用いる合焦位置と視差補正量との相関が決定される。瞳分割方式の単眼立体撮像装置では、被写体が明るいほど被写界深度が浅くなり視差量がつきやすいが、これにより絞り値に基づいて視差補正量の算出に用いる合焦位置と視差補正量との相関を変えることができる。したがって、被写体の明るさに応じて適切な視差補正量を算出することができる。
 更にまた、本発明の単眼立体撮像装置において、撮影光学系はズームレンズを有し、ズームレンズの位置より焦点距離を検出する焦点距離検出手段を備え、第2の記録手段には、合焦位置と視差補正量との相関が焦点距離に応じて複数記録され、視差補正量算出手段は、焦点距離検出手段より検出された焦点距離に基づいて、第2の記録手段に複数記録された合焦位置と視差補正量との相関のなかから視差補正量の算出に用いる合焦位置と視差補正量との相関を決定することが好ましい。
 かかる単眼立体撮像装置によれば、合焦位置と視差補正量との相関が焦点距離に応じて複数記録されている。ズームレンズの位置より焦点距離が検出され、検出された焦点距離に基づいて、複数記録された合焦位置と視差補正量との相関のなかから視差補正量の算出に用いる合焦位置と視差補正量との相関が決定される。瞳分割方式の単眼立体撮像装置では、ズーム位置が望遠側にいくほど被写界深度が浅くなり視差量がつきやすいが、これにより焦点距離に基づいて視差補正量の算出に用いる合焦位置と視差補正量との相関を変えることができる。したがって、焦点距離に応じて適切な視差補正量を算出することができる。
 加えて、本発明の単眼立体撮像装置において、撮像手段により取得された左眼用画像及び右眼用画像に基づいて、主要被写体が合焦するようにフォーカスレンズ駆動手段を介してフォーカスレンズの合焦位置を移動させる自動合焦手段を備え、撮像手段は、左眼用画像及び右眼用画像を連続的に取得し、自動合焦手段は、撮像手段により左眼用画像及び右眼用画像が連続的に取得されている間、連続的にフォーカスレンズの合焦位置を移動させることが好ましい。
 かかる単眼立体撮像装置によれば、左眼用画像及び右眼用画像が連続的に取得されている間、主要被写体が合焦するように連続的にフォーカスレンズの合焦位置を移動させる。これにより、液晶モニタにリアルタイムに表示される動画像であるライブビュー画像や動画の撮影中において、立体表示された左眼用画像及び右眼用画像の視差量を一定に保ち、撮影者の不快感を軽減することができる。
 加えてまた、本発明の単眼立体撮像装置において、撮像手段により取得された左眼用画像及び右眼用画像に基づいて、主要被写体が合焦するようにフォーカスレンズ駆動手段を介してフォーカスレンズの合焦位置を移動させる自動合焦手段と、撮影指示を入力する撮影指示入力手段と、を備え、撮像手段は、撮影指示入力手段により撮影指示が入力されると左眼用画像及び右眼用画像をそれぞれ1枚ずつ取得し、自動合焦手段は、撮像手段が左眼用画像及び右眼用画像をそれぞれ1枚ずつ取得する前にフォーカスレンズの合焦位置を移動させることが好ましい。
 かかる単眼立体撮像装置によれば、撮影指示入力手段により撮影指示が入力されると、主要被写体が合焦するようにフォーカスレンズを移動させ、その後左眼用画像及び右眼用画像がそれぞれ1枚ずつ取得される。これにより、静止画の撮影前のAF処理において、立体表示された左眼用画像及び右眼用画像の視差量を一定に保ち、撮影者の不快感を軽減することができる。
 また、本発明の単眼立体撮像装置において、視差補正手段は、フォーカスレンズ駆動手段により合焦位置が近くなる方向にフォーカスレンズが移動されると、左眼用画像を右側に移動させる、右眼用画像を左側に移動させる、又は左眼用画像を右側に移動させ、かつ右眼用画像を左側に移動させることにより視差補正を行い、フォーカスレンズ駆動手段により合焦位置が遠くなる方向にフォーカスレンズが移動されると、左眼用画像を左側に移動させる、右眼用画像を右側に移動させる、又は左眼用画像を左側に移動させ、かつ右眼用画像を右側に移動させることにより視差補正を行うことが好ましい。
 かかる単眼立体撮像装置によれば、合焦位置が近くなる方向にフォーカスレンズが移動された場合には、(1)左眼用画像を右側に移動させる、(2)右眼用画像を左側に移動させる、又は(3)左眼用画像を右側に移動させ、かつ右眼用画像を左側に移動させる、ことにより視差補正が行われる。また、合焦位置が遠くなる方向にフォーカスレンズが移動されると、(1)左眼用画像を左側に移動させる、(2)右眼用画像を右側に移動させる、又は(3)左眼用画像を左側に移動させ、かつ右眼用画像を右側に移動させることにより視差補正が行われる。これにより、視差量の変化を打ち消すように右眼用画像、左眼用画像を移動させることができる。
 本発明によれば、フォーカスレンズが移動された場合においても、立体表示された左眼用画像及び右眼用画像の視差量を一定に保つことで撮影者の不快感を軽減することが可能となる。
本発明の第1の実施の形態に係る単眼立体撮像装置1の正面斜視図 単眼立体撮像装置1の背面図 単眼立体撮像装置1の位相差CCDの構成例を示す図 撮影レンズ、絞り、及び位相差CCDの主、副画素の1画素ずつを示した図 図4の部分拡大図であり、図5Aは瞳分割が無い場合であり、図5B及び5Cはそれぞれ瞳分割がある場合である。 図6A~6Cはそれぞれ前ピン、合焦(ベストフォーカス)、及び後ピンの違いによる撮像素子に結像する像の分離状態を示す図 単眼立体撮像装置1内部のブロック図 単眼立体撮像装置1のライブビュー画像撮影処理のフローチャート 視差量が一定に保たれる場合の表示例であり、図9A~9Cの順で合焦位置が奥側へ移動している。 単眼立体撮像装置2の撮影準備処理のフローチャート 単眼立体撮像装置2の撮影準備処理の別の例のフローチャート 単眼立体撮像装置3内部のブロック図 合焦位置と視差補正量との相関を示すグラフの一例 合焦位置が手前側から奥側へ移動したときの視差量を示すグラフ 図14に示すグラフに図13に示すグラフを適用すると視差量が一定になることを説明する図 合焦位置と視差補正量との相関を示すグラフの一例 合焦位置と視差補正量との相関を示すグラフの一例 単眼立体撮像装置3のライブビュー画像撮影処理のフローチャート 単眼立体撮像装置の変形例の内部のブロック図 合焦位置が手前側から奥側へ移動したときの視差量の変化を示す表示例であり、図20A~図20Cの順で合焦位置が奥側へ移動している。
 以下、図面を参照しつつ、本発明に係る単眼立体撮像装置の実施の形態について説明する。
 <第1の実施の形態>
 [撮像装置の全体構成]
 図1は本発明に係る第1の実施の形態の撮像装置である単眼立体撮像装置1の一実施形態を示す斜視図である。図2は、上記単眼立体撮像装置1の一実施形態を示す背面図である。この単眼立体撮像装置1は、レンズを通った光を撮像素子で受け、デジタル信号に変換して記録メディアに記録するデジタルカメラである。
 単眼立体撮像装置1のカメラボディ10は、横長の四角い箱状に形成されており、その正面には、図1に示すように、レンズユニット12、ストロボ21等が配設されている。また、カメラボディ10の上面にはシャッタボタン22、電源/モードスイッチ24、モードダイヤル26等が配設されている。一方、カメラボディ10の背面には、図2に示すように、液晶モニタ28、ズームボタン30、十字ボタン32、MENU/OKボタン34、再生ボタン36、BACKボタン38等が配設されている。
 なお、図示しないカメラボディ10の下面には、三脚ネジ穴と、開閉自在なカバーを有するバッテリ挿入部とメモリカードスロットとが設けられている。バッテリ挿入部とメモリカードスロットには、夫々バッテリとメモリカードが装填される。
 レンズユニット12は、沈胴式のズームレンズで構成されている。また、レンズユニット12は、電源/モードスイッチ24によってカメラのモードを撮影モードに設定することにより、カメラボディ10から繰り出される。なお、レンズユニット12のズーム機構や沈胴機構については、公知の技術なので、ここでは、その具体的な構成についての説明は省略する。
 ストロボ21は、主要被写体に向けてストロボ光を照射するためのものである。
 シャッタボタン22は、いわゆる「半押し」と「全押し」とからなる2段ストローク式のスイッチで構成されている。単眼立体撮像装置1は、撮影モードで駆動しているときは、このシャッタボタン22が「半押し」されることにより、AE/AFが作動し、「全押し」されることにより、撮影を実行する。また、単眼立体撮像装置1は、投影モードで駆動しているときは、このシャッタボタン22が「全押し」されることにより、投影を実行する。
 電源/モードスイッチ24は、単眼立体撮像装置1の電源をON/OFFする電源スイッチとしての機能と、単眼立体撮像装置1のモードを設定するモードスイッチとしての機能とを併せ持っており、「OFF位置」と「再生位置」と「撮影位置」との間をスライド自在に配設されている。単眼立体撮像装置1は、電源/モードスイッチ24をスライドさせて、「再生位置」又は「撮影位置」に合わせることにより、電源がONになり、「OFF位置」に合わせることにより、電源がOFFになる。そして、電源/モードスイッチ24をスライドさせて、「再生位置」に合わせることにより、「再生モード」に設定され、「撮影位置」に合わせることにより、「撮影モード」に設定される。
 モードダイヤル26は、単眼立体撮像装置1の撮影モードを設定する撮影モード設定手段として機能し、このモードダイヤルの設定位置により、単眼立体撮像装置1の撮影モードが様々なモードに設定される。例えば、平面画像の撮影を行う「平面画像撮影モード」、立体視画像(3D画像)の撮影を行う「立体視画像撮影モード」、動画撮影を行う「動画撮影モード」、立体パノラマ撮影を行う「立体パノラマ撮影モード」等である。
 液晶モニタ28は、左眼用画像及び右眼用画像をパララックスバリアによりそれぞれ所定の指向性をもった立体視画像として表示できる立体表示手段である。立体視画像が液晶モニタ28に入力された場合には、液晶モニタ28のパララックスバリア表示層に光透過部と光遮蔽部とが交互に所定のピッチで並んだパターンからなるパララックスバリアを発生させるとともに、その下層の画像表示面に左右の像を示す短冊状の画像断片が交互に配列して表示される。平面画像や使用者インターフェース表示パネルとして利用される場合には、パララックスバリア表示層には何も表示せず、その下層の画像表示面に1枚の画像をそのまま表示する。なお、液晶モニタ28の形態はこれに限らず、立体視画像を立体画像として認識可能に表示させるものであれば、レンチキュラレンズを使用するものや、偏光メガネ、液晶シャッタメガネなどの専用メガネをかけることで左眼用画像と右眼用画像とを個別に見ることができるものでもよい。なお、液晶モニタの代わりに有機ELモニタ等を用いてもよい。
 ズームボタン30は、ズームを指示するズーム指示手段として機能し、望遠側へのズームを指示するズームテレボタン30Tと、広角側へのズームを指示するズームワイドボタン30Wとからなる。単眼立体撮像装置1は、撮影モード時に、このズームテレボタン30Tとズームワイドボタン30Wとが操作されることにより、レンズユニット12の焦点距離が変化する。また、再生モード時に、このズームテレボタン30Tとズームワイドボタン30Wとが操作されることにより、再生中の画像が拡大、縮小する。
 十字ボタン32は、上下左右の4方向の指示を入力する操作部であり、メニュー画面から項目を選択したり、各メニューから各種設定項目の選択を指示したりするボタン(カーソル移動操作手段)として機能する。左/右キーは再生モード時のコマ送り(順方向/逆方向送り)ボタンとして機能する。
 MENU/OKボタン34は、液晶モニタ28の画面上にメニューを表示させる指令を行うためのメニューボタンとしての機能と、選択内容の確定及び実行などを指令するOKボタンとしての機能とを兼備した操作キーである。
 再生ボタン36は、撮影記録した立体視画像(3D画像)、平面画像(2D画像)の静止画又は動画を液晶モニタ28に表示させる再生モードに切り替えるためのボタンである。
 BACKボタン38は、入力操作のキャンセルや一つ前の操作状態に戻すことを指示するボタンとして機能する。
 [撮影光学系、撮像素子の構成例]
 レンズユニット12は、主として撮影レンズ14、絞り16、位相差イメージセンサである固体撮像素子(以下、「位相差CCD」という)17で構成される。
 撮影レンズ14は、フォーカスレンズ、ズームレンズを含む多数のレンズから構成される撮像光学系である。絞り16は、例えば、5枚の絞り羽根からなり、例えば、絞り値F2.8 ~F11まで1AV刻みで5段階に絞り制御される。撮影モード時において、被写体を示す画像光は、撮影レンズ14、絞り16を介して位相差CCD17の受光面に結像される。
 図3は位相差CCD17の構成例を示す図である。
 位相差CCD17は、それぞれマトリクス状に配列された奇数ラインの画素(主画素)と、偶数ラインの画素(副画素)とを有しており、これらの主、副画素にてそれぞれ光電変換された2面分の画像信号は、独立して読み出すことができるようになっている。
 図3に示すように位相差CCD17の奇数ライン(1、3、5、…)には、R(赤)、G(緑)、B(青)のカラーフィルタを備えた画素のうち、GRGR…の画素配列のラインと、BGBG…の画素配列のラインとが交互に設けられ、一方、偶数ライン(2、4、6、…)の画素は、奇数ラインと同様に、GRGR…の画素配列のラインと、BGBG…の画素配列のラインとが交互に設けられるとともに、偶数ラインの画素に対して画素同士が2分の1ピッチだけライン方向にずれて配置されている。
 図4は撮影レンズ14、及び位相差CCD17の主、副画素の1画素ずつを示した図であり、図5は図4の要部拡大図である。
 位相差CCD17の主画素の前面側(マイクロレンズL側)には、遮光部材17Aが配設され、副画素の前面側には、遮光部材17Bが配設される。遮光部材17A、17Bは瞳分割部材としての機能を有している。図5Aに示すように通常のCCDの画素(フォトダイオードPD)には、射出瞳を通過する光束が、マイクロレンズLを介して制限を受けずに入射する。図5Bに示すように遮光部材17Aは、主画素(フォトダイオードPD)の受光面の右半分を遮光する。そのため、主画素には、射出瞳を通過する光束の光軸の左側のみが受光される。また、図5Cに示すように遮光部材17Bは、副画素(フォトダイオードPD)の受光面の左半分を遮光する。そのため、副画素には、射出瞳を通過する光束の光軸の右側のみが受光される。
 このように位相差CCD17の主画素に射出瞳を通過する光束の光軸の左側のみを受光させ、副画素に射出瞳を通過する光束の光軸の右側のみを受光させるようにすることで、位相差CCD17で立体視画像を撮影する仕組みについて説明する。
 図6A~6Cは、フォーカスレンズがそれぞれ前ピン、合焦(ベストフォーカス)、及び後ピンの違いによる撮像素子に結像する像の分離状態を示す図である。尚、図7では、フォーカスによる分離の違いを比較するために絞り16を省略している。
 図6Bに示すように瞳分割された像のうちの合焦している像は、撮像素子上の同一位置に結像する(一致する)が、図6A及び6Cに示すように前ピン及び後ピンとなる像は、撮像素子上の異なる位置に結像する(分離する)。
 従って、左右方向に瞳分割された被写体像を位相差CCD17を介して取得することにより、フォーカス位置に応じて視差量の異なる左眼用画像及び右眼用画像(立体視画像)を取得することができる。
 尚、上記構成の位相差CCD17は、主画素と副画素とでは、遮光部材17A、17Bにより光束が制限されている領域(右半分、左半分)が異なるように構成されているが、これに限らず、遮光部材17A、17Bを設けずに、マイクロレンズLとフォトダイオードPDとを相対的に左右方向にずらし、そのずらす方向によりフォトダイオードPDに入射する光束が制限されるものでもよいし、また、2つの画素(主画素と副画素)に対して1つのマイクロレンズを設けることにより、各画素に入射する光束が制限されるものでもよい。
 [撮像装置の内部構成]
 図7は本発明の第1の実施の形態に係る単眼立体撮像装置1のブロック図である。この単眼立体撮像装置1は、撮像した画像を記録メディア54に記録するもので、装置全体の動作は、中央処理装置(CPU)40によって統括制御される。
 単眼立体撮像装置1には、シャッタボタン、モードダイヤル、再生ボタン、MENU/OKキー、十字キー、BACKキー等の操作部48が設けられている。この操作部48からの信号はCPU40に入力され、CPU40は入力信号に基づいて単眼立体撮像装置1の各回路を制御し、例えば、レンズ駆動制御、絞り駆動制御、撮影動作制御、画像処理制御、画像データの記録/再生制御、立体表示用の液晶モニタ28の表示制御などを行う。
 電源/モードスイッチ24により単眼立体撮像装置1の電源がONされると、電源部58から各ブロックへ給電され、単眼立体撮像装置1の駆動が開始される。
 撮影レンズ14、絞り16等を通過した光束は位相差CCD17に結像され、位相差CCD17には信号電荷が蓄積される。位相差CCD17に蓄積された信号電荷は、タイミングジェネレータ45から加えられる読み出し信号に基づいて信号電荷に応じた電圧信号として読み出される。位相差CCD17から読み出された電圧信号は、アナログ信号処理部60に加えられる。
 アナログ信号処理部60は、位相差CCD17から出力された電圧信号に対して相関二重サンプリング処理(撮像素子の出力信号に含まれるノイズ(特に熱雑音)等を軽減することを目的として、撮像素子の1画素毎の出力信号に含まれるフィードスルー成分レベルと画素信号成分レベルとの差をとることにより正確な画素データを得る処理)により各画素のR、G、B信号がサンプリングホールドされ、増幅されたのちA/D変換器61に加えられる。A/D変換器61は、順次入力するR、G、B信号をデジタルのR、G、B信号に変換して画像入力コントローラ62に出力する。
 デジタル信号処理部63は、画像入力コントローラ62を介して入力するデジタルの画像信号に対して、オフセット処理、ホワイトバランス補正及び感度補正を含むゲイン・コントロール処理、ガンマ補正処理、YC処理等の所定の信号処理を行う。ここで、位相差CCD17の奇数ラインの主画素から読み出される主画像データは、左眼用画像データとして処理され、偶数ラインの副画素から読み出される副画像データは、右眼用画像データとして処理される。
 デジタル信号処理部63で処理された左眼用画像データ及び右眼用画像データ(3D画像データ)は、VRAM50に入力される。VRAM50には、それぞれが1コマ分の3D画像を表す3D画像データを記録するA領域とB領域とが含まれている。VRAM50において1コマ分の3D画像を表す3D画像データがA領域とB領域とで交互に書き換えられる。VRAM50のA領域及びB領域のうち、3D画像データが書き換えられている方の領域以外の領域から、書き込まれている3D画像データが読み出される。
 VRAM50から読み出された3D画像データは、3D画像信号処理部64で短冊状の画像断片に加工され、ビデオエンコーダ66においてエンコーディングされ、カメラ背面に設けられている立体表示用の液晶モニタ28に出力され、これにより3Dの被写体像が連続的に液晶モニタ28の表示画面上に表示される。
 操作部48のシャッタボタン22の第1段階の押下(半押し)があると、CCD40は、AF動作及びAE動作を開始させ、レンズ駆動部47を介してフォーカスレンズを光軸方向に移動させ、フォーカスレンズが合焦位置にくるように制御する。
 AF処理部42は、コントラストAF処理又は位相差AF処理を行う部分である。コントラストAF処理を行う場合には、左眼用画像データ及び右眼用画像データの少なくとも一方の画像データのうちの所定のフォーカス領域内の画像データの高周波成分を抽出し、この高周波成分を積分することにより合焦状態を示すAF評価値を算出する。このAF評価値が極大となるように撮影レンズ14内のフォーカスレンズを制御することによりAF制御が行われる。また、位相差AF処理を行う場合には、左眼用画像データ及び右眼用画像データのうちの所定のフォーカス領域内の主画素、副画素に対応する画像データの位相差を検出し、この位相差を示す情報に基づいてデフォーカス量を求める。このデフォーカス量が0になるように撮影レンズ14内のフォーカスレンズを制御することによりAF制御が行われる。
 CPU40は、必要に応じてレンズ駆動部47を介してズームレンズを光軸方向に進退動作させ、焦点距離を変更させる。
 また、シャッタボタン22の半押し時にA/D変換器61から出力される画像データは、AE/AWB検出部44に取り込まれる。
 AE/AWB検出部44では、画面全体のG信号を積算し、又は画面中央部と周辺部とで異なる重みづけをしたG信号を積算し、その積算値をCPU40に出力する。CPU40は、AE/AWB検出部44から入力する積算値より被写体の明るさ(撮影Ev値)を算出し、この撮影Ev値に基づいて絞り16の絞り値及び位相差CCD17の電子シャッタ(シャッタスピード)を所定のプログラム線図に従って決定し、その決定した絞り値に基づいて絞り駆動部46を介して絞り16を制御するとともに、決定したシャッタスピードに基づいてタイミングジェネレータ45を介して位相差CCD17での電荷蓄積時間を制御する。
 AE動作及びAF動作が終了し、シャッタボタン22の第2段階の押下(全押し)があると、その押下に応答してA/D変換器61から出力される主画素及び副画素に対応する左眼用画像(主画像)及び右眼用画像(副画像)の2枚分の画像データが画像入力コントローラ62からVRAM50に入力され、一時的に記録される。
 VRAM50に一時的に記録された2枚分の画像データは、デジタル信号処理部63により適宜読み出され、ここで画像データの輝度データ及び色差データの生成処理(YC処理)を含む所定の信号処理が行われる。YC処理された画像データ(YCデータ)は、再びVRAM50に記録される。続いて、2枚分のYCデータは、それぞれ圧縮伸張処理部65に出力され、JPEG (Joint Photographic Experts Group)などの所定の圧縮処理が実行されたのち、再びVRAM50に記録される。
 VRAM50に記録された2枚分のYCデータ(圧縮データ)から、3D画像信号処理部64でマルチピクチャファイル(MPファイル:複数の画像が連結された形式のファイル)が生成され、そのMPファイルは、メディア・コントローラ52により読み出され、記録メディア54に記録される。
 なお、AF動作は、シャッタボタン22の第1段階の押下(半押し)がある場合のみでなく、右眼用画像データ、左眼用画像データを連続的に撮影する場合にも行われる。右眼用画像データ、左眼用画像データを連続的に撮影する場合とは、例えばライブビュー画像を撮影する場合や、動画を撮影する場合が挙げられる。この場合には、AF処理部42は、連続的に右眼用画像データ、左眼用画像データを撮影している間、常時繰り返しAF評価値の演算を行って、連続的にフォーカスレンズ位置を制御するコンティニュアスAFを行う。この場合には、フォーカスレンズ位置の移動に応じて、連続的に液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の視差量が変化することとなる。
 視差補正量算出部67は、連続的に液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像及び位相差AF中に液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の視差量の変化を算出する。この時の基準となるのは、主要被写体の視差量が0の場合である。すなわち、視差補正量算出部67は、液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の主要被写体の視差量を求め、この視差量を0とするのに必要な視差補正量を算出する。ここで、主要被写体とは、AFエリア中央にある被写体、画面中央にある被写体、顔検出部(図示せず)で検出された人間やペットの顔、操作部48からの入力により指定された被写体等を指す。なお、顔検出部が人間やペットの顔を検出する方法は既に公知であるため、説明を省略する。
 液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の主要被写体の視差量の算出は、右眼用画像データと左眼用画像データとの対応点のずれ量に基づいて算出される。例えば、図20に示すような画像が撮影され、主要被写体が車である場合には、まず、視差補正量算出部67は、左眼用画像又は右眼用画像のどちらかから主要被写体の特徴点(例えば、車の後端の位置)を検出し、他方の画像からその特徴点に対応する対応点を検出する。これにより、右眼用画像データと左眼用画像データとのそれぞれから対応点が検出される。そして、視差補正量算出部67は、右眼用画像データと左眼用画像データとのそれぞれから検出された対応点(ここでは右眼用画像データの特徴点(ここでは、車の後端の位置)と左眼用画像データの車の後端の位置)の左右方向のずれ量を算出し、これが0となる量を視差補正量として算出する。視差補正量算出部67で算出された視差補正量は、視差補正部68に出力される。
 なお、本実施の形態では、視差補正量算出部67は、主要被写体の視差量が0に保たれるように必要な視差補正量を算出したが、フォーカスレンズの移動による視差量の変動が引き起こす不快感の軽減という目的を達成するためには主要被写体の視差量が一定に保たれるのであればよく、主要被写体の視差量は0に限定されない。
 しかしながら、主要被写体の視差量を0でない場合、例えば表示面から飛び出る方向の視差量を有する状態で主要被写体の視差量が一定に保たれる場合には、撮影者は自然と両目が同時に内側を向く目の動き(輻輳眼球運動)をする(寄り目になる)こととなる。しかしながら、実際には、画像は表示面上に表示されるので、目のピントは表示面上に合わせる必要がある。つまり、撮影者は、手前に飛び出したものを見るために目の内寄せを行うと共に、手前に飛び出していない表示面にピントを合わせるという、近くの物を見ようとするときの通常の目の動き(近くにピントを合わせると同時に目の内寄せを行う)とは異なる動作をおこなうこととなる。したがって、主要被写体の視差量が一定に保たれていても、主要被写体の視差量が0でない場合には、撮影者に疲労感を与えることとなる。
 したがって、より撮影者の目にかかる負担を軽減するためには、視差補正量算出部67は、主要被写体の視差量が0に保たれるように必要な視差補正量を算出するようにすることが望ましい。
 視差補正部68は、視差補正量算出部67で算出された視差補正量だけ右眼用画像データ及び左眼用画像データの少なくとも1方を左右方向に移動させる。これにより、右眼用画像の主要被写体と左眼用画像の主要被写体との距離が変更され、その結果、右眼用画像の主要被写体と左眼用画像の主要被写体との距離が一定に保たれ(本実施の形態では0に保たれる)、視差補正が行われる。
 視差補正量は、大きさのみでなく、方向の情報も有している。方向の情報とは、右眼用画像データと左眼用画像データとを近づける方向、又は右眼用画像データと左眼用画像データとを遠ざける方向である。ここで、視差補正量の方向の情報とフォーカスレンズの移動方向との関係、視差補正量の方向の情報と視差補正の方法について説明する。
 合焦位置が遠くなる(奥にずれる)ようにフォーカスレンズが移動された場合には、視差量が0となる位置が遠くなる(奥にずれる)。したがって、被写体は手前に飛びだす方向、すなわち右眼用画像データの被写体は左側、左眼用画像データの主要被写体は右側に移動する。そのため、右眼用画像データを右側、左眼用画像データを左側、すなわち右眼用画像データと左眼用画像データとを遠ざける方向の視差補正量が算出される。
 合焦位置が近くなる(手前にずれる)ようにフォーカスレンズが移動された場合には、視差量が0となる位置が近くなる(手前にずれる)。したがって、被写体は奥に引っこむ方向、すなわち右眼用画像データの被写体は左側、左眼用画像データの主要被写体は右側に移動する。そのため、右眼用画像データを左側、左眼用画像データを右側、すなわち右眼用画像データと左眼用画像データとを近づける方向の視差補正量が算出される。
 視差補正量として右眼用画像データと左眼用画像データとを遠ざける方向にAだけ移動することが算出された場合には、視差補正部68は、(1)左眼用画像データを左方向にAだけ移動させる、(2)右眼用画像データを右方向にAだけ移動させる、(3)右眼用画像データを右側に、左眼用画像データを左側にそれぞれA/2だけ移動させる、のいずれかの方法で視差量が0となるように右眼用画像データ、左眼用画像データの視差補正を行う。また、視差補正量として右眼用画像データと左眼用画像データとを近づける方向にBだけ移動することが算出された場合には、視差補正部68は、(1)左眼用画像データを右方向にBだけ移動させる、(2)右眼用画像データを左方向にBだけ移動させる、(3)右眼用画像データを右側に、左眼用画像データを左側にそれぞれB/2だけ移動させる、のいずれかの方法で視差量が0となるように右眼用画像データ、左眼用画像データの視差補正を行う。
 単眼立体撮像装置1は、動画、静止画のみでなく、音声の記録再生が可能である。マイクロフォン57は送話音声を入力し、スピーカ56は受話音声を出力し、音声入出力回路55はマイクロフォンから入力された音声の符号化及び受信した音声の復号化などを行う。
 [撮像装置の動作の説明]
 次に、単眼立体撮像装置1の動作について説明する。この撮像処理はCPU40によって制御される。この撮像処理をCPU40に実行させるためのプログラムはCPU40内のプログラム格納部に記録されている。
 図8は、ライブビュー画像の撮影、表示処理の流れを示すフローチャートである。
 撮影が開始されると、CPU40は、撮影レンズ14、絞り16を初期位置へ駆動し(ステップS10)、この時の視差補正量を0と初期設定する(ステップS11)。
 CPU40は、操作部48からライブビュー画像の撮影開始の指示が入力されたか否かを判断する(ステップS12)。ライブビュー画像の撮影開始の指示が入力されていない場合(ステップS12でNO)には、CPU40は、液晶モニタ28をOFFにする(ステップS13)。
 ライブビュー画像の撮影開始の指示が入力された場合(ステップS12でYES)には、撮影レンズ14を通過した被写体光は、絞り16を介して位相差CCD17の受光面に結像される。タイミングジェネレータ45により、位相差CCD17の主画素及び副画素に蓄えられた信号電荷は、信号電荷に応じた電圧信号(画像信号)として所定のフレームレートで順次読み出され、アナログ信号処理部60、A/D変換器61、画像入力コントローラ62を介してデジタル信号処理部63に順次入力され、左眼用画像データ及び右眼用画像データが順次生成される。生成された左眼用画像データ及び右眼用画像データは順次VRAM50に入力される。
 CPU40は、左眼用画像データ及び右眼用画像データにもとづいて、絞り駆動部46を介して絞り16の開口量(F値)を変更する。また、CPU40は、操作部48からの入力に応じて、レンズ駆動部47を介してズーミングをおこなう。
 CPU40は、コンティニュアスAFを行うか否かを判断する(ステップS14)。コンティニュアスAFを行うか否かは、操作部48を介して設定され、CPU40内の記録手段に記録されている。CPU40は、この設定情報に基づいて判断する。
 コンティニュアスAFを行わないと判断された場合(ステップS14でNO)は、フォーカスレンズが移動されない場合であるため、左眼用画像データ及び右眼用画像データの視差量は常に一定である。したがって、CPU40は、左眼用画像データ及び右眼用画像データをVRAM50から順次出力し、3D画像信号処理部64へ入力する。画像信号処理部64では輝度/色差信号が生成され、その信号がビデオエンコーダ66を介して液晶モニタ28に出力される。液晶モニタ28には、パララックスバリアが発生されるとともに、その下層の画像表示面に左眼用画像データと右眼用画像データとの短冊状の画像断片が交互に配列して表示される(ステップS22)。この処理を順次行うことにより、位相差CCD17の主画素、副画素で撮像される画像がリアルタイムに表示される。
 コンティニュアスAFを行うと判断された場合(ステップS14でYES)には、AF処理部42は左眼用画像データ及び右眼用画像データに基づいてコンティニュアスAFを行う(ステップS15)。
 視差補正量算出部67は、コンティニュアスAFにより合焦位置が変化したか否かを判断する(ステップS16)。
 合焦位置が変化した場合(ステップS16でYES)は、フォーカスレンズが移動され、合焦している被写体、すなわちフォーカスポイントが変化した場合である。この場合には、視差補正量算出部67は、左眼用画像データ及び右眼用画像データから視差補正量を算出する(ステップS17)。
 視差補正部68は、左眼用画像データ及び右眼用画像データをVRAM50から出力させ、視差補正量算出部67が算出した視差補正量に基づいて左眼用画像データ及び右眼用画像データの少なくとも一方を左右方向に移動させ、3D画像信号処理部64へ出力する(ステップS18)。
 合焦位置が変化していない場合(ステップS16でNO)は、フォーカスレンズが移動されていない場合、すなわち合焦している被写体(フォーカスポイント)が変化していない場合である。この場合には、視差補正部68は、左眼用画像データ及び右眼用画像データをVRAM50から出力させ、直前のフレームの視差補正量(視差補正量算出部67が直前に算出した視差補正量、又は視差補正量算出部67が視差補正量を算出していない場合には、ステップS11で初期設定された視差補正量)に基づいて左眼用画像データ及び右眼用画像データの少なくとも一方を左右方向に移動させ、3D画像信号処理部64へ入力する(ステップS19)。なお、視差補正量が0の場合には、結果的に左眼用画像データ及び右眼用画像データは移動されない。
 画像信号処理部64は、視差補正部68により左右方向に移動された後の左眼用画像データ及び右眼用画像データについて輝度/色差信号を生成し、その信号がビデオエンコーダ66を介して液晶モニタ28に出力される。液晶モニタ28には、パララックスバリアが発生されるとともに、その下層の画像表示面に左眼用画像データと右眼用画像データとの短冊状の画像断片が交互に配列して表示される(ステップS20)。
 CPU40は、操作部48からライブビュー画像の撮影動作の終了指示が入力されたか否かを判断する(ステップS21)。ライブビュー画像の撮影動作の終了指示が入力されなかった場合(ステップS21でNO)には、ステップS15~S21の処理を繰り返し行う。ライブビュー画像の撮影動作の終了指示が入力された場合(ステップS21でYES)には、この処理が終了される。
 これにより、位相差CCD17の主画素、副画素で撮像される画像が、主要被写体の視差量が一定となるように視差量が補正され、リアルタイムに表示される。
 図9は、視差量の補正が行われた場合の表示画像の一例であり、図9Aは木にフォーカスポイントがある場合、図9Bは車にフォーカスポイントがある場合、図9Cは家にフォーカスポイントがある場合である。本実施の形態では、主要被写体、すなわち車の視差量が0となるように視差量が補正されるため、実際のフォーカスポイントに関わらず(図9A~9Cの全てにおいて)液晶モニタ28には、車の視差量が0となる画像が表示される。したがって、視差量が急激に変化せず、撮影者が快適に立体視画像を視聴することができる。
 撮影者は、この液晶モニタ28にリアルタイムに表示される動画像(ライブビュー画像)を見ることにより、撮影画角を確認することができる。
 シャッタボタンが半押しされると、S1ON信号がCPU40に入力され、CPU40はAF処理部42及びAE/AWB検出部44を介してAE/AF動作を実施する。立体視画像の撮影処理においては、AF処理部42は、位相差AF処理によりAF動作を行う。
 シャッタボタンが全押しされると、CPU40にS2ON信号が入力され、CPU40は、撮影、記録処理を開始する。すなわち、測光結果に基づき決定されたシャッター速度、絞り値で位相差CCD17を露光する。
 位相差CCD17の主画素、副画素からそれぞれ出力された2枚分の画像データは、アナログ信号処理部60、A/D変換器61、画像入力コントローラ62を介してVRAM50に取り込まれ、3D画像信号処理部64において輝度/色差信号に変換されたのち、VRAM50に格納される。VRAM50に格納された左眼用画像データは、圧縮伸張処理部65に加えられ、所定の圧縮フォーマット(たとえばJPEG形式)に従って圧縮された後、VRAM50に格納される。
 VRAM50に記録された2枚分の圧縮データからMPファイルが生成され、そのMPファイルはメディア・コントローラ52を介して記録メディア54に記録される。これにより、立体視画像が撮影、記録される。
 なお、本実施の形態では、立体視画像を撮影する場合を例に説明したが、単眼立体撮像装置1は、平面画像、立体視画像の両方が撮影可能である。平面画像を撮影する場合には、位相差CCD17の主画素のみを用いて撮影を行うようにすればよい。撮影処理の詳細については立体視画像を撮影する場合と同様であるため、説明を省略する。
 以上のようにして記録メディア54に記録された画像は、再生ボタンにより単眼立体撮像装置1のモードを再生モードに設定することにより、液晶モニタ28で再生表示させることができる。
 再生モードに設定されると、CPU40は、メディア・コントローラ52にコマンドを出力し、記録メディア54に最後に記録された画像ファイルを読み出させる。
 読み出された画像ファイルの圧縮画像データは、圧縮伸張処理部65に加えられ、非圧縮の輝度/色差信号に伸張されたのち、ビデオエンコーダ66を介して液晶モニタ28に出力される。
 画像のコマ送りは、十字キーの左右のキー操作によって行われ、十字キーの右キーが押されると、次の画像ファイルが記録メディア54から読み出され、液晶モニタ28に再生表示される。また、十字キーの左キーが押されると、一つ前の画像ファイルが記録メディア54から読み出され、液晶モニタ28に再生表示される。
 本実施の形態によれば、ライブビュー画像の表示中においても、フォーカスレンズの移動に関わらず右眼用画像と左眼用画像との視差量を常に一定にすることができ、撮影者の不快感を軽減することができる。
 なお、本実施の形態では、ライブビュー画像の撮影、表示を例に説明したが、右眼用画像データ及び左眼用画像データを連続的に取得し、コンティニュアスAFを行う場合、例えば動画撮影時にも適用することができる。ライブビュー画像の撮影と動画撮影との差異は、ライブビュー画像の撮影の場合には連続的に撮影した右眼用画像データ及び左眼用画像データを記録しないのに対し、動画撮影の場合には、図8に示す処理のほかに、連続的に撮影した右眼用画像データ及び左眼用画像データを記録メディア54等に記録する処理を行なう点のみが異なる。なお、連続的に撮影した右眼用画像データ及び左眼用画像データを記録メディア54に記録する処理は、既に公知であるため説明を省略する。動画は記録メディア54等に記録されているため、動画撮影中のみでなく、動画撮影後に立体表示させる場合にも、右眼用画像と左眼用画像との視差量を常に一定にすることができ、視聴者の不快感を軽減することができる。
 <第2の実施の形態>
 本発明の第1の実施の形態は、ライブビュー画像の撮影中に視差量を一定にしたが、視差量が変化する場合はライブビュー画像撮影中に限られない。フォーカスレンズが移動する場合には、常に視差量が変化する可能性がある。
 本発明の第2の実施の形態は、静止画撮影の撮影準備段階におけるAF処理時に視差量を調整するものである。以下、第2の実施の形態に係る単眼立体撮像装置2について説明する。なお、撮像装置の全体構成は第1の実施の形態と同一であるため、説明を省略し、撮像装置の動作の説明についてのみ説明する。また、撮像装置の動作の説明において、第1の実施の形態と同一の部分については、同一の符号を付し、説明を省略する。
 [撮像装置の動作の説明]
 次に、単眼立体撮像装置2の動作について説明する。この撮像処理はCPU40によって制御される。この撮像処理をCPU40に実行させるためのプログラムはCPU40内のプログラム格納部に記録されている。
 撮影レンズ14を通過した被写体光は、絞り16を介して位相差CCD17の受光面に結像される。タイミングジェネレータ45により、位相差CCD17に蓄えられた信号電荷は信号電荷に応じた電圧信号(画像信号)として所定のフレームレートで順次読み出され、アナログ信号処理部60、A/D変換器61、画像入力コントローラ62を介してデジタル信号処理部63に順次入力され、左眼用画像データ及び右眼用画像データが順次生成される。生成された左眼用画像データ及び右眼用画像データは順次VRAM50に入力される。この場合には、標準的な合焦位置(本実施の形態では、初期位置)にフォーカスレンズを移動させたままのいわゆるパンフォーカスが行われる。
 左眼用画像データ及び右眼用画像データはVRAM50から順次出力され、3D画像信号処理部64で輝度/色差信号が生成され、その信号がビデオエンコーダ66を介して液晶モニタ28に出力される。液晶モニタ28には、パララックスバリアが発生されるとともに、その下層の画像表示面に左眼用画像データと右眼用画像データとの短冊状の画像断片が交互に配列して表示される。
 この処理を順次行うことにより、位相差CCD17の主画素、副画素で撮像される画像がリアルタイムに表示される。撮影者は、この液晶モニタ28にリアルタイムに表示される画像を見ることにより、撮影画角を確認することができる。
 図10は、静止画撮影の撮影準備処理の流れを示すフローチャートである。この処理は、シャッタボタンが半押しされ、S1ON信号がCPU40に入力された後で行なわれる。この場合においても、位相差CCD17に蓄えられた信号電荷は信号電荷に応じた電圧信号(画像信号)として所定のフレームレートで順次読み出され、アナログ信号処理部60、A/D変換器61、画像入力コントローラ62を介してデジタル信号処理部63に順次入力され、左眼用画像データ及び右眼用画像データが順次生成される。
 CPU40は、撮影レンズ14、絞り16をライブビュー画像撮影時と同様の位置へ駆動したまま停止させ(ステップS30)、この時の視差補正量を0と初期設定する(ステップS31)。
 CPU40は、フォーカスレンズを移動させて合焦位置を取得する位相差AFを行う。視差補正量算出部67は、位相差AF処理において、フォーカスレンズが移動されたか否かを判断する(ステップS32)。
 フォーカスレンズが移動された場合(ステップS32でYES)には、合焦する被写体が変化する場合である。この場合には、視差補正量算出部67は、左眼用画像データ及び右眼用画像データから視差補正量を算出する(ステップS33)。
 視差補正部68は、左眼用画像データ及び右眼用画像データをVRAM50から出力させ、視差補正量算出部67が算出した視差補正量に基づいて左眼用画像データ及び右眼用画像データの少なくとも一方を左右方向に移動させ、3D画像信号処理部64へ入力する(ステップS34)。
 フォーカスレンズが移動されていない場合(ステップS32でNO)には、合焦する被写体が変化しない場合である。この場合には、視差補正部68は、左眼用画像データ及び右眼用画像データをVRAM50から出力させ、直前のフレームの視差補正量(視差補正量算出部67が直前に算出した視差補正量、又は視差補正量算出部67が視差補正量を算出していない場合には、ステップS31で初期設定された視差補正量)に基づいて左眼用画像データ及び右眼用画像データの少なくとも一方を左右方向に移動させ、3D画像信号処理部64へ入力する(ステップS35)。なお、視差補正量が0の場合には、結果的に左眼用画像データ及び右眼用画像データは移動されない。
 3D画像信号処理部64は、視差補正部68により左右方向に移動された後の左眼用画像データ及び右眼用画像データについて輝度/色差信号を生成し、その信号がビデオエンコーダ66を介して液晶モニタ28に出力される。液晶モニタ28には、パララックスバリアが発生されるとともに、その下層の画像表示面に左眼用画像データと右眼用画像データとの短冊状の画像断片が交互に配列して表示される(ステップS36)。
 CPU40は、操作部48からAFが終了したか否か、すなわち合焦位置が決定したか否かを判断する(ステップS37)。合焦位置が決定しなかった場合(ステップS37でNO)には、ステップS32~S36の処理を繰り返し行う。合焦位置が決定した場合(ステップS37でYES)には、この処理が終了される。
 これにより、AF動作中においても、位相差CCD17の主画素、副画素で撮像される画像が、主要被写体の視差量が一定となるように視差量が補正され、リアルタイムに表示される。
 CPU40は、決定された合焦位置へフォーカスレンズの合焦位置を移動させる。同時にAE/AWB検出部44はAE処理を行う。
 シャッタボタンが全押しされると、CPU40にS2ON信号が入力され、CPU40は、撮影、記録処理を開始する。すなわち、測光結果に基づき決定されたシャッター速度、絞り値で位相差CCD17を露光する。
 CPU40は、CCD駆動部33を介して画素A~Dのうちの選択された画素から信号電荷を読み出す。位相差CCD17の主画素のうちの選択された画素、副画素のうちの選択された画素からそれぞれ出力された2枚分の画像データは、アナログ信号処理部60、A/D変換器61、画像入力コントローラ62を介してVRAM50に取り込まれ、3D画像信号処理部64において輝度/色差信号に変換されたのち、VRAM50に格納される。VRAM50に格納された左眼用画像データは、圧縮伸張処理部65に加えられ、所定の圧縮フォーマット(たとえばJPEG形式)に従って圧縮された後、VRAM50に格納される。
 VRAM50に記録された2枚分の圧縮データからMPファイルが生成され、そのMPファイルはメディア・コントローラ52を介して記録メディア54に記録される。これにより、立体視画像が撮影、記録される。
 本実施の形態によれば、フォーカスレンズが移動するAF動作中の表示においても、フォーカスレンズが移動して合焦位置、フォーカスポイントが変化した場合においても、主要被写体の右眼用画像と左眼用画像との視差量を常に一定にすることができ、撮影者の不快感を軽減し快適な立体画像の視聴を実現することができる。
 また、本実施の形態によれば、対応点の距離に基づいて視差補正量を算出するため、合焦位置が判明していない段階(すなわち、AF処理が終了する前)においても視差補正量を算出することができる。
 なお、本実施の形態では、撮影レンズ14が初期位置にある時の視差補正量を0と初期設定した(ステップS31)が、視差補正量の初期設定値はこれに限られない。図11は、視差補正量の初期設定値を、主要被写体の視差量が0となる値とする場合のAF処理の流れを示すフローチャートである。図10と同一の処理を行う場合には、同一の符号を付し、詳細な説明を省略する。
 CPU40は、撮影レンズ14、絞り16をライブビュー画像撮影時と同様の位置へ駆動したまま停止させる(ステップS30)。
 CPU40は、主要被写体(本実施の形態では、画面中央に位置する被写体)を検出する。視差補正量算出部67は、右眼用画像データと左眼用画像データとの主要被写体の視差量が0となる値を算出し、算出された視差補正量を初期設定された視差補正量とする(ステップS40)。したがって、この場合には、フォーカスレンズの移動の前から、主要被写体が0となるような視差量の補正が行われることとなる。
 CPU40は、フォーカスレンズを移動させて合焦位置を取得する位相差AFを行う。視差補正量算出部67は、位相差AF処理において、フォーカスレンズが移動されたか否かを判断する(ステップS32)。
 フォーカスレンズが移動された場合(ステップS32でYES)には、視差補正量算出部67は、左眼用画像データ及び右眼用画像データから視差補正量を算出する。そして、視差補正量算出部67は、算出された視差補正量とステップS40で初期設定された視差補正量とを加算して最終的な視差補正量を算出する(ステップS41)。
 視差補正部68は、VRAM50から取得した左眼用画像データ及び右眼用画像データの少なくとも一方を、ステップS41で視差補正量算出部67が算出した視差補正量に基づいて左右方向に移動させ、3D画像信号処理部64へ入力する(ステップS42)。
 フォーカスレンズが移動されていない場合(ステップS32でNO)には、VRAM50から取得した左眼用画像データ及び右眼用画像データの少なくとも一方を、直前のフレームの視差補正量(視差補正量算出部67が直前に算出した視差補正量、又は視差補正量算出部67が視差補正量を算出していない場合には、ステップS40で初期設定された視差補正量)に基づいて左右方向に移動させ、3D画像信号処理部64へ入力する(ステップS43)。
 視差補正部68により左右方向に移動された後の左眼用画像データ及び右眼用画像データから輝度/色差信号が生成され、液晶モニタ28に出力される。液晶モニタ28には、パララックスバリアが発生されるとともに、その下層の画像表示面に左眼用画像データと右眼用画像データとの短冊状の画像断片が交互に配列して表示される(ステップS36)。
 CPU40は、操作部48からAFが終了したか否か、すなわち合焦位置が決定したか否かを判断する(ステップS37)。合焦位置が決定しなかった場合(ステップS37でNO)には、ステップS32~S36の処理を繰り返し行う。合焦位置が決定した場合(ステップS37でYES)には、この処理が終了される。
 これにより、AF動作前、AF動作中において、常に右眼用画像と左眼用画像との視差量を一定にすることができる。
 なお、本実施の形態では、静止画の撮影準備処理で位相差AFが行われる場合を例に説明したが、動画(ライブビュー画像を含む)撮影前に撮影準備処理として位相差AFを行い、動画撮影中にはフォーカスレンズを移動させない場合にも適用することができる。
 <第3の実施の形態>
 本発明の第1の実施の形態は、右眼用画像データと左眼用画像データとの対応点のずれ量に基づいて右眼用画像、左眼用画像の主要被写体の視差量を算出したが、右眼用画像、左眼用画像の主要被写体の視差量を算出する方法はこれに限られない。
 本発明の第3の実施の形態は、フォーカスレンズの移動量から右眼用画像、左眼用画像の主要被写体の視差量を算出するものである。以下、第3の実施の形態に係る単眼立体撮像装置3について説明する。なお、第1の実施の形態と同一の部分については、同一の符号を付し、説明を省略する。
 [撮像装置の全体構成]
 図12は本発明の第3の実施の形態に係る単眼立体撮像装置3の実施の形態を示すブロック図である。
 視差補正量算出部67Aは、連続的に液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像及び位相差AF中に液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の視差量の変化を算出する。この時の基準となるのは、主要被写体の視差量が0の場合である。すなわち、視差補正量算出部67Aは、液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の主要被写体の視差量を求め、この視差量を0とするのに必要な視差補正量を算出する。ここで、主要被写体とは、AFエリア中央にある被写体、顔検出部(図示せず)で検出された人間やペットの顔、操作部48からの入力により指定された被写体等を指す。なお、顔検出部が人間やペットの顔を検出する方法は既に公知であるため、説明を省略する。算出された視差補正量は、視差補正部68に出力される。
 液晶モニタ28の表示画面上に表示された右眼用画像、左眼用画像の主要被写体の視差量の算出は、フォーカスレンズの移動量に基づいて算出される。視差補正量算出部67Aの記録領域には、フォーカスレンズの初期位置からの移動量と、合焦位置の変化量との相関が記録されている。したがって、視差補正量算出部67Aは、フォーカスレンズの初期位置からの移動量から合焦位置がどのように、どの程度変化したか(以下、合焦位置の変化量という)を算出することができる。
 また、視差補正量算出部67Aの記録領域には、合焦位置と視差補正量との相関(図13、16、17参照)が記録されている。視差補正量算出部67Aは、フォーカスレンズの初期位置からの移動量から算出された合焦位置の変化量と、合焦位置と視差補正量との相関を示すグラフとに基づいて視差補正量を決定する。例えば、合焦位置と視差補正量との相関として図13を用いる場合において、合焦位置が手前側にaだけ移動した場合には、視差補正量算出部67Aは、「手前側にb」を視差補正量として決定する。
 図13は、合焦位置と視差補正量との相関を示すグラフの一例であり、焦点距離が中間近傍の所定の範囲内にあり、F値が適切な撮影範囲とされる所定の範囲内にある場合(すなわち、図13のグラフの適用範囲は焦点距離、F値が所定の値を中心としたある範囲内にある場合である)の合焦位置と視差補正量との相関を示すグラフである。合焦位置と視差補正量との相関は比例関係にあり、合焦位置が手前側から奥側へ移動するのに伴い、手前側から奥側への視差補正量は一定の傾きで増加する。
 図13に示すグラフは、合焦位置の変化による右眼用画像、左眼用画像の視差量を打ち消すように設定されている。図20A~20Cのように合焦位置が手前側から奥側へ移動すると、視差量が0となる位置が奥にずれていくため、右眼用画像、左眼用画像の木の視差量は一定の割合で手前側へ移動する。すなわち、液晶モニタ28に表示される木は、一定の割合で手前に飛び出してくる。この相関をグラフで示したものが図14である。図14においては、被写体がどこにあるかに関わらず、合焦位置が手前側から奥側へ移動すると、右眼用画像、左眼用画像の主要被写体の視差量は、手前側への視差量が一定の割合で大きくなる。
 図13に示すグラフと、図14に示すグラフとは、符合が異なるだけで傾きは同じである。そのため、図14に示すグラフに、図13に示すグラフを適用すると、図15に示すグラフとなる。すなわち、被写体がどこにあるかに関わらず、合焦位置が手前側から奥側へ移動しても、右眼用画像、左眼用画像の視差量は常に一定となる。また、合焦位置にある被写体、すなわち主要被写体の右眼用画像、左眼用画像の主要被写体の視差量は常に0となる。
 これにより、主要被写体の視差量が常に0となるような視差補正量を算出することができる。
 今までの説明では、理解を容易にするため、焦点距離が中間近傍の所定の範囲内にあり、F値が適切な撮影範囲とされる所定の範囲内にある場合の合焦位置と視差補正量との相関を示すグラフ(図13)を用いて説明したが、合焦位置と視差補正量との相関は、実際には焦点距離やF値によって変化する。図16は、様々な焦点距離における合焦位置と視差補正量との相関を示すグラフであり、図17は、様々なF値における合焦位置と視差補正量との相関を示すグラフである。なお、図13と同様、図16、17についても、各グラフの適用範囲は焦点距離、F値がある値を中心としたある範囲内にある場合である。
 ズームレンズが移動され、ズームレンズの位置(ズーム位置)、すなわち焦点距離が望遠側になるほど被写界深度が浅くなり、視差量がつきやすい。したがって、焦点距離に応じて適切な視差補正量を算出するためには、焦点距離が望遠側になるにつれて、合焦位置が変化したときの変化量に対する視差補正量の変化量(グラフの傾き)を大きくする必要がある。したがって、合焦位置と視差補正量との相関を示すグラフの傾きは、焦点距離によって図16に示すように変化する。
 F値が小さい、すなわち被写体が明るいほど被写界深度が浅くなり、視差量がつきやすい。したがって、被写体の明るさに応じて適切な視差補正量を算出するためには、F値が小さくなるにつれて、合焦位置が変化したときの変化量に対する視差補正量の変化量(グラフの傾き)を大きくする必要がある。したがって、合焦位置と視差補正量との相関を示すグラフの傾きは、F値によって図17に示すように変化する。
 図16や図17に示す合焦位置と視差補正量との相関を示すグラフも、視差補正量算出部67Aの記録領域に記録されている。なお、図16、図17では3本のグラフの場合を例示したが、焦点距離やF値の異なる更に多くのグラフが記録されているようにしてもよい。
 視差補正量算出部67Aは、焦点距離や被写体の明るさを取得し、合焦位置と視差補正量との相関を示すグラフとして記録領域に記録された複数のグラフのうちのどのグラフを用いるかを決定する。これにより、被写体の条件や光学条件等にかかわらず、被写体の視差量が常に0となるような視差補正量を算出することができる。
 なお、合焦位置と視差補正量との相関として、図13、16、17に示すようなグラフに限らず、合焦位置と視差補正量との相関が一覧形式であらわされたテーブルを記録させるようにしてもよい。
 [撮像装置の動作の説明]
 次に、単眼立体撮像装置3の動作について説明する。この撮像処理はCPU40によって制御される。この撮像処理をCPU40に実行させるためのプログラムはCPU40内のプログラム格納部に記録されている。
 図18は、単眼立体撮像装置3のライブビュー画像の撮影、表示処理の流れを示すフローチャートである。単眼立体撮像装置1のライブビュー画像の撮影処理との差異は、ステップS50のみであるため、ステップS50について説明する。
 視差補正量算出部67がコンティニュアスAFにより合焦位置が変化したか否かを判断した(ステップS16)結果、合焦位置が変化した場合(ステップS16でYES)は、フォーカスレンズが移動され、合焦している被写体、すなわちフォーカスポイントが変化した場合である。
 この場合には、視差補正量算出部67は、フォーカスレンズの移動量にもとづいて視差補正量を算出する(ステップS50)。以下、ステップS50の処理について詳細に説明する。
 まず、視差補正量算出部67は、CPU40を介してフォーカスレンズの初期位置からの移動量、焦点距離(これはズーム位置より算出される)及びF値を取得する。
 次に、視差補正量算出部67は、焦点距離及びF値にもとづいて、記録領域に記録された複数の合焦位置と視差補正量との相関を示すグラフのうち、どのグラフを用いるかを決定する。
 そして、視差補正量算出部67は、フォーカスレンズの初期位置からの移動量にもとづいて合焦位置の変化量を算出する。この合焦位置の変化量は、ステップS50が行われる前の合焦位置と、フォーカスレンズ移動後の合焦位置との変化量である。この算出結果と、決定された合焦位置と視差補正量との相関を示すグラフとにもとづいて、視差補正量を算出する。
 なお、ステップS50において、既にフォーカスレンズが初期位置から移動されている場合には、合焦位置の変化量が求められるのであれば、直前のフォーカスレンズの位置からの移動量を算出してもよいし、初期位置からの移動量を算出してもよい。
 これにより、位相差CCD17の主画素、副画素で撮像される画像が、被写体の条件や光学条件に応じて、主要被写体の視差量が一定となるように視差量が補正され、リアルタイムに表示される。
 本実施の形態では、被写体の条件や光学条件等にかかわらず、フォーカスレンズの移動に関わらず右眼用画像と左眼用画像との視差量を常に一定にすることができ、撮影者の不快感を軽減することができる。
 なお、本実施の形態では、ライブビュー画像の撮影、表示を例に説明したが、第1の実施の形態と同様、右眼用画像データ及び左眼用画像データを連続的に取得し、コンティニュアスAFを行う場合、例えば動画撮影時にも適用することができる。
 また、本実施の形態では、合焦位置と視差補正量との相関を示すグラフを記録したが、フォーカスレンズの移動量と視差補正量との関係を示すグラフを記録するようにし、フォーカスレンズの移動量より視差補正量を直接求めるようにしてもよい。
 また、本実施の形態では、フォーカスレンズの移動量より合焦位置の変化量を求め、合焦位置の変化量より視差補正量を算出したが、合焦位置の変化量を算出できるのであればフォーカスレンズの移動量の算出は必須ではない。
 なお、第1~3の実施の形態では、視差補正部68により左右方向に移動された後の左眼用画像データ及び右目用画像データを、3D画像信号処理部64及びビデオエンコーダを介して液晶モニタ28に出力したが、視差補正部68により左右方向に移動された後の左眼用画像データ及び右目用画像データを記録メディア54、単眼立体撮像装置内部の図示しない記録手段、単眼立体撮像装置に接続された外部の記録手段等に出力し、記録させるようにしてもよい。これにより、単眼立体撮像装置やその他の表示手段で立体表示する場合にもフォーカスレンズの移動によらず左眼用画像及び右眼用画像の視差量を一定に保つことができ、視聴者の不快感を軽減することができる。
 また、第1~3の実施の形態では、撮像素子にCCDを用いた例で説明したが、CCDに限定されるものではない。本発明は、CMOS等他のイメージセンサにも適用可能である。
 また、第1~3の実施の形態では、位相差CCD17のマイクロレンズL側に設けられた遮光部材17A、17Bにより光束を分割する単眼立体撮像装置を例に説明したが、図19に示すように光束を分割するリレーレンズを含む撮影レンズ12’を用いた単眼立体撮像装置にも適用可能である。また、2つの画素(主画素、副画素)に対して1つのマイクロレンズを設けることにより、各画素に入射する光束が制限されるものでもよい。
 1、2、3:単眼立体撮像装置、14:撮影レンズ、16:絞り、17A、17B:遮光部材、17:位相差CCD、40:CPU、45:タイミングジェネレータ、46:絞り駆動部、47:レンズ駆動部、54:記録メディア、67、67A:視差補正量算出部、68:視差補正部

Claims (12)

  1.  フォーカスレンズを含む撮影光学系と、
     前記撮影光学系を通過した光束を複数の光束に分割する瞳分割手段と、
     前記瞳分割手段により分割された複数の光束をそれぞれ受光して左眼用の画像及び右眼用の画像を取得する撮像手段と、
     前記フォーカスレンズの合焦位置を移動させるフォーカスレンズ駆動手段と、
     前記フォーカスレンズ駆動手段によりフォーカスレンズの合焦位置が移動した際に、前記左眼用の画像及び前記右眼用の画像の主要被写体の視差量を一定に保つ視差補正量を算出する視差補正量算出手段と、
     前記視差補正量算出手段により視差補正量が算出されると、算出された視差補正量だけ前記左眼用の画像及び前記右眼用の画像の少なくとも一方を左右方向に移動させて前記左眼用の画像及び前記右眼用の画像の視差補正を行う視差補正手段と、
     前記撮像手段により取得された左眼用の画像及び右眼用の画像、又は前記視差補正手段により視差補正が行われた左眼用の画像及び右眼用の画像を出力する出力手段と、
     を備えたことを特徴とする単眼立体撮像装置。
  2.  前記左眼用の画像及び前記右眼用の画像を立体画像として認識可能に表示させる表示手段を備え、
     前記出力手段は、前記撮像手段により取得された左眼用の画像及び右眼用の画像、又は前記視差補正手段により視差補正が行われた左眼用の画像及び右眼用の画像を前記表示手段に出力することを特徴とする請求項1に記載の単眼立体撮像装置。
  3.  前記左眼用の画像及び前記右眼用の画像を記録する第1の記録手段を備え、
     前記出力手段は、前記撮像手段により取得された左眼用の画像及び右眼用の画像、又は前記視差補正手段により視差補正が行われた左眼用の画像及び右眼用の画像を前記第1の記録手段に出力することを特徴とする請求項1又は2に記載の単眼立体撮像装置。
  4.  前記視差補正量算出手段は、前記主要被写体の視差量を常に0とする視差補正量を算出することを特徴とする請求項1から3のいずれかに記載の単眼立体撮像装置。
  5.  前記視差補正量算出手段は、前記左眼用の画像及び前記右眼用の画像のそれぞれから前記主要被写体の対応点を検出し、当該検出された左眼用の画像の対応点と右眼用の画像の対応点とのずれ量を一定に保つ視差補正量を算出することを特徴とする請求項1から4のいずれかに記載の単眼立体撮像装置。
  6.  前記フォーカスレンズ駆動手段により前記フォーカスレンズの合焦位置を移動した際に、前記フォーカスレンズの合焦位置の移動量を算出する移動量算出手段を更に備え、
     前記視差補正量算出手段は、前記移動量算出手段により算出されたフォーカスレンズの合焦位置の移動量に基づいて視差補正量を算出することを特徴とする請求項1から4のいずれかに記載の単眼立体撮像装置。
  7.  前記フォーカスレンズの位置に基づいて合焦位置を取得する合焦位置取得手段と、
     合焦位置と視差補正量との相関が記録された第2の記録手段と、を備え、
     前記視差補正量算出手段は、前記合焦位置取得手段により取得された合焦位置と、前記第2の記録手段に記録された合焦位置と視差補正量との相関とに基づいて視差補正量を算出することを特徴とする請求項1から6のいずれかに記載の単眼立体撮像装置。
  8.  前記撮影光学系を介して前記撮像手段に入射する光量を調整する絞りと、
     前記絞りの絞り値を検出する絞り値検出手段と、を備え、
     前記第2の記録手段には、合焦位置と視差補正量との相関が前記絞りの絞り値に応じて複数記録され、
     前記視差補正量算出手段は、前記絞り値検出手段により検出された絞りの絞り値に基づいて、前記第2の記録手段に複数記録された合焦位置と視差補正量との相関のなかから視差補正量の算出に用いる合焦位置と視差補正量との相関を決定することを特徴とする請求項7に記載の単眼立体撮像装置。
  9.  前記撮影光学系はズームレンズを有し、
     前記ズームレンズの位置より焦点距離を検出する焦点距離検出手段を備え、
     前記第2の記録手段には、合焦位置と視差補正量との相関が焦点距離に応じて複数記録され、
     前記視差補正量算出手段は、前記焦点距離検出手段より検出された焦点距離に基づいて、前記第2の記録手段に複数記録された合焦位置と視差補正量との相関のなかから視差補正量の算出に用いる合焦位置と視差補正量との相関を決定することを特徴とする請求項7に記載の単眼立体撮像装置。
  10.  前記撮像手段により取得された左眼用の画像及び右眼用の画像に基づいて、前記主要被写体が合焦するように前記フォーカスレンズ駆動手段を介して前記フォーカスレンズの合焦位置を移動させる自動合焦手段を備え、
     前記撮像手段は、前記左眼用の画像及び前記右眼用の画像を連続的に取得し、
     前記自動合焦手段は、前記撮像手段により前記左眼用の画像及び前記右眼用の画像が連続的に取得されている間、連続的に前記フォーカスレンズの合焦位置を移動させることを特徴とする請求項1から9のいずれかに記載の単眼立体撮像装置。
  11.  前記撮像手段により取得された左眼用の画像及び右眼用の画像に基づいて、前記主要被写体が合焦するように前記フォーカスレンズ駆動手段を介して前記フォーカスレンズの合焦位置を移動させる自動合焦手段と、
     撮影指示を入力する撮影指示入力手段と、を備え、
     前記撮像手段は、前記撮影指示入力手段により撮影指示が入力されると前記左眼用の画像及び前記右眼用の画像をそれぞれ1枚ずつ取得し、
     前記自動合焦手段は、前記撮像手段が前記左眼用の画像及び前記右眼用の画像をそれぞれ1枚ずつ取得する前に前記フォーカスレンズの合焦位置を移動させることを特徴とする請求項6から9のいずれかに記載の単眼立体撮像装置。
  12.  前記視差補正手段は、前記フォーカスレンズ駆動手段により合焦位置が近くなる方向に前記フォーカスレンズの合焦位置が移動した場合には、前記左眼用の画像を右側に移動させる、前記右眼用の画像を左側に移動させる、又は、前記左眼用の画像を右側に移動させ、かつ、前記右眼用の画像を左側に移動させ、視差補正を行い、
    前記フォーカスレンズ駆動手段により合焦位置が遠くなる方向に前記フォーカスレンズの合焦位置が移動した場合には、前記左眼用の画像を左側に移動させる、前記右眼用の画像を右側に移動させる、又は、前記左眼用の画像を左側に移動させ、かつ、前記右眼用の画像を右側に移動させ、視差補正を行うことを特徴とする請求項1から11のいずれかに記載の単眼立体撮像装置。
PCT/JP2011/064639 2010-06-29 2011-06-27 単眼立体撮像装置 WO2012002307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012522612A JP5595499B2 (ja) 2010-06-29 2011-06-27 単眼立体撮像装置
EP11800771.5A EP2590421B1 (en) 2010-06-29 2011-06-27 Single-lens stereoscopic image capture device
CN201180031249.3A CN102959969B (zh) 2010-06-29 2011-06-27 单眼立体摄像装置
US13/718,619 US9077976B2 (en) 2010-06-29 2012-12-18 Single-eye stereoscopic image capturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010147889 2010-06-29
JP2010-147889 2010-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/718,619 Continuation-In-Part US9077976B2 (en) 2010-06-29 2012-12-18 Single-eye stereoscopic image capturing device

Publications (1)

Publication Number Publication Date
WO2012002307A1 true WO2012002307A1 (ja) 2012-01-05

Family

ID=45402020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064639 WO2012002307A1 (ja) 2010-06-29 2011-06-27 単眼立体撮像装置

Country Status (6)

Country Link
US (1) US9077976B2 (ja)
EP (1) EP2590421B1 (ja)
JP (1) JP5595499B2 (ja)
CN (1) CN102959969B (ja)
TW (1) TW201200959A (ja)
WO (1) WO2012002307A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109233A (ja) * 2011-11-22 2013-06-06 Canon Inc 撮像装置、再生装置、その制御方法、撮像システム、及びプログラム
WO2013146996A1 (ja) * 2012-03-29 2013-10-03 富士フイルム株式会社 画像処理装置、撮像装置および画像処理方法
JP2014036347A (ja) * 2012-08-09 2014-02-24 Canon Inc 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体
JP2014085608A (ja) * 2012-10-26 2014-05-12 Nikon Corp 撮像装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9386298B2 (en) * 2012-11-08 2016-07-05 Leap Motion, Inc. Three-dimensional image sensors
JP6551743B2 (ja) * 2013-06-05 2019-07-31 ソニー株式会社 画像処理装置および画像処理方法
JP6127869B2 (ja) * 2013-09-25 2017-05-17 ソニー株式会社 固体撮像素子及びその駆動方法、並びに電子機器
JP2015194709A (ja) * 2014-03-28 2015-11-05 パナソニックIpマネジメント株式会社 画像表示装置
KR102157675B1 (ko) * 2014-07-25 2020-09-18 삼성전자주식회사 촬영 장치 및 그 촬영 방법
US9430970B2 (en) * 2014-11-04 2016-08-30 Innolux Corporation 3D image display device
CN108369338B (zh) * 2015-12-09 2021-01-12 快图有限公司 图像采集系统
US10666923B2 (en) * 2017-02-24 2020-05-26 Immervision, Inc. Wide-angle stereoscopic vision with cameras having different parameters
JPWO2019138925A1 (ja) 2018-01-11 2021-02-04 ソニー株式会社 情報処理装置、情報処理方法、及び、プログラム、並びに、交換レンズ
KR102513680B1 (ko) * 2018-06-08 2023-03-24 엘지이노텍 주식회사 카메라 모듈 및 그의 깊이 정보 추출 방법
US20200128224A1 (en) * 2018-10-18 2020-04-23 Brian W. Bush Computer implemented method of capturing stereo images using single lens optics of any smart device without the use of any additional hardware
CA3210569A1 (en) * 2021-03-29 2022-10-06 Patrick Terry Stereoscopic imaging platform with continuous autofocusing mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317429A (ja) 1995-05-23 1996-11-29 Matsushita Electric Ind Co Ltd 立体電子ズーム装置及び立体画質制御装置
JPH1042314A (ja) 1996-07-22 1998-02-13 Fuji Photo Film Co Ltd 視差画像入力装置
JP2002090921A (ja) 2000-09-11 2002-03-27 Canon Inc 立体撮影光学ユニットおよび立体映像撮影システム
JP2003107601A (ja) 2001-10-01 2003-04-09 Canon Inc 立体画像撮影装置および立体画像撮影方法
JP2006105771A (ja) * 2004-10-05 2006-04-20 Canon Inc 撮像装置および地形図作成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142357A (en) * 1990-10-11 1992-08-25 Stereographics Corp. Stereoscopic video camera with image sensors having variable effective position
JP2001012944A (ja) * 1999-06-29 2001-01-19 Fuji Photo Film Co Ltd 視差画像入力装置及び撮像装置
US6807295B1 (en) * 1999-06-29 2004-10-19 Fuji Photo Film Co., Ltd. Stereoscopic imaging apparatus and method
JP2001218228A (ja) * 2000-02-01 2001-08-10 Canon Inc 立体画像撮影用光学系及びそれを用いた立体画像撮影装置
WO2008133960A1 (en) * 2007-04-23 2008-11-06 California Institute Of Technology An aperture system with spatially-biased aperture shapes for 3-d defocusing-based imaging
KR101313740B1 (ko) * 2007-10-08 2013-10-15 주식회사 스테레오피아 원소스 멀티유즈 스테레오 카메라 및 스테레오 영상 컨텐츠제작방법
US8436893B2 (en) * 2009-07-31 2013-05-07 3Dmedia Corporation Methods, systems, and computer-readable storage media for selecting image capture positions to generate three-dimensional (3D) images
WO2011123756A1 (en) * 2010-04-02 2011-10-06 Battelle Memorial Institute Aperture for increasing the parallax in a single lens three dimensional camera
US8896667B2 (en) * 2010-10-25 2014-11-25 Aptina Imaging Corporation Stereoscopic imaging systems with convergence control for reducing conflicts between accomodation and convergence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317429A (ja) 1995-05-23 1996-11-29 Matsushita Electric Ind Co Ltd 立体電子ズーム装置及び立体画質制御装置
JPH1042314A (ja) 1996-07-22 1998-02-13 Fuji Photo Film Co Ltd 視差画像入力装置
JP2002090921A (ja) 2000-09-11 2002-03-27 Canon Inc 立体撮影光学ユニットおよび立体映像撮影システム
JP2003107601A (ja) 2001-10-01 2003-04-09 Canon Inc 立体画像撮影装置および立体画像撮影方法
JP2006105771A (ja) * 2004-10-05 2006-04-20 Canon Inc 撮像装置および地形図作成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2590421A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109233A (ja) * 2011-11-22 2013-06-06 Canon Inc 撮像装置、再生装置、その制御方法、撮像システム、及びプログラム
WO2013146996A1 (ja) * 2012-03-29 2013-10-03 富士フイルム株式会社 画像処理装置、撮像装置および画像処理方法
CN104221370A (zh) * 2012-03-29 2014-12-17 富士胶片株式会社 图像处理装置、摄像装置以及图像处理方法
JP5655174B2 (ja) * 2012-03-29 2015-01-14 富士フイルム株式会社 画像処理装置、撮像装置および画像処理方法
EP2833638A1 (en) * 2012-03-29 2015-02-04 Fujifilm Corporation Image processing device, imaging device, and image processing method
US9167224B2 (en) 2012-03-29 2015-10-20 Fujifilm Corporation Image processing device, imaging device, and image processing method
EP2833638A4 (en) * 2012-03-29 2015-11-25 Fujifilm Corp IMAGE PROCESSING DEVICE, IMAGING APPARATUS AND IMAGE PROCESSING METHOD
JP2014036347A (ja) * 2012-08-09 2014-02-24 Canon Inc 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体
US9374572B2 (en) 2012-08-09 2016-06-21 Canon Kabushiki Kaisha Image pickup apparatus, image pickup system, method of controlling image pickup apparatus, and non-transitory computer-readable storage medium
JP2014085608A (ja) * 2012-10-26 2014-05-12 Nikon Corp 撮像装置

Also Published As

Publication number Publication date
CN102959969B (zh) 2015-07-15
US9077976B2 (en) 2015-07-07
TW201200959A (en) 2012-01-01
EP2590421B1 (en) 2017-07-26
CN102959969A (zh) 2013-03-06
EP2590421A4 (en) 2016-10-26
JP5595499B2 (ja) 2014-09-24
US20130135449A1 (en) 2013-05-30
EP2590421A1 (en) 2013-05-08
JPWO2012002307A1 (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5595499B2 (ja) 単眼立体撮像装置
JP5474234B2 (ja) 単眼立体撮像装置及びその制御方法
US9258545B2 (en) Stereoscopic imaging apparatus
JP5722975B2 (ja) 撮像装置、撮像装置用シェーディング補正方法及び撮像装置用プログラム
JP5788518B2 (ja) 単眼立体撮影装置、撮影方法及びプログラム
JP5368350B2 (ja) 立体撮像装置
JP5243666B2 (ja) 撮像装置、撮像装置本体およびシェーディング補正方法
US8823778B2 (en) Imaging device and imaging method
JP2011205530A (ja) 撮像装置及び表示装置
JP2011045039A (ja) 複眼撮像装置
JP2011022501A (ja) 複眼撮像装置
JP2011259168A (ja) 立体パノラマ画像撮影装置
JP5449551B2 (ja) 画像出力装置、方法およびプログラム
US9077979B2 (en) Stereoscopic image capture device and method
JP5457240B2 (ja) 立体撮像装置
JP5366693B2 (ja) 撮像装置、撮像装置の制御方法、及びコンピュータプログラム
JP2012124650A (ja) 撮像装置および撮像方法
JP5351298B2 (ja) 複眼撮像装置
JP2010200024A (ja) 立体画像表示装置および立体画像表示方法
WO2013031392A1 (ja) 立体撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031249.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522612

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011800771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011800771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE