WO2012001772A1 - 制御装置及び方法、並びにノード装置 - Google Patents

制御装置及び方法、並びにノード装置 Download PDF

Info

Publication number
WO2012001772A1
WO2012001772A1 PCT/JP2010/061058 JP2010061058W WO2012001772A1 WO 2012001772 A1 WO2012001772 A1 WO 2012001772A1 JP 2010061058 W JP2010061058 W JP 2010061058W WO 2012001772 A1 WO2012001772 A1 WO 2012001772A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
maximum
control
amount
node device
Prior art date
Application number
PCT/JP2010/061058
Other languages
English (en)
French (fr)
Inventor
優貴 品田
一成 小林
広光 河井
大介 新田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012522378A priority Critical patent/JPWO2012001772A1/ja
Priority to EP10854069.1A priority patent/EP2590443A4/en
Priority to PCT/JP2010/061058 priority patent/WO2012001772A1/ja
Publication of WO2012001772A1 publication Critical patent/WO2012001772A1/ja
Priority to US13/712,852 priority patent/US20130102301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/83Admission control; Resource allocation based on usage prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/824Applicable to portable or mobile terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 制御装置(400)は、ネットワークに接続されるノード装置(100、200)が有する機能(104)の稼働状態を制御する装置であって、ノード装置における対象期間の最大トラヒック量(Tmax)を予測する予測手段(434)と、対象期間において、最大トラヒック量を処理するために要求される機能以外の機能を停止するよう、ノード装置の稼働状態を制御する制御手段(441、442)とを備える。

