WO2012001181A2 - Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador - Google Patents

Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador Download PDF

Info

Publication number
WO2012001181A2
WO2012001181A2 PCT/ES2010/070436 ES2010070436W WO2012001181A2 WO 2012001181 A2 WO2012001181 A2 WO 2012001181A2 ES 2010070436 W ES2010070436 W ES 2010070436W WO 2012001181 A2 WO2012001181 A2 WO 2012001181A2
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
elements
condenser
automated
condensing
Prior art date
Application number
PCT/ES2010/070436
Other languages
English (en)
French (fr)
Other versions
WO2012001181A3 (es
Inventor
David Rubio Notario
Original Assignee
International Capacitors, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Capacitors, S. A. filed Critical International Capacitors, S. A.
Priority to ES10739960.2T priority Critical patent/ES2472017T3/es
Priority to EP10739960.2A priority patent/EP2587503B1/en
Priority to EP20130187226 priority patent/EP2682968B1/en
Priority to ES13187226.9T priority patent/ES2540243T3/es
Priority to PCT/ES2010/070436 priority patent/WO2012001181A2/es
Publication of WO2012001181A2 publication Critical patent/WO2012001181A2/es
Publication of WO2012001181A3 publication Critical patent/WO2012001181A3/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors

Definitions

  • the present invention relates to a low voltage power capacitor provided with capacitor elements, especially intended for reactive energy compensation.
  • the invention also relates to a condensing element and the process for manufacturing said condensing element.
  • prismatic power capacitors for low voltage are manufactured by grouping a certain number of capacitor elements and connecting them electrically to each other by means of electrical cables with connecting sleeves.
  • the condensing elements comprise a coil provided with connection cables and a hollow central shaft, the coil being embedded in resin within a wrapping cylinder open at its top.
  • the condensing elements are manufactured manually, using work areas with independent tables where the different manual operations are performed.
  • the coil that is manually placed in a hopper is prepared to perform electrical tests with a semi-automated system, where the connection of the element for an insulation test between reinforcements is carried out, and the electric discharge of the condensing element.
  • the data obtained is recorded in the batch system, not per unit of element.
  • the marking is done by inkjet printer to identify each cylinder with the value of the element and lot number. In this case, neither the data is recorded nor traceability.
  • the resin process is carried out to protect and seal the condensing element, filling the space between the coil and the inner walls of the cylinder with a resin.
  • a pre-filling is carried out for the fixing of the coil and a subsequent full filling after a pre-polymerization time, the dosage of resin being inaccurate.
  • a final verification is then carried out with manual connection element to element for the capacity and tangent measurement. This operation is performed on a machine and the data is recorded on a PC restricted in functions.
  • the manufacturing line and work areas are operated by 90-95% by manual means, with a level of change between 75-85% during the manufacturing process.
  • Manual operations are involved in the movements, turns and translations of the condensing elements for the achievement of the different electrical testing processes, marking and protection resins, among others. All this with a control of marking and registration of data very restricted in functions, with the possibility of human factor errors and with a traceability of approximately 25% of the condensing elements manufactured.
  • the objective of the low voltage power capacitor of the present invention is to solve the drawbacks of the capacitors known in the art, by providing a compact capacitor, with a simpler and safer assembly, allowing automated manufacturing.
  • the low voltage power capacitor of the present invention is of the type comprising a plurality of capacitor elements housed within a protective box provided with connection terminals, and is characterized by the fact that it comprises at least one modular unit that includes a printed circuit board on which a set of capacitor elements are electrically connected, and said power capacitor being capable of combining a series of modular units each provided with the same or different number of capacitor elements to achieve any total required power.
  • the capacitor includes an aligned wiring, preferably formed by a group of cables, which emerges from one end towards the respective terminals.
  • the different modular units are assembled in groups of two, each group being joined to the next forming a row, and the placement of an individual modular unit being provided when the combination of modular units is odd.
  • This type of configuration allows different modular combinations to be carried out quickly and efficiently, and taking up minimal space.
  • each group of two modular units is mounted with their respective plates superimposed on each other and with the connection faces on which the condenser elements directed oppositely are connected.
  • both overlapping plates are separated by a space intended for the passage of the wiring.
  • the capacitor comprises clipping means for fixing both overlapping plates of a group of modular units and for fixing between groups of adjacent modular units. In this way, the assembly process is facilitated.
  • the plates are configured so that the condensing elements are distributed to the triplet. In this way, the space between said elements and between groups of plates joined in a row is optimized.
  • the protection box is prismatic, whose height is defined as a function of the number of groups of modular units joined in a row. This allows to provide a series of standardized boxes.
  • the invention also relates to a condensing element of the type comprising a coil provided with a hollow central axis and of connection cables, said coil being embedded in resin within a wrapping cylinder open at its top, and is characterized by the fact that it comprises a self-centering disk for the shaft and the connection cables coupled at the top of the cylinder.
  • the self-centering disk allows the coil to be positioned centrally with respect to the inner walls of the cylinder, which ensures uniform filling and distribution of the resin inside the cylinder, as will be explained in ahead.
  • connection cables are electrical wires by way of connection and / or solder pins to a printed circuit board.
  • Another aspect of the invention relates to the process for manufacturing a condenser element, described above, characterized in that it includes the following steps in an automated assembly line:
  • connection pins for the subsequent performance of electrical tests by means of an automatic positioning station
  • each condenser element preferably by means of an inkjet printer, for traceability of all the manufactured condenser elements, by means of an automated marking station;
  • an intermediate reprocessing zone is provided for the selection and recovery of condenser elements detected with a defect during the manufacturing process.
  • an automated discharge zone of the finished condensing elements and an automated rejection zone are provided to separate all those condensing elements that have not passed established tests according to an established production model and process.
  • the finished condensing elements are driven by an automatic translation system towards a zone of assembly of modular units and automated welding.
  • control means are used to interact by means of appropriate software on the assembly line, the workstations and intermediate zones until the finished condensing element is obtained.
  • control means allow interacting in all orders of movements, turns and translations to achieve the different weighing processes, electrical tests, marking and protection resins, all with a control of marking and data recording that ensure traceability 100% of the manufactured product and without the intervention of the human factor during all these processes.
  • Figure 1 is a perspective view of the mounted power capacitor
  • Figure 2 is a perspective view of the capacitor with the protection box open showing the wiring
  • Figure 3 is a perspective view of a compact group with two modular units of nine condensing elements each;
  • Figure 4 is a side view of the modular group of Figure 3, showing the space between plates provided for the passage of the wiring;
  • Figure 5 is a profile view of the modular group of Figure 3, showing the distribution of the condensing elements on the plate;
  • Figure 6 is a profile view of a compact group with two modular units of six condensing elements each;
  • Figure 7 is a longitudinal section of a condensing element of the invention before applying the resin
  • Figure 8 is a longitudinal section of the condensing element of Figure 7 after applying the resin.
  • the low voltage power capacitor 1 of the present invention is of the type comprising a plurality of capacitor elements 2 housed within a protective box 3 provided with terminals of connection 4.
  • the capacitor 1 comprises at least one modular unit 5 that includes a printed circuit board 6 on which a set of capacitor elements 2 are electrically connected.
  • said capacitor 1 is capable of combining a series of modular units 5 each provided with the same or different number of capacitor elements 2 to achieve any required total power, as will be explained later.
  • a compact condenser is thus obtained, with a simpler and safer assembly, more economical, and which allows automated manufacturing.
  • a power capacitor 1 comprising a group of two modular units 5 of nine capacitor elements 2 each.
  • Both modular units 5 are mounted with their respective plates 6 superimposed on each other and with the connecting faces on which the condenser elements 2 are directed oppositely connected.
  • Both superimposed plates 6 are separated by a space 7 intended for the passage of the wiring 8 of the condensing elements 2 (see figures 2 and 4).
  • the wiring 8 is formed by three cables aligned and directed towards the respective terminals 4. In this way, a considerable decrease of approximately 95% of the wiring is achieved with respect to the known capacitors
  • the capacitor 1 comprises clipping means 9 for fixing both overlapping plates 6.
  • the plates 6 are configured so that the condensing elements 2 are distributed to the triplet (see figure 5), that is, in two parallel rows, so that the elements placed in each row face the middle of the holes in the immediate row , forming equilateral triangles. In this way, the space between said elements 2 and between groups of plates 6 joined in a row is optimized.
  • a power capacitor is shown with the same constructive characteristics as that of the first embodiment, but with the difference that it comprises a group consisting of two 5 'modular units of six elements capacitors 2 each.
  • Fixing between groups of adjacent modular units 5 in a row is also carried out using clipping means. This type of configuration allows different modular combinations to be carried out quickly and efficiently, and taking up minimal space.
  • Table 1 shows the multiple modular combinations that can be made to obtain any range of powers, in this case combining modular units 5 with six or nine condensing elements 2 respectively.
  • the number of capacitor elements 2 mounted on a modular unit 5 can be reduced, for example, by connecting only three capacitor elements 2 on a plate 6 provided for a maximum of six elements 2.
  • the protection box 3 is prismatic, whose height is defined as a function of the number of groups of modular units 5 joined in a row. This allows to provide a series of standardized boxes.
  • FIGS. 7 and 8 a condensing element 2 is shown comprising a coil 10 provided with a hollow central shaft 11 and electric wires 12 as a connection and / or welding pins. a printed circuit board 6 (see figures 3 to 6).
  • said coil 10 is embedded in resin 13 within a wrapping cylinder 14 open at its top.
  • Figures 7 and 8 show the condensing element 2 before and after placing the resin 13, respectively.
  • the condensing element 2 includes a self-centering disk 15 for the axis 11 and the connection pins 12 coupled to the upper part of the cylinder 14.
  • the coil 10 is positioned centrally with respect to the inner walls of the cylinder 14 before applying the resin, which allows for a uniform filling and distribution of the resin 13 inside the cylinder, as will be explained in Go ahead in greater detail.
  • Another aspect of the invention relates to the process for manufacturing a condenser element 2, described above, which includes the following steps in an automated assembly line:
  • connection pins 12 for the subsequent performance of electrical tests by means of an automatic positioning station; - Perform the connection of the pins 12 to perform an insulation test between reinforcement of the capacitor element 2, and perform the electrical discharge of the capacitor element 2 in an automated dielectric test and discharge station;
  • each condenser element 2 preferably by means of an inkjet printer, for traceability of all the condenser elements 2 manufactured, by means of an automated marking station;
  • an intermediate reprocessing zone is provided for the selection and recovery of condenser elements 2 that during the manufacturing process and for different factors have been able to detect some type of problem during the passage through the different Work stations or intermediate areas.
  • an automated discharge zone of the finished condensing elements 2 and an automated rejection zone are provided to separate all those condensing elements 2 that have not passed established tests according to an established production model and process.
  • the finished condensing elements 2 can be sold individually for different uses or applications depending on the needs of the customer; or they can be conducted by means of an automatic translation system towards an assembly area of modular units 5 and automated welding.
  • Said modular units 5 can also be marketed for different uses, or they can be assembled to manufacture the power capacitor 1 of the invention described above.
  • control means are used to interact with appropriate software on the assembly line, workstations and intermediate zones until the finished condensing element is obtained.
  • the control means allow interacting in all orders of movements, turns and translations to achieve the different weighing processes, electrical tests, marking and protection resins, all with a marking control and data recording that ensure traceability 100% of the manufactured product and without the intervention of the human factor during all these processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Condensador de potencia (1) para baja tensión, que comprende una pluralidad de elementos condensadores (2) alojados dentro de una caja de protección (3) provista de bornes de conexión (4). Se caracteriza por el hecho de que comprende al menos una unidad modular (5) que incluye una placa de circuito impreso (6) sobre la que están conectados eléctricamente un conjunto de elementos condensadores (2), y siendo dicho condensador de potencia (1) susceptible de combinar una serie de unidades modulares (5) provistas cada una de igual o diferente número de elementos condensadores (2) para alcanzar cualquier potencia total requerida. Se obtiene un condensador compacto, con un montaje más sencillo y seguro, permitiendo su fabricación automatizada.

Description

CONDENSADOR DE POTENCIA PARA BAJA TENSIÓN PROVISTO DE ELEMENTOS CONDENSADORES, ELEMENTO CONDENSADOR, Y PROCEDIMIENTO PARA LA FABRICACIÓN DE DICHO ELEMENTO
CONDENSADOR
La presente invención se refiere a un condensador de potencia para baja tensión provisto de elementos condensadores, en especial destinado a la compensación de energía reactiva.
La invención también se refiere a un elemento condensador y al procedimiento para la fabricación de dicho elemento condensador.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad los condensadores prismáticos de potencia para baja tensión se fabrican agrupando un cierto número de elementos condensadores y conectándolos eléctricamente entre sí mediante cables eléctricos con manguitos de unión.
En la práctica este tipo de montaje resulta muy complicado y molesto debido a que se debe montar el grupo de elementos condensadores con una gran cantidad de cables colgando y con formas enredadas que dificultan aún más el montaje, y por tanto el cableado nunca queda alineado ni correctamente posicionado dentro de una caja metálica donde se aloja el conjunto montado.
En consecuencia, se obtiene un condensador muy irregular con posibilidades de deterioro y dejando posibles puntos activos que pueden conllevar a fugas, cortocircuitos y malos aislamientos dieléctricos entre la parte activa y la caja metálica.
Asimismo, este tipo de montaje implica una mano de obra importante, además del correspondiente coste de los materiales empleados. Por otra parte, al tratarse de un proceso manual pueden producirse frecuentes errores humanos con los consiguientes reprocesos y costes de producción.
Los elementos condensadores comprenden una bobina provista de cables de conexión y un eje central hueco, estando la bobina embebida en resina dentro de un cilindro envolvente abierto por su parte superior.
En la actualidad los elementos condensadores son fabricados manualmente, utilizando zonas de trabajo con mesas independientes donde se realizan las diferentes operaciones manuales.
Para la fabricación de un elemento condensador, en primer lugar, se elabora la bobina que es colocada manualmente en una tolva para realizar pruebas eléctricas con un sistema semi-automatizado, donde se efectúa el conexionado del elemento para una prueba de aislamiento entre armaduras, y la descarga eléctrica del elemento condensador. Los datos obtenidos son registrados en el sistema por lotes, no por unidad de elemento.
Posteriormente, una vez soldada la bobina, es colocada manualmente dentro del cilindro marcado previamente, a través de su extremo superior abierto.
El marcado se realiza mediante impresora de chorro de tinta para identificar cada cilindro con el valor del elemento y número de lote. En este caso, tampoco se registran los datos ni se lleva a cabo una trazabilidad .
A continuación, se realiza el proceso de resinado para proteger y sellar el elemento condensador, rellenando con una resina el espacio libre entre la bobina y las paredes internas del cilindro. Para ello, primero se efectúa un pre-llenado para la fijación de la bobina y un posterior llenado completo pasado un tiempo de pre- polimerización, siendo la dosificación de resina inexacta.
El llenado completo se realiza de tres a cuatro veces debido a que la resina se vierte encima de la bobina dentro del cilindro repartiéndose de manera no uniforme y por caída, provocando posibles flotaciones y/o movimientos de la bobina y con una capa final sin homogeneidad.
En consecuencia, se forman burbujas, teniendo que esperar a que éstas remitan para continuar con el llenado. Cabe destacar que el aire no es eliminado por completo y que las burbujas contenedoras de aire y humedad disminuyen la vida útil del elemento condensador.
Además, el proceso completo de resinado realizado manualmente es considerablemente lento ya que sobrepasa el minuto de tiempo para cada elemento condensador .
A continuación, se realiza una verificación final con conexionado manual elemento a elemento para la medida de capacidad y tangente. Esta operación se efectúa en una máquina y los datos se registran en un ordenador PC restringido en funciones.
Por último, los elementos condensadores acabados se descargan manualmente para su almacenaje o posterior montaje.
En consecuencia, la línea de fabricación y las zonas de trabajo están actuadas en un 90-95% por medios manuales, con nivel de mudas entre un 75-85% durante el proceso de fabricación. Las operaciones manuales intervienen en los movimientos, giros y translaciones de los elementos condensadores para la consecución de los diferentes procesos de pruebas eléctricas, marcado y resinado de protección, entre otros. Todo ello con un control de marcado y registro de datos muy restringido en funciones, con posibilidad de errores de factor humano y con una trazabilidad de aproximadamente el 25% de los elementos condensadores fabricados.
DESCRIPCIÓN DE LA INVENCIÓN El objetivo del condensador de potencia para baja tensión de la presente invención es solventar los inconvenientes que presentan los condensadores conocidos en la técnica, proporcionando un condensador compacto, con un montaje más sencillo y seguro, permitiendo su fabricación automati zada .
El condensador de potencia para baja tensión de la presente invención es del tipo que comprende una pluralidad de elementos condensadores alojados dentro de una caja de protección provista de bornes de conexión, y se caracteriza por el hecho de que comprende al menos una unidad modular que incluye una placa de circuito impreso sobre la que están conectados eléctricamente un conjunto de elementos condensadores, y siendo dicho condensador de potencia susceptible de combinar una serie de unidades modulares provistas cada una de igual o diferente número de elementos condensadores para alcanzar cualquier potencia total requerida.
Gracias a esta distribución modular se obtiene un condensador más compacto, de menor tamaño, con menor cantidad de materiales empleados, mejor protegido eléctricamente, y respetuoso con el medioambiente . Asimismo, es posible configurar cualquier potencia debido a las múltiples combinaciones modulares de los elementos condensadores .
Otras ventajas del condensador de potencia de la invención se describen a continuación:
- Automatizable prácticamente en un 100%, por lo que es casi nula la intervención de mano de obra, con la consiguiente eliminación de errores humanos.
- Mejora de las características térmicas, obteniendo una gama climática clase D, cumpliendo la normativa actual internacional IEC 60831-1/2.
- Se requieren menos tipos de cajas, lo cual permite la estandarización.
- Perfecta adaptación y rápido montaje del conjunto modular dentro de la caja de protección.
- Menor tiempo de fabricación y mejora del tiempo de entrega al cliente.
- Reducción del coste de fabricación gracias a la automatización del proceso de montaje, la optimización del uso de las cajas, y la disminución de referencias de productos semielaborados .
- Permite una verificación final automática y un registro automatizado.
- Cumple con la normativa actual internacional IEC 60831-1/2.
- Posibilidad de efectuar el mantenimiento y reparación por cada elemento condensador, por cada unidad modular, o por el conjunto completo.
- Mejora de la calidad y fiabilidad, consiguiendo un aumento de la vida media en envejecimiento acelerado gracias a un novedoso proceso de resinado de los elementos condensadores a través de su eje, como se explicará con detalle más adelante, produciendo una desgasificación hacia el exterior y eliminando las burbujas de aire, por lo que aumenta su vida útil y aspecto, y con una capa envolvente homogénea.
Ventajosamente, el condensador incluye un cableado alineado, preferentemente formado por un grupo de cables, que emerge desde un extremo hacia los respectivos bornes .
De este modo, se consigue una considerable disminución de aproximadamente el 95% del cableado con respecto al utilizado en los condensadores conocidos en el estado de la técnica, y en consecuencia se obtiene una disminución de los costes de fabricación en materiales empleados. Además, el cableado queda perfectamente ordenado durante el proceso de montaje de los elementos condensadores y de conexionado con los bornes.
También venta osamente, las diferentes unidades modulares están montadas en grupos de dos, estando cada grupo unido al siguiente formando una hilera, y estando prevista la colocación de una unidad modular individual cuando la combinación de unidades modulares es impar.
Este tipo de configuración permite realizar diferentes combinaciones modulares de una manera rápida y eficaz, y ocupando un mínimo espacio.
Preferentemente, cada grupo de dos unidades modulares está montado con sus respectivas placas superpuestas entre sí y con las caras de conexión sobre las que están conectados los elementos condensadores dirigidas opuestamente hacia fuera.
Ventajosamente, ambas placas superpuestas están separadas por un espacio destinado al paso del cableado.
Ventajosamente, el condensador comprende medios de clipado para la fijación de ambas placas superpuestas de un grupo de unidades modulares y para la fijación entre grupos de unidades modulares adyacentes. De este modo, se facilita el proceso de montaje.
Preferentemente, las placas están configuradas de modo que los elementos condensadores están distribuidos al tresbolillo. De esta manera, se optimiza el espacio entre dichos elementos y entre grupos de placas unidas en hilera .
Ventajosamente, la caja de protección es prismática, cuya altura está definida en función del número de grupos de unidades modulares unidos en hilera. Esto permite prever una serie de cajas estandarizadas.
De acuerdo con otro aspecto, la invención también se refiere a un elemento condensador del tipo que comprende una bobina provista de un eje central hueco y de cables de conexión, estando dicha bobina embebida en resina dentro de un cilindro envolvente abierto por su parte superior, y se caracteriza por el hecho de que comprende un disco de autocentrado para el eje y los cables de conexión acoplado en la parte superior del cilindro .
De este modo, antes de aplicar el resinado, el disco de autocentrado permite que la bobina esté colocada centradamente con respecto a las paredes internas del cilindro, lo cual garantiza un llenado y distribución uniforme de la resina dentro del cilindro, tal como se explicará en adelante.
Venta osamente, los cables de conexión son hilos eléctricos a modo de pines de conexión y/o soldadura a una placa de circuito impreso.
De esta manera, se evitan los cables utilizados en el estado de la técnica, siendo más sencilla y eficaz la conexión a una placa de circuito impreso, para diversas aplicaciones y utilidades.
Otro aspecto de la invención se refiere al procedimiento para la fabricación de un elemento condensador, descrito anteriormente, caracterizado por el hecho de que incluye en una linea de montaje automatizada las siguientes etapas:
a) Posicionar sobre una cinta transportadora cada elemento condensador con la bobina provista de los pines de conexión, alojada dentro del cilindro envolvente y con el disco de autocentrado colocado sin cerrar;
b) Centrar y cerrar el disco de autocentrado para posicionar centradamente el eje de la bobina respecto al cilindro, mediante una estación automatizada de cierre y autocentrado ;
c) Pesar el elemento condensador mediante una estación automatizada de pesado de alta precisión, para una correcta dosificación en una posterior etapa de resinado;
d) Orientar los pines de conexión para la posterior realización de pruebas eléctricas mediante una estación automática de posicionado ;
e) Efectuar el conexionado de los pines para realizar una prueba de aislamiento entre armaduras del elemento condensador, y efectuar la descarga eléctrica del elemento condensador en una estación automatizada de prueba dieléctrica y descarga;
f) Identificar cada elemento condensador, preferentemente mediante una impresora de chorro de tinta, para una trazabilidad de la totalidad de los elementos condensadores fabricados, mediante una estación automatizada de marcado;
g) Realizar el resinado inyectando una cantidad predeterminada de resina por la parte superior a través del eje centrado del elemento condensador mediante una estación automatizada de resinado, rellenando homogéneamente de abajo a arriba el espacio entre la bobina y las paredes internas del cilindro; y
h) Realizar una verificación eléctrica final con conexionado automático de pines para medida de capacidad y tangente, mediante una estación automatizada de verificación final.
Cabe destacar que gracias a la etapa de resinado a través del eje de la bobina, se provoca una desgasificación dentro del cilindro de abajo a arriba evacuando el aire hacia el exterior y rellenando homogéneamente el volumen desplazado, sin provocar la formación de burbujas contenedoras de aire y humedad, aumentando asi la vida útil del elemento condensador.
Además, se consigue una reducción del tiempo del proceso de resinado para cada elemento condensador.
Venta osamente, después de la verificación final de la etapa h) se prevé una zona de reproceso intermedia para la selección y recuperación de elementos condensadores detectados con algún defecto durante el procedimiento de fabricación.
También ventajosamente, después de la zona de reproceso se prevé una zona de descarga automatizada de los elementos condensadores acabados y una zona de rechazo automatizada para separar todos aquellos elementos condensadores que no han superado unas pruebas establecidas según un modelo y proceso de producción establecido .
Opcionalmente, los elementos condensadores acabados son conducidos mediante un sistema de translación automático hacia una zona de montaje de unidades modulares y soldadura automatizada.
Ventajosamente, se utilizan medios de control para interactuar mediante un software apropiado sobre la linea de montaje, las estaciones de trabajo y zonas intermedias hasta obtener el elemento condensador acabado.
Los medios de control permiten interactuar en todas las órdenes de movimientos, giros y translaciones para la consecución de los diferentes procesos de pesado, pruebas eléctricas, marcado y resinado de protección, todo ello con un control de marcado y registro de datos que aseguran una trazabilidad del 100% del producto fabricado y sin la intervención del factor humano durante todos estos procesos. BREVE DESCRIPCIÓN DE LOS DIBUJOS
Con el fin de facilitar la descripción de cuanto se ha expuesto anteriormente se adjuntan unos dibujos en los que, esquemáticamente y tan sólo a titulo de ejemplo no limitativo, se representan dos casos prácticos de realizaciones del condensador de potencia para baja tensión de la invención, y una realización del elemento condensador de la invención, en los cuales:
la figura 1 es una vista en perspectiva del condensador de potencia montado;
la figura 2 es una vista en perspectiva del condensador con la caja de protección abierta mostrando el cableado ;
la figura 3 es una vista en perspectiva de un grupo compacto con dos unidades modulares de nueve elementos condensadores cada una;
la figura 4 es una vista lateral del grupo modular de la figura 3, mostrando el espacio entre placas previsto para el paso del cableado;
la figura 5 es una vista de perfil del grupo modular de la figura 3, mostrando la distribución de los elementos condensadores sobre la placa;
la figura 6 es una vista de perfil de un grupo compacto con dos unidades modulares de seis elementos condensadores cada una;
la figura 7 es una sección longitudinal de un elemento condensador de la invención antes de aplicar el resinado; y
la figura 8 es una sección longitudinal del elemento condensador de la figura 7 después de aplicar el resinado .
DESCRIPCIÓN DE REALIZACIONES PREFERIDAS Según una primera realización de la invención mostrada en las figuras 1 a 5, el condensador de potencia 1 para baja tensión de la presente invención es del tipo que comprende una pluralidad de elementos condensadores 2 alojados dentro de una caja de protección 3 provista de bornes de conexión 4.
El condensador 1 comprende al menos una unidad modular 5 que incluye una placa de circuito impreso 6 sobre la que están conectados eléctricamente un conjunto de elementos condensadores 2.
Además, dicho condensador 1 es susceptible de combinar una serie de unidades modulares 5 provistas cada una de igual o diferente número de elementos condensadores 2 para alcanzar cualquier potencia total requerida, tal como se explicará más adelante.
Se obtiene asi un condensador compacto, con un montaje más sencillo y seguro, más económico, y que permite su fabricación automatizada.
En esta primera realización se muestra un condensador de potencia 1 que comprende un grupo de dos unidades modulares 5 de nueve elementos condensadores 2 cada una .
Ambas unidades modulares 5 están montadas con sus respectivas placas 6 superpuestas entre si y con las caras de conexión sobre las que están conectados los elementos condensadores 2 dirigidas opuestamente hacia fuera .
Ambas placas 6 superpuestas están separadas por un espacio 7 destinado al paso del cableado 8 de los elementos condensadores 2 (ver figuras 2 y 4) .
El cableado 8 está formado por tres cables alineados y dirigidos hacia los respectivos bornes 4. De este modo, se consigue una considerable disminución de aproximadamente el 95% del cableado respecto a los condensadores conocidos.
Asimismo, el condensador 1 comprende medios de clipado 9 para la fijación de ambas placas 6 superpuestas.
Las placas 6 están configuradas de modo que los elementos condensadores 2 están distribuidos al tresbolillo (ver figura 5), es decir, en dos filas paralelas, de modo que los elementos colocados en cada fila se enfrentan al medio de los huecos de la fila inmediata, formando triángulos equiláteros. De esta manera, se optimiza el espacio entre dichos elementos 2 y entre grupos de placas 6 unidas en hilera.
En una segunda realización de la invención ilustrada en la figura 6, se muestra un condensador de potencia con las mismas características constructivas que el de la primera realización, pero con la diferencia de que comprende un grupo formado por dos unidades modulares 5' de seis elementos condensadores 2 cada una.
Además de estas dos realizaciones descritas, es posible obtener un mayor rango de potencias añadiendo grupos de dos unidades modulares 5 unidos entre sí formando una hilera, estando prevista la colocación de una unidad modular individual 5 cuando la combinación de unidades modulares 5 sea impar (no representado) .
La fijación entre grupos de unidades modulares 5 adyacentes en hilera también se realiza utilizando medios de clipado. Este tipo de configuración permite realizar diferentes combinaciones modulares de una manera rápida y eficaz, y ocupando un mínimo espacio.
La Tabla 1 muestra las múltiples combinaciones modulares que se pueden efectuar para obtener cualquier gama de potencias, combinando en este caso unidades modulares 5 con seis o nueve elementos condensadores 2 respectivamente .
Tabla 1 Número de Total
unidades Combinación elementos modulares condensadores
1 6 6
1 9 9
2 6+6 12
2 9+6 15
2 9+9 18
3 6+6+6 18
3 9+6+6 21
3 9+9+6 24
3 9+9+9 27
4 6+6+6+6 24
4 9+6+6+6 27
4 9+9+6+6 30
4 9+9+9+6 33
4 9+9+9+9 36
5 6+6+6+6+6 30
5 9+6+6+6+6 33
6 6+6+6+6+6+6 36
Para obtener una mayor precisión de potencias se puede disminuir el número de elementos condensadores 2 montados en una unidad modular 5, por ejemplo, conectando solo tres elementos condensadores 2 en una placa 6 prevista para un máximo de seis elementos 2.
La caja de protección 3 es prismática, cuya altura está definida en función del número de grupos de unidades modulares 5 unidos en hilera. Esto permite prever una serie de cajas estandarizadas.
Cabe destacar que aunque se han descrito unidades modulares 5 para seis o nueve elementos condensadores 2, también es posible utilizar unidades modulares 5 con otro número de elementos 2, dependiendo de las necesidades y aplicaciones. De acuerdo con otro aspecto de la invención, en las figuras 7 y 8 se ha representado un elemento condensador 2 que comprende una bobina 10 provista de un eje central hueco 11 y de hilos eléctricos 12 a modo de pines de conexión y/o soldadura a una placa de circuito impreso 6 (ver figuras 3 a 6) .
La utilización de hilos eléctricos a modo de pines 12, en lugar de cables como ocurre en el estado de la técnica, facilita la conexión a una placa de circuito impreso 6.
Además, dicha bobina 10 está embebida en resina 13 dentro de un cilindro envolvente 14 abierto por su parte superior. Las figuras 7 y 8 muestran el elemento condensador 2 antes y después de colocar la resina 13, respectivamente.
Asimismo, el elemento condensador 2 incluye un disco de autocentrado 15 para el eje 11 y los pines de conexión 12 acoplado en la parte superior del cilindro 14.
Gracias al disco de autocentrado 15, la bobina 10 está colocada centradamente con respecto a las paredes internas del cilindro 14 antes de aplicar el resinado, lo cual permite realizar un llenado y distribución uniforme de la resina 13 dentro del cilindro, tal como se explicará en adelante con mayor detalle.
Otro aspecto de la invención se refiere al procedimiento para la fabricación de un elemento condensador 2, descrito anteriormente, que incluye en una linea de montaje automatizada las siguientes etapas:
- Posicionar sobre una cinta transportadora cada elemento condensador 2 con la bobina 10 provista de los pines de conexión 12, alojada dentro del cilindro envolvente 14 y con el disco de autocentrado 15 colocado sin cerrar;
- Centrar y cerrar el disco de autocentrado 15 para posicionar centradamente el eje 11 de la bobina 10 respecto al cilindro 14, mediante una estación automatizada de cierre y autocentrado ;
- Pesar el elemento condensador 2 mediante una estación automatizada de pesado de alta precisión, para una correcta dosificación en una posterior etapa de resinado;
- Orientar los pines de conexión 12 para la posterior realización de pruebas eléctricas mediante una estación automática de posicionado ; - Efectuar el conexionado de los pines 12 para realizar una prueba de aislamiento entre armaduras del elemento condensador 2, y efectuar la descarga eléctrica del elemento condensador 2 en una estación automatizada de prueba dieléctrica y descarga;
- Identificar cada elemento condensador 2, preferentemente mediante una impresora de chorro de tinta, para una trazabilidad de la totalidad de los elementos condensadores 2 fabricados, mediante una estación automatizada de marcado;
- Realizar el resinado inyectando una cantidad predeterminada de resina 13 por la parte superior a través del eje centrado 11 del elemento condensador 2 mediante una estación automatizada de resinado, rellenando homogéneamente de abajo a arriba el espacio entre la bobina 10 y las paredes internas del cilindro 14; y
- Realizar una verificación eléctrica final con conexionado automático de pines 12 para medida de capacidad y tangente, mediante una estación automatizada de verificación final.
Cabe destacar que gracias a la etapa de resinados del eje 11 de la bobina 10, se provoca una desgasificación dentro del cilindro 14 de abajo a arriba evacuando el aire hacia el exterior y rellenando homogéneamente el volumen desplazado, sin provocar la formación de burbujas contenedoras de aire y humedad, aumentando asi la vida útil del elemento condensador 2.
Además, se consigue una reducción del tiempo del proceso de resinado para cada elemento condensador 2 ya que se tarda aproximadamente unos cinco segundos, frente a más de un minuto empleado en la operación manual de resinado conocido en el estado de la técnica.
Después de la verificación final de la etapa h) se prevé una zona de reproceso intermedia para la selección y recuperación de elementos condensadores 2 que durante el procedimiento de fabricación y por diferentes factores se ha podido detectar algún tipo de problema durante el paso por las diferentes estaciones de trabajo o zonas intermedias.
Después de la zona de reproceso se prevé una zona de descarga automatizada de los elementos condensadores 2 acabados y una zona de rechazo automatizada para separar todos aquellos elementos condensadores 2 que no han superado unas pruebas establecidas según un modelo y proceso de producción establecido .
Los elementos condensadores 2 acabados pueden ser comercializados individualmente para diferentes usos o aplicaciones en función de las necesidades del cliente; o bien pueden ser conducidos mediante un sistema de translación automático hacia una zona de montaje de unidades modulares 5 y soldadura automatizada.
Dichas unidades modulares 5 también pueden ser comercializadas para diferentes usos, o bien pueden ser montadas para fabricar el condensador de potencia 1 de la invención descrito anteriormente.
Asimismo, se utilizan medios de control para interactuar mediante un software apropiado sobre la linea de montaje, las estaciones de trabajo y zonas intermedias hasta obtener el elemento condensador acabado.
Los medios de control permiten interactuar en todas las órdenes de movimientos, giros y translaciones para la consecución de los diferentes procesos de pesado, pruebas eléctricas, marcado y resinado de protección, todo ello con un control de marcado y registro de datos que aseguran una trazabilidad del 100% del producto fabricado y sin la intervención del factor humano durante todos estos procesos .

Claims

R E I V I N D I C A C I O N E S
1. Condensador de potencia (1) para baja tensión, que comprende una pluralidad de elementos condensadores (2) alojados dentro de una caja de protección (3) provista de bornes de conexión (4), caracterizado por el hecho de que comprende al menos una unidad modular (5) que incluye una placa de circuito impreso (6) sobre la que están conectados eléctricamente un conjunto de elementos condensadores (2), y siendo dicho condensador de potencia (1) susceptible de combinar una serie de unidades modulares (5) provistas cada una de igual o diferente número de elementos condensadores (2) para alcanzar cualquier potencia total requerida.
2. Condensador (1), según la reivindicación 1, que incluye un cableado (8) alineado, preferentemente formado por un grupo de cables, que emerge desde un extremo hacia los respectivos bornes (4) .
3. Condensador (1), según la reivindicación 1 o 2, en el que las diferentes unidades modulares (5) están montadas en grupos de dos, estando cada grupo unido al siguiente formando una hilera, y estando prevista la colocación de una unidad modular (5) individual cuando la combinación de unidades modulares (5) es impar.
4. Condensador (1), según la reivindicación 3, en el que cada grupo de dos unidades modulares (5) está montado con sus respectivas placas (6) superpuestas entre si y con las caras de conexión sobre las que están conectados los elementos condensadores (2) dirigidas opuestamente hacia fuera.
5. Condensador (1), según la reivindicación 4, en el que ambas placas (6) superpuestas están separadas por un espacio (7) destinado al paso del cableado (8).
6. Condensador (1), según una cualquiera de las reivindicaciones 3 a 5, que comprende medios de clipado (9) para la fijación de ambas placas (6) superpuestas de un grupo de unidades modulares (5) y para la fijación entre grupos de unidades modulares (5) adyacentes.
7. Condensador (1), según una cualquiera de las reivindicaciones 3 a 6, en el que las placas (6) están configuradas de modo que los elementos condensadores (2) están distribuidos al tresbolillo.
8. Condensador (1), según una cualquiera de las reivindicaciones 3 a 7, en el que la caja de protección (3) es prismática, cuya altura está definida en función del número de grupos de unidades modulares (5) unidos en hilera .
9. Elemento condensador (2), que comprende una bobina (10) provista de un eje central hueco (11) y de cables de conexión (12), estando dicha bobina (10) embebida en resina (13) dentro de un cilindro envolvente (14) abierto por su parte superior, caracterizado por el hecho de que comprende un disco de autocentrado (15) para el eje (11) y los cables de conexión (12) acoplado en la parte superior del cilindro (14) .
10. Elemento condensador (2), según la reivindicación 9, en el que los cables de conexión son hilos eléctricos (12) a modo de pines de conexión y/o soldadura a una placa de circuito impreso (6) .
11. Procedimiento para la fabricación de un elemento condensador, según la reivindicación 9 o 10, caracterizado por el hecho de que incluye en una linea de montaje automatizada las siguientes etapas:
a) Posicionar sobre una cinta transportadora cada elemento condensador (2) con la bobina
(10) provista de los pines de conexión (12), alojada dentro del cilindro envolvente (14) y con el disco de autocentrado (15) colocado sin cerrar;
b) Centrar y cerrar el disco de autocentrado
(15) para posicionar centradamente el eje
(11) de la bobina (10) respecto al cilindro (14), mediante una estación automatizada de cierre y autocentrado;
c) Pesar el elemento condensador (2) mediante una estación automatizada de pesado de alta precisión, para una correcta dosificación en una posterior etapa de resinado;
d) Orientar los pines de conexión (12) para la posterior realización de pruebas eléctricas mediante una estación automática de posicionado ;
e) Efectuar el conexionado de los pines (12) para realizar una prueba de aislamiento entre armaduras del elemento condensador (2), y efectuar la descarga eléctrica del elemento condensador (2) en una estación automatizada de prueba dieléctrica y descarga;
f) Identificar cada elemento condensador (2), preferentemente mediante una impresora de chorro de tinta, para una trazabilidad de la totalidad de los elementos condensadores (2) fabricados, mediante una estación automatizada de marcado;
g) Realizar el resinado inyectando una cantidad predeterminada de resina (13) por la parte superior a través del eje centrado (11) del elemento condensador (2) mediante una estación automatizada de resinado, rellenando homogéneamente de abajo a arriba el espacio entre la bobina (10) y las paredes internas del cilindro (14); y
Realizar una verificación eléctrica final con conexionado automático de pines (12) para medida de capacidad y tangente, mediante una estación automatizada de verificación final.
12. Procedimiento, según la reivindicación 11, en el que después de la verificación final de la etapa h) se prevé una zona de reproceso intermedia para la selección y recuperación de elementos condensadores (2) detectados con algún defecto durante el procedimiento de fabricación .
13. Procedimiento, según la reivindicación 12, en el que después de la zona de reproceso se prevé una zona de descarga automatizada de los elementos condensadores (2) acabados y una zona de rechazo automatizada para separar todos aquellos elementos condensadores (2) que no han superado unas pruebas establecidas según un modelo y proceso de producción establecido .
14. Procedimiento, según la reivindicación 13, en el que los elementos condensadores acabados (2) son conducidos mediante un sistema de translación automático hacia una zona de montaje de unidades modulares (5) y soldadura automatizada.
15. Procedimiento, según una cualquiera de las reivindicaciones 11 a 14, en el que se utilizan medios de control para interactuar mediante un software apropiado sobre la linea de montaje, las estaciones de trabajo y zonas intermedias hasta obtener el elemento condensador acabado ( 2 ) .
PCT/ES2010/070436 2010-06-28 2010-06-28 Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador WO2012001181A2 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10739960.2T ES2472017T3 (es) 2010-06-28 2010-06-28 Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador
EP10739960.2A EP2587503B1 (en) 2010-06-28 2010-06-28 Power capacitor for low voltage, provided with capacitor elements, a capacitor element and a method for producing said capacitor element
EP20130187226 EP2682968B1 (en) 2010-06-28 2010-06-28 Power capacitor for low voltage provided with capacitor elements, capacitor element, and method for manufacturing said capacitor element
ES13187226.9T ES2540243T3 (es) 2010-06-28 2010-06-28 Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador
PCT/ES2010/070436 WO2012001181A2 (es) 2010-06-28 2010-06-28 Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070436 WO2012001181A2 (es) 2010-06-28 2010-06-28 Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador

Publications (2)

Publication Number Publication Date
WO2012001181A2 true WO2012001181A2 (es) 2012-01-05
WO2012001181A3 WO2012001181A3 (es) 2012-03-22

Family

ID=44166490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070436 WO2012001181A2 (es) 2010-06-28 2010-06-28 Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador

Country Status (3)

Country Link
EP (2) EP2682968B1 (es)
ES (2) ES2540243T3 (es)
WO (1) WO2012001181A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208367A (zh) * 2013-04-22 2013-07-17 五力机电科技(昆山)有限公司 电容箱

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183337B1 (en) 2005-04-07 2021-11-23 Amrad Manufacturing, Llc Capacitor with multiple elements for multiple replacement applications
US11183336B2 (en) 2005-04-07 2021-11-23 Amrad Manufacturing, Llc Capacitor with multiple elements for multiple replacement applications
US7423861B2 (en) 2005-04-07 2008-09-09 American Radionic Company, Inc. Capacitor with multiple elements for multiple replacement applications
US7203053B2 (en) 2005-04-07 2007-04-10 American Radionic Company, Inc. Capacitor for multiple replacement applications
US11183338B2 (en) 2005-04-07 2021-11-23 Amrad Manufacturing, Llc Capacitor with multiple elements for multiple replacement applications
US9412521B2 (en) 2005-04-07 2016-08-09 American Radionic Company, Inc. Capacitor with multiple elements for multiple replacement applications
USD818959S1 (en) 2005-12-23 2018-05-29 American Radionic Company, Inc. Capacitor
WO2008083270A1 (en) 2006-12-29 2008-07-10 American Radionic Company, Inc. Electrolytic capacitor
US8456795B2 (en) 2009-11-13 2013-06-04 American Radionic Company, Inc. Hard start kit for multiple replacement applications
US9318261B2 (en) 2013-05-21 2016-04-19 American Radionic Company, Inc. Power factor correction capacitors
US9859060B1 (en) 2017-02-07 2018-01-02 American Radionic Company, Inc. Capacitor with multiple elements for multiple replacement applications
US11195663B2 (en) 2017-05-12 2021-12-07 Amrad Manufacturing, Llc Capacitor with multiple elements for multiple replacement applications
US10497518B1 (en) 2017-12-13 2019-12-03 American Radionic Company, Inc. Hard start kit for multiple replacement applications
US11424077B1 (en) 2017-12-13 2022-08-23 Amrad Manufacturing, Llc Hard start kit for multiple replacement applications
US10147550B1 (en) 2018-04-27 2018-12-04 American Radionic Company, Inc. Capacitor with multiple elements for multiple replacement applications
US10586655B1 (en) 2018-12-28 2020-03-10 American Radionic Company, Inc. Capacitor with multiple elements for multiple replacement applications
USD906247S1 (en) 2019-07-11 2020-12-29 American Radionic Company, Inc. Capacitor
CA3157689A1 (en) 2021-04-30 2022-10-30 Amrad Manufacturing, Llc Hard start kit for multiple replacement applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1489638A (en) * 1975-08-06 1977-10-26 Pye Ltd Electrical capacitor
DE3131020A1 (de) * 1981-08-05 1983-02-24 Standard Elektrik Lorenz Ag, 7000 Stuttgart In einem gehaeuse vergossener kondensatorwickel
FR2701158B1 (fr) * 1993-01-29 1995-03-10 Lcc Cie Euro Composants Electr Condensateur de puissance.
DE10339156B3 (de) * 2003-08-26 2005-03-17 Epcos Ag Schaltungsanordnung mit mehreren Kapazitäten
EP1695361A4 (en) * 2003-10-29 2009-11-11 Showa Denko Kk ELECTROLYTIC CAPACITOR
US7477505B2 (en) * 2005-10-18 2009-01-13 General Hydrogen Corporation Capacitor bank for electrical generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208367A (zh) * 2013-04-22 2013-07-17 五力机电科技(昆山)有限公司 电容箱

Also Published As

Publication number Publication date
EP2587503B1 (en) 2014-03-05
EP2682968A1 (en) 2014-01-08
EP2682968B1 (en) 2015-04-22
EP2587503A2 (en) 2013-05-01
ES2472017T3 (es) 2014-06-27
WO2012001181A3 (es) 2012-03-22
ES2540243T3 (es) 2015-07-09

Similar Documents

Publication Publication Date Title
ES2540243T3 (es) Condensador de potencia para baja tensión provisto de elementos condensadores, elemento condensador, y procedimiento para la fabricación de dicho elemento condensador
US5746319A (en) Tray for integrated circuits
JPH07505737A (ja) 交換自在な鉛蓄電池セルおよび長寿命バッテリ
KR20180113913A (ko) 수직 집적 반도체 패키지 그룹을 포함하는 반도체 장치
BRPI1105247B1 (pt) estrutura de embalagem para recipientes para uso farmacêutico
CN106970314A (zh) 构件处理组件和处理构件的方法
US7320903B2 (en) Apparatus for and method of packaging semiconductor devices
US20160126005A1 (en) Surface-mount inductor and method for manufacturing the same
US20060221553A1 (en) Solid electrolytic capacitor and manufacturing method therefor
KR20130019187A (ko) 배터리 팩 및 그의 제조방법
CN107026186A (zh) Oled显示器件及其制备方法
ES2435390B1 (es) Condensador de potencia con control integrado para baja tensión
US9844154B1 (en) Electronic device and packaging box thereof
KR102199077B1 (ko) 전력저장장치 제조 방법
US20240128574A1 (en) Manufacture of components for batteries
CN218824657U (zh) 一种ocv设备校准装置
KR20200101091A (ko) 전력저장장치
KR101769905B1 (ko) 번인 보드 테스트 지그
CN215964589U (zh) 一种紫外线固化烘胶装置
KR930002875B1 (ko) QFP(Quadratic Flat Package) IC 칩의 테스트 핸들러
CN214685000U (zh) 一种大功率器件多层组装焊接装置
CN102244024B (zh) 一种用于lqfp封装集成电路的托盘
KR102182228B1 (ko) 전력저장장치
KR101309081B1 (ko) 번인 테스터
US4572367A (en) Apparatus for shipping nail head leads and loading the same into a manufacturing fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10739960

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010739960

Country of ref document: EP