WO2012000709A1 - Batteriesystem - Google Patents

Batteriesystem Download PDF

Info

Publication number
WO2012000709A1
WO2012000709A1 PCT/EP2011/057520 EP2011057520W WO2012000709A1 WO 2012000709 A1 WO2012000709 A1 WO 2012000709A1 EP 2011057520 W EP2011057520 W EP 2011057520W WO 2012000709 A1 WO2012000709 A1 WO 2012000709A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery system
fieldbus
components
evaluation unit
Prior art date
Application number
PCT/EP2011/057520
Other languages
English (en)
French (fr)
Inventor
Stefan Butzmann
Holger Fink
Martin Lang
Original Assignee
Sb Limotive Company Ltd.
Sb Limotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Company Ltd., Sb Limotive Germany Gmbh filed Critical Sb Limotive Company Ltd.
Publication of WO2012000709A1 publication Critical patent/WO2012000709A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/10Arrangements in telecontrol or telemetry systems using a centralized architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/30Arrangements in telecontrol or telemetry systems using a wired architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system and a motor vehicle with the battery system according to the invention.
  • Electric vehicles are increasingly new battery systems will be used, are placed on the very high reliability requirements.
  • batteries are used to protect the system in a strong wind by a rotor blade adjustment against improper operating conditions.
  • a battery system generally designated 100 comprises a plurality of battery cells 10 and a charging and disconnecting device 12, which a disconnect switch 14, a charging switch 16 and a
  • Charging resistor 18 includes.
  • the battery system 100 includes a separator 20 having a circuit breaker 22. For the safe operation of the battery system 100, it is imperative that each battery cell 10 be within an allowable operating range
  • Lithium-ion or nickel-metal hydride technology used, which have a large number in series electrochemical battery cells.
  • a battery management unit is used to monitor the battery and, in addition to safety monitoring, should ensure the longest possible service life. For this purpose, the voltage of each individual battery cell is measured together with the battery current and the battery temperature and a
  • State estimation for example, the state of charge or the
  • Performance of the battery so know the maximum off or recordable electrical power. If this capacity is exceeded, the aging of the battery can be greatly accelerated.
  • a battery system is provided with a plurality of battery cells and a battery management unit.
  • the battery system is preferably a lithium-ion battery system.
  • the battery management unit includes a plurality of
  • Detection devices and at least one evaluation unit.
  • Detecting devices are designed to at least one
  • the detection units and the evaluation unit are components of a fieldbus system. As a result, compared to the prior art reduced cabling effort is achieved.
  • the detection devices can be designed to detect the operating parameters of either one battery cell or multiple battery cells. If a battery system contains several detection devices, these can be logically coupled and fed to a common evaluation.
  • the battery cells can be connected in series in the battery system according to the invention.
  • the components of the fieldbus system can be networked in different network topologies. Possible embodiments are: a
  • the detection devices can each be designed to detect a cell voltage of a battery cell and / or a temperature in a battery cell and / or a current flowing through a battery cell.
  • the battery management unit may additionally include a plurality of
  • Monitoring devices include. These may be designed to measure at least one operating parameter of the battery cell and to generate an alarm signal if the measured value of the operating parameter falls below or exceeds a predetermined threshold value.
  • Monitoring devices are redundant components of the battery management unit, which should prevent that when one or more detection devices fail, it is no longer possible to make a precise statement about the operating state of the battery cells.
  • Detection device to be detected in normal operation would have to be removed from the entire system or shut down the entire system.
  • the monitoring device ensures safe operation even if a detection device fails.
  • the monitoring devices may monitor one or more of the critical operating parameters (voltage, current or temperature).
  • a monitoring device may monitor one or more sizes per battery cell, or a size related to the merger of multiple cells, for example one Total voltage of a certain number of series connected
  • the monitoring devices can be logically linked together in such a way that a response of a
  • Monitoring device leads to a response of the entire system. In particular, the triggering of an alarm in one
  • Monitoring device lead to the triggering of an alarm in the overall system.
  • Monitoring devices Components of the fieldbus system to which the detection devices are also connected.
  • monitoring devices can also be components of a further, separate fieldbus system.
  • Another aspect of the invention relates to a motor vehicle, which comprises the battery system according to the invention.
  • the battery system may then have a limited performance at its terminals compared to the regular operation. But with a suitable design of the battery system can be a failure of the system or a safety-critical state of
  • 1 shows a battery system according to the prior art
  • 2 shows a battery system according to the invention according to a first
  • Embodiment and Figure 3a to 3d different topologies of the fieldbus system of
  • FIG. 2 shows a battery system 100 according to a first embodiment of the invention.
  • a plurality of battery cells 10 are connected in series and combined in a plurality of modules 24.
  • a module 24 includes a predetermined number of battery cells 10, which is typically between six and twelve.
  • Detecting devices 26 measure the voltage of a respective battery cell 10 and transmit the voltage measured values to a fieldbus 28, to which an evaluation unit 30 is connected.
  • Evaluation unit 30 can protect the battery system 100 a
  • the fieldbus system 28 in FIG. 2 is in one
  • Bus topology networks and uses a CAN (Controlled Area Network) protocol.
  • CAN Controlled Area Network
  • the monitoring devices 32 each include a comparator 34, which compares a voltage applied to a module 24 voltage with a predetermined voltage threshold V s .
  • an alarm signal is transmitted to the fieldbus 28.
  • a signal can be transmitted to the fieldbus 28 when a predetermined further voltage threshold is exceeded.
  • All monitoring devices 32 of the battery system 100 can be linked to a logic-or-gate, which triggers a total alarm as soon as one of the monitoring devices 32 triggers an alarm.
  • the fieldbus system of the embodiment shown in FIG. 2 is networked in a bus topology.
  • the invention is not limited to the use of a bus topology, but other basic architecture variants can be chosen.
  • various physical media for example, an optical medium or an electric medium may be used, as well as various fieldbus systems / protocols.
  • a LIN (Local Interconnect Network) protocol or a Flexray protocol can be used.
  • FIGS. 3a to 3d show various basic architectural variants of the fieldbus system 28.
  • FIG. 3a shows the networking in the form of a bus topology, in which the detection devices 26 and the evaluation unit 30 are connected in parallel to the fieldbus 28.
  • the topology shown in FIG. 3a corresponds to the first embodiment of the invention shown in FIG.
  • Figure 3b shows a second embodiment of the invention in the form of a
  • Figure 3c shows a third embodiment of the invention in the form of a
  • FIG. 3d shows a fourth embodiment of the invention in the form of a cross-linking of the fieldbus system 28 in a star topology, in which the detection devices 26 are each connected by a field bus 28 to the
  • Evaluation unit 30 are connected.
  • the topologies shown in FIGS. 3 a to 3 d can also be applied to the
  • the monitoring devices 32 can thus also be connected to the fieldbus system 28 or to another, not shown fieldbus system, which in turn is networked using a daisy-chain topology, a star topology, a ring topology or a bus topology.
  • both the detection devices 26 and the monitoring devices 32 can be networked together in the topologies shown in FIGS. 3a to 3d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Es wird ein Batteriesystem (100) mit einer Vielzahl von Batteriezellen (10) und einer Batteriemanagementeinheit beschrieben, wobei die Batteriemanagementeinheit eine Vielzahl von Erfassungseinrichtungen (26) und mindestens eine Auswertungseinheit (30) umfasst. Die Erfassungseinrichtungen (26) sind dazu ausgebildet, wenigstens einen Betriebsparameter der Batteriezellen (10) zu erfassen und der Auswertungseinheit (30) zu übermitteln. Die Erfassungseinheiten (26) und die Auswertungseinheit (30) sind Komponenten eines Feldbussystems (28). Es wird außerdem ein Kraftfahrzeug beschrieben, welches das erfindungsgemäße Batteriesystem umfasst.

Description

Beschreibung
Titel
Batteriesvstem
Die vorliegende Erfindung betrifft ein Batteriesystem sowie ein Kraftfahrzeug mit dem erfindungsgemäßen Batteriesystem.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen (z. B. bei Windkraftanlagen) als auch in Fahrzeugen (z. B. in Hybrid- und
Elektrofahrzeugen) vermehrt neue Batteriesysteme zum Einsatz kommen werden, an die sehr hohe Anforderungen bezüglich Zuverlässigkeit gestellt werden.
Hintergrund für diese hohen Anforderungen ist, dass ein Ausfall der Batterie zu einem Ausfall des Gesamtsystems führen kann. Beispielsweise hat bei einem Elektrofahrzeug ein Ausfall der Traktionsbatterie einen so genannten
„Liegenbleiber" zur Folge. Außerdem kann der Ausfall der Batterie zu einem sicherheitsrelevanten Problem führen. Bei Windkraftanlagen werden
beispielsweise Batterien eingesetzt, um bei starkem Wind die Anlage durch eine Rotorblattverstellung vor unzulässigen Betriebszuständen zu schützen.
Das Prinzipschaltbild eines Batteriesystems gemäß heutigem Stand der Technik ist in Figur 1 dargestellt. Ein insgesamt mit 100 bezeichnetes Batteriesystem umfasst eine Vielzahl von Batteriezellen 10 und eine Lade- und Trenneinrichtung 12, welche einen Trennschalter 14, einen Ladeschalter 16 und einen
Ladewiderstand 18 umfasst. Zusätzlich umfasst das Batteriesystem 100 eine Trenneinrichtung 20 mit einem Trennschalter 22. Für den sicheren Betrieb des Batteriesystems 100 ist es zwingend notwendig, dass jede Batteriezelle 10 innerhalb eines erlaubten Betriebsbereichs
(Spannungsbereich, Temperaturbereich, Stromgrenzen) betrieben wird. Liegt eine Batteriezelle 10 außerhalb dieser Grenzen, muss sie aus dem Zellverbund herausgenommen werden. Bei einer Serienschaltung der Batteriezellen 10 (wie in Figur 1 dargestellt) führt daher ein Ausfall einer einzelnen Batteriezelle 10 zum Ausfall des gesamten Batteriesystems 100.
Insbesondere in Hybrid- und Elektrofahrzeugen werden Batterien in
Lithium-Ionen- oder Nickel-Metallhydrid-Technologie eingesetzt, die eine große Anzahl in Serie geschaltete elektrochemische Batteriezellen aufweisen. Eine Batteriemanagementeinheit wird zur Überwachung der Batterie eingesetzt und soll neben einer Sicherheitsüberwachung eine möglichst hohe Lebensdauer gewähren. Dazu wird die Spannung jeder einzelnen Batteriezelle zusammen mit dem Batteriestrom und der Batterietemperatur gemessen und eine
Zustandsschätzung (beispielsweise des Ladezustandes oder des
Alterungszustandes der Batterie) vorgenommen. Um die Lebensdauer zu maximieren, ist es hilfreich, jederzeit die aktuell gegebene maximale
Leistungsfähigkeit der Batterie, also die maximal abgeb- oder aufnehmbare elektrische Leistung, zu kennen. Wird diese Leistungsfähigkeit überschritten, kann die Alterung der Batterie stark beschleunigt werden.
Offenbarung der Erfindung
Erfindungsgemäß wird ein Batteriesystem mit einer Vielzahl von Batteriezellen und einer Batteriemanagementeinheit bereitgestellt. Bei dem Batteriesystem handelt es sich bevorzugt um ein Lithium-Ionen-Batteriesystem.
Die Batteriemanagementeinheit umfasst eine Vielzahl von
Erfassungseinrichtungen und mindestens eine Auswertungseinheit. Die
Erfassungseinrichtungen sind dazu ausgebildet, wenigstens einen
Betriebsparameter der Batteriezellen zu erfassen und der Auswertungseinheit zu übermitteln. Dabei sind die Erfassungseinheiten und die Auswertungseinheit Komponenten eines Feldbussystems. Dadurch wird ein im Vergleich zum Stand der Technik verringerter Verkabelungsaufwand erreicht. Die Erfassungseinrichtungen können dazu ausgelegt sein, die Betriebsparameter wahlweise jeweils einer Batteriezelle oder mehrerer Batteriezellen zu erfassen. Enthält ein Batteriesystem mehrere Erfassungseinrichtungen, können diese logisch gekoppelt und einer gemeinsamen Auswertung zugeführt werden.
Die Batteriezellen können im erfindungsgemäßen Batteriesystem in Reihe geschaltet sein. Die Komponenten des Feldbussystems können in verschiedenen Netztopologien vernetzt sein. Mögliche Ausführungsformen sind: eine
Daisy-Chain-Topologie, eine Stern-Topologie, eine Ring-Topologie oder eine Bus-Topologie. Die Erfassungseinrichtungen können jeweils dazu ausgebildet sein, eine Zellspannung einer Batteriezelle und/oder eine Temperatur in einer Batteriezelle und/oder einen durch eine Batteriezelle fließenden Strom zu erfassen.
Die Batteriemanagementeinheit kann zusätzlich eine Vielzahl von
Überwachungseinrichtungen umfassen. Diese können dazu ausgebildet sein, wenigstens einen Betriebsparameter der Batteriezelle zu messen und ein Alarmsignal zu erzeugen, wenn der gemessene Wert des Betriebsparameters einen vorbestimmten Schwellenwert unter- oder überschreitet. Bei den
Überwachungseinrichtungen handelt es sich um redundante Komponenten der Batteriemanagementeinheit, welche verhindern sollen, dass beim Ausfall einer oder mehrerer Erfassungseinrichtungen keine präzise Aussage mehr über den Betriebszustand der Batteriezellen getroffen werden kann.
In Abwesenheit der erfindungsgemäßen Überwachungseinrichtungen wäre ein sicherer Betrieb des Gesamtsystems nicht mehr gewährleistet. Die
Batteriezellen, deren Betriebsparameter von der ausgefallenen
Erfassungseinrichtung im Normalbetrieb erfasst werden sollen, müssten aus dem Gesamtsystem herausgelöst oder das Gesamtsystem abgeschaltet werden.
Durch die Überwachungseinrichtung wird ein sicherer Betrieb auch bei Ausfall einer Erfassungseinrichtung gewährleistet. Die Überwachungseinrichtungen können eine oder mehrere der kritischen Betriebsparameter (Spannung, Strom oder Temperatur) überwachen. Eine Überwachungseinrichtung kann eine oder mehrere Größen pro Batteriezelle überwachen, oder auch eine Größe, welche sich auf den Zusammenschluss mehrerer Zellen bezieht, zum Beispiel eine Summenspannung einer bestimmten Anzahl von in Reihe geschalteter
Batteriezellen.
Die genannten Ausführungsformen können auch beliebig kombiniert werden. Dadurch entsteht eine flexible modulare und skalierbare
Überwachungsfunktionalität. Die Überwachungseinrichtungen können dabei logisch derart miteinander verknüpft sein, dass ein Ansprechen einer
Überwachungseinrichtung zu einem Ansprechen des Gesamtsystems führt. Insbesondere kann die Auslösung eines Alarms in einer
Überwachungseinrichtung zu der Auslösung eines Alarms im Gesamtsystem führen.
In einer besonderen Ausführungsform ist vorgesehen, dass die
Überwachungseinrichtungen Komponenten des Feldbussystems sind, an den auch die Erfassungseinrichtungen angeschlossen sind. Die
Überwachungseinrichtungen können aber auch Komponenten eines weiteren, separaten Feldbussystems sein.
Ein weiterer Aspekt der Erfindung betrifft ein Kraftfahrzeug, welches das erfindungsgemäße Batteriesystem umfasst.
Insgesamt wird durch die Verwendung der Erfassungs- und
Überwachungseinrichtungen erreicht, dass Batteriesysteme bereitgestellt werden, die bei Ausfall einer oder mehrerer Batteriezellen weiter sicher betrieben werden können. Das Batteriesystem weist dann zwar eine an seinen Klemmen unter Umständen eingeschränkte Leistungsfähigkeit gegenüber dem regulären Betrieb auf. Bei geeigneter Auslegung des Batteriesystems kann aber ein Ausfall des Systems beziehungsweise ein sicherheitskritischer Zustand des
Batteriesystems vermieden werden.
Zeichnungen
Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 ein Batteriesystem nach dem Stand der Technik, Figur 2 ein erfindungsgemäßes Batteriesystem gemäß einer ersten
Ausführungsform und Figur 3a bis 3d verschiedene Topologien des Feldbussystems des
erfindungsgemäßen Batteriesystems.
Ausführungsformen der Erfindung
Figur 2 zeigt ein Batteriesystem 100 gemäß einer ersten Ausführungsform der Erfindung. Eine Vielzahl von Batteriezellen 10 ist in Reihe geschaltet und in einer Vielzahl von Modulen 24 zusammengefasst. Ein Modul 24 umfasst eine vorbestimmte Anzahl von Batteriezellen 10, die typischerweise zwischen sechs und zwölf beträgt. Erfassungseinrichtungen 26 messen die Spannung jeweils einer Batteriezelle 10 und übertragen die Spannungsmesswerte auf einen Feldbus 28, an dem eine Auswertungseinheit 30 angeschlossen ist. Die
Auswertungseinheit 30 kann zum Schutz des Batteriesystems 100 eine
Hochvolt-Schütze ansteuern. Das Feldbussystem 28 in Figur 2 ist in einer
Bus-Topologie vernetzt und benutzt ein CAN (Controlled Area Network )- Protokoll.
Außerdem sind an den Feldbus 28 eine Vielzahl von
Überwachungseinrichtungen 32 angeschlossen (von denen in Figur 2 nur eine
Überwachungseinrichtung dargestellt ist). Die Überwachungseinrichtungen 32 umfassen jeweils einen Komparator 34, welcher eine an einem Modul 24 anliegende Spannung mit einem vorbestimmten Spannungsschwellenwert Vs vergleicht.
Überschreitet die gemessene Spannung am Modul 24 den
Spannungsschwellenwert Vs, so wird ein Alarmsignal auf den Feldbus 28 übertragen. Außerdem kann ein Signal auf den Feldbus 28 übertragen werden, wenn ein vorbestimmter weiterer Spannungsschwellenwert unterschritten wird. Alle Uberwachungseinrichtungen 32 des Batteriesystems 100 können mit einem Logik-Oder-Gatter verknüpft werden, welches einen Gesamtalarm auslöst, sobald eine der Überwachungseinrichtungen 32 einen Alarm auslöst.
Das Feldbussystem des in Figur 2 gezeigten Ausführungsbeispiels ist in einer Bus-Topologie vernetzt. Die Erfindung ist aber nicht auf die Verwendung einer Bus-Topologie beschränkt, vielmehr können andere Grundarchitekturvarianten gewählt werden. Auch können verschiedene physikalische Medien, zum Beispiel ein optisches Medium oder ein elektrisches Medium verwendet werden, sowie verschiedene Feldbussysteme/Protokolle. So ist neben dem in Figur 2 dargestellten CAN-Protokoll beispielsweise ein LIN (Local Interconnect Network )- Protokoll oder ein Flexray-Protokoll einsetzbar.
Die Figuren 3a bis 3d zeigen verschiedene Grundarchitekturvarianten des Feldbussystems 28. Figur 3a zeigt die Vernetzung in Form einer Bus-Topologie, bei welcher die Erfassungseinrichtungen 26 und die Auswertungseinheit 30 parallel an dem Feldbus 28 angeschlossen sind. Die in Figur 3a gezeigte Topologie entspricht der in Figur 2 gezeigten ersten Ausführungsform der Erfindung.
Figur 3b zeigt eine zweite Ausführungsform der Erfindung in Form einer
Vernetzung des Feldbussystems 28 in einer Ring-Topologie, bei welcher die Erfassungseinrichtungen 26 und die Auswertungseinheit 30 mit Stichleitungen an einen ringförmigen Feldbus 28 angeschlossen sind.
Figur 3c zeigt eine dritte Ausführungsform der Erfindung in Form einer
Vernetzung des Feldbussystems 28 in einer Daisy-Chain-Topologie, in welcher die Erfassungseinrichtungen 26 und die Auswertungseinheit 30 hintereinander in Reihe geschaltet sind.
Schließlich zeigt Figur 3d eine vierte Ausführungsform der Erfindung in Form einer Vernetzung des Feldbussystems 28 in einer Stern-Topologie, in welcher die Erfassungseinrichtungen 26 jeweils durch einen Feldbus 28 mit der
Auswertungseinheit 30 verbunden sind. Die in den Figuren 3a bis 3d gezeigten Topologien können auch auf die
Vernetzung der Überwachungseinrichtungen 32 angewendet werden. Die Überwachungseinrichtungen 32 können somit auch an dem Feldbussystem 28 oder an einem weiteren, nicht dargestellten Feldbussystem angeschlossen sein, welches seinerseits unter Verwendung einer Daisy-Chain-Topologie, einer Stern-Topologie, einer Ring-Topologie oder einer Bus-Topologie vernetzt ist.
Insbesondere können sowohl die Erfassungseinrichtungen 26 als auch die Überwachungseinrichtungen 32 in den in den Figuren 3a bis 3d gezeigten Topologien gemeinsam vernetzt sein.

Claims

Ansprüche
1 . Batteriesystem (100) mit einer Vielzahl von Batteriezellen (10) und einer Batteriemanagementeinheit, wobei die Batteriemanagementeinheit eine Vielzahl von Erfassungseinrichtungen (26) und mindestens eine
Auswertungseinheit (30) umfasst und wobei die Erfassungseinrichtungen (26) dazu ausgebildet sind, wenigstens einen Betriebsparameter der Batteriezellen (10) zu erfassen und der Auswertungseinheit (30) zu übermitteln, dadurch gekennzeichnet, dass die Erfassungseinheiten (26) und die Auswertungseinheit (30) Komponenten eines Feldbussystems (28) sind.
2. Batteriesystem nach Anspruch 1 , wobei die Batteriezellen (10) in Reihe geschaltet sind.
3. Batteriesystem nach Anspruch 1 oder 2, wobei wenigstens einige
Komponenten des Feldbussystems (28) in einer Daisy-Chain-Topologie vernetzt sind.
4. Batteriesystem nach einem der vorangehenden Ansprüche, wobei
wenigstens einige Komponenten des Feldbussystems (28) in einer
Stern-Topologie vernetzt sind.
5. Batteriesystem nach einem der vorangehenden Ansprüche, wobei
wenigstens einige Komponenten des Feldbussystems (28) in einer
Ring-Topologie vernetzt sind.
6. Batteriesystem nach einem der vorangehenden Ansprüche, wobei
wenigstens einige Komponenten des Feldbussystems (28) in einer
Bus-Topologie vernetzt sind.
7. Batteriesystem nach einem der vorangehenden Ansprüche, wobei wenigstens eine Erfassungseinrichtung (26) dazu ausgebildet ist, eine Zellspannung einer Batteriezelle (10) und/oder eine Temperatur in einer Batteriezelle (10) und/oder einen durch eine Batteriezelle (10) fließenden Strom zu erfassen.
8. Batteriesystem nach einem der vorangehenden Ansprüche, wobei die Batteriemanagementeinheit zusätzlich eine Vielzahl von
Überwachungseinrichtungen (32) umfasst, welche dazu ausgebildet sind, wenigstens einen Betriebsparameter der Batteriezellen (10) zu messen und ein Alarmsignal zu erzeugen, wenn der gemessene Wert des
Betriebsparameters einen vorbestimmten Schwellenwert unter- oder überschreitet.
9. Batteriesystem nach einem der vorangehenden Ansprüche, wobei die Überwachungseinrichtungen (32) Komponenten des Feldbussystems (28) sind.
10. Batteriesystem nach einem der Ansprüche 1 bis 8, wobei die
Überwachungseinrichtungen (32) Komponenten eines zweiten
Feldbussystems sind.
1 1 . Kraftfahrzeug mit einem Batteriesystem (100) nach einem der
vorangehenden Ansprüche, wobei das Batteriesystem mit einem
Antriebssystem des Kraftfahrzeugs verbunden ist.
PCT/EP2011/057520 2010-06-30 2011-05-10 Batteriesystem WO2012000709A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010030747A DE102010030747A1 (de) 2010-06-30 2010-06-30 Batteriesystem
DE102010030747.5 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012000709A1 true WO2012000709A1 (de) 2012-01-05

Family

ID=44170084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057520 WO2012000709A1 (de) 2010-06-30 2011-05-10 Batteriesystem

Country Status (3)

Country Link
DE (1) DE102010030747A1 (de)
TW (1) TW201222921A (de)
WO (1) WO2012000709A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985321B2 (en) * 2011-10-18 2018-05-29 Robert Bosch Gmbh Battery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012015522A1 (de) 2012-08-03 2014-02-06 Volkswagen Aktiengesellschaft Batterielager- und -logistiksystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1468863A2 (de) * 2003-04-17 2004-10-20 Howaldtswerke-Deutsche Werft Ag Anlage und Verfahren zur Überwachung einer elektrischen Batterie in einem Unterseeboot
US20080313254A1 (en) * 2007-06-18 2008-12-18 Hilemon Christopher G Virtual fieldbus device
US20090027009A1 (en) * 2007-07-23 2009-01-29 Ac Propulsion, Inc., A California Corporation System and method for battery management
US20090146610A1 (en) * 2007-12-11 2009-06-11 Antonio Trigiani Battery management system
DE102008037193A1 (de) * 2008-08-11 2010-02-18 Endress + Hauser Process Solutions Ag Verfahren zur Überwachung der Reststandzeit einer Batterie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1468863A2 (de) * 2003-04-17 2004-10-20 Howaldtswerke-Deutsche Werft Ag Anlage und Verfahren zur Überwachung einer elektrischen Batterie in einem Unterseeboot
US20080313254A1 (en) * 2007-06-18 2008-12-18 Hilemon Christopher G Virtual fieldbus device
US20090027009A1 (en) * 2007-07-23 2009-01-29 Ac Propulsion, Inc., A California Corporation System and method for battery management
US20090146610A1 (en) * 2007-12-11 2009-06-11 Antonio Trigiani Battery management system
DE102008037193A1 (de) * 2008-08-11 2010-02-18 Endress + Hauser Process Solutions Ag Verfahren zur Überwachung der Reststandzeit einer Batterie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985321B2 (en) * 2011-10-18 2018-05-29 Robert Bosch Gmbh Battery system

Also Published As

Publication number Publication date
DE102010030747A1 (de) 2012-01-05
TW201222921A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
EP2759018B1 (de) Batteriemanagementsystem, batterie, kraftfahrzeug mit batteriemanagementsystem sowie verfahren zur überwachung einer batterie
DE102011079126B4 (de) Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
EP2734852B1 (de) Batteriemanagementsystem und verfahren zur bestimmung der ladezustände von batteriezellen, batterie und kraftfahrzeug mit batteriemanagementsystem
EP2394327B1 (de) Traktionsbatterie mit erhöhter zuverlässigkeit
EP2619844B1 (de) Batteriesystem und verfahren zur bestimmung von batteriemodulspannungen
EP2617095B1 (de) Batteriesystem mit zellspannungserfassungseinheiten
DE102013218077A1 (de) Batteriezelleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz einer in einer Batteriezelleinrichtung angeordneten Batteriezelle
WO2013010832A2 (de) Batteriemanagementsystem und dazugehöriges verfahren zur bestimmung eines ladezustands einer batterie, batterie mit batteriemanagementsystem und kraftfahrzeug mit batteriemanagementsystem
WO2019034474A1 (de) Abschaltvorrichtung für ein elektrisches versorgungsnetz
DE102012213053B4 (de) Batterie, Batteriezelle mit Sicherungsvorrichtung sowie Verfahren zum Schutz einer Batteriezelle
DE102013218081A1 (de) Batteriemoduleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz eines in einer Batteriemoduleinrichtung angeordneten Batteriemoduls
EP2865068B1 (de) Batteriemanagementsystem mit erhöhter robustheit gegenüber negativen spannungen
DE102013204527A1 (de) Batteriezelleinrichtung mit Lithiumablagerungssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
EP3698419B1 (de) Hochspannungs-batteriesystem und verfahren zum betreiben eines hochspannung- batteriesystems
EP2619845B1 (de) Batteriesystem zur messung von batteriemodulspannungen
EP2779354B1 (de) Elektrisch eigensicheres Batteriemodul mit umpolbarer Ausgangsspannung und Verfahren zur Überwachung eines Batteriemoduls
EP2867969B1 (de) Batteriesystem und kraftfahrzeug mit batteriesystem
DE102011084688B4 (de) Batteriesystem
WO2012000709A1 (de) Batteriesystem
DE102011079120B4 (de) Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
DE102012211086A1 (de) Sicherheitselektronik für ein Batteriemodul, Batteriezellenüberwachungseinheit, Batteriesystem und Kraftfahrzeug
DE102012211092A1 (de) Batteriesystem und Kraftfahrzeug mit Batteriesystem
WO2010089002A1 (de) Batteriezelle mit erhöhter zuverlässigkeit und damit ausgestattete traktionsbatterie
WO2023104931A1 (de) System zum versorgen eines elektrischen verbraucherkreises in einem fahrzeug mit energie und verfahren zum betreiben eines solchen systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11718415

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11718415

Country of ref document: EP

Kind code of ref document: A1