Description

制御装置及び方法、並びにノード装置
 本発明は、移動通信システムなどの通信システム上のノード装置、並びに該ノード装置を制御する制御装置及び制御方法の技術分野に関する。
 近年の移動通信システムの発展に応じて、ユーザによるネットワークを利用したトラヒック量は増加する傾向にある。基地局や制御局など、移動通信システム上での通信処理を行うノード装置は、想定される最大トラヒック量を上回る処理能力が要求される。このため、トラヒック量の増加に応じてノード装置の稼働数も増加することが求められ、且つ運用を開始した日より常時電源が投入され、搭載されている全ての設備が常時稼働することが求められる。
 ところで近年、環境問題への対応の一つとして、各業界において省電力化が求められている。要求されるトラヒック量に対して稼働が要求されない、余剰のノード装置の稼働を停止することは省電力化の最たる手段として考えられるが、上述した運用上の要請により、ノード装置の稼働を停止することは容易ではない。
 ノード装置の省電力化を実現するためには、例えば、設計段階における省電力デバイスの採用や、各装置の処理能力を高めることで、装置稼働数を減少することなどが考えられる。また、以下に示す先行技術文献には、制御局が配下の基地局に対して、出力が閾値を上回る場合に出力を停止させる制御を行う方法が説明されている。また、複数の交換機を備えるネットワークにおいて、各パスのトラヒックを監視し、トラヒックが少ないパスを使用しないように制御を行う方法が説明されている。
特開平10-145842号公報 特開2001-119730号公報
 上述したように、余剰のノード装置の稼働を停止し、省電力化を図ることは、装置運用の特性上困難である。このため、時間帯やその他の条件に応じて、ネットワークにおけるトラヒック量は大幅に増減する一方で、ネットワークを構成するノード装置全体での消費電力量は大きく変化しない。
 本発明は、上述した問題に鑑みて為されたものであり、トラヒック量の遷移に応じてノード装置の稼働状況を制御することで、省電力化を実現可能なノード装置、並びに該装置を制御する制御装置及び制御方法を提供することを課題とする。
 上記課題を解決するために、開示の制御装置は、ネットワークに接続されるノード装置が有する機能の稼働状態を制御する制御装置であって、予測手段と、制御手段とを備える。
 予測手段は、稼働制御の対象期間においてノード装置が処理する最大トラヒック量の予測を行う。
 制御手段は、稼働制御の対象期間に、予測される最大トラヒック量を処理するために要求される機能以外の機能を停止する指示をノード装置に通知することで、ノード装置の稼働状態を制御する
 開示の制御方法は、予測工程と、制御工程とを備える。予測工程においては、上述の予測手段が行う動作と同様の動作が行われる。制御工程では、上述の制御意手段が行う動作と同様の動作が行われる。
 開示のノード装置は、上述の制御装置と同様の予測手段と、制御手段とを備える。
 上述の構成によれば、予測される最大トラヒック量に応じて、ノード装置においてトラヒックの処理を行う際に余剰となる機能の稼働を停止することが可能となる。これにより、大幅な省電力効果を実現することが出来る。
移動通信システムの全体的な構成を示す図である。 稼働制御装置が適用される移動通信システムの構成例を示す図である。 稼働制御装置が適用される移動通信システムの構成例を示す図である。 稼働制御装置の構成を示すブロック図である。 稼働制御の対象の基地局又は制御局の構成を示すブロック図である。 稼働制御時の動作の流れを示すシーケンス図である。 収集されるトラヒック情報の例を示すテーブルである。 収集されるトラヒック情報より作成されるトラヒック量の近似曲線の例を示すグラフである。 トラヒック予測モデルの例を示すグラフである。 最大トラヒック量Tmaxの決定に係る動作の流れを示すフローチャートである。 稼働制御の指示に係る動作の流れを示すフローチャートである。 トラヒック予測モデルの更新に係る動作の流れを示すフローチャートである。 機能ごとの最大トラヒック量の例を示すテーブルである。 稼働設備ごとの稼働設備率と実際の稼働数との関係を示すテーブルである。 トラヒック量に基づく稼働制御による消費電力及び稼働設備数の推移を示すグラフである。 基地局及び制御局の稼働設備へのトラヒック量に基づく稼働制御のイメージを示す図である。 稼働制御中のトラヒック量の増加に追従する稼働制御に係る動作の流れを示すフローチャートである。 トリガ曲線の例を示すグラフである。 トリガ曲線の例を示すグラフである。
 以下に、発明を実施するための実施形態について説明する。
 (1)移動通信システムについて
 図1を参照して、開示の制御装置の一例が適用される移動通信システムの構成を示す。図1は、移動通信システムの構成を示すブロック図である。図1(a)は、3G(第3世代)方式と称される通信方式を採用する移動通信システム1aのブロック図である。図1(a)に示されるように、移動通信システム1aは、制御局200を介して複数の基地局100a乃至100cがコアネットワークに接続される構成である。コアネットワークは、セルラシステムのキャリアが保有するネットワークであり、移動端末(UE:User Equipment)300の契約情報の管理やUE300の呼処理や移動管理などの接続制御を実現するための機能を有する。基地局100a乃至100cは、配下に無線区間であるセルを形成して、該セル内に在圏するUE300を収容し、通信を行う。例えば、図1aの例では、UE300は、基地局100aに収容され、基地局100aを介して、例えばコアネットワーク上のデータサーバ等から送信されるサービスデータを受信する。
 図1(b)は、LTE(Long Term Evolution)方式と称される所謂3.9Gの通信方式を採用する移動通信システム1bのブロック図である。図1(b)に示されるように、移動通信システム1bは、複数の基地局100d乃至100fが、制御局を介することなくコアネットワーク上の上位ノードであるMME(Mobility Management Entity:移動管理エンティティ、不図示)等に接続される構成である。基地局100d乃至100fは、移動通信システム1aと同様に、配下に無線区間であるセルを形成して、該セル内に在圏するUE300と通信を行う。
 開示の制御装置の一例である後述の稼働制御装置400による稼働制御の対象のノード装置とは、上述した移動通信システム1a及び1bなどのネットワーク上に配置されるノード一般について包含する概念である。例えば、ノード装置とは、基地局100a乃至100c、及び基地局100d乃至100f、などのネットワークの端部に配置される所謂エッジノードや、制御局200のようにネットワークの境界又は入口に配置される所謂中継ノードなどを含む趣旨である。尚、基地局100a乃至100fを区別することなく、例えばノード装置の一例として説明する場合には、基地局100という表記を用いて説明する。以下、ノード装置の具体例として、基地局100及び制御局200を挙げて説明する。
 尚、以下では、移動通信システム1を例に挙げて説明を進めるが、移動通信システム以外の任意の通信システムに対して、後述する稼働制御装置400を適用してもよい。
 (2)構成例
 移動通信システムに対する開示の制御装置の一例の適用の態様について、図2を参照して説明する。図2(a)は、図1(a)と同様に、3G方式に代表される制御局200を有する移動通信システム1aの構成を示すブロック図である。開示の制御装置の具体例である稼働制御装置400は、ノード装置の具体例たる基地局100a乃至100c及び制御局200夫々に対して接続される独立した装置である。稼働制御装置400は、基地局100a乃至100c及び制御局200の夫々において収集されるトラヒック情報の取得が可能であり、且つ基地局100a乃至100c及び制御局200の夫々に対して稼働制御のための指示が可能な態様で接続される。尚、図2(a)のように、一の制御局200が複数の基地局100を配下に収容する移動通信システム1aにおいては、稼働制御装置400は、制御局200に対して接続され且つ複数の基地局100に対して接続されない態様であってもよい。このとき、稼働制御装置400は、各基地局100a乃至100cにおけるトラヒック情報の収集、及び稼働制御のための指示を制御局200経由で実施することが好ましい。
 一方で、稼働制御装置400は、図2(b)に示されるLTE方式の移動通信システム1bにおいては、ノード装置の具体例たる基地局100d乃至100fの夫々に対して接続される独立した装置であってよい。この場合においても同様に、稼働制御装置400は、基地局100d乃至100fの夫々において収集されるトラヒック情報の取得が可能であり、且つ基地局100d乃至100fに対して稼働制御のための指示が可能な態様で接続される。
 また、稼働制御装置400は、いずれかのノード装置内に組み込まれる装置構成の一部であってもよい。例えば、図3(a)に示される例では、稼働制御装置400は、3G方式の移動通信システム1aにおける制御局200の構成部材の一部である。また、図3(b)に示される例では、稼働制御装置400は、LTE方式の基地局100fの構成部材の一部である。上述のように、稼働制御装置400が基地局100及び制御局200において収集されるトラヒック情報を取得可能であり、且つ基地局100及び制御局200に対して稼働制御のための指示が可能な態様で接続される態様を踏襲していれば、このような他の装置の一部分として構成されてもよい。また、上述した接続の態様を踏襲する限りにおいては、稼働制御装置400は、上述した以外の、例えばその他の通信方式を用いる移動通信システムに対して適用されてもよく、上述した以外の態様で設置されてもよい。例えば、LTE方式の移動通信システム1bにおいては、稼働制御装置400は、コアネットワーク上の上位ノードであるMME内に配置されてもよく、また、コアネットワークに接続される独立した装置構成であってもよい
 図4を参照して、稼働制御装置400の構成について説明する。図4は、稼働制御装置400が有する構成と、各部が有する機能に対応する便宜上の機能部とを示すブロック図である。
 稼働制御装置400は、CPU401と、メモリ402と、装置間インタフェース403とを備えている。
 CPU401は、稼働制御装置400全体の動作を制御する制御部であって、稼働制御を行うための機能部として、トラヒック情報管理部410と、トラヒック予測モデル管理部420と、トラヒック情報解析部430と、省電力制御部440を有する。
 メモリ402は、データ格納用のメモリであって、例えばCPU401を動作させるためのプログラムを格納する。CPU401は、該プログラムを読み込むことで、各部の制御を行う。メモリ402内には、トラヒック予測モデルデータベース421と、稼働設備データベース450とが格納される。
 装置間インタフェース403は、稼働制御装置400と、稼働制御の対象の基地局100又は制御局200との接続用のインタフェースである。
 トラヒック情報管理部410は、トラヒック情報を取得及び管理するための機能部であって、トラヒック情報収集部411と収集間隔決定部412とを備える。
 トラヒック情報収集部411は、稼働制御の対象の基地局100や制御局200に対して、トラヒック情報の送信要求を行うと共に、送信されるトラヒック情報の収集を行う。トラヒック情報の要求は、要求時点でのトラヒック情報の要求と、収集間隔決定部412において決定される収集間隔毎のトラヒック情報の要求との2通りがある。
 収集間隔決定部412は、トラヒック情報収集部411において送信要求を行った時点でのトラヒック情報から、トラヒック情報解析のためのトラヒック情報収集間隔を決定する。収集間隔決定部412は、決定した収集間隔をトラヒック情報収集部411へ入力する。
 トラヒック予測モデル管理部420は、第2の所定期間の一例である過去のトラヒック情報の測定値からトラヒック予測モデルを作成し、実施形態における第2予測値の一例である最大トラヒック量Tmを抽出するための機能部である。このため、トラヒック予測モデル管理部420は、トラヒック予測モデルデータベース421に対してアクセスすると共に、最大トラヒック量抽出部422と、トラヒック予測モデル更新部423とを備える
 トラヒック予測モデルデータベース421は、トラヒック情報管理部410において収集されるトラヒック情報を格納するデータベースである。トラヒック情報予測モデルデータベース421は、収集したトラヒック情報を天候、曜日、時間帯などの条件毎に集積し、条件毎のトラヒック予測モデルを作成する。尚、トラヒック予測モデルを作成するトラヒック情報の取得時の条件は、上述した以外にその他の条件を加えてもよい。例えば、何らかのイベントにより対象の基地局100又は制御局200が管理するエリア内のユーザ数が突発的に増加する場合について、イベントの開催時を条件に加えることなどが考えられる。
 最大トラヒック量抽出部422は、トラヒック予測モデルデータベース421により作成される条件毎のトラヒック予測モデルを参照して、トラヒック予測の対象となる期間(つまり、将来の予測対象期間)における最大トラヒック量Tmを抽出する。最大トラヒック量抽出部422は、抽出した最大トラヒック量Tmをトラヒック情報解析部430の補正値決定部433へ入力する。
 トラヒック予測モデル更新部423は、トラヒック情報管理部410において収集されるトラヒック情報の入力を受け、新たに入力されたトラヒック情報に応じてトラヒック予測モデルデータベース422の更新を行う。
 トラヒック情報解析部430は、取得したトラヒック情報から最大トラヒック量を予測すると共に、過去のトラヒック情報の測定値(つまり、トラヒック予測モデルデータベース421)から作成されたトラヒック予測モデルから抽出される最大トラヒック量Tmと比較して、今後予測される最大トラヒック量を決定する機能を有する。このため、トラヒック情報解析部430は、近似曲線作成部431と、最大トラヒック予測部432と、補正値決定部433と、最大トラヒック決定部434とを備える。
 近似曲線作成部431は、トラヒック情報管理部410において収集されるトラヒック情報の入力を受け、例えば近似曲線を作成することなどにより、予測対象期間におけるトラヒック量の予測値の推移を算出する。近似曲線作成部431は、作成した近似曲線f(x)を最大トラヒック予測部432へ入力する。
 最大トラヒック予測部432は、近似曲線作成部431において算出されたトラヒック量の予測値の推移(つまり、近似曲線f(x))を参照し、予測対象期間における最大トラヒック量Tcを算出する。かかる最大トラヒック量Tcは、実施形態における第1予測値の一例であって、典型的には、第1の所定期間の一例である予測対象期間の直前の所定期間のトラヒック量の測定値より算出される。
 補正値決定部433は、近似曲線f(x)から予測される最大トラヒック量Tcと、最大トラヒック量抽出部422においてトラヒック予測モデルから抽出される最大トラヒック量Tmとを比較して、予測対象期間における最大トラヒック量の補正値Cを決定する。補正値決定部433は、決定した最大トラヒック量の補正値Cを最大トラヒック決定部434へ入力する。
 最大トラヒック決定部434は、近似曲線f(x)から予測される最大トラヒック量Tc、トラヒック予測モデルから抽出される最大トラヒック量Tm、及び補正値Cから、予測対象期間における最大トラヒック量Tmaxを決定する。最大トラヒック決定部434は、決定した最大トラヒック量Tmaxを稼働設備決定部441へ入力する。尚、補正値Cや最大トラヒック量Tmaxの決定の具体的な態様については後に詳述する。
 省電力制御部440は、稼働設備データベース450を参照し、基地局100又は制御局200に対して、トラヒック情報解析部430において算出される最大トラヒック量Tmaxを処理するために要求される設備を稼働させる指示を行う。このため、省電力制御部440は、稼働設備決定部441と、省電力制御通知部442とを備える。
 稼働設備決定部441は、トラヒック情報解析部430において決定される予測対象期間における最大トラヒック量Tmaxに基づいて、稼働制御の対象の基地局100又は制御局200における好ましい稼働設備数を算出する。具体的には、稼働設備データベース450に格納される稼働制御の対象の基地局100又は制御局200内の稼働設備数を参照し、各稼働設備の処理量や消費電力などを考慮して、稼働設備数を決定する。
 省電力制御通知部442は、稼動設備決定部441において決定される稼働設備数を装置間インタフェース403を介して稼働制御の対象の基地局100又は制御局200に対して個別に通知することで、稼働制御の指示を行う。
 稼働設備データベース450は、稼働制御の対象の基地局100又は制御局200が有する稼働設備の情報を格納するデータベースである。稼働設備データベース450は、例えば稼働制御の対象の基地局100又は制御局200におけるネットワーク通信用カードなどのハードウェアの稼働数、又は基地局100が配下に生成するセル数などについて、処理量や消費電力などの情報を格納する。
 尚、各機能部は、CPU401又はメモリ402内部の便宜上の機能部に限られず、例えばソフトウェアに記述されるプログラムや、独立したCPUなどの実体として存在する態様などであってもよい。
 図5を参照して、稼働制御装置400による稼働制御の対象の基地局100又は制御局200の構成について説明する。図5は、基地局100又は制御局200が共通して有する構成と、各部が有する機能に対応する便宜上の機能部とを示すブロック図である。尚、特に言及しない点においては、以下に説明する基地局100又は制御局200は、公知の基地局又は制御局と同様の構成を備えていてもよい。
 基地局100又は制御局200は、CPU101と、メモリ102と、装置間インタフェース103と、稼働設備104とを備える。
 CPU101は、基地局100又は制御局200全体の動作を制御する制御部であって、各部に対し動作制御のための信号の送受信を行う。CPU101は、トラヒック情報通知部111、トラヒック情報収集部112、省電力制御受信部113及び省電力制御部114の機能部を有する。トラヒック情報通知部111は、トラヒック情報収集部112において収集されるトラヒック情報を装置間インタフェース103を介して稼働制御装置400に通知する。トラヒック情報収集部112は、当該装置におけるトラヒック情報を収集し、トラヒック情報通知部111に渡す。省電力制御受信部113は、稼働制御装置400より通知される稼働設備数を含む稼働制御の指示を受信し、省電力制御部114に渡す。省電力制御部114は、受信した稼働制御の指示に含まれる稼働設備数に応じて、稼働設備104内の各設備について稼働又は停止の指示を行う。尚、各機能部は、CPU101内部の便宜上の機能部に限られず、例えばソフトウェアに記述されるプログラムや、独立したCPUなどの実体として存在する態様などであってもよい。
 メモリ102は、データ格納用のメモリであって、例えばCPU101を動作させるためのプログラムを格納する。CPU101は、該プログラムを読み込むことで、上述した各機能部に対応する処理や各部の制御を行ってもよい。
 装置間インタフェース103は、稼働制御の対象の基地局100又は制御局200と、稼働制御装置400との間での接続用のインタフェースである。
 稼働設備104は、基地局100又は制御局200における通信処理を実施するためのネットワーク通信用カードなどのハードウェアを包含する構成である。稼働設備104は、複数の通信用カードやチップなどの複数の稼働設備を含み、省電力制御部114の指示に応じて個々の稼働又は停止を実現出来る。
 (3)動作例
 図6を参照して、稼働制御装置400の動作について説明する。図6は、稼働制御装置400による処理の流れを示すシーケンス図である。
 図6に示されるように、稼働制御装置400のトラヒック情報管理部410は、収集間隔決定部412により決定される収集間隔で基地局100に対してトラヒック情報の要求を行う。トラヒック情報の要求を受けた基地局100のトラヒック情報通知部111は、トラヒック情報収集部112が収集したトラヒック情報を稼働制御装置400に対して送信する。その後、トラヒック情報管理部410は、収集したトラヒック情報をトラヒック情報解析部430に送信する。
 トラヒック情報の収集間隔は、例えば1分乃至1時間程度の間隔から条件に応じて適宜決定されることが好ましい。収集間隔を短く設定する場合、詳細なトラヒック情報を収集可能となり、トラヒック量の予測精度の向上が期待出来る。一方で、突発的な増減などのバースト的な推移の影響を受けやすく、その場合には却って精度が劣化する可能性がある。収集間隔を長く設定することで、バースト的な推移の影響を受けにくいものの、収集されるトラヒック情報が平均化されることとなり、収集間隔が短い場合と比較して予測精度が劣化する。
 収集間隔を決定するための条件として、例えば呼量の絶対値などを適用することが好ましい。呼量が多い時には、多少のトラヒック増減による予測への影響は無視可能なため、バースト的な推移の影響を受け難い。このため、呼量が多い時には、収集間隔を短くすることで、トラヒック予測の精度向上が可能となる。逆に、呼量が少ない時には、バースト的な推移の影響を受け易いため、収集間隔を長くすることで、バースト的な推移の影響を吸収することが可能となる。
 トラヒック情報のサンプリングデータ(つまり、収集されたトラヒック情報)は、予測対象期間におけるトラヒック量の予測に用いられる。このため、サンプリング数は、後述する近似曲線f(x)の算出において用いられる近似多項式の解法などに応じて適宜決定されることが好ましい。
 図7に、収集されるトラヒック情報の例について示す。図7(a)は、トラヒック情報の要求に含まれる情報の例を表にしたものである。トラヒック量の予測の対象となる予測対象期間、トラヒック情報の収集間隔、サンプリング数及び収集されるトラヒック情報の種類がトラヒック情報の要求メッセージ内に含まれ、基地局100に通知される。図7(a)の例では、予測対象期間が13:00-14:00であり、収集間隔が10分に設定される。また、トラヒック情報のサンプリング数は、10に設定される。収集されるトラヒック情報は、呼量を示す指標たる回線呼び出し回数の総量(BHCA:Busy Hour Call Attempts)と、同時接続ユーザ数と、U-plane流量が設定される。
 図7(b)は、図7(a)に示されるトラヒック情報要求に応じて収集されるトラヒック情報の例を示す表である。基地局100のトラヒック情報通知部111は、トラヒック情報の収集間隔として設定される10分毎に、呼量、同時接続ユーザ数及びU-plane流量の夫々について情報を収集し、稼働制御装置400に送信する。
 図7(b)に示されるトラヒック情報の例では、11:20-11:30の期間では、呼量40000、同時接続ユーザ数2500、U-plane流量80kbpsとのトラヒック情報が測定される。11:30-11:40の期間では、呼量52000、同時接続ユーザ数2600、U-plane流量100kbpsとのトラヒック情報が測定される。11:40-11:50の期間では、呼量58000、同時接続ユーザ数3000、U-plane流量100kbpsとのトラヒック情報が測定される。11:50-12:00の期間では、呼量65000、同時接続ユーザ数3200、U-plane流量120kbpsとのトラヒック情報が測定される。12:00-12:10の期間では、呼量78000、同時接続ユーザ数4000、U-plane流量200kbpsとのトラヒック情報が測定される。12:10-12:20の期間では、呼量87000、同時接続ユーザ数4400、U-plane流量300kbpsとのトラヒック情報が測定される。
12:20-12:30の期間では、呼量90000、同時接続ユーザ数4500、U-plane流量350kbpsとのトラヒック情報が測定される。12:30-12:40の期間では、呼量98000、同時接続ユーザ数5000、U-plane流量300kbpsとのトラヒック情報が測定される。12:40-12:50の期間では、呼量100000、同時接続ユーザ数5200、U-plane流量250kbpsとのトラヒック情報が測定される。12:50-13:00の期間では、呼量100000、同時接続ユーザ数5200、U-plane流量250kbpsとのトラヒック情報が測定される。
 トラヒック情報解析部430の近似曲線作成部431は、受け取ったトラヒック情報を用いて、トラヒック量の推移を示す近似曲線f(x)を作成する。具体的には、近似曲線作成部431は、収集されるトラヒック情報に対して近似多項式を用いる近似法を用いることで、近似曲線f(x)を作成する。近似方法としては、例えば、最小二乗法やAIC、又は所謂データマイニングなどの手法が適用されてもよい。
 近似曲線作成部431は、収集されるトラヒック情報から近似曲線f(x)を作成することで、予測対象期間におけるトラヒック量の推移の予測をも行う。具体的には、上述のように作成される近似曲線f(x)を、現時点の予測実行タイミング以降に延長することで、将来的な予測対象期間におけるトラヒック量の推移の予測を行う。
 図8に、図7(b)に示されるトラヒック情報のうちの呼量(BHCA)について、最小二乗法により算出された近似曲線f(x)を示す。図8では、近似曲線f(x)の作成を行う予測実行タイミングを13:00に設定しており、近似曲線f(x)のうち、実線部は収集されたトラヒック情報に基づく近似値、点線部は近似曲線f(x)より算出される予測対象期間13:00-14:00における呼量の予測値である。
 最大トラヒック量予測部432は、算出された近似曲線f(x)を参照して、予測対象期間におけるトラヒック量の最大値Tc=maxf(x)を算出する。図8に示される例において、収集されたトラヒック情報に基づく近似曲線f(x)では、トラヒック量は増加傾向にあるものの、予測対象期間内において最大値を迎え、その後減少傾向に移行していくことが予想される。近似多項式に基づく演算により、最大トラヒック量予測部432は、例えば呼量として104896をトラヒック量の最大値Tcとして予測する。
 次に、トラヒック情報解析部430の補正値決定部433は、トラヒック予測モデル管理部420に対して、トラヒック予測モデルの参照要求を通知する。トラヒック予測モデルの参照要求を受けたトラヒック予測モデル管理部420は、最大トラヒック抽出部422に対して、トラヒック予測モデルに基づく予測対象期間における最大トラヒック量Tmの抽出を指示する。最大トラヒック抽出部422は、トラヒック予測モデルデータベース421に格納されるトラヒック情報より、予測対象期間と条件を同じくするトラヒック情報を収集し、条件毎のトラヒック予測モデルを作成する。
 図9に、グラフ化したトラヒック予測モデルの例を示す。図9の例では、予測対象期間と曜日を同じくする同時間帯のトラヒック情報である曜日別トラヒック予測モデル(点線部)と、予測対象期間と天候を同じくする同時間帯のトラヒック情報である天候別トラヒック予測モデル(一点破線部)とが示される。最大トラヒック抽出部422は、作成したトラヒック予測モデルから、条件毎に予測対象期間における最大トラヒック量Tmを抽出する。図9の例では、最大トラヒック抽出部422は、曜日別トラヒック予測モデルから、最大トラヒック量Tm1として、93000という値を抽出し、天候別トラヒック予測モデルから、最大トラヒック量Tm2として、120000という値を抽出する。尚、作成されるトラヒック予測モデルの条件及び数は、予測対象期間や予測対象となる基地局100又は制御局200の種別などに応じて適宜変更されてもよい。最大トラヒック抽出部422は、作成される各トラヒック予測モデルと共に、抽出した最大トラヒック量Tm1及びTm2をトラヒック情報解析部430に対して通知する。
 トラヒック情報解析部430の補正値決定部433は、抽出される最大トラヒック量Tm1及びTm2、並びに収集される最大トラヒック量Tcに基づいて、最大トラヒック量Tcに対する補正値Cの算出を行う。補正値Cは、取得される最大トラヒック量Tc、Tm1及びTm2の最大値に対して適用することで、予測対象期間において生じ得る最大トラヒック量Tmaxを算出するための値である。
 補正値Cは、例えば、取得される最大トラヒック量Tc、Tm1及びTm2の内、最大値と最小値との差分により算出される。例えば、Tc=104896、Tm1=93000、Tm2=120000の場合、Tm2とTm1との差分より補正値C=27000が得られる。
 予測対象期間の直前のトラヒック量の推移から予測される最大トラヒック量Tcと、トラヒック予測モデルから抽出される最大トラヒック量Tm1及びTm2との間の差分が少ないほど、予測される最大トラヒック量Tcの精度が高いと考えられる。他方で、差分が大きいほど精度が低く、実際のトラヒック量が変動する可能性が高いと考えられる。そこで、差分が小さい場合には、適用する補正値Cが小さく、差分が大きくなるほど、適用する補正値Cが大きくなることが好ましい。
 最大トラヒック決定部343は、取得される最大トラヒック量Tc、Tm1及びTm2の最大値に対して、補正値Cを加算した値を最大トラヒック量Tmax=147000に決定する。トラヒック情報解析部430は、決定された最大トラヒック量Tmaxを省電力制御部440に通知し、電力制御の実施を指示する。
 省電力制御部440の稼働設備決定部441は、稼働設備データベース450を参照することで、最大トラヒック量Tmaxを満たすために要求される稼働設備数を算出する。その後、省電力制御通知部442は、算出される稼働設備数を基地局100に通知して、稼働制御の指示を行う。
 基地局100は、通知される稼働設備数に応じて、稼働設備104内のネットワーク通信カードの稼働又は停止の制御、若しくは管理するセル数の調整を行う。
 また、トラヒック情報管理部410は、収集したトラヒック情報をトラヒック予測モデル管理部420のトラヒック予測モデル更新部423に送信する。トラヒック予測モデル更新部423は、受信したトラヒック情報をトラヒック予測モデルデータベース421に追加して、データベースの更新を行う。
 上述した稼働制御装置400の最大トラヒック量Tmaxの決定動作の流れについて、図10のフローチャートにまとめて説明する。図10は、稼働制御のための最大トラヒック量Tmaxの決定動作の流れを示すフローチャートである。
 先ず、トラヒック情報管理部410の収集間隔決定部412がトラヒック情報の収集間隔を決定する(ステップS101)。続いて、トラヒック情報収集部411が、収集間隔毎に基地局100に対してトラヒック情報要求を通知し、トラヒック情報を収集する(ステップS102)。
 収集されるトラヒック情報に基づいて、トラヒック情報解析部430の近似曲線作成部431がトラヒック情報の近似曲線f(x)を作成する(ステップS103)。最大トラヒック量予測部432は、作成される近似曲線f(x)より、予測対象期間においてmaxf(x)となる最大トラヒック量Tcを算出する(ステップS104)。
 一方、トラヒック予測モデル管理部420は、トラヒック予測モデルデータベース421に格納されるトラヒック情報より、予測対象期間と同条件のトラヒック情報を収集し、トラヒック予測モデルを作成する。最大トラヒック量抽出部422は、作成されるトラヒック予測モデルより、条件毎の最大トラヒック量Tm1、Tm2、・・・を抽出する(ステップS105)。
 補正値決定部433は、最大トラヒック量Tc及び最大トラヒック量Tm1、Tm2、・・・から、最大トラヒック量Tmaxを決定するための補正値Cを算出する(ステップS106)。最大トラヒック量決定部434は、最大トラヒック量Tc及び最大トラヒック量Tm1、Tm2、・・・の最大値に補正値Cを加算することで、最大トラヒック量Tmaxを決定し、省電力制御部440に通知する(ステップS107)。
 上述した稼働制御装置400のトラヒック量の予測値の算出動作後に、稼働制御装置400は、決定される最大トラヒック量Tmaxに基づいて、基地局100の稼働制御を行う。稼働制御装置400による稼働制御の動作の流れについて、図11のフローチャートにまとめて説明する。図11は、稼働制御時の処理の流れを示すフローチャートである。
 最大トラヒック量Tmaxの通知を受けた(ステップS201)稼働設備決定部441は、稼働設備データベース450を参照することで、該最大トラヒック量Tmaxを処理するための稼働設備率を算出する(ステップS202)。稼働設備率とは、具体的には、稼働制御装置400による稼働制御の対象の基地局100又は制御局200が有する稼働設備のうち、稼働が要求される設備の割合である。
 稼働設備決定部441は、稼働設備データベース450を参照することで、稼働制御の対象の基地局100などにおいて実際に稼働可能な稼働設備のうち、決定される稼働設備率に応じた稼働設備数を決定する(ステップS203)。
 その後、省電力制御通知部442は、稼働制御の対象の基地局100などに対して決定した稼働設備数を通知することで、稼働制御の指示を行う(ステップS204)。
 一方、上述した稼働制御装置400の最大トラヒック量Tmaxの決定動作後に、収集されたトラヒック情報に基づいて、トラヒック予測モデルデータベース421の更新が行われる。稼働制御装置400によるトラヒック予測モデルデータベース421の更新動作の流れについて、図12のフローチャートにまとめて説明する。
 トラヒック情報収集部411は、収集した(ステップS301)トラヒック情報を、トラヒック予測モデル管理部420のトラヒック予測モデル更新部423に入力する。このとき、トラヒック情報収集部411は、トラヒック情報が基地局100などにおいて収集された際の時刻、天候、曜日などの諸条件を合わせて入力する。
 トラヒック予測モデル更新部423は、入力されるトラヒック情報を条件毎にトラヒック予測モデルデータベース421に追加することで、トラヒック予測モデルデータベース421の更新を行う(ステップS302)。トラヒック予測モデルデータベース421は、更新されたトラヒック情報を加えて、新しく条件毎のトラヒック予測モデルを作成する(ステップS303)。
 (4)稼働設備数の決定方法
 最大トラヒック量Tmaxに基づく稼働設備数の決定方法について説明する。
 稼働設備数の決定においては、上述のように、最大トラヒック量Tmaxを処理するための稼働設備率の算出と、該稼働設備率に応じた実際の稼働設備数の決定及び通知との大別して2つの動作が行われる。
 先ず、稼働制御装置400の稼働設備決定部441は、稼働制御を行う設備毎に、最大トラヒック量Tmaxを処理するための稼働設備率を算出する。
 上述した最大トラヒック量Tmaxを決定する動作においては、トラヒック量を示す指標として呼量を例として説明したが、実際には収集対象となるトラヒック情報には呼量の他にも同時接続ユーザ数やU-Plane流量も含まれてよい。基地局100又は制御局200には、機能毎に夫々独立した処理を行う稼働設備104を有するものも存在する。このような基地局100又は制御局200の稼働設備104の各機能においては、例えば呼量、同時接続ユーザ数、U-Plane流量などのトラヒック情報のうち、夫々別々の情報を用いてトラヒックの管理をしている場合がある。このため、最大トラヒック量Tmaxの決定動作においては、機能毎にトラヒック情報を収集し、収集されるトラヒック情報から機能毎の最大トラヒック量Tmaxが決定されることが好ましい。また、機能毎の最大トラヒック量Tmaxから、機能毎の稼働設備率が決定されることが好ましい。
 図13(a)に、稼働制御の対象が基地局100である場合の機能毎の最大トラヒック量Tmaxの例を示す。図13(a)に示される表には、予測対象期間である13:00-14:00における稼働設備率を決定するための最大トラヒック量Tmaxとして、呼量、同時接続ユーザ数及びU-plane流量の予測値の最大値が記載されている。尚、呼量、同時接続ユーザ数及びU-plane流量の予測値の最大値の夫々は、基地局100の稼働設備104が有する機能A、機能B及び機能Cについて別々に決定され、記載される。
 基地局100の場合、機能A、機能B及び機能Cの夫々は、例えば基地局100が管理する複数のセルのうち対応するセルA、セルB及びセルCの夫々の機能に対応する。3G方式やLTE方式の基地局100においては、セルA、セルB及びセルCについて、夫々個別に無線リソースの管理が行われる。このため、セル毎に最大トラヒック量Tmaxの予測を個別に行い、合計することで、基地局100の稼働設備104における最大トラヒック量Tmaxを決定することが可能となる。尚、基地局100では、位置関係的に、同一のエリアを複数のセルが同時にカバーする場合であっても、該エリアに在圏するUE300を収容し、無線リソースを提供するセル、言い換えれば機能は単一のものである。このため、セルなどの機能毎にトラヒック量を個別に扱い、稼働制御率についても個別に算出することが好ましい。
 また、稼働制御の対象が3G方式の制御局200である場合、機能A、機能B及び機能Cの夫々は、例えば制御局200が備える複数のネットワーク通信用カードのうち対応するカードA、カードB及びカードCに対応する。カード毎に処理するサービスが異なる場合、各カードが処理するトラヒック量にも差異が生じ得る。このため、カード毎、又は扱うサービス毎にトラヒック量を個別に扱い、稼働制御率についても個別に算出することが好ましい。
 図13(a)に示される表には、基地局100の機能Aについて、呼量が80000、同時接続ユーザ数が2000、U-Plane流量が120kbpsというように最大トラヒック量Tmaxが決定されている。基地局100の機能Bについて、呼量が20000、同時接続ユーザ数が700、U-Plane流量が40kbpsというように最大トラヒック量Tmaxが決定されている。基地局100の機能Cについて、呼量が15000、同時接続ユーザ数が500、U-Plane流量が50kbpsというように最大トラヒック量Tmaxが決定されている。
 上述のように、機能毎に決定される最大トラヒック量Tmaxを合計することで、基地局100の稼働設備104全体について、呼量が115000、同時接続ユーザ数が3200、U-Plane流量が210kbpsというように最大トラヒック量Tmaxが決定されている。
 稼働制御装置400の稼働設備決定部441は、基地局100の稼働設備104全体における最大トラヒック量Tmaxに基づいて、基地局100に対する稼働制御のための稼働設備率を決定する。稼働設備決定部441は、例えば、予め設定されるトラヒック量と該トラヒック量を処理するための稼働設備率との関係を示すデータを参照することで、最大トラヒック量Tmaxに応じた稼働設備率を決定する。該データは、例えば、図13(b)に示される表の形式で稼働設備データベース450内に格納される。
 図13(b)に示されるように、呼量、同時接続ユーザ数及びU-plane流量の夫々について、トラヒック量を処理するために充分な稼働設備率が設定される。図13(b)の例では、トラヒック量の一例である呼量について、0であれば0%、1から20000であれば20%、20001から40000であれば40%、40001から60000であれば60%、60001から80000であれば80%、80001から100000であれば100%のように設定されている。また、同時接続ユーザ数について、0であれば0%、1から1000であれば20%、1001から2000であれば40%、2001から3000であれば60%、3001から4000であれば80%、4001から5000であれば100%に設定されている。また、U-Plane流量について、0kbpsであれば0%、1kbpsから40kbpsであれば20%、41bpsから80kbpsであれば40%、81bpsから120kbpsであれば60%、121bpsから160kbpsであれば80%、161bpsから200kbpsであれば100%に設定されている。
 稼働設備決定部441が基地局100の稼働設備104が有する機能Aに着目して稼働設備率を算出する場合、最大トラヒック量Tmaxは、呼量80000、同時接続ユーザ数2000、U-plane流量120kbpsとなる。図13(b)によれば、稼働設備104が有する機能Aについて、呼量に着目する場合稼働設備率は80%、同時接続ユーザ数に着目する場合稼働設備率は40%、U-plane流量に着目する場合稼働設備率は60%となる。上述のように、基地局100及び制御局200などのノード装置の運用上の特性として、生じ得るトラヒック量を充分に処理可能な設備が稼働していることが要求される。このため、稼働設備決定部441は、上述のように決定される3通りの稼働設備率のうち、最大となる80%を稼働設備104が有する機能Aについての稼働設備率として決定する。
 稼働設備決定部441は、上述のように決定される稼働設備率に応じて、実際に基地局100の稼働設備104における稼働設備のうちの稼働数を決定する。稼働設備決定部441は、例えば、予め設定される、稼働設備率に応じた稼働設備の数を示すデータを参照することで、稼働設備率に応じた稼働設備数を決定する。該データは、例えば、図14に示される表の形式で稼働設備データベース450内に格納される。
 図14(a)は、基地局100の場合の稼働設備率と、稼働設備の一例であるセルの稼働数との関係を示す表である。図14(a)の例では、稼働設備率が0%の場合セル数が0、稼働設備率が20%の場合セル数が1、稼働設備率が40%の場合セル数が2、稼働設備率が60%の場合セル数が3、稼働設備率が80%の場合セル数が4、稼働設備率が100%の場合セル数が5に設定される。
 図14(b)は、制御局200の場合の稼働設備率と、稼働設備の一例であるネットワーク通信用カードの稼働数との関係を示す表である。図14(b)の例では、一の機能Aに対応するカードAの稼働数について、稼働設備率が0%の場合0、稼働設備率が20%乃至40%の場合が1、稼働設備率が60%乃至80%の場合が2、稼働設備率が100%の場合が3に設定される。また、他の機能Bに対応するカードBの稼働数について、稼働設備率が0%の場合が0、稼働設備率が20%の場合が1、稼働設備率が40%の場合が2、稼働設備率が60%の場合が3、稼働設備率が80%の場合が4、稼働設備率が100%の場合が5に設定される。
 尚、図14に示される表は説明のための例であって、稼働設備率から実際に稼働すべき稼働設備数を決定可能なデータであればどのような態様のものを用いてもよい。また、その他何らかの手段により、稼働設備率から稼働設備数を算出する態様であってもよい。
 省電力制御部440の省電力制御通知部442は、算出される稼働設備数を個々の基地局100又は制御局200に対して通知することで、稼働制御の指示を行う。
 稼働制御の指示のためのメッセージには、上述のように算出される稼働設備数と、該稼働設備数が適用される期間、言い換えれば最大トラヒック量の算出時に設定される予測対象期間とが含まれる。
 稼働制御の指示を受けた基地局100の省電力制御部114は、通知される期間、稼働設備104に対して、算出される稼働設備数に対応した設備を稼働させ、その他の設備については稼働を停止させ、電力の供給を停止する。
 以上、説明したように稼働制御装置400の動作によれば、稼働制御の対象の基地局100又は制御局200において、決定された最大トラヒック量Tmaxを処理するために充分な稼働設備を稼働させる一方で、残りの設備の稼働を停止させることが出来る。最大トラヒック量Tmaxは、予測対象期間以前のトラヒック量の推移から予測される近似曲線f(x)と、該予測対象期間と天候や曜日などが同条件となる過去のトラヒック量より作成されるトラヒック予測モデルとに基づいて決定される。尚、算出される最大トラヒック量Tmaxは、近似曲線f(x)から得られる最大トラヒック量Tcと、トラヒック予測モデルから抽出される最大トラヒック量Tmとのうちより大きい値に対して、更にマージンを追加した値として決定される。このため、予測対象期間において、稼働制御の対象の基地局100又は制御局200において、最大トラヒック量Tmaxを超えてトラヒック量が増加することを好適に抑制出来る。
 図15に、稼働制御装置400による省電力化のイメージを示す。図15(a)は、基地局100又は制御局200におけるトラヒック量の遷移と、消費電力の遷移を示すグラフである。
 稼働制御装置400による稼働制御が行われない場合の消費電力量の推移(点線部)は、トラヒック量の大小に応じて大きく変化することがない。これは、トラヒック量が相対的に低い場合においても、トラヒックの処理を行っていない稼働設備が、トラヒック処理を行う稼働設備と同様に稼働している状態にあることによる。
 他方で、稼働制御装置400による稼働制御が行われる場合の消費電力量の推移(実線部)では、トラヒック量の低下に伴って、稼働設備の稼働が停止されるため、消費電力量も大きく低下する。また、トラヒック量が増加する場合、予測されるトラヒック量の増加に応じて稼働する設備数を増加する制御が行われるため、消費電力量が増加する。図15(b)に、稼働制御装置400による稼働制御が行われる場合の、基地局100又は制御局200における稼働設備数のイメージを示す。無地部は、基地局100又は制御局200が備える稼働可能な全体の設備数を示す。斜線部は、トラヒック処理を行っている稼働設備数を示す。点描部は、トラヒックの処理に要求される稼働設備数を超えて稼働する設備であって、トラヒックの処理については未稼働ではあるものの、トラヒックの増加に応じて処理可能となるよう稼働している設備数を示す。上述のように最大トラヒック量Tmaxは、予測されるトラヒック量の最大値に対してマージンを追加した値として決定されるため、予測を超えてトラヒック量が増加する場合であっても、点描部に示す余剰設備により、トラヒックの処理が可能となる。
 図16を参照して、基地局100及び制御局200における稼働制御の具体的な作用について説明する。図16(a)及び(b)に示される図では、3G方式の移動通信システム1aにおいて、基地局100a乃至100c及び制御局200の夫々に対して稼働制御装置400が接続され、稼働制御が行われている。基地局100a乃至100cは、稼働設備104として、夫々セルA乃至Cを有している。制御局200は、稼働設備104として、相異なる機能A乃至Cを処理するための通信用カードA1、A2、B1、B2、C1及びC2を有している。
 図16(a)は、移動通信システム1aにおいて、トラヒック量が相対的に多い図15(a)の時刻T1に示される時点での基地局100及び制御局200における稼働設備の稼働のイメージである。時刻T1の時点ではトラヒック量が相対的に多いため、基地局100a乃至100c及び制御局200は、全ての稼働設備104を稼働させている。具体的には、基地局100a乃至100cは、夫々セルA乃至Cを稼働している。制御局200は、通信用カードA1、A2、B1、B2、C1及びC2を稼働している。
 図16(b)は、トラヒック量が相対的に少ない図15(a)の時刻T2に示される時点での基地局100及び制御局200における稼働設備の稼働のイメージである。時刻T2の時点ではトラヒック量が相対的に少ないため、基地局100a乃至100c及び制御局200は、稼働設備104の一部を稼働させ、他の部分については稼働を停止している。具体的には、基地局100a及び100cが夫々セルA及びCを稼働させる一方で、基地局100bは、セルBの稼働を停止している。制御局200は、機能A乃至C通信用カードA1、B1及びC1を稼働させる一方で、A2、B2及びC2の稼働を停止している。
 以上説明したように、稼働制御装置400による稼働制御によれば、基地局100又は制御局200が備える稼働設備104の稼働のための消費電力を好適に削減可能となる。これは、基地局100又は制御局200全体での省電力化を可能とし、運用コストの削減や、省電力化に伴う二酸化炭素排出量の削減という点で有益である。
 尚、上述の例では、稼働制御装置400が最大トラヒック量Tmaxを処理するための稼働設備数を基地局100又は制御局200に通知することで、稼働制御の指示を実現している場合について説明している。しかしながら、稼働制御装置400が基地局100又は制御局200に対して最大トラヒック量Tmaxを通知することで稼働制御の指示を行ってもよい。この場合、基地局100又は制御局200は、例えばメモリ102内に、最大トラヒック量Tmaxに応じた稼働設備数を示すデータを有し、該データを参照することで稼働設備104の稼働制御を行うことが好ましい。このように構成する場合、稼働制御装置400における処理量を低減することが出来、より小規模な構成で上述の稼働制御を実現可能となる。
 (5)突発的なトラヒック量増加への対応方法
 上述した稼働制御装置400の制御により、基地局100又は制御局200の稼働設備104の一部が停止している状態において、何らかの要因によって基地局100又は制御局200におけるトラヒック量が増加する場合がある。このとき、トラヒック量が予測を上回って増加する場合、稼働中の設備により処理可能なトラヒック量を上回る可能性がある。しかしながら、基地局100又は制御局200は、特性上、このようなトラヒック量の予測以上の増加に対しても追従して処理出来ることが好ましい。以下に、稼働中の設備の処理能力を超えてトラヒック量が増加する場合における処理について説明する。
 以下に説明する例では、稼働設備の一部が稼働を停止している間、稼働中の設備の処理能力を超えてトラヒック量が増加する場合、停止中の設備の稼働を開始するためのトリガとなるトラヒック量を決定する。図17は、上述の例における一連の動作の流れを示すフローチャートである。
 稼働制御装置400は、収集されるトラヒック情報より決定される最大トラヒック量Tcと、トラヒック予測モデルより決定される最大トラヒック量Tmとの比較を行う(ステップS401)。このとき、トラヒック予測モデルが複数存在する場合は、トラヒック予測モデルより決定される複数の最大トラヒック量Tm1、Tm2、・・・のうち、最大となるものを最大トラヒック量Tmとする。
 最大トラヒック量Tcが最大トラヒック量Tmを上回る場合(ステップS401:Yes)、稼働制御装置400は、収集されるトラヒック情報より算出される近似曲線f(x)に対して、補正値Cの0.5倍を加算したg(x)をトリガ曲線として作成する(ステップS402)
 図18に、トリガ曲線g(x)の作成に係るグラフを示す。図18(a)に示されるように、最大トラヒック量Tcが最大トラヒック量Tmを上回る場合、最大トラヒック量Tmaxは、最大トラヒック量Tcに対して、補正値C=Tc-Tmを加算した値となる。稼働制御装置400は、図18(b)に示されるように、近似曲線f(x)に対して、補正値Cの0.5倍を加算したトリガ曲線g(x)=f(x)+0.5Cを作成する。
 一方、最大トラヒック量Tcが最大トラヒック量Tmを下回る場合(ステップS401:No)、稼働制御装置400は、収集されるトラヒック情報より算出される近似曲線f(x)に対して、補正値Cの1.5倍を加算したg(x)=f(x)+1.5Cをトリガ曲線として作成する(ステップS403)。
 図19に、トリガ曲線g(x)の作成に係るグラフを示す。図19(a)に示されるように、最大トラヒック量Tcが最大トラヒック量Tmを下回る場合、最大トラヒック量Tmaxは、最大トラヒック量Tmに対して、補正値C=Tm-Tcを加算した値となる。稼働制御装置400は、図19(b)に示されるように、近似曲線f(x)に対して、補正値Cの1.5倍を加算したトリガ曲線g(x)を作成する。
 トリガ曲線g(x)を作成した後、稼働制御装置400は、予測対象期間において、稼働制御の指示を行うと共に、稼働制御の対象の基地局100又は制御局200におけるトラヒック量をリアルタイムに監視する(ステップS404)。
 基地局100又は制御局200におけるトラヒック量がトリガ曲線g(x)を上回る場合(ステップS405:Yes)、稼働制御装置400は、該基地局100又は制御局200における稼働設備数の増加指示を再計算する(ステップS406)。稼働制御装置400は、算出される稼働設備数を対象の基地局100又は制御局200に通知することで、稼働制御の指示を行う(ステップS407)。更に、稼働制御装置400は、検出されたトラヒック量に応じて、トリガ曲線g(x)を修正する更新を行う(ステップS408)。例えば、稼働制御装置400は、トリガ曲線g(x)に対して、補正値Cの0.5倍を加算したg’(x)=g(x)+0.5Cを新しいトリガ曲線として作成する。
 トリガ曲線g(x)の更新(ステップS408)後、又はトラヒック量がトリガ曲線g(x)を超えない場合(ステップS405:No)、稼働制御装置400は、トラヒック量のリアルタイムの監視を、例えば予測対象期間が終了するまで継続する(ステップS409)。
 以上説明した動作によれば、制御対象の基地局100又は制御局200において、トラヒック量の増加が検出される場合に、トラヒック量が予め設定されるトリガ曲線g(x)に規定される閾値を上回った時点で、稼働設備数の再計算が行われる。稼働制御装置400は、増加したトラヒック量に応じて算出される稼働設備数をトラヒック量の増加が検出された基地局100又は制御局200に対して通知することで稼働設備数を増加させる指示を行うことが出来る。このため、基地局100又は制御局200においては、トラヒック量の増加に応じた設備を稼働させることが可能となり、トラヒック量に追従した処理が可能となる。他方で、トラヒック量がトリガ曲線g(x)に規定される閾値を超えない場合は、基地局100又は制御局200は、上述のように設定された稼働設備数での稼働が可能となるため、装置運用上の消費電力の省電力化が実現出来る。
 本発明は、上述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴なう制御装置及び制御方法並びにノード装置などもまた本発明の技術的範囲に含まれるものである。
1 移動通信システム
100 基地局、
101 CPU、
102 メモリ、
103 装置間インタフェース、
104 稼働設備、
200 制御局、
300 移動端末(UE)、
400 稼働制御装置、
401 CPU、
402 メモリ、
403 装置間インタフェース、
410 トラヒック情報管理部、
420 トラヒック予測モデル管理部、
430 トラヒック情報解析部、
440 省電力制御部。

Claims (9)

  1.  ネットワークに接続されるノード装置が有する機能の稼働状態を制御する制御装置であって、
     前記ノード装置における対象期間の最大トラヒック量を予測する予測手段と、
     前記対象期間において、前記最大トラヒック量を処理するために要求される機能以外の機能を停止するよう、前記ノード装置の稼働状態を制御する制御手段と
     を備えることを特徴とする制御装置。
  2.  前記ノード装置における第1の所定期間のトラヒック量の測定値に基づいて、前記対象期間のトラヒック量の第1予測値を算出する第1算出手段と、
     前記ノード装置における前記第1の所定期間とは異なる第2の所定期間のトラヒック量の測定値に基づいて、前記対象期間のトラヒック量の第2予測値を算出する第2算出手段と
     を更に備え、
     前記予測手段は、前記トラヒック量の第1及び第2予測値に基づいて、前記ノード装置における対象期間の前記最大トラヒック量を予測することを特徴とする請求項1に記載の制御装置。
  3.  収集される前記トラヒック量の測定値を格納する格納手段を更に備え、
     前記第2算出手段は、前記格納手段に格納される、前記対象期間と類似する条件下で収集される前記第2の所定期間のトラヒック量の測定値に基づいて、前記第2予測値を算出することを特徴とする請求項2に記載の制御装置。
  4.  前記第2算出手段は、前記格納手段に格納される、前記対象期間と類似する条件下で収集される前記第2の所定期間のトラヒック量の測定値に基づいて前記対象期間のトラヒック量の予測モデルを作成し、該予測モデルから前記第2予測値を算出することを特徴とする請求項3に記載の制御装置。
  5.  前記第1予測値は、前記第1の所定期間のトラヒック量の測定値に基づいて予測される、前記対象期間の前記トラヒック量の最大値であることを特徴とする請求項2に記載の制御装置。
  6.  前記第2予測値は、前記第2の所定期間のトラヒック量の測定値に基づいて予測される、前記対象期間の前記トラヒック量の最大値であることを特徴とする請求項2に記載の制御装置。
  7.  前記制御手段は、前記ノード装置に対して、前記最大トラヒック量を処理するために要求される機能を通知することで、前記ノード装置の稼働状態を制御することを特徴とする請求項1に記載の制御装置。
  8.  制御装置によって実行される、ネットワークに接続されるノード装置が有する機能の稼働状態を制御する制御方法であって、
     前記ノード装置における対象期間の最大トラヒック量を予測する予測工程と、
     前記対象期間において、前記最大トラヒック量を処理するために要求される機能以外の機能を停止するよう、前記ノード装置の稼働状態を制御する制御工程と
     を備えることを特徴とする制御方法。
  9.  ネットワークに接続されるノード装置であって、
     当該ノード装置における対象期間の最大トラヒック量を予測する予測手段と、
     前記対象期間において、前記最大トラヒック量を処理するために要求される機能以外の機能を停止するよう、当該ノード装置の稼働状態を制御する制御手段と
     を備えることを特徴とするノード装置。
PCT/JP2010/061058 2010-06-29 2010-06-29 制御装置及び方法、並びにノード装置 WO2012001772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012522378A JPWO2012001772A1 (ja) 2010-06-29 2010-06-29 制御装置及び方法、並びにノード装置
EP10854069.1A EP2590443A4 (en) 2010-06-29 2010-06-29 CONTROL DEVICE AND METHOD AND KNOT DEVICE
PCT/JP2010/061058 WO2012001772A1 (ja) 2010-06-29 2010-06-29 制御装置及び方法、並びにノード装置
US13/712,852 US20130102301A1 (en) 2010-06-29 2012-12-12 Control apparatus and method, and node apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061058 WO2012001772A1 (ja) 2010-06-29 2010-06-29 制御装置及び方法、並びにノード装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/712,852 Continuation US20130102301A1 (en) 2010-06-29 2012-12-12 Control apparatus and method, and node apparatus

Publications (1)

Publication Number Publication Date
WO2012001772A1 true WO2012001772A1 (ja) 2012-01-05

Family

ID=45401527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061058 WO2012001772A1 (ja) 2010-06-29 2010-06-29 制御装置及び方法、並びにノード装置

Country Status (4)

Country Link
US (1) US20130102301A1 (ja)
EP (1) EP2590443A4 (ja)
JP (1) JPWO2012001772A1 (ja)
WO (1) WO2012001772A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047074A1 (ja) * 2015-09-18 2017-03-23 日本電気株式会社 ゲートウェイ、無線基地局、および通信システム
JP2017225025A (ja) * 2016-06-16 2017-12-21 日本電信電話株式会社 ネットワーク管理システム、ネットワーク管理方法、及びプログラム
WO2022201395A1 (ja) * 2021-03-24 2022-09-29 楽天モバイル株式会社 制御システム及び制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10491501B2 (en) * 2016-02-08 2019-11-26 Ciena Corporation Traffic-adaptive network control systems and methods
JP7108207B2 (ja) * 2020-10-08 2022-07-28 ダイキン工業株式会社 制御装置、制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322331A (ja) * 1994-05-25 1995-12-08 Nec Corp 移動体通信用基地局装置
JPH10145842A (ja) 1996-11-08 1998-05-29 Nec Corp 無線基地局パワーセーブ移動通信システム
JPH11252626A (ja) * 1998-03-03 1999-09-17 Nec Saitama Ltd 低消費電力化無線基地局
JP2000069165A (ja) * 1998-08-19 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 時系列データ変換を用いたトラヒック予測方法及びその装置
JP2001119730A (ja) 1999-10-22 2001-04-27 Hitachi Ltd 電子交換機
JP2004356838A (ja) * 2003-05-28 2004-12-16 Nec Corp 無線基地局装置の消費電力制御方式とその方法およびそのプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI108764B (fi) * 1997-05-28 2002-03-15 Nokia Corp Solukkoradiojärjestelmän lähetinvastaanotinyksiköiden ohjaus
US6584330B1 (en) * 2000-07-18 2003-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power management for a node of a cellular telecommunications network
US6999799B1 (en) * 2000-09-28 2006-02-14 Texas Instruments Incorporated System and method for adaptive deep-sleep slotted operation
JP2003347985A (ja) * 2002-05-22 2003-12-05 Fujitsu Ltd 無線基地局装置及びその省電力方法
JP2005354549A (ja) * 2004-06-14 2005-12-22 Mitsubishi Electric Corp 通信装置及び通信システム及び通信装置管理方法及びプログラム
US7505795B1 (en) * 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
US7693555B2 (en) * 2005-10-21 2010-04-06 Intel Corporation Sleep-mode wireless cell reselection apparatus, systems, and methods
JP2007134840A (ja) * 2005-11-09 2007-05-31 Nec Saitama Ltd 移動通信システム、基地局装置及びそれらに用いる消費電力低減方法並びにそのプログラム
JP2007259368A (ja) * 2006-03-27 2007-10-04 Nec Commun Syst Ltd 交換機の負荷制御方法、負荷制御システム及び負荷制御プログラム
US7912491B2 (en) * 2006-10-10 2011-03-22 Intel Corporation Techniques to efficiently transmit control messages to idle and sleep mode users in OFDMA based wireless networks
EP2012436B1 (en) * 2007-07-05 2016-03-30 Sequans Communications Method for switching a component to an operation mode for reducing power consumption in a wireless communication device
US8990599B2 (en) * 2007-12-14 2015-03-24 Telefonaktiebolaget L M Ericsson (Publ) Power control optimization in a communication network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322331A (ja) * 1994-05-25 1995-12-08 Nec Corp 移動体通信用基地局装置
JPH10145842A (ja) 1996-11-08 1998-05-29 Nec Corp 無線基地局パワーセーブ移動通信システム
JPH11252626A (ja) * 1998-03-03 1999-09-17 Nec Saitama Ltd 低消費電力化無線基地局
JP2000069165A (ja) * 1998-08-19 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 時系列データ変換を用いたトラヒック予測方法及びその装置
JP2001119730A (ja) 1999-10-22 2001-04-27 Hitachi Ltd 電子交換機
JP2004356838A (ja) * 2003-05-28 2004-12-16 Nec Corp 無線基地局装置の消費電力制御方式とその方法およびそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2590443A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047074A1 (ja) * 2015-09-18 2017-03-23 日本電気株式会社 ゲートウェイ、無線基地局、および通信システム
GB2556815A (en) * 2015-09-18 2018-06-06 Nec Corp Gateway, wireless base station, and communication system
JPWO2017047074A1 (ja) * 2015-09-18 2018-07-26 日本電気株式会社 ゲートウェイ、無線基地局、および通信システム
GB2556815B (en) * 2015-09-18 2020-06-03 Nec Corp Gateway, wireless base station, and communication system
JP2017225025A (ja) * 2016-06-16 2017-12-21 日本電信電話株式会社 ネットワーク管理システム、ネットワーク管理方法、及びプログラム
WO2022201395A1 (ja) * 2021-03-24 2022-09-29 楽天モバイル株式会社 制御システム及び制御方法

Also Published As

Publication number Publication date
US20130102301A1 (en) 2013-04-25
JPWO2012001772A1 (ja) 2013-08-22
EP2590443A4 (en) 2013-10-30
EP2590443A1 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
US8676211B2 (en) Systems and methods for selective communications network access
EP2567561B1 (en) Method and telecommunications network for deactivating or activating a cell in such a network
EP2122929B1 (en) Network oriented control system for self-configuration and self-optimization measurements
US8554224B2 (en) Cellular network energy saving
EP2882137A1 (en) Network coordination method and device
KR101096408B1 (ko) 유선 또는 무선으로 서비스 가능한 가능한 소형 기지국 및 그 운영 방법
Wu et al. Power consumption and GoS tradeoff in cellular mobile networks with base station sleeping and related performance studies
CN110831038B (zh) 网络切片资源调度方法及装置
EP2919531A1 (en) Method and system for determining where and when in a cellular mobile network power consumption savings can be achieved without impacting quality of service
WO2012001772A1 (ja) 制御装置及び方法、並びにノード装置
US10104593B2 (en) Techniques for remotely managing device connectivity in response to cellular network outages
WO2016033963A1 (zh) 策略调整触发、策略调整方法及装置、策略调整系统
JP2017041868A (ja) ワイヤレス通信ネットワークにおけるx2リンク管理のための方法及びシステム
KR20180011853A (ko) 전자 시스템들의 적응적 요구/응답 에너지 관리를 위한 기법들
EP2524445B1 (en) Real time event-driven automation for energy management in a wireless network
CN112434885A (zh) 节能小区的业务预测方法和装置
US20140012970A1 (en) Methods and devices for facilitating a download session
CN113873569A (zh) 无线资源管理方法、存储介质和电子设备
CN103037443B (zh) 协调小区失效补偿和容量覆盖优化的方法及装置
CN113079475B (zh) 用于远程管理设备连接的方法和设备
EP2787775A1 (en) Method and apparatus for controlling an operational state of a user plane base station, user plane base station, control plane base station, and wireless communication system
KR101973611B1 (ko) 이동형 인프라의 동적 전원 제어방법 및 그를 위한 장치
JP7330922B2 (ja) 通信管理方法、通信システム及びプログラム
JP2002165372A (ja) 無線通信装置
US20230413063A1 (en) Obtaining Samples for Learning-Based Resource Management by Adjusting Flow Characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522378

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010854069

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE