WO2011158584A1 - Conveyance device and conveyance method for thin film glass - Google Patents

Conveyance device and conveyance method for thin film glass Download PDF

Info

Publication number
WO2011158584A1
WO2011158584A1 PCT/JP2011/061158 JP2011061158W WO2011158584A1 WO 2011158584 A1 WO2011158584 A1 WO 2011158584A1 JP 2011061158 W JP2011061158 W JP 2011061158W WO 2011158584 A1 WO2011158584 A1 WO 2011158584A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
roll
film glass
transport
glass
Prior art date
Application number
PCT/JP2011/061158
Other languages
French (fr)
Japanese (ja)
Inventor
直久 大谷
広貴 工藤
英之 福本
間宮 周雄
伸明 高橋
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012520329A priority Critical patent/JPWO2011158584A1/en
Publication of WO2011158584A1 publication Critical patent/WO2011158584A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/30Forces; Stresses
    • B65H2515/31Tensile forces
    • B65H2515/314Tension profile, i.e. distribution of tension, e.g. across the material feeding direction or along diameter of web roll

Definitions

  • the present invention relates to a transport device for thin film glass and a transport method for thin film glass.
  • This thin glass is a very thin glass having a thickness of 200 ⁇ m or less, preferably 30 to 150 ⁇ m, and this thin glass has flexibility and can be wound into a roll, for example.
  • JP 2010-105900 A Japanese Patent Laid-Open No. 8-283401
  • the first problem of the present invention is to provide a thin-film glass transport device and a thin-film glass transport method capable of suppressing breakage of the thin-film glass caused by uneven stress generated in a roll-shaped thin-film glass. .
  • the thin film glass described above is flexible, it is a brittle material in the first place. Therefore, if the thin film glass is continuously passed through a conveying roll having a large holding angle, it is broken by repeated bending. May end up.
  • the second problem of the present invention is to provide a thin film glass transport device and a thin film glass transport method capable of suppressing the breakage of the thin film glass when passing through the transport roll.
  • cutting with a laser such as a CO 2 laser is preferably used.
  • a laser such as a CO 2 laser
  • one main surface of the thin film glass is irradiated with a CO 2 laser, and the thin film glass is cut by crack propagation utilizing the thermal stress.
  • the theoretical strength of glass is very high, but the tensile strength substantially obtained is said to be about 1/100 of that. This is because stress concentrates on the so-called micro cracks generated on the glass end face.
  • the quality of the edge is particularly important, and the required quality is particularly high when it is actually handled as a long flexible strip.
  • the edge processing requires a cutting technique on the crack propagation side that generates thermal stress and cuts, and a CO 2 laser having excellent absorption characteristics to glass is used in terms of thermal stress generation. It is publicly known that what has been cut by this cutting technique can minimize the microcracks in the cut cross section and maintain the breaking strength of the cut glass itself. In general, if the thickness is about 200 ⁇ m, it is possible to cleave all the film thickness directions (so-called full cut) by a laser irradiation and rapid cooling cutting process.
  • the thin film glass cut by the laser generates fine cracks on the laser non-irradiated surface that is not irradiated with the laser. This is because when the crack progressed by the laser becomes faster than the scanning speed of the laser, the back surface (laser non-irradiated surface) side of the thin film glass is overheated, resulting in distortion on this laser non-irradiated surface. It is thought to occur.
  • the third problem of the present invention is a method for transporting thin film glass capable of suppressing breakage during transport of thin film glass caused by laser irradiation (cracks generated on a non-irradiated surface), and transport of thin film glass. Is to provide a device.
  • the first problem is achieved by the following means 1 to 20.
  • a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
  • the transport roll is arranged so that a transport direction length of the thin film glass stretched between the transport roll and the roll-shaped winding glass wound around the winding shaft is 200 mm or more.
  • a thin-film glass conveying device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll.
  • the transport roll includes the transport roll, It is arranged so that the length in the transport direction of the thin film glass stretched between the roll-shaped winding glass wound around the winding shaft is 0.5 times or more the width of the thin film glass. 2.
  • At least one of the transport roll and the winding shaft has a transport direction length of the thin film glass stretched between the transport roll and a roll-shaped winding glass wound on the winding shaft.
  • the transport roller is a transport device for thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in a radial direction.
  • Adjusting means capable of adjusting the distances at both ends in the width direction of the thin film glass between the transport roll and the winding shaft;
  • Tension detection means capable of detecting each tension in the conveyance direction on both sides in the width direction of the thin film glass passing through the conveyance roll;
  • Control means for controlling the adjustment means so that the tension difference is less than the predetermined threshold when the tension difference detected by the tension detection means is equal to or greater than a predetermined threshold;
  • the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
  • the transport roll is arranged so that the transport direction length of the thin film glass stretched between the roll-shaped original roll glass wound around the feeding shaft and the transport roll is 200 mm or more.
  • a thin-film glass conveying device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
  • the transport roll is arranged so that the transport direction length of the thin film glass stretched between the roll-shaped original roll glass wound around the feeding shaft and the transport roll is 200 mm or more.
  • the conveyance roll has a length in the conveyance direction of the thin film glass stretched between the conveyance roll and a roll-shaped original glass wound around the feeding shaft, which is 0.5 times or more the width of the thin film glass. 7.
  • At least one of the transport roll and the feeding shaft can adjust the transport direction length of the thin film glass stretched between the transport roll and the roll-shaped original winding glass wound around the feeding shaft.
  • the apparatus for transporting thin film glass according to 6 or 7 is configured to be movable.
  • the transport roller is a transport device for thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in a radial direction.
  • Adjustment means capable of adjusting each distance at both ends in the width direction of the thin-film glass with the transport roll and the feeding shaft;
  • Tension detection means capable of detecting each tension in the conveyance direction on both sides in the width direction of the thin film glass passing through the conveyance roll;
  • Control means for controlling the adjustment means so that the tension difference is less than the predetermined threshold when the tension difference detected by the tension detection means is equal to or greater than a predetermined threshold;
  • the conveyance direction length of the said thin film glass stretched between the said conveyance roll and the roll-shaped winding glass wound up by the said winding shaft is 0.5 of the width
  • a method for transporting thin film glass which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
  • a method for transporting thin film glass characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in the radial direction as the transport roll.
  • Adjustment means capable of adjusting each distance in the width direction both ends of the thin film glass between the transport roll and the winding shaft, and each of the thin film glass passing through the transport roll in the transport direction on both sides in the width direction.
  • a tension detecting means capable of detecting the tension, and The thin film glass, wherein when the tension difference between the tensions detected by the tension detection means is equal to or greater than a predetermined threshold, the adjustment means is controlled so that the tension difference is less than the predetermined threshold.
  • shaft is 0.5 times or more of the width
  • the length in the transport direction of the thin film glass stretched between the transport roll and the roll-shaped original glass wound around the feed shaft can be adjusted.
  • a method for transporting thin film glass characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in the radial direction as the transport roll.
  • Adjusting means capable of adjusting distances between the transport roll and the feeding shaft at both ends in the width direction of the thin film glass, and tensions in the transport direction on both sides in the width direction of the thin film glass passing through the transport roll
  • a tension detecting means capable of detecting The thin film glass, wherein when the tension difference between the tensions detected by the tension detection means is equal to or greater than a predetermined threshold, the adjustment means is controlled so that the tension difference is less than the predetermined threshold.
  • the second problem is achieved by the following means 21 to 28, and the third problem is achieved by the means 29 to 36.
  • the transport rolls that come into contact with the thin film glass at a holding angle of 40 degrees or more are continuously arranged in parallel in the transport direction by 4 or less.
  • Two transport rolls that are in contact with the thin film glass at a holding angle of 90 degrees or more and that are continuously arranged in the transport direction are the transport direction length of the thin film glass stretched between the two transport rolls.
  • the two transport rolls that are in contact with the thin film glass at a holding angle of 120 degrees or more and that are continuously arranged in the transport direction are the transport direction length of the thin film glass stretched between the two transport rolls.
  • 24. The apparatus for transporting a thin film glass according to any one of 21 to 23, wherein the apparatus is arranged so that the length is 100 mm or more.
  • 27. The method for transporting thin film glass according to 25 or 26, wherein a film having a thickness of 100 mm or more is used.
  • Each of the thin film glasses that are in contact with the thin film glass at a holding angle of 120 ° or more and that are continuously arranged in parallel in the transport direction are stretched between the two transport rolls in the transport direction length.
  • the transport method of thin film glass which transports a long thin film glass whose both ends in the width direction are cut by laser irradiation along a longitudinal direction with a transport roll
  • the thin film glass transported by the transport roll is rolled so that the laser non-irradiation surface opposite to the laser irradiation surface irradiated with the laser is located on the inner peripheral side of both main surfaces of the thin film glass.
  • the transport roll transports the thin film glass while being in contact with a laser non-irradiated surface opposite to the laser irradiated surface irradiated with the laser among the two main surfaces of the thin film glass. Conveying device.
  • the thin film glass transport device that transports the long thin film glass whose both ends in the width direction are cut by the laser irradiation along the longitudinal direction by the transport roll, Comprising at least one other transport roll for transporting the thin film glass in contact with the laser irradiated surface irradiated with the laser among the two main surfaces of the thin film glass;
  • the said other conveyance roll contacts the said laser irradiation surface of the said thin film glass at the holding angle of less than 90 degree
  • the thin film glass conveying apparatus characterized by the above-mentioned.
  • a thin-film glass conveying device In the thin film glass transport device that transports the long thin film glass whose both ends in the width direction are cut by the laser irradiation along the longitudinal direction by the transport roll, A winding shaft for winding the thin film glass conveyed by the conveying roll into a roll; The winding shaft winds the thin film glass so that the laser non-irradiation surface opposite to the laser irradiation surface irradiated with the laser is located on the inner peripheral side of both main surfaces of the thin film glass.
  • a thin-film glass conveying device In the thin film glass transport device that transports the long thin film glass whose both ends in the width direction are cut by the laser irradiation along the
  • 36 The apparatus for transporting thin film glass according to any one of 33 to 35, wherein the laser is a CO 2 laser.
  • the length of the thin film glass stretched between the roll-shaped winding glass wound around the winding shaft and the conveying roll is 200 mm or more, Even if there is some unbalance in the tension distribution in the width direction of the stretched thin film glass, it can be wound around the roll while relaxing the unbalance in the tension distribution between the rolls. it can. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
  • the said conveyance roll is the roll wound by the said conveyance roll, the roll-shaped winding glass wound by the said winding shaft, or the said delivery axis
  • the length of the thin film glass stretched between the glass-form original winding glass is arranged so that the length of the thin film glass is 0.5 times or more the width of the thin film glass. Even if there is some unbalance in the tension distribution in the width direction of the thin film glass, it can be wound by the winding shaft while relaxing the unbalance in the tension distribution between the rolls. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
  • the roll portion of the transport roll that comes into contact with the thin film glass is configured to be elastically deformable in the radial direction. Can be relaxed. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
  • the length of the thin film glass stretched between the roll-shaped original glass wound on the feeding shaft and the transport roll is 200 mm or more. Even if there is some unbalance in the tension distribution in the width direction of the thin film glass to be laid, it can be transported by the transport roll while relaxing the unbalance in the tension distribution between the rolls. Therefore, even when the original winding glass has stress uneven distribution, the thin film glass can be fed out without further biasing the stress uneven distribution, and consequently, the damage of the thin film glass due to the stress uneven distribution can be suppressed. it can.
  • the transport roll is continuous only in four or less in the transport direction. Therefore, it is possible to suppress breakage of the thin film glass caused by continuously passing through such a conveying roll having a large holding angle.
  • the transport roll transports the thin film glass while being in contact with the laser non-irradiated surface of both main surfaces of the thin film glass, the laser non-irradiated surface is finely irradiated by laser irradiation. Even if a crack has occurred, the thin-film glass is not bent in a direction in which the crack easily develops when passing through the transport roll. Therefore, the progress of cracks can be suppressed, and breakage at the time of transporting the thin film glass caused by laser irradiation can be suppressed.
  • the other transport roll is less than 90 degrees. Since it is in contact with the laser irradiation surface of the thin film glass at the holding angle, the thin film glass is not excessively bent in a direction in which cracks on the non-laser irradiation surface easily progress when passing through the transport roll. Therefore, the progress of cracks can be suppressed, and breakage at the time of transporting the thin film glass caused by laser irradiation can be suppressed.
  • the thin film glass is wound up in a roll shape while the laser non-irradiated surface of both the main surfaces of the thin film glass is positioned on the inner peripheral side. Even if a fine crack is generated on the irradiated surface, the thin film glass is not bent in a direction in which the crack is likely to progress during winding. Therefore, the progress of cracks can be suppressed, and breakage at the time of transporting the thin film glass caused by laser irradiation can be suppressed.
  • FIG. 1 It is a figure which shows schematic structure of the conveying apparatus of thin film glass. It is a figure for demonstrating a tension meter and LM guide. It is a figure for demonstrating the structure of a drawing roll and a sending-in roll. It is the figure which showed the tension distribution image of the width
  • FIG. 10 is a diagram for explaining a conveyance system used in Example 9; 10 is a graph summarizing the results of Example 9.
  • FIG. 1 is a diagram showing a schematic configuration of a thin-film glass transfer device (hereinafter simply referred to as a transfer device) 1 in the embodiments of the invention described in 1 to 20 above.
  • a transfer device hereinafter simply referred to as a transfer device
  • the transport device 1 is a device that coats a functional film on the surface of the thin film glass G while transporting the long thin film glass G in a roll-to-roll manner along the longitudinal direction.
  • the transport device 1 includes a feed roll (feed shaft) 2, a take-up roll (winding shaft) 3, a plurality of transport rolls 4,. In the process where the glass G is unwound from the unwinding roll 2 and conveyed by the conveying rolls 4,... Has been.
  • the one adjacent to the feeding roll 2 is a drawing roll 41.
  • the length of the thin film glass G stretched between the drawing roll 41 and the roll-shaped thin film glass G (original winding glass) wound around the feeding roll 2 is 200 mm or more. It is arranged like this.
  • the drawing roll 41 is arranged so that the length in the conveyance direction of the thin film glass G stretched between the drawing roll 41 and the original glass is 0.5 times or more the width of the thin film glass G. More preferably, it is provided.
  • the one adjacent to the take-up roll 3 is a feed roll 42.
  • the feed roll 42 is a thin film glass stretched between a roll-shaped thin film glass G (winding glass) wound around the take-up roll 3 and the feed roll 42 in the same manner as the drawing roll 41. G is disposed so that the length in the conveyance direction is 200 mm or more.
  • the feeding roll 42 has a length in the conveying direction of the thin film glass G stretched between the feeding roll 42 and the take-up glass to be 0.5 times or more the width of the thin film glass G. It is more preferable that they are disposed on the surface.
  • drawing rolls 41 and feeding rolls 42 are provided with tensiometers 61 capable of detecting respective tensions in the conveying direction on both sides in the width direction of the thin film glass G passing through the drawing roll 41 or the feeding roll 42. It has been. As shown in FIGS. 2A and 2B, the tensiometer 61 is provided in a portion that pivotally supports both ends of the drawing roll 41 and the feeding roll 42 in the width direction, and transports the thin film glass G by an internal strain gauge. It is comprised so that direction tension can be detected.
  • each of the drawing roll 41 and the feeding roll 42 is provided with a linear motion guide (hereinafter referred to as LM guide) 71 capable of moving the drawing roll 41 or the feeding roll 42 in the transport direction.
  • the LM guide 71 supports one of the shaft support portions at both ends of the drawing roll 41 and the feeding roll 42 so as to be movable along the conveying direction. With such an LM guide 71, it becomes possible to adjust each distance in the width direction both ends of the thin film G of the drawing roll 41 and the feeding roll 2, and the thin film glass G of the feeding roll 42 and the winding roll 3 The respective distances at both ends in the width direction can be adjusted.
  • the LM guide 71 is capable of adjusting the length in the conveyance direction of the thin film glass G stretched between the drawing roll 41 and the original winding glass, and between the feeding roll 42 and the winding glass.
  • the conveyance direction length of the thin film glass G to be stretched can be adjusted.
  • the drawing roll 41 and the feeding roll 42 are configured such that the roll portion in contact with the thin film glass G can be elastically deformed in the radial direction.
  • a drawing roll 41 and a feeding roll 42 for example, a rubber roll using a highly elastic rubber for the roll portion may be used.
  • a roll having a highly elastic body and having a coating for example, fluorine-based resin
  • a coating for example, fluorine-based resin
  • the transport apparatus 1 includes a control unit 10.
  • the control unit 10 is connected to a drive motor 21 and a drive motor 31 that drive the feed roll 2 and the take-up roll 3, and controls the drive motor 21 and the drive motor 31 to control the feed roll 2 and the take-up roll 3. Can be rotated at a predetermined speed.
  • the control unit 10 is connected to each tension meter 61 and each LM guide 71. And, in each of the drawing roll 41 and the feeding roll 42, the control unit 10 has a tension difference of each tension on both sides in the width direction of the thin film glass G detected by the tension meter 61, when a predetermined threshold value or more is reached.
  • the LM guide 71 is controlled so that the tension difference is less than a predetermined threshold.
  • the thin film glass G transported by the transport apparatus 1 is not particularly limited, but is a very thin glass having a thickness of 200 ⁇ m or less, preferably 30 to 150 ⁇ m.
  • the length in the transport direction of the thin film glass G stretched between the roll-shaped winding glass wound around the winding roll 3 and the feeding roll 42 is 200 mm or more. Even if there is some imbalance in the tension distribution in the width direction of the thin film glass G to be wound, it can be wound by the winding roll 3 while relaxing the unbalance of the tension distribution between the rolls. . Therefore, the stress uneven distribution at the time of winding due to the unbalanced tension distribution of the thin film glass G can be reduced, and consequently, the damage of the thin film glass G due to the stress uneven distribution can be suppressed.
  • the conveyance direction length of the thin film glass G stretched between the roll-shaped original roll glass wound around the supply roll 2 and the drawing roll 41 is 200 mm or more, the thin film glass G stretched Even if there is a slight unbalance in the tension distribution in the width direction, the tension distribution unbalance can be relaxed between the rolls and conveyed by the drawing roll 41. Therefore, even when the original winding glass has stress uneven distribution, the thin film glass G can be fed out without further biasing the stress uneven distribution, and consequently, the breakage of the thin film glass G due to the stress uneven distribution is suppressed. be able to.
  • the roll part which contacts the thin film glass G is comprised so that elastic deformation
  • transformation can be carried out to radial direction
  • the drawing roll 41 and the feeding roll 42 are stretched over the said drawing roll 41 or the feeding roll 42.
  • the imbalance in the tension distribution of the thin film glass G can be further relaxed.
  • each of the drawing roll 41 and the feeding roll 42 when the tension difference between the tensions on both sides in the width direction of the thin film glass G detected by the tension meter 61 is equal to or greater than a predetermined threshold, the tension difference is predetermined. Since the LM guide 71 is controlled so as to be less than the threshold value, it is possible to further alleviate the unbalance of the tension distribution of the thin film glass G stretched over the drawing roll 41 or the feeding roll 42.
  • the LM guide 71 is provided on the drawing roll 41 and the feeding roll 42, but may be provided on the feeding roll 2 and the winding roll 3, or the feeding roll 2 and the winding roll. 3 may be provided only.
  • the LM guide 71 is provided only at one end side in each of the drawing roll 41 and the feeding roll 42, but may be provided at both ends.
  • the take-up roll 3 may take up the thin film glass G while sandwiching the slip sheet.
  • the slip sheet having elasticity in the thickness direction it is possible to further improve the above-described damage suppression effect of the thin film glass G.
  • tension meters 61 are provided at both ends of each of the drawing roll 41 and the feeding roll 42, air is blown out as shown in FIG. 4 as means capable of measuring the tension distribution in the width direction in more detail.
  • a drawing roll 41A and a feeding roll 42A that can convey the thin film glass G in a non-contact manner can be used.
  • the tension distribution in the width direction of the thin film glass G is measured in detail by measuring the pressure (back pressure) generated between the surface of the drawing roll 41A (feeding roll 42A) and the thin film glass G.
  • a drawing roll 41A and a feeding roll 42A for example, those described in JP-A-1-209256 and Japanese Patent No. 2597129 can be used.
  • a distance adjusting mechanism that can always ensure a minimum distance of 200 mm or more between the winding glass and the feeding roll 42 regardless of the winding diameter of the winding glass may be used. It goes without saying that the effect of the present invention described above can be obtained by setting the shortest distance between the take-up glass and the feeding roll 42 (the shortest distance between both surfaces) to 200 mm or more. A similar mechanism may be applied to the feeding side.
  • FIG. 8 is a diagram showing a main part of a thin film glass transfer device (hereinafter simply referred to as a transfer device) 1a according to the present embodiment.
  • the transport apparatus 1a includes a plurality of transport rolls 4,..., And rolls the long thin film glass G by the transport rolls 4,.
  • the conveying device 1a includes a feeding roll, a take-up roll, and a coating processing unit (all not shown) in addition to the conveying rolls 4,..., And feeds the thin film glass G from the feeding roll.
  • the functional film is coated on the surface of the thin film glass G by the coating processing unit.
  • the thin film glass G transported by the transport apparatus 1a is not particularly limited, but is a very thin glass having a thickness of 200 ⁇ m or less, preferably 30 to 150 ⁇ m.
  • the transport rolls 4,... are arranged side by side so that only four or less of the transport rolls 4,... Contacting the thin film glass G at a holding angle ⁇ of 40 degrees or more continue in the transport direction. That is, only four transport rolls 4 having a holding angle ⁇ of 40 degrees or more are continuous in the transport direction.
  • the holding angle ⁇ is a central angle of an arc portion in contact with the thin film glass G on the peripheral surface of the transport roll 4.
  • the transport rolls 4 are arranged so that only two or less continue in the transport direction. It is preferable to be provided. That is, it is preferable that only two transport rolls 4 having a holding angle ⁇ of 90 degrees or more are continuous in the transport direction.
  • the two transport rolls 4 that are in contact with the thin film glass G at a holding angle ⁇ of 90 degrees or more and are continuously arranged in the transport direction are the two transport rolls 4.
  • the thin film glass G stretched between them is arranged so that the length in the conveyance direction (the path length between the two conveyance rolls 4) is 100 mm or more.
  • the one conveyance roll 4 is arrange
  • the transport roll 4 is continuous only in four or less in the transport direction. It is possible to suppress breakage of the thin film glass G caused by continuously passing through the conveying roll 4 having such a large holding angle ⁇ .
  • the outer diameter of the transport roll 4 is preferably 100 mm or more. If the outer diameter of the transport roll 4 is 100 mm or more, the influence of the bending at the transport roll 4 on the breakage of the thin film glass G can be discussed only by the size of the holding angle ⁇ of the transport roll 4. .
  • a tension detection unit capable of detecting the tension in the conveyance direction of the thin film glass G is provided, and when the tension detection unit detects a predetermined tension, It is preferable that the conveyance of the thin film glass G is prevented in advance by stopping the conveyance or adjusting the position of the conveyance roll 4. Further, it is more preferable that the tension detecting means can detect a tension difference at both ends in the width direction of the thin film glass G.
  • a conventionally known one for example, one using a strain gauge provided on the supporting means of the transport roll 4 can be used.
  • FIG. 10 is a diagram showing a schematic configuration of a thin film glass transfer device (hereinafter simply referred to as a transfer device) 1b in the first embodiment.
  • the transport device 1b is a device that coats a functional film on the surface of the thin film glass G while transporting the long thin film glass G in a roll-to-roll manner along the longitudinal direction.
  • the conveying device 1b includes a feeding roll 2, a winding roll (winding shaft) 3, a plurality of conveying rolls 4,... In the process of taking out from the roll 2 and transporting it by the transport rolls 4,...
  • the thin film glass G transported by the transport apparatus 1b is not particularly limited, but is a very thin glass having a thickness of 200 ⁇ m or less, preferably 30 to 150 ⁇ m. Further, the thin film glass G is cut at both ends in the width direction in advance by laser irradiation, and as shown in the enlarged view of FIG. 10, one of both main surfaces is irradiated with laser at the time of cutting. a, and the other is a laser non-irradiated surface b that is not irradiated with a laser.
  • the laser used for cutting the thin glass G is in the present embodiment is a CO 2 laser.
  • the plurality of transport rolls 4 are arranged so as to transport the thin film glass G while in contact with the laser non-irradiated surface b of both main surfaces of the thin film glass G.
  • the winding roll 3 winds the thin-film glass G transported by the transport rolls 4... So that the laser non-irradiated surface b is located on the inner peripheral side.
  • the transport roll 4 transports the thin film glass G while being in contact with the laser non-irradiated surface b of both main surfaces of the thin film glass G, fine cracks are formed on the laser non-irradiated surface b by laser irradiation. Even when this occurs, the thin-film glass G is not bent in a direction in which the crack easily develops when passing through the transport roll 4. Therefore, the progress of cracks can be suppressed, and the breakage of the thin film glass G due to laser irradiation can be suppressed.
  • FIG. 11 is a diagram illustrating a schematic configuration of the transfer apparatus 1A according to the second embodiment.
  • the conveying device 1A includes a reverse bending roll 41 that is different from the other conveying rolls 4 in the direction in which the thin film glass G is bent, among the plurality of conveying rolls 4,. That is, unlike the other conveyance rolls 4, the reverse bending roll 41 conveys the thin film glass G while being in contact with the laser irradiation surface a of the thin film glass G. Moreover, this reverse bending roll 41 is arrange
  • the holding angle ⁇ is a central angle of an arc portion in contact with the thin film glass G in the peripheral surface of the reverse bending roll 41 (conveying roll 4).
  • the reverse bending roll 41 has a holding angle ⁇ of less than 90 degrees. Since the thin film glass G is in contact with the laser irradiation surface a of the thin film G, the thin film glass G is not excessively bent in a direction in which cracks on the laser non-irradiation surface b easily progress when passing through the reverse bending roll 41. Therefore, the progress of cracks can be suppressed, and the breakage of the thin film glass G due to laser irradiation can be suppressed.
  • both ends in the width direction of the thin film glass G are preliminarily cut with a laser, but a cutting process with a laser may be incorporated in the line as shown in FIG.
  • the transport device 1B includes a laser oscillation unit 81 and a cooling unit 82 disposed in the vicinity of the transport roll 4, and an end material removing unit 83 and an end material disposed in the vicinity of the transport roll 4 downstream thereof.
  • One collection unit 84 is provided at each end of the thin film glass G in the width direction.
  • a laser for example, CO2 laser
  • CO2 laser for example, CO2 laser
  • a predetermined depth is formed at both ends in the width direction of the thin film glass G.
  • the notch is continuously formed. Then, on the downstream side, the end material c of the thin film glass G that is closer to the end than the notch is separated from the thin film glass G by the end material removing unit 83 and accommodated in the end material collecting unit 84.
  • the resin film F1 as what is called a slip sheet is inserted
  • an interleaf feeding roll 72 for feeding out the resin film F2 as interleaving paper is also provided in the vicinity of the winding roll 3, and the winding roll 3 is configured to wind up the thin film glass G while sandwiching the resin film F2.
  • the outer diameter of the transport roll 4 is not particularly limited, but is preferably 100 mm or more in terms of suppressing breakage of the thin film glass G.
  • Example 1 In Example 1, the damage (break) state of the thin film glass G (winding glass) when winding with a winding roll was confirmed.
  • Thin glass> As the thin-film glass G, borosilicate glass having been cut in advance in the width direction with a CO 2 laser was used. The thickness and width of the thin film glass G are shown in Table 1 together with the results.
  • ⁇ Conveying conditions> In the apparatus of FIG. 1, the arrangement of the feed roll 42 and the take-up roll 3 is transported by the feed roll 42 'as shown in FIG. 7 and wound by the adjacent take-up rolls 3 (each roll diameter is 200 mm). The test was conducted after changing to.
  • the length of the thin film glass stretched decreases, and the roll glass wound around the take-up roll and the feed roll 42 'are stretched between the roll glass and the feed roll 42'.
  • the conveyance direction length L of the thin film glass becomes shorter (decreases), and breaks when it becomes equal to or less than a certain length. The relationship between L and breakage was observed where the breakage occurred.
  • the feeding roll 42 ′ was a flat type (made of a uniform outer diameter over the entire width of the thin film glass G) made of vinyl chloride.
  • the conveyance speed was constant at 5 m / min.
  • the winding conditions were set as follows depending on the glass width.
  • the “taper” shown in the winding condition means that the conveying direction tension acting on the thin film glass G is reduced linearly during winding.
  • the value "" means to what percentage of the initial tension the conveyance direction tension at the completion of winding is reduced.
  • a failure rate of less than 5% was accepted.
  • “the length L of the stretched thin film glass at the time of breaking” should be at least 200 mm. Further, since the value obtained by dividing the value of “the distance between the inner surface of the feeding roll and the surface of the take-up glass” by the width of the thin film glass G is approximately 0.5, the distance is 0.5 times the width of the thin film glass G. It is preferable to have the above (breakage rate is 0%).
  • Example 2 In Example 2, the damage (rupture) state of the thin film glass G (winding glass) when the one shown in FIG. 3 was used as the feeding roll 42 ′ was confirmed.
  • ⁇ Evaluation conditions> As the feed roll 42 ', a 40 mm thick rubber (hardness: JIS A 40 degrees) is attached around the main shaft, and the outer surface is covered with a fluorine-based heat-shrinkable tube, and then the surface is surface roughness Ra1. Polished to 0.0 ⁇ m (JIS B 0601-1994) was used. The thin film glass G and the transport conditions were the same as those in Example 1, and the transport speed was constant at 5 m / min. ⁇ Results and summary> The results are shown in Table 2. When Table 2 is compared with Table 1, it can be seen that by using a double-structured roll as shown in 3 as the feed roll 42 ′, damage to the thin film glass G (winding glass) can be suppressed.
  • Example 3 In Example 3, the feeding roll 42 ′ is provided with the LM guide 71 as shown in FIG. 2, and the tension gauge 61 measures each tension at both ends in the width direction of the thin film glass G, and the tension difference between the tensions. , The alignment of the feed roll 42 was adjusted by the LM guide 71. And the failure
  • the tension difference at both ends in the width direction was set to a value that can be controlled at 20N. Further, the tension setting for setting the predetermined winding condition for each thin film glass was controlled by the drive motor 31. ⁇ Results and summary> The results are shown in Table 3. Comparing Table 3 with Table 1, it can be seen that the diameter of the wound glass that can be wound without breakage can be increased by performing alignment adjustment control based on the tension difference.
  • Example 4 In Example 4, the state of damage (breaking) of the thin film glass G when the film was fed from the original winding roll was confirmed.
  • the damage state of the unrolled glass immediately after feeding was confirmed when the length of the stretched thin film glass was changed by changing the position of the drawing roll 41.
  • the length of the stretched thin film glass was implemented in 6 stages shown in the table.
  • the test was performed 150 times for each length, and the breakage rate was evaluated in the same manner as in Example 1.
  • the thin film glass G was the same as in Example 1 above.
  • the original roll glass was obtained by winding the thin film glass G up to an outer diameter of 400 mm without using a slip sheet.
  • the drawing roll 41 was a flat (made with a uniform outer diameter across the entire width of the thin film glass G) vinyl chloride roll.
  • Example 5 In Example 5, in the same manner as in Example 4, the damage (break) state of the thin film glass G (winding glass) when using the drawing roll 41 shown in FIG. 3 was confirmed.
  • ⁇ Evaluation conditions> As the drawing roll 41, the one used as the feeding roll 42 in Example 2 was used. The thin film glass G was the same as in Example 1 above. Moreover, the conveyance speed was fixed at 5 m / min, and the tension of the thin film glass G during feeding was 70 N / width. ⁇ Results and summary> The results are shown in Table 5. When Table 5 is compared with Table 4, it can be seen that by using a double structure roll as shown in FIG. 3 as the drawing roll 41, the distance between the drawing roll 41 and the original glass can be shortened without breaking.
  • Example 6 In Example 6, in the same manner as in Example 4, except that the alignment adjustment control similar to that in Example 3 was performed on the drawing roll 41, the damage (rupture) state of the thin film glass G immediately after feeding was confirmed. did. ⁇ Evaluation conditions> The evaluation conditions were the same as in Example 3 above. ⁇ Results and summary> The results are shown in Table 6. Comparing Table 6 with Table 4, it can be seen that by performing alignment adjustment control based on the tension difference of the thin film glass G with respect to the drawing roll 41, the distance between the drawing roll 41 and the original glass can be shortened without breaking.
  • Example 7 In this embodiment, as shown in FIG. 9, in the transport system for transporting the thin film glass G by the six transport rolls 4 (hereinafter referred to as the first roll 4a to the sixth roll 4f from the upstream side), these transport rolls.
  • the breaking state of the thin film glass G when the holding angle ⁇ 1 to ⁇ 5 of 4 and the spans L1 to L5 between rolls were changed was confirmed.
  • the span between rolls is the length in the transport direction of the thin film glass G stretched between the transport rolls 4.
  • the holding angle ⁇ 6 on the transport roll 4f was approximately 38 degrees.
  • ⁇ Thin glass> a glass resin having a polyester resin film connected to the front end in the longitudinal direction was used, and the glass portion passed through each transport roll 4 after the film portion was in a stable transport state. Further, as the thin film glass G, a borosilicate glass having a width of 400 mm, in which both ends in the width direction have been cut in advance with a CO 2 laser, was used. The thickness and the conveyance direction tension of the thin film glass G are shown in Tables 1 to 3 together with the results.
  • Example 8 when the thin film glass G was taken up by the take-up roll 3, when the surface to be wound on the inner peripheral side was changed between the laser irradiation surface a and the laser non-irradiation surface b, the thin film glass G was full length. It was confirmed whether or not it could be wound up without breakage (breakage). (This corresponds to the apparatus shown in FIG. 10, but the winding process was not performed, and the winding test was performed. In the figure, the interleaf winding roll in the vicinity of the feeding roll as shown in FIG.
  • the “taper” shown in the winding conditions in the table means that the conveying direction tension acting on the thin film glass G is linearly reduced during winding, and the value in this “taper” column Means to what percentage of initial tension the conveyance direction tension at the completion of winding is reduced. Strictly speaking, this value is the rate of change in tension with respect to the change in the winding diameter.
  • the winding diameter of 200 to 400 mm was set to 0 to 100% (how much was reduced when the diameter was 200 to 400 mm).
  • “end face edge stability” in the table is an evaluation of the state of both end faces in the width direction of the wound thin film glass G, and each symbol in this column indicates the following contents.
  • The deviation of both end faces with respect to the core end of the winding roll is in the range of 0.5 to 1.0 mm.
  • Example 9 In Example 9, as shown in FIG. 13, in a transport system including three transport rolls 4,... (Hereinafter referred to as first roll 4a to third roll 4c) whose holding angles ⁇ 1 to ⁇ 3 can be changed, Under the conditions described above, the state of breakage (breaking) of the thin film glass G when the holding angle ⁇ 1 to ⁇ 3 of the thin film glass in each roll was changed was confirmed. Moreover, the thin film glass surface which contacts the 3rd roll 4c was also changed. ⁇ Thin glass> As the thin glass G, a glass resin having a polyester resin film connected to the front end in the longitudinal direction was used, and the glass portion passed through each transport roll 4 after the film portion was in a stable transport state.
  • the thin film glass G borosilicate glass having been cut in advance in the width direction with a CO 2 laser was used.
  • the thickness and width of the thin film glass G are shown in Table 11 together with the results.
  • ⁇ Conveying conditions> The winding speed of the thin film glass G was constant at 5 m / min. And the thin film glass G was conveyed 25m (for 5 minutes) for every test, and the presence or absence of the damage was confirmed. Other conditions are shown in Table 11 together with the results.
  • Results> The results are shown in Table 11. In the table, the symbols in the “presence / absence of breakage” column respectively indicate the following contents.
  • FIG. 14 shows a summary of the relationship between the holding angle ⁇ 3 and the damage occurrence rate based on the results in Table 11. From this figure, even when the laser irradiation surface a of the thin film glass G is brought into contact with the transport roll 4 (reverse bending roll 41), the holding angle ⁇ of the transport roll 4 (reverse bending roll 41) is less than 90 degrees. By doing, it turns out that the breakage at the time of conveyance of thin film glass G can be controlled suitably.
  • Control part control means 21 drive motor 31 drive motor 61 tension meter (tension detection means) 71 LM guide (adjustment means) G thin film glass ⁇ holding angle 71 interleaf take-up roll 72 interleaf feed roll 81 laser oscillation part 82 cooling part 83 scrap removal part 84 scrap recovery part F1 resin film F2 resin film a laser irradiation surface b laser non-irradiation surface c edge Material

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Polarising Elements (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

The disclosed device and method suppress damage to thin film glass caused by unevenly distributed stress generated in rolled thin film glass. The disclosed conveyance device (1) conveys long length thin film glass (G) along the lengthwise direction thereof via a feed roll (42), and winds the glass into a roll by means of a winding roll (3) which is adjacent to the feed roll (42). The feed roll (42) is arranged such that the length of the thin film glass (G), stretching between the feed roll (42) and the rolled glass wound by the winding roll (3), in the conveyance direction of said thin film glass, is at least 200mm.

Description

薄膜ガラスの搬送装置、及び薄膜ガラスの搬送方法Thin film glass conveying apparatus and thin film glass conveying method
 本発明は、薄膜ガラスの搬送装置、及び薄膜ガラスの搬送方法に関する。 The present invention relates to a transport device for thin film glass and a transport method for thin film glass.
 近年、表示デバイス用の基板材料として、ガスバリア性や透光性などに優れる薄膜ガラスが好適に用いられている。この薄膜ガラスは、厚さが200μm以下、好ましくは30~150μmの極めて薄いガラスであり、この薄さによって可撓性を有し、例えばロール状に巻き取ることも可能となっている。 In recent years, thin film glass having excellent gas barrier properties and translucency has been suitably used as a substrate material for display devices. This thin glass is a very thin glass having a thickness of 200 μm or less, preferably 30 to 150 μm, and this thin glass has flexibility and can be wound into a roll, for example.
 そのため、この可撓性を利用して薄膜ガラスに効率的に各種処理を施す手法として、長尺な薄膜ガラスを繰出軸から巻取軸へロールツーロール方式でロール搬送しつつ、その表面に各種処理を施す技術が提案されている(例えば、特許文献1,2参照)。 Therefore, as a method for efficiently performing various treatments on the thin film glass by utilizing this flexibility, various thin films on the surface of the thin film glass are conveyed from the feeding shaft to the winding shaft by a roll-to-roll method. Techniques for performing processing have been proposed (see, for example, Patent Documents 1 and 2).
特開2010-105900号公報JP 2010-105900 A 特開平8-283041号公報Japanese Patent Laid-Open No. 8-283401
 しかしながら、第一に、搬送される薄膜ガラスの厚さ分布や巻き取り時の張力分布を完全に均一にすることは困難であるため、図6に示すように、巻取軸でロール状に巻き取られる巻取りガラスには上記の厚さ分布や張力分布に起因する偏りが生じる。そのため、この偏りに基づく応力偏在によって、薄膜ガラス(巻取りガラス)が破損してしまう場合がある。 However, first, since it is difficult to make the thickness distribution of the thin film glass to be conveyed and the tension distribution at the time of winding completely uniform, as shown in FIG. Unwinding due to the above thickness distribution and tension distribution occurs in the wound glass to be taken. Therefore, the thin film glass (winding glass) may be damaged by the stress uneven distribution based on this bias.
 また、同様の現象として、繰出軸にロール状に巻かれた元巻ガラスに上記の応力偏在が生じている場合に、繰出軸とその直後の搬送ロールとの間において上記の偏在した応力を更に偏らせるような張力分布を生じさせてしまうと、繰出軸から繰り出された薄膜ガラスが破損してしまう場合がある。 Further, as a similar phenomenon, when the above-mentioned stress is unevenly distributed in the original glass wound in a roll shape on the feed shaft, the above-described uneven stress is further increased between the feed shaft and the transport roll immediately thereafter. If a biased tension distribution is generated, the thin film glass fed from the feeding shaft may be damaged.
 本発明の第一の課題は、ロール状の薄膜ガラスに生じる応力偏在に起因する当該薄膜ガラスの破損を抑制することのできる薄膜ガラスの搬送装置、及び薄膜ガラスの搬送方法を提供することである。 The first problem of the present invention is to provide a thin-film glass transport device and a thin-film glass transport method capable of suppressing breakage of the thin-film glass caused by uneven stress generated in a roll-shaped thin-film glass. .
 また、第二に、上記の薄膜ガラスは、可撓性を有しているとはいえ、そもそも脆性材料であるため、大きな抱き角の搬送ロールに連続通過させると、屈曲が繰り返されることにより破断してしまう場合がある。 Second, although the thin film glass described above is flexible, it is a brittle material in the first place. Therefore, if the thin film glass is continuously passed through a conveying roll having a large holding angle, it is broken by repeated bending. May end up.
 本発明の第二の課題は、搬送ロール通過時における薄膜ガラスの破断を抑制することのできる薄膜ガラスの搬送装置、及び薄膜ガラスの搬送方法を提供することである。 The second problem of the present invention is to provide a thin film glass transport device and a thin film glass transport method capable of suppressing the breakage of the thin film glass when passing through the transport roll.
 更に第三として、薄膜ガラスの幅を所定の長さに揃える工程では、COレーザー等のレーザーによる切断が好適に用いられる。この切断工程では、薄膜ガラスの一方の主面にCOレーザーを照射し、その熱応力を利用した亀裂進展によって薄膜ガラスを切断する。 Third, in the step of aligning the width of the thin film glass to a predetermined length, cutting with a laser such as a CO 2 laser is preferably used. In this cutting step, one main surface of the thin film glass is irradiated with a CO 2 laser, and the thin film glass is cut by crack propagation utilizing the thermal stress.
 一般に、ガラスの理論強度は非常に高いが、実質的に得られる引っ張り強度はその1/100程度と言われている。これはガラス端面に生じる所謂マイクロクラックと言われる傷に、応力が集中作用することに起因する。ガラスの強度を維持するにはやはりエッジ部の品質が特に重要であり、実際に長尺の可撓性帯状物として扱う場合、特にその要求品質は高い。エッジの処理は熱応力を発生させ切断する亀裂進展側の切断技術が必須であり、熱応力発生の意味からガラスへの吸収特性が優れているCOレーザーが用いられる。この切断技術で切断処理されたものは、その切断断面のマイクロクラックが極小化でき、切断したガラス自体の破断強度をつよく維持できることは公知であり。通常200μm程度の厚さであればレーザー照射、急冷の切断プロセスで膜厚方向全てを割断(所謂フルカット)することが可能である。 In general, the theoretical strength of glass is very high, but the tensile strength substantially obtained is said to be about 1/100 of that. This is because stress concentrates on the so-called micro cracks generated on the glass end face. In order to maintain the strength of the glass, the quality of the edge is particularly important, and the required quality is particularly high when it is actually handled as a long flexible strip. The edge processing requires a cutting technique on the crack propagation side that generates thermal stress and cuts, and a CO 2 laser having excellent absorption characteristics to glass is used in terms of thermal stress generation. It is publicly known that what has been cut by this cutting technique can minimize the microcracks in the cut cross section and maintain the breaking strength of the cut glass itself. In general, if the thickness is about 200 μm, it is possible to cleave all the film thickness directions (so-called full cut) by a laser irradiation and rapid cooling cutting process.
 しかしながら、レーザーによって切断された薄膜ガラスでは、レーザーが照射されていないレーザー非照射面に微細なクラックを生じることが分かってきた。これは、レーザーによる亀裂進展がレーザーの走査速度よりも早くなったときに、薄膜ガラスの裏面(レーザー非照射面)側が加熱過多となる結果、このレーザー非照射面に歪みが発生してクラックが生じるものと考えられる。 However, it has been found that the thin film glass cut by the laser generates fine cracks on the laser non-irradiated surface that is not irradiated with the laser. This is because when the crack progressed by the laser becomes faster than the scanning speed of the laser, the back surface (laser non-irradiated surface) side of the thin film glass is overheated, resulting in distortion on this laser non-irradiated surface. It is thought to occur.
 そのため、レーザーによって切断された薄膜ガラスをロール搬送する場合に、レーザー非照射面を外側にして薄膜ガラスを大きく屈曲させると、この屈曲による曲率外側面に生じる引っ張り応力によりレーザー非照射面のクラックが進展して薄膜ガラスを破損させてしまう可能性が高い懸念がある。 Therefore, when the thin film glass cut by the laser is rolled, if the thin film glass is bent largely with the laser non-irradiated surface facing outside, cracks on the laser non-irradiated surface are caused by the tensile stress generated on the curved outer surface due to this bending. There is a high concern that it will progress and damage the thin-film glass.
 本発明の第三の課題は、レーザーの被照射(非照射面に発生するクラック)に起因する薄膜ガラスの搬送時での破損を抑制することのできる薄膜ガラスの搬送方法、及び薄膜ガラスの搬送装置を提供することである。 The third problem of the present invention is a method for transporting thin film glass capable of suppressing breakage during transport of thin film glass caused by laser irradiation (cracks generated on a non-irradiated surface), and transport of thin film glass. Is to provide a device.
 前記第一の課題は以下1~20の手段によって達成される。 The first problem is achieved by the following means 1 to 20.
 1.長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送装置において、
 前記搬送ロールは、前記巻取軸に巻き取られたロール状の巻取りガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されていることを特徴とする薄膜ガラスの搬送装置。
1. In a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
The transport roll is arranged so that a transport direction length of the thin film glass stretched between the transport roll and the roll-shaped winding glass wound around the winding shaft is 200 mm or more. A thin-film glass conveying device.
 2.前記搬送ロールは、当該搬送ロールと、
 前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されていることを特徴とする前記1に記載の薄膜ガラスの搬送装置。
2. The transport roll includes the transport roll,
It is arranged so that the length in the transport direction of the thin film glass stretched between the roll-shaped winding glass wound around the winding shaft is 0.5 times or more the width of the thin film glass. 2. The apparatus for transporting thin film glass as described in 1 above.
 3.前記搬送ロールと前記巻取軸との少なくとも一方は、当該搬送ロールと前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されていることを特徴とする前記1又は2に記載の薄膜ガラスの搬送装置。 3. At least one of the transport roll and the winding shaft has a transport direction length of the thin film glass stretched between the transport roll and a roll-shaped winding glass wound on the winding shaft. 3. The apparatus for transporting thin film glass according to 1 or 2, wherein the apparatus is configured to be movable so as to be adjustable.
 4.長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送装置において、
 前記搬送ロールは、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されていることを特徴とする薄膜ガラスの搬送装置。
4). In a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
The transport roller is a transport device for thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in a radial direction.
 5.長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送装置において、
 前記搬送ロールと前記巻取軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、
 前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、
 前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御する制御手段と、
 を備えることを特徴とする薄膜ガラスの搬送装置。
5. In a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
Adjusting means capable of adjusting the distances at both ends in the width direction of the thin film glass between the transport roll and the winding shaft;
Tension detection means capable of detecting each tension in the conveyance direction on both sides in the width direction of the thin film glass passing through the conveyance roll;
Control means for controlling the adjustment means so that the tension difference is less than the predetermined threshold when the tension difference detected by the tension detection means is equal to or greater than a predetermined threshold;
A thin-film glass conveying apparatus comprising:
 6.繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記搬送ロールは、前記繰出軸に巻かれたロール状の元巻ガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されていることを特徴とする薄膜ガラスの搬送装置。
6). In the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
The transport roll is arranged so that the transport direction length of the thin film glass stretched between the roll-shaped original roll glass wound around the feeding shaft and the transport roll is 200 mm or more. A thin-film glass conveying device.
 7.前記搬送ロールは、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されていることを特徴とする前記6に記載の薄膜ガラスの搬送装置。 7. The conveyance roll has a length in the conveyance direction of the thin film glass stretched between the conveyance roll and a roll-shaped original glass wound around the feeding shaft, which is 0.5 times or more the width of the thin film glass. 7. The apparatus for transporting thin film glass as described in 6 above, characterized in that
 8.前記搬送ロールと前記繰出軸との少なくとも一方は、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されていることを特徴とする前記6又は7に記載の薄膜ガラスの搬送装置。 8. At least one of the transport roll and the feeding shaft can adjust the transport direction length of the thin film glass stretched between the transport roll and the roll-shaped original winding glass wound around the feeding shaft. As described above, the apparatus for transporting thin film glass according to 6 or 7 is configured to be movable.
 9.繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記搬送ロールは、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されていることを特徴とする薄膜ガラスの搬送装置。
9. In the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
The transport roller is a transport device for thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in a radial direction.
 10.繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記搬送ロールと前記繰出軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、
 前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、
 前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御する制御手段と、
 を備えることを特徴とする薄膜ガラスの搬送装置。
10. In the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
Adjustment means capable of adjusting each distance at both ends in the width direction of the thin-film glass with the transport roll and the feeding shaft;
Tension detection means capable of detecting each tension in the conveyance direction on both sides in the width direction of the thin film glass passing through the conveyance roll;
Control means for controlling the adjustment means so that the tension difference is less than the predetermined threshold when the tension difference detected by the tension detection means is equal to or greater than a predetermined threshold;
A thin-film glass conveying apparatus comprising:
 11.長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送方法において、
 前記搬送ロールとして、前記巻取軸に巻き取られたロール状の巻取りガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されているものを用いることを特徴とする薄膜ガラスの搬送方法。
11. In the method of transporting thin film glass, which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
As said conveyance roll, it arrange | positions so that the conveyance direction length of the said thin film glass stretched between the roll-shaped winding glass wound by the said winding shaft and the said conveyance roll may be 200 mm or more. What is used is a method for transporting thin film glass.
 12.前記搬送ロールとして、当該搬送ロールと前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されているものを用いることを特徴とする前記11に記載の薄膜ガラスの搬送方法。 12. As said conveyance roll, the conveyance direction length of the said thin film glass stretched between the said conveyance roll and the roll-shaped winding glass wound up by the said winding shaft is 0.5 of the width | variety of the said thin film glass. 12. The method for transporting thin film glass as described in 11 above, wherein a film disposed so as to be double or more is used.
 13.前記搬送ロールと前記巻取軸との少なくとも一方として、当該搬送ロールと前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されているものを用いることを特徴とする前記11又は12に記載の薄膜ガラスの搬送方法。 13. As at least one of the transport roll and the winding shaft, a length in the transport direction of the thin film glass stretched between the transport roll and a roll-shaped winding glass wound around the winding shaft. 13. The method for transporting thin film glass according to 11 or 12 above, wherein one that is movable so as to be adjustable is used.
 14.長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送方法において、
 前記搬送ロールとして、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されているものを用いることを特徴とする薄膜ガラスの搬送方法。
14 In the method for transporting thin film glass, which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
A method for transporting thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in the radial direction as the transport roll.
 15.長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送方法において、
 前記搬送ロールと前記巻取軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、を用い、
 前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御することを特徴とする薄膜ガラスの搬送方法。
15. In the method of transporting thin film glass, which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
Adjustment means capable of adjusting each distance in the width direction both ends of the thin film glass between the transport roll and the winding shaft, and each of the thin film glass passing through the transport roll in the transport direction on both sides in the width direction. A tension detecting means capable of detecting the tension, and
The thin film glass, wherein when the tension difference between the tensions detected by the tension detection means is equal to or greater than a predetermined threshold, the adjustment means is controlled so that the tension difference is less than the predetermined threshold. Transport method.
 16.繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記搬送ロールとして、前記繰出軸に巻かれたロール状の元巻ガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されているものを用いることを特徴とする薄膜ガラスの搬送方法。
16. In the method of transporting thin film glass, which is rolled out from the feed shaft along the longitudinal direction of the long thin film glass wound in a roll shape on the feed shaft, and transported by a transport roll adjacent to the feed shaft,
As said conveyance roll, it arrange | positions so that the conveyance direction length of the said thin film glass stretched between the roll-shaped original winding glass wound by the said delivery axis | shaft and the said conveyance roll may be 200 mm or more. What is used is a method for transporting thin-film glass.
 17.前記搬送ロールとして、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されているものを用いることを特徴とする前記16に記載の薄膜ガラスの搬送方法。 17. As said conveyance roll, the conveyance direction length of the said thin film stretched between the said roll and the roll-shaped original winding glass wound by the said delivery axis | shaft is 0.5 times or more of the width | variety of the said thin film glass 17. The method for transporting thin film glass as described in 16 above, wherein a material arranged so as to be used is used.
 18.前記搬送ロールと前記繰出軸との少なくとも一方として、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されているものを用いることを特徴とする前記16又は17に記載の薄膜ガラスの搬送方法。 18. As at least one of the transport roll and the feeding shaft, the length in the transport direction of the thin film glass stretched between the transport roll and the roll-shaped original glass wound around the feed shaft can be adjusted. The method for transporting thin film glass as described in 16 or 17 above, wherein a material configured to be movable is used.
 19.繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記搬送ロールとして、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されているものを用いることを特徴とする薄膜ガラスの搬送方法。
19. In the method of transporting thin film glass, which is rolled out from the feed shaft along the longitudinal direction of the long thin film glass wound in a roll shape on the feed shaft, and transported by a transport roll adjacent to the feed shaft,
A method for transporting thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in the radial direction as the transport roll.
 20.繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記搬送ロールと前記繰出軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、を用い、
 前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御することを特徴とする薄膜ガラスの搬送方法。
20. In the method of transporting thin film glass, which is rolled out from the feed shaft along the longitudinal direction of the long thin film glass wound in a roll shape on the feed shaft, and transported by a transport roll adjacent to the feed shaft,
Adjusting means capable of adjusting distances between the transport roll and the feeding shaft at both ends in the width direction of the thin film glass, and tensions in the transport direction on both sides in the width direction of the thin film glass passing through the transport roll A tension detecting means capable of detecting
The thin film glass, wherein when the tension difference between the tensions detected by the tension detection means is equal to or greater than a predetermined threshold, the adjustment means is controlled so that the tension difference is less than the predetermined threshold. Transport method.
 また、前記第二の課題は以下の手段21~28により達成され、第三の課題は手段29~36により達成される。 The second problem is achieved by the following means 21 to 28, and the third problem is achieved by the means 29 to 36.
 21.長尺な薄膜ガラスを長手方向に沿って複数の搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記複数の搬送ロールのうち40度以上の抱き角で前記薄膜ガラスと接触する搬送ロールは、搬送方向に4つ以下だけ連続して並設されていることを特徴とする薄膜ガラスの搬送装置。
21. In the thin film glass transport device that transports the long thin film glass with a plurality of transport rolls along the longitudinal direction,
Of the plurality of transport rolls, the transport rolls that come into contact with the thin film glass at a holding angle of 40 degrees or more are continuously arranged in parallel in the transport direction by 4 or less.
 22.前記複数の搬送ロールのうち90度以上の抱き角で前記薄膜ガラスと接触する搬送ロールは、搬送方向に2つ以下だけ連続して並設されていることを特徴とする前記21に記載の薄膜ガラスの搬送装置。 22. The thin film according to 21, wherein among the plurality of transport rolls, two or less transport rolls in contact with the thin film glass at a holding angle of 90 degrees or more are continuously arranged in parallel in the transport direction. Glass conveying device.
 23.それぞれ90度以上の抱き角で前記薄膜ガラスと接触するとともに、搬送方向に連続して並設された2つの搬送ロールは、当該2つの搬送ロール間に張架される前記薄膜ガラスの搬送方向長さが100mm以上となるように配設されていることを特徴とする前記21又は22に記載の薄膜ガラスの搬送装置。 23. Two transport rolls that are in contact with the thin film glass at a holding angle of 90 degrees or more and that are continuously arranged in the transport direction are the transport direction length of the thin film glass stretched between the two transport rolls. 23. The apparatus for transporting thin film glass according to 21 or 22, wherein the apparatus is arranged so that the length is 100 mm or more.
 24.それぞれ120度以上の抱き角で前記薄膜ガラスと接触するとともに、搬送方向に連続して並設された2つの搬送ロールは、当該2つの搬送ロール間に張架される前記薄膜ガラスの搬送方向長さが100mm以上となるように配設されていることを特徴とする前記21~23の何れか一項に記載の薄膜ガラスの搬送装置。 24. The two transport rolls that are in contact with the thin film glass at a holding angle of 120 degrees or more and that are continuously arranged in the transport direction are the transport direction length of the thin film glass stretched between the two transport rolls. 24. The apparatus for transporting a thin film glass according to any one of 21 to 23, wherein the apparatus is arranged so that the length is 100 mm or more.
 25.長尺な薄膜ガラスを長手方向に沿って複数の搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記複数の搬送ロールとして、当該複数の搬送ロールのうち40度以上の抱き角で前記薄膜ガラスと接触する搬送ロールが搬送方向に4つ以下だけ連続して並設されているものを用いることを特徴とする薄膜ガラスの搬送方法。
25. In the transport method of thin film glass that transports long thin film glass with a plurality of transport rolls along the longitudinal direction,
As the plurality of transport rolls, use is made of the plurality of transport rolls in which the transport rolls that are in contact with the thin film glass at a holding angle of 40 degrees or more are continuously arranged in parallel in the transport direction. A method for conveying thin film glass.
 26.前記複数の搬送ロールとして、当該複数の搬送ロールのうち90度以上の抱き角で前記薄膜ガラスと接触する搬送ロールが搬送方向に2つ以下だけ連続して並設されているものを用いることを特徴とする前記25に記載の薄膜ガラスの搬送方法。 26. As the plurality of transport rolls, use of the plurality of transport rolls in which transport rolls that are in contact with the thin film glass at a holding angle of 90 degrees or more are continuously arranged in parallel in the transport direction. 26. The method for transporting thin film glass as described in 25 above.
 27.それぞれ90度以上の抱き角で前記薄膜ガラスと接触するとともに、搬送方向に連続して並設された2つの搬送ロールとして、当該2つの搬送ロール間に張架される前記薄膜ガラスの搬送方向長さが100mm以上となるように配設されているものを用いることを特徴とする前記25又は26に記載の薄膜ガラスの搬送方法。 27. Each of the thin film glasses stretched between the two transport rolls as two transport rolls that are in contact with the thin film glass at a holding angle of 90 degrees or more and are continuously arranged in the transport direction. 27. The method for transporting thin film glass according to 25 or 26, wherein a film having a thickness of 100 mm or more is used.
 28.それぞれ120度以上の抱き角で前記薄膜ガラスと接触するとともに、搬送方向に連続して並設された2つの搬送ロールとして、当該2つの搬送ロール間に張架される前記薄膜ガラスの搬送方向長さが100mm以上となるように配設されているものを用いることを特徴とする前記25~27の何れか一項に記載の薄膜ガラスの搬送方法。 28. Each of the thin film glasses that are in contact with the thin film glass at a holding angle of 120 ° or more and that are continuously arranged in parallel in the transport direction are stretched between the two transport rolls in the transport direction length. 28. The method for transporting thin film glass according to any one of 25 to 27 above, wherein a film having a thickness of 100 mm or more is used.
 29.幅方向両端がレーザーの照射によって切断された長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記薄膜ガラスの両主面のうち前記レーザーが照射されたレーザー照射面とは反対側のレーザー非照射面を前記搬送ロールと接触させつつ当該薄膜ガラスを搬送することを特徴とする薄膜ガラスの搬送方法。
29. In the transport method of thin film glass, which transports a long thin film glass whose both ends in the width direction are cut by laser irradiation along a longitudinal direction with a transport roll,
Conveyance of the thin film glass, wherein the thin film glass is conveyed while contacting a laser non-irradiation surface opposite to the laser irradiation surface irradiated with the laser among both main surfaces of the thin film glass. Method.
 30.幅方向両端がレーザーの照射によって切断された長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記薄膜ガラスの両主面のうち前記レーザーが照射されたレーザー照射面と90度未満の抱き角で接触しつつ当該薄膜ガラスを搬送する少なくとも1つの他の搬送ロールを用いることを特徴とする薄膜ガラスの搬送方法。
30. In the transport method of thin film glass, which transports a long thin film glass whose both ends in the width direction are cut by laser irradiation along a longitudinal direction with a transport roll,
A thin film characterized by using at least one other transport roll that transports the thin film glass while being in contact with a laser irradiation surface irradiated with the laser among both main surfaces of the thin film glass at a holding angle of less than 90 degrees. Glass transport method.
 31.幅方向両端がレーザーの照射によって切断された長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送する薄膜ガラスの搬送方法において、
 前記搬送ロールによって搬送された前記薄膜ガラスを、前記薄膜ガラスの両主面のうち前記レーザーが照射されたレーザー照射面とは反対側のレーザー非照射面が内周側に位置するようにロール状に巻き取ることを特徴とする薄膜ガラスの搬送方法。
31. In the transport method of thin film glass, which transports a long thin film glass whose both ends in the width direction are cut by laser irradiation along a longitudinal direction with a transport roll,
The thin film glass transported by the transport roll is rolled so that the laser non-irradiation surface opposite to the laser irradiation surface irradiated with the laser is located on the inner peripheral side of both main surfaces of the thin film glass. A method of transporting thin film glass, which is wound up into two pieces.
 32.前記レーザーはCOレーザーであることを特徴とする前記29~31の何れか一項に記載の薄膜ガラスの搬送方法。 32. 32. The method for transporting thin film glass according to any one of 29 to 31, wherein the laser is a CO 2 laser.
 33.幅方向両端がレーザーの照射によって切断された長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記搬送ロールは、前記薄膜ガラスの両主面のうち前記レーザーが照射されたレーザー照射面とは反対側のレーザー非照射面と接触しつつ当該薄膜ガラスを搬送することを特徴とする薄膜ガラスの搬送装置。
33. In the thin film glass transport device that transports the long thin film glass whose both ends in the width direction are cut by the laser irradiation along the longitudinal direction by the transport roll,
The transport roll transports the thin film glass while being in contact with a laser non-irradiated surface opposite to the laser irradiated surface irradiated with the laser among the two main surfaces of the thin film glass. Conveying device.
 34.幅方向両端がレーザーの照射によって切断された長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記薄膜ガラスの両主面のうち前記レーザーが照射されたレーザー照射面と接触しつつ当該薄膜ガラスを搬送する少なくとも1つの他の搬送ロールを備え、
 前記他の搬送ロールは、90度未満の抱き角で前記薄膜ガラスの前記レーザー照射面と接触することを特徴とする薄膜ガラスの搬送装置。
34. In the thin film glass transport device that transports the long thin film glass whose both ends in the width direction are cut by the laser irradiation along the longitudinal direction by the transport roll,
Comprising at least one other transport roll for transporting the thin film glass in contact with the laser irradiated surface irradiated with the laser among the two main surfaces of the thin film glass;
The said other conveyance roll contacts the said laser irradiation surface of the said thin film glass at the holding angle of less than 90 degree | times, The thin film glass conveying apparatus characterized by the above-mentioned.
 35.幅方向両端がレーザーの照射によって切断された長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送する薄膜ガラスの搬送装置において、
 前記搬送ロールによって搬送された前記薄膜ガラスをロール状に巻き取る巻取軸を備え、
 前記巻取軸は、前記薄膜ガラスの両主面のうち前記レーザーが照射されたレーザー照射面とは反対側のレーザー非照射面が内周側に位置するように前記薄膜ガラスを巻き取ることを特徴とする薄膜ガラスの搬送装置。
35. In the thin film glass transport device that transports the long thin film glass whose both ends in the width direction are cut by the laser irradiation along the longitudinal direction by the transport roll,
A winding shaft for winding the thin film glass conveyed by the conveying roll into a roll;
The winding shaft winds the thin film glass so that the laser non-irradiation surface opposite to the laser irradiation surface irradiated with the laser is located on the inner peripheral side of both main surfaces of the thin film glass. A thin-film glass conveying device.
 36.前記レーザーはCOレーザーであることを特徴とする前記33~35の何れか一項に記載の薄膜ガラスの搬送装置。 36. 36. The apparatus for transporting thin film glass according to any one of 33 to 35, wherein the laser is a CO 2 laser.
 前記1,11に記載の発明によれば、巻取軸に巻き取られたロール状の巻取りガラスと搬送ロールとの間に張架される薄膜ガラスの搬送方向長さが200mm以上あるので、当該張架される薄膜ガラスの幅方向での張力分布に多少の不平衡が存在する場合であっても、当該張力分布の不平衡をこのロール間において緩和させつつ巻取軸で巻き取ることができる。したがって、薄膜ガラスの張力分布の不平衡による巻き取り時の応力偏在を低減することができ、ひいては、この応力偏在に起因する薄膜ガラスの破損を抑制することができる。 According to the inventions described in 1 and 11, since the length of the thin film glass stretched between the roll-shaped winding glass wound around the winding shaft and the conveying roll is 200 mm or more, Even if there is some unbalance in the tension distribution in the width direction of the stretched thin film glass, it can be wound around the roll while relaxing the unbalance in the tension distribution between the rolls. it can. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
 前記1,7,12,17に記載の発明によれば、前記搬送ロールは、当該搬送ロールと、前記巻取軸に巻き取られたロール状の巻取りガラスまたは前記繰出軸に巻かれたロール状の元巻きガラス、との間に張架される薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されていることで、当該張架される薄膜ガラスの幅方向での張力分布に多少の不平衡が存在する場合であっても、当該張力分布の不平衡をこのロール間において緩和させつつ巻取軸で巻き取ることができる。したがって、薄膜ガラスの張力分布の不平衡による巻き取り時の応力偏在を低減することができ、ひいては、この応力偏在に起因する薄膜ガラスの破損を抑制することができる。 According to invention of said 1,7,12,17, the said conveyance roll is the roll wound by the said conveyance roll, the roll-shaped winding glass wound by the said winding shaft, or the said delivery axis | shaft. The length of the thin film glass stretched between the glass-form original winding glass is arranged so that the length of the thin film glass is 0.5 times or more the width of the thin film glass. Even if there is some unbalance in the tension distribution in the width direction of the thin film glass, it can be wound by the winding shaft while relaxing the unbalance in the tension distribution between the rolls. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
 前記4,9,14,19に記載の発明によれば、薄膜ガラスと接触する搬送ロールのロール部分が径方向に弾性変形可能に構成されているので、当該搬送ロールによって張力分布の不平衡を緩和させることができる。したがって、薄膜ガラスの張力分布の不平衡による巻き取り時の応力偏在を低減することができ、ひいては、この応力偏在に起因する薄膜ガラスの破損を抑制することができる。 According to the inventions described in 4, 9, 14, and 19, the roll portion of the transport roll that comes into contact with the thin film glass is configured to be elastically deformable in the radial direction. Can be relaxed. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
 前記5,10,15,20に記載の発明によれば、薄膜ガラスの幅方向両側での搬送方向への各張力の張力差が所定の閾値未満となるように制御されるので、薄膜ガラスの幅方向での張力分布の不平衡を一定水準未満に抑えることができる。したがって、薄膜ガラスの張力分布の不平衡による巻き取り時の応力偏在を低減することができ、ひいては、この応力偏在に起因する薄膜ガラスの破損を抑制することができる。 According to the inventions described in 5, 10, 15, and 20, since the tension difference of each tension in the transport direction on both sides in the width direction of the thin film glass is controlled to be less than a predetermined threshold value, The unbalance of the tension distribution in the width direction can be suppressed below a certain level. Therefore, it is possible to reduce stress uneven distribution at the time of winding due to an imbalance in the tension distribution of the thin film glass, and consequently, it is possible to suppress damage to the thin film glass due to this stress uneven distribution.
 前記6,16に記載の発明によれば、繰出軸に巻かれたロール状の元巻ガラスと搬送ロールとの間に張架される薄膜ガラスの搬送方向長さが200mm以上あるので、当該張架される薄膜ガラスの幅方向での張力分布に多少の不平衡が存在する場合であっても、当該張力分布の不平衡をこのロール間において緩和させつつ搬送ロールで搬送することができる。したがって、元巻ガラスに応力偏在がある場合であっても、この応力偏在を更に偏らせることなく薄膜ガラスを繰り出すことができ、ひいては、この応力偏在に起因する薄膜ガラスの破損を抑制することができる。 According to the inventions described in 6 and 16, the length of the thin film glass stretched between the roll-shaped original glass wound on the feeding shaft and the transport roll is 200 mm or more. Even if there is some unbalance in the tension distribution in the width direction of the thin film glass to be laid, it can be transported by the transport roll while relaxing the unbalance in the tension distribution between the rolls. Therefore, even when the original winding glass has stress uneven distribution, the thin film glass can be fed out without further biasing the stress uneven distribution, and consequently, the damage of the thin film glass due to the stress uneven distribution can be suppressed. it can.
 前記21~28に記載された発明によれば、40度以上の大きな抱き角で薄膜ガラスと接触する搬送ロールがある場合であっても、当該搬送ロールは搬送方向に4つ以下だけしか連続していないので、このような抱き角の大きな搬送ロールを連続通過することによる薄膜ガラスの破断を抑制することができる。 According to the inventions described in 21 to 28, even if there is a transport roll that comes into contact with the thin film glass at a large holding angle of 40 degrees or more, the transport roll is continuous only in four or less in the transport direction. Therefore, it is possible to suppress breakage of the thin film glass caused by continuously passing through such a conveying roll having a large holding angle.
 前記29,33に記載の発明によれば、搬送ロールが薄膜ガラスの両主面のうちのレーザー非照射面と接触しつつ当該薄膜ガラスを搬送するので、レーザーの照射によってレーザー非照射面に微細なクラックが生じていた場合であっても、搬送ロール通過時において当該クラックが進展しやすい方向へ薄膜ガラスを屈曲させることがない。したがって、クラックの進展を抑制することができ、レーザーの被照射に起因する薄膜ガラスの搬送時での破損を抑制することができる。 According to the inventions described in 29 and 33, since the transport roll transports the thin film glass while being in contact with the laser non-irradiated surface of both main surfaces of the thin film glass, the laser non-irradiated surface is finely irradiated by laser irradiation. Even if a crack has occurred, the thin-film glass is not bent in a direction in which the crack easily develops when passing through the transport roll. Therefore, the progress of cracks can be suppressed, and breakage at the time of transporting the thin film glass caused by laser irradiation can be suppressed.
 前記30,34に記載の発明によれば、薄膜ガラスのレーザー照射面と接触しつつ当該薄膜ガラスを搬送する他の搬送ロールがある場合であっても、当該他の搬送ロールが90度未満の抱き角で薄膜ガラスのレーザー照射面と接触するので、搬送ロール通過時においてレーザー非照射面のクラックが進展しやすい方向へ薄膜ガラスを過度に屈曲させることがない。したがって、クラックの進展を抑制することができ、レーザーの被照射に起因する薄膜ガラスの搬送時での破損を抑制することができる。 According to the invention described in 30 or 34 above, even when there is another transport roll that transports the thin film glass while being in contact with the laser irradiation surface of the thin film glass, the other transport roll is less than 90 degrees. Since it is in contact with the laser irradiation surface of the thin film glass at the holding angle, the thin film glass is not excessively bent in a direction in which cracks on the non-laser irradiation surface easily progress when passing through the transport roll. Therefore, the progress of cracks can be suppressed, and breakage at the time of transporting the thin film glass caused by laser irradiation can be suppressed.
 前記31,35に記載の発明によれば、薄膜ガラスの両主面のうちのレーザー非照射面を内周側に位置させつつ当該薄膜ガラスをロール状に巻き取るので、レーザーの照射によってレーザー非照射面に微細なクラックが生じていた場合であっても、巻き取り時において当該クラックが進展しやすい方向へ薄膜ガラスを屈曲させることがない。したがって、クラックの進展を抑制することができ、レーザーの被照射に起因する薄膜ガラスの搬送時での破損を抑制することができる。 According to the inventions described in 31 and 35, the thin film glass is wound up in a roll shape while the laser non-irradiated surface of both the main surfaces of the thin film glass is positioned on the inner peripheral side. Even if a fine crack is generated on the irradiated surface, the thin film glass is not bent in a direction in which the crack is likely to progress during winding. Therefore, the progress of cracks can be suppressed, and breakage at the time of transporting the thin film glass caused by laser irradiation can be suppressed.
薄膜ガラスの搬送装置の概略構成を示す図である。It is a figure which shows schematic structure of the conveying apparatus of thin film glass. 張力計とLMガイドを説明するための図である。It is a figure for demonstrating a tension meter and LM guide. 引出ロール及び送込ロールの構造を説明するための図である。It is a figure for demonstrating the structure of a drawing roll and a sending-in roll. 空気吹き出し式無接触搬送手段による幅手の張力分布イメージを示した図である。It is the figure which showed the tension distribution image of the width | variety by the air blowing type non-contact conveyance means. 実施例での巻取りの張力条件を説明するための図である。It is a figure for demonstrating the tension conditions of winding in an Example. 巻取軸での巻取りガラスの偏りを説明するための図である。It is a figure for demonstrating the bias | inclination of the winding glass in a winding shaft. 実施例で用いた送り込みロールと巻き取りロールの配置を示す図である。It is a figure which shows arrangement | positioning of the infeed roll and winding roll which were used in the Example. 薄膜ガラスの搬送装置の要部を示す図である。It is a figure which shows the principal part of the conveying apparatus of thin film glass. 実施例で用いた搬送系を説明するための図である。It is a figure for demonstrating the conveyance system used in the Example. 第1の実施形態における薄膜ガラスの搬送装置の概略構成を示す図である。It is a figure which shows schematic structure of the conveying apparatus of the thin film glass in 1st Embodiment. 第2の実施形態における薄膜ガラスの搬送装置の概略構成を示す図である。It is a figure which shows schematic structure of the conveying apparatus of the thin film glass in 2nd Embodiment. 実施形態の別例における薄膜ガラスの搬送装置の概略構成を示す図である。It is a figure which shows schematic structure of the conveying apparatus of the thin film glass in another example of embodiment. 実施例9で用いた搬送系を説明するための図である。FIG. 10 is a diagram for explaining a conveyance system used in Example 9; 実施例9の結果をまとめたグラフである。10 is a graph summarizing the results of Example 9.
 以下、本発明の実施形態について、図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、前記1~20に記載の発明の実施形態における薄膜ガラスの搬送装置(以下、単に搬送装置という)1の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a thin-film glass transfer device (hereinafter simply referred to as a transfer device) 1 in the embodiments of the invention described in 1 to 20 above.
 この図に示すように、搬送装置1は、長尺な薄膜ガラスGを長手方向に沿ってロールツーロール方式でロール搬送しつつ、当該薄膜ガラスGの表面に機能性膜を被膜する装置である。具体的には、搬送装置1は、繰出ロール(繰出軸)2と、巻取ロール(巻取軸)3と、複数の搬送ロール4,…と、被膜処理部5とを備えており、薄膜ガラスGを繰出ロール2から繰り出して搬送ロール4,…で搬送しつつ巻取ロール3でロール状に巻き取る過程において、被膜処理部5によって薄膜ガラスG表面に機能性膜を被膜するように構成されている。 As shown in this figure, the transport device 1 is a device that coats a functional film on the surface of the thin film glass G while transporting the long thin film glass G in a roll-to-roll manner along the longitudinal direction. . Specifically, the transport device 1 includes a feed roll (feed shaft) 2, a take-up roll (winding shaft) 3, a plurality of transport rolls 4,. In the process where the glass G is unwound from the unwinding roll 2 and conveyed by the conveying rolls 4,... Has been.
 搬送ロール4,…のうち繰出ロール2と隣り合うものは、引出ロール41とされている。この引出ロール41は、繰出ロール2に巻かれたロール状の薄膜ガラスG(元巻ガラス)と当該引出ロール41との間に張架される薄膜ガラスGの搬送方向長さが200mm以上となるように配設されている。このとき、引出ロール41は、当該引出ロール41と元巻ガラスとの間に張架される薄膜ガラスGの搬送方向長さが当該薄膜ガラスGの幅の0.5倍以上となるように配設されていることがより好ましい。 Of the transport rolls 4..., The one adjacent to the feeding roll 2 is a drawing roll 41. In this drawing roll 41, the length of the thin film glass G stretched between the drawing roll 41 and the roll-shaped thin film glass G (original winding glass) wound around the feeding roll 2 is 200 mm or more. It is arranged like this. At this time, the drawing roll 41 is arranged so that the length in the conveyance direction of the thin film glass G stretched between the drawing roll 41 and the original glass is 0.5 times or more the width of the thin film glass G. More preferably, it is provided.
 また、搬送ロール4,…のうち巻取ロール3と隣り合うものは、送込ロール42とされている。この送込ロール42は、引出ロール41と同様に、巻取ロール3に巻き取られたロール状の薄膜ガラスG(巻取りガラス)と当該送込ロール42との間に張架される薄膜ガラスGの搬送方向長さが200mm以上となるように配設されている。このとき、送込ロール42は、当該送込ロール42と巻取りガラスとの間に張架される薄膜ガラスGの搬送方向長さが当該薄膜ガラスGの幅の0.5倍以上となるように配設されていることがより好ましい。 Further, among the transport rolls 4,..., The one adjacent to the take-up roll 3 is a feed roll 42. The feed roll 42 is a thin film glass stretched between a roll-shaped thin film glass G (winding glass) wound around the take-up roll 3 and the feed roll 42 in the same manner as the drawing roll 41. G is disposed so that the length in the conveyance direction is 200 mm or more. At this time, the feeding roll 42 has a length in the conveying direction of the thin film glass G stretched between the feeding roll 42 and the take-up glass to be 0.5 times or more the width of the thin film glass G. It is more preferable that they are disposed on the surface.
 これらの引出ロール41及び送込ロール42には、当該引出ロール41又は送込ロール42を通過する薄膜ガラスGの幅方向両側での搬送方向への各張力を検出可能な張力計61がそれぞれ設けられている。この張力計61は、図2(a)(b)に示すように、引出ロール41及び送込ロール42の幅方向両端を軸支する部分に設けられ、内部の歪ゲージによって薄膜ガラスGの搬送方向張力を検出できるように構成されている。 These drawing rolls 41 and feeding rolls 42 are provided with tensiometers 61 capable of detecting respective tensions in the conveying direction on both sides in the width direction of the thin film glass G passing through the drawing roll 41 or the feeding roll 42. It has been. As shown in FIGS. 2A and 2B, the tensiometer 61 is provided in a portion that pivotally supports both ends of the drawing roll 41 and the feeding roll 42 in the width direction, and transports the thin film glass G by an internal strain gauge. It is comprised so that direction tension can be detected.
 また、引出ロール41及び送込ロール42には、当該引出ロール41又は送込ロール42を搬送方向へ移動可能なリニアモーションガイド(以下、LMガイドという)71がそれぞれ設けられている。このLMガイド71は、引出ロール41及び送込ロール42の両端の軸支部分のうちの一方を搬送方向に沿って移動可能なように支持している。このようなLMガイド71により、引出ロール41と繰出ロール2との薄膜ガラスGの幅方向両端部での各距離が調整可能となるとともに、送込ロール42と巻取ロール3との薄膜ガラスGの幅方向両端部での各距離が調整可能となっている。同時に、このLMガイド71は、引出ロール41と元巻ガラスとの間に張架される薄膜ガラスGの搬送方向長さを調整可能とするとともに、送込ロール42と巻取りガラスとの間に張架される薄膜ガラスGの搬送方向長さを調整可能としている。 Further, each of the drawing roll 41 and the feeding roll 42 is provided with a linear motion guide (hereinafter referred to as LM guide) 71 capable of moving the drawing roll 41 or the feeding roll 42 in the transport direction. The LM guide 71 supports one of the shaft support portions at both ends of the drawing roll 41 and the feeding roll 42 so as to be movable along the conveying direction. With such an LM guide 71, it becomes possible to adjust each distance in the width direction both ends of the thin film G of the drawing roll 41 and the feeding roll 2, and the thin film glass G of the feeding roll 42 and the winding roll 3 The respective distances at both ends in the width direction can be adjusted. At the same time, the LM guide 71 is capable of adjusting the length in the conveyance direction of the thin film glass G stretched between the drawing roll 41 and the original winding glass, and between the feeding roll 42 and the winding glass. The conveyance direction length of the thin film glass G to be stretched can be adjusted.
 また、引出ロール41及び送込ロール42は、薄膜ガラスGと接触するロール部分が径方向に弾性変形可能に構成されている。このような引出ロール41及び送込ロール42としては、例えば、ロール部分に高弾性のゴムを用いたゴムロールでもよい。但し、この場合には、薄膜ガラスGに対する滑り性が悪くなるため、これに起因する薄膜ガラスGの接触応力増加が懸念される。そこで、図3(断面図)に示すように、内部に高弾性体を有しつつ、薄膜ガラスGと接触する外表面に滑り性のよい皮膜(例えばフッ素系樹脂)を被せたロールとするのが好ましい。 Further, the drawing roll 41 and the feeding roll 42 are configured such that the roll portion in contact with the thin film glass G can be elastically deformed in the radial direction. As such a drawing roll 41 and a feeding roll 42, for example, a rubber roll using a highly elastic rubber for the roll portion may be used. However, in this case, since the slipperiness with respect to the thin film glass G is deteriorated, there is a concern about an increase in the contact stress of the thin film glass G due to this. Therefore, as shown in FIG. 3 (cross-sectional view), a roll having a highly elastic body and having a coating (for example, fluorine-based resin) with good slipperiness on the outer surface in contact with the thin film glass G is used. Is preferred.
 搬送装置1は制御部10を備えている。この制御部10は、繰出ロール2及び巻取ロール3を駆動する駆動モータ21及び駆動モータ31と接続され、これら駆動モータ21及び駆動モータ31の駆動を制御して繰出ロール2及び巻取ロール3を所定の速度で回転させることが可能となっている。また、制御部10は、各張力計61及び各LMガイド71と接続されている。そして、制御部10は、引出ロール41及び送込ロール42のそれぞれにおいて、張力計61が検出した薄膜ガラスGの幅方向両側での各張力の張力差が所定の閾値以上となった場合に、当該張力差が所定の閾値未満となるようにLMガイド71を制御する。 The transport apparatus 1 includes a control unit 10. The control unit 10 is connected to a drive motor 21 and a drive motor 31 that drive the feed roll 2 and the take-up roll 3, and controls the drive motor 21 and the drive motor 31 to control the feed roll 2 and the take-up roll 3. Can be rotated at a predetermined speed. The control unit 10 is connected to each tension meter 61 and each LM guide 71. And, in each of the drawing roll 41 and the feeding roll 42, the control unit 10 has a tension difference of each tension on both sides in the width direction of the thin film glass G detected by the tension meter 61, when a predetermined threshold value or more is reached. The LM guide 71 is controlled so that the tension difference is less than a predetermined threshold.
 搬送装置1が搬送する薄膜ガラスGは、特に限定はされないが、厚さが200μm以下、好ましくは30~150μmの極めて薄いガラスである。 The thin film glass G transported by the transport apparatus 1 is not particularly limited, but is a very thin glass having a thickness of 200 μm or less, preferably 30 to 150 μm.
 以上のように、巻取ロール3に巻き取られたロール状の巻取りガラスと送込ロール42との間に張架される薄膜ガラスGの搬送方向長さが200mm以上あるので、当該張架される薄膜ガラスGの幅方向での張力分布に多少の不平衡が存在する場合であっても、当該張力分布の不平衡をこのロール間において緩和させつつ巻取ロール3で巻き取ることができる。したがって、薄膜ガラスGの張力分布の不平衡による巻き取り時の応力偏在を低減することができ、ひいては、この応力偏在に起因する薄膜ガラスGの破損を抑制することができる。 As described above, the length in the transport direction of the thin film glass G stretched between the roll-shaped winding glass wound around the winding roll 3 and the feeding roll 42 is 200 mm or more. Even if there is some imbalance in the tension distribution in the width direction of the thin film glass G to be wound, it can be wound by the winding roll 3 while relaxing the unbalance of the tension distribution between the rolls. . Therefore, the stress uneven distribution at the time of winding due to the unbalanced tension distribution of the thin film glass G can be reduced, and consequently, the damage of the thin film glass G due to the stress uneven distribution can be suppressed.
 また、繰出ロール2に巻かれたロール状の元巻ガラスと引出ロール41との間に張架される薄膜ガラスGの搬送方向長さが200mm以上あるので、当該張架される薄膜ガラスGの幅方向での張力分布に多少の不平衡が存在する場合であっても、当該張力分布の不平衡をこのロール間において緩和させつつ引出ロール41で搬送することができる。したがって、元巻ガラスに応力偏在がある場合であっても、この応力偏在を更に偏らせることなく薄膜ガラスGを繰り出すことができ、ひいては、この応力偏在に起因する薄膜ガラスGの破損を抑制することができる。 Moreover, since the conveyance direction length of the thin film glass G stretched between the roll-shaped original roll glass wound around the supply roll 2 and the drawing roll 41 is 200 mm or more, the thin film glass G stretched Even if there is a slight unbalance in the tension distribution in the width direction, the tension distribution unbalance can be relaxed between the rolls and conveyed by the drawing roll 41. Therefore, even when the original winding glass has stress uneven distribution, the thin film glass G can be fed out without further biasing the stress uneven distribution, and consequently, the breakage of the thin film glass G due to the stress uneven distribution is suppressed. be able to.
 また、引出ロール41及び送込ロール42は、薄膜ガラスGと接触するロール部分が径方向に弾性変形可能に構成されているので、当該引出ロール41又は送込ロール42に亘って張架される薄膜ガラスGの張力分布の不平衡を更に緩和させることができる。 Moreover, since the roll part which contacts the thin film glass G is comprised so that elastic deformation | transformation can be carried out to radial direction, the drawing roll 41 and the feeding roll 42 are stretched over the said drawing roll 41 or the feeding roll 42. The imbalance in the tension distribution of the thin film glass G can be further relaxed.
 また、引出ロール41及び送込ロール42のそれぞれにおいて、張力計61が検出した薄膜ガラスGの幅方向両側での各張力の張力差が所定の閾値以上となった場合に、当該張力差が所定の閾値未満となるようにLMガイド71が制御されるので、引出ロール41又は送込ロール42に亘って張架される薄膜ガラスGの張力分布の不平衡を更に緩和させることができる。 Further, in each of the drawing roll 41 and the feeding roll 42, when the tension difference between the tensions on both sides in the width direction of the thin film glass G detected by the tension meter 61 is equal to or greater than a predetermined threshold, the tension difference is predetermined. Since the LM guide 71 is controlled so as to be less than the threshold value, it is possible to further alleviate the unbalance of the tension distribution of the thin film glass G stretched over the drawing roll 41 or the feeding roll 42.
 なお、前記1~20に記載の発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 The embodiments to which the inventions described in the above 1 to 20 can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the gist of the present invention.
 例えば、上記実施形態では、LMガイド71は、引出ロール41及び送込ロール42に設けることとしたが、更に繰出ロール2及び巻取ロール3に設けてもよいし、繰出ロール2及び巻取ロール3だけに設けてもよい。また、LMガイド71は、引出ロール41及び送込ロール42それぞれにおいて、一端側のみに設けられることとしたが、両端に設けることとしてもよい。 For example, in the above embodiment, the LM guide 71 is provided on the drawing roll 41 and the feeding roll 42, but may be provided on the feeding roll 2 and the winding roll 3, or the feeding roll 2 and the winding roll. 3 may be provided only. In addition, the LM guide 71 is provided only at one end side in each of the drawing roll 41 and the feeding roll 42, but may be provided at both ends.
 また、巻取ロール3は、合紙を挟みつつ薄膜ガラスGを巻き取ることとしてもよい。この合紙として、厚さ方向に弾性を有するものを用いることで、上述した薄膜ガラスGの破損抑制効果を更に向上させることができる。 Further, the take-up roll 3 may take up the thin film glass G while sandwiching the slip sheet. By using the slip sheet having elasticity in the thickness direction, it is possible to further improve the above-described damage suppression effect of the thin film glass G.
 また、引出ロール41及び送込ロール42それぞれの両端に張力計61を設けることとしたが、より詳細に幅方向の張力分布を計測可能な手段として、図4に示すように、空気を噴出して非接触で薄膜ガラスGを搬送可能な引出ロール41A及び送込ロール42Aを用いることができる。具体的には、引出ロール41A(送込ロール42A)表面と薄膜ガラスGとの間に生じる圧力(背圧)を計測することにより、薄膜ガラスGの幅方向の張力分布を詳細に計測することができる。このような引出ロール41A及び送込ロール42Aとしては、例えば、特開平1-209256号公報や特許第2597129号公報等に記載のものを用いることができる。なお、この手法による張力分布計測を引出ロール41及び送込ロール42以外の他の搬送ロール4にも適用し、これらの搬送ロール4において張力分布の均一化を図ることが好ましいのは勿論である。 In addition, although tension meters 61 are provided at both ends of each of the drawing roll 41 and the feeding roll 42, air is blown out as shown in FIG. 4 as means capable of measuring the tension distribution in the width direction in more detail. Thus, a drawing roll 41A and a feeding roll 42A that can convey the thin film glass G in a non-contact manner can be used. Specifically, the tension distribution in the width direction of the thin film glass G is measured in detail by measuring the pressure (back pressure) generated between the surface of the drawing roll 41A (feeding roll 42A) and the thin film glass G. Can do. As such a drawing roll 41A and a feeding roll 42A, for example, those described in JP-A-1-209256 and Japanese Patent No. 2597129 can be used. Of course, it is preferable to apply the tension distribution measurement by this method to the transport rolls 4 other than the drawing roll 41 and the feed roll 42 and to make the tension distribution uniform in these transport rolls 4. .
 また、巻取ガラスの巻径によらず当該巻取りガラスと送込ロール42との最短距離を常に200mm以上確保できるような距離調整機構を用いてもよい。巻取りガラスと送込ロール42との最短距離(両者の表面間の最短距離)を200mm以上とすることにより、上述した本願発明の効果を得られることは言うまでもない。また、同様の機構を繰り出し側に適用してもよい。 Further, a distance adjusting mechanism that can always ensure a minimum distance of 200 mm or more between the winding glass and the feeding roll 42 regardless of the winding diameter of the winding glass may be used. It goes without saying that the effect of the present invention described above can be obtained by setting the shortest distance between the take-up glass and the feeding roll 42 (the shortest distance between both surfaces) to 200 mm or more. A similar mechanism may be applied to the feeding side.
 後述の実施例1~6において、本発明をさらに具体的に説明する。 In the following Examples 1 to 6, the present invention will be described more specifically.
 以下、前記21~28に記載の発明の実施形態について、図を参照して説明する。 Hereinafter, embodiments of the invention described in 21 to 28 will be described with reference to the drawings.
 図8は、本実施形態における薄膜ガラスの搬送装置(以下、単に搬送装置という)1aの要部を示す図である。 FIG. 8 is a diagram showing a main part of a thin film glass transfer device (hereinafter simply referred to as a transfer device) 1a according to the present embodiment.
 この図に示すように、搬送装置1aは、複数の搬送ロール4,…を備えており、長尺な薄膜ガラスGを長手方向に沿ってロールツーロール方式で搬送ロール4,…によってロール搬送しつつ、当該薄膜ガラスGの表面に機能性膜を被膜する装置である。具体的には、搬送装置1aは、搬送ロール4,…の他に、繰出ロール,巻取ロール及び被膜処理部(何れも図示せず)を備えており、薄膜ガラスGを繰出ロールから繰り出して搬送ロール4,…で搬送しつつ巻取ロールで巻き取る過程において、被膜処理部によって薄膜ガラスG表面に機能性膜を被膜するように構成されている。 As shown in this figure, the transport apparatus 1a includes a plurality of transport rolls 4,..., And rolls the long thin film glass G by the transport rolls 4,. On the other hand, it is an apparatus for coating a functional film on the surface of the thin-film glass G. Specifically, the conveying device 1a includes a feeding roll, a take-up roll, and a coating processing unit (all not shown) in addition to the conveying rolls 4,..., And feeds the thin film glass G from the feeding roll. In the process of winding with the winding roll while being transported by the transport rolls 4,..., The functional film is coated on the surface of the thin film glass G by the coating processing unit.
 搬送装置1aが搬送する薄膜ガラスGは、特に限定はされないが、厚さが200μm以下、好ましくは30~150μmの極めて薄いガラスである。 The thin film glass G transported by the transport apparatus 1a is not particularly limited, but is a very thin glass having a thickness of 200 μm or less, preferably 30 to 150 μm.
 搬送ロール4,…は、当該搬送ロール4,…のうち40度以上の抱き角θで薄膜ガラスGと接触するものが搬送方向に4つ以下だけ連続するように並設されている。つまり、40度以上の抱き角θとなる搬送ロール4は、搬送方向に4つまでしか連続していない。ここで、抱き角θとは、搬送ロール4の周面のうち薄膜ガラスGと接触する円弧部分の中心角である。 The transport rolls 4,... Are arranged side by side so that only four or less of the transport rolls 4,... Contacting the thin film glass G at a holding angle θ of 40 degrees or more continue in the transport direction. That is, only four transport rolls 4 having a holding angle θ of 40 degrees or more are continuous in the transport direction. Here, the holding angle θ is a central angle of an arc portion in contact with the thin film glass G on the peripheral surface of the transport roll 4.
 但し、搬送ロール4,…のうち、90度以上の抱き角θで薄膜ガラスGと接触する搬送ロール4がある場合には、当該搬送ロール4は搬送方向に2つ以下だけ連続するように並設されていることが好ましい。つまり、90度以上の抱き角θとなる搬送ロール4は、搬送方向に2つまでしか連続していないことが好ましい。 However, when there is a transport roll 4 that contacts the thin film glass G at a holding angle θ of 90 degrees or more among the transport rolls 4,..., The transport rolls 4 are arranged so that only two or less continue in the transport direction. It is preferable to be provided. That is, it is preferable that only two transport rolls 4 having a holding angle θ of 90 degrees or more are continuous in the transport direction.
 また、搬送ロール4,…のうち、それぞれ90度以上の抱き角θで薄膜ガラスGと接触するとともに、搬送方向に連続して並設された2つの搬送ロール4は、当該2つの搬送ロール4間に張架される薄膜ガラスGの搬送方向長さ(2つの搬送ロール4間のパス長さ)が100mm以上となるように配設されている。 Further, of the transport rolls 4,..., The two transport rolls 4 that are in contact with the thin film glass G at a holding angle θ of 90 degrees or more and are continuously arranged in the transport direction are the two transport rolls 4. The thin film glass G stretched between them is arranged so that the length in the conveyance direction (the path length between the two conveyance rolls 4) is 100 mm or more.
 但し、搬送ロール4,…のうち、それぞれ120度以上の抱き角θで薄膜ガラスGと接触するとともに、搬送方向に連続して並設された2つの搬送ロール4がある場合には、これら2つの搬送ロール4は、当該2つの搬送ロール4間に張架される薄膜ガラスGの搬送方向長さが100mm以上となるように配設されていることが好ましい。 However, when there are two transport rolls 4 that are in contact with the thin-film glass G at a holding angle θ of 120 degrees or more and are continuously arranged in the transport direction among the transport rolls 4. It is preferable that the one conveyance roll 4 is arrange | positioned so that the conveyance direction length of the thin film glass G stretched between the two conveyance rolls 4 may be 100 mm or more.
 以上のように、40度以上の大きな抱き角θで薄膜ガラスGと接触する搬送ロール4がある場合であっても、当該搬送ロール4は搬送方向に4つ以下だけしか連続していないので、このような抱き角θの大きな搬送ロール4を連続通過することによる薄膜ガラスGの破断を抑制することができる。 As described above, even if there is a transport roll 4 in contact with the thin film glass G at a large holding angle θ of 40 degrees or more, the transport roll 4 is continuous only in four or less in the transport direction. It is possible to suppress breakage of the thin film glass G caused by continuously passing through the conveying roll 4 having such a large holding angle θ.
 なお、前記21~28に記載の発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 It should be noted that the embodiments to which the inventions described in 21 to 28 can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
 例えば、上記実施形態では特に限定していないが、搬送ロール4の外径は100mm以上であることが好ましい。搬送ロール4の外径が100mm以上であれば、当該搬送ロール4での屈曲が及ぼす薄膜ガラスGの破断への影響は、当該搬送ロール4の抱き角θの大きさだけで議論することができる。 For example, although not particularly limited in the above embodiment, the outer diameter of the transport roll 4 is preferably 100 mm or more. If the outer diameter of the transport roll 4 is 100 mm or more, the influence of the bending at the transport roll 4 on the breakage of the thin film glass G can be discussed only by the size of the holding angle θ of the transport roll 4. .
 また、薄膜ガラスGの搬送をより安定化させるために、薄膜ガラスGの搬送方向張力を検出可能な張力検出手段を設け、この張力検出手段が所定の張力を検出した場合に、薄膜ガラスGの搬送を停止、又は搬送ロール4の位置を調整することで、薄膜ガラスGの破断を未然に防げるように構成することが好ましい。また、この張力検出手段は、薄膜ガラスGの幅方向両端での張力差を検出できることがより好ましい。なお、このような張力検出手段としては、従来より公知のもの、例えば搬送ロール4の支持手段に設けた歪ゲージによるもの等を用いることができる。 In addition, in order to further stabilize the conveyance of the thin film glass G, a tension detection unit capable of detecting the tension in the conveyance direction of the thin film glass G is provided, and when the tension detection unit detects a predetermined tension, It is preferable that the conveyance of the thin film glass G is prevented in advance by stopping the conveyance or adjusting the position of the conveyance roll 4. Further, it is more preferable that the tension detecting means can detect a tension difference at both ends in the width direction of the thin film glass G. As such tension detecting means, a conventionally known one, for example, one using a strain gauge provided on the supporting means of the transport roll 4 can be used.
 後述の実施例7により、これらの発明についてはさらに具体的に説明する。 These inventions will be described more specifically by Example 7 described later.
 次に、前記29~36に記載の発明の実施形態について、図を参照して説明する。
[第1の実施形態]
 まず、前記29~36に記載の発明の第1の実施形態について説明する。
Next, embodiments of the invention described in 29 to 36 will be described with reference to the drawings.
[First Embodiment]
First, a first embodiment of the invention described in 29-36 will be described.
 図10は、本第1の実施形態における薄膜ガラスの搬送装置(以下、単に搬送装置という)1bの概略構成を示す図である。 FIG. 10 is a diagram showing a schematic configuration of a thin film glass transfer device (hereinafter simply referred to as a transfer device) 1b in the first embodiment.
 この図に示すように、搬送装置1bは、長尺な薄膜ガラスGを長手方向に沿ってロールツーロール方式でロール搬送しつつ、当該薄膜ガラスGの表面に機能性膜を被膜する装置である。具体的には、搬送装置1bは、繰出ロール2と、巻取ロール(巻取軸)3と、複数の搬送ロール4,…と、被膜処理部5とを備えており、薄膜ガラスGを繰出ロール2から繰り出して搬送ロール4,…で搬送しつつ巻取ロール3でロール状に巻き取る過程において、被膜処理部5によって薄膜ガラスG表面に機能性膜を被膜するように構成されている。 As shown in this figure, the transport device 1b is a device that coats a functional film on the surface of the thin film glass G while transporting the long thin film glass G in a roll-to-roll manner along the longitudinal direction. . Specifically, the conveying device 1b includes a feeding roll 2, a winding roll (winding shaft) 3, a plurality of conveying rolls 4,... In the process of taking out from the roll 2 and transporting it by the transport rolls 4,...
 搬送装置1bが搬送する薄膜ガラスGは、特に限定はされないが、厚さが200μm以下、好ましくは30~150μmの極めて薄いガラスである。また、この薄膜ガラスGは、幅方向両端がレーザーの照射によって予め切断されており、図10の拡大図に示すように、両主面のうちの一方が切断時にレーザーを照射されたレーザー照射面aであり、他方がレーザーを照射されていないレーザー非照射面bとなっている。なお、薄膜ガラスGの切断に用いたレーザーは、本実施形態ではCOレーザーである。 The thin film glass G transported by the transport apparatus 1b is not particularly limited, but is a very thin glass having a thickness of 200 μm or less, preferably 30 to 150 μm. Further, the thin film glass G is cut at both ends in the width direction in advance by laser irradiation, and as shown in the enlarged view of FIG. 10, one of both main surfaces is irradiated with laser at the time of cutting. a, and the other is a laser non-irradiated surface b that is not irradiated with a laser. Incidentally, the laser used for cutting the thin glass G is in the present embodiment is a CO 2 laser.
 複数の搬送ロール4,…は、薄膜ガラスGの両主面のうちのレーザー非照射面bと接触しつつ、当該薄膜ガラスGを搬送するように配設されている。 The plurality of transport rolls 4 are arranged so as to transport the thin film glass G while in contact with the laser non-irradiated surface b of both main surfaces of the thin film glass G.
 巻取ロール3は、搬送ロール4,…によって搬送された薄膜ガラスGを、レーザー非照射面bが内周側に位置するように巻き取る。 The winding roll 3 winds the thin-film glass G transported by the transport rolls 4... So that the laser non-irradiated surface b is located on the inner peripheral side.
 以上のように、搬送ロール4が薄膜ガラスGの両主面のうちのレーザー非照射面bと接触しつつ当該薄膜ガラスGを搬送するので、レーザーの照射によってレーザー非照射面bに微細なクラックが生じていた場合であっても、搬送ロール4通過時において当該クラックが進展しやすい方向へ薄膜ガラスGを屈曲させることがない。したがって、クラックの進展を抑制することができ、レーザーの被照射に起因する薄膜ガラスGの搬送時での破損を抑制することができる。 As described above, since the transport roll 4 transports the thin film glass G while being in contact with the laser non-irradiated surface b of both main surfaces of the thin film glass G, fine cracks are formed on the laser non-irradiated surface b by laser irradiation. Even when this occurs, the thin-film glass G is not bent in a direction in which the crack easily develops when passing through the transport roll 4. Therefore, the progress of cracks can be suppressed, and the breakage of the thin film glass G due to laser irradiation can be suppressed.
 また、巻取ロール3がレーザー非照射面bを内周側に位置させつつ薄膜ガラスGを巻き取るので、レーザーの照射によってレーザー非照射面bに微細なクラックが生じていた場合であっても、巻き取り時において当該クラックが進展しやすい方向へ薄膜ガラスGを屈曲させることがない。したがって、クラックの進展を抑制することができ、レーザーの被照射に起因する薄膜ガラスGの巻き取り時での破損を抑制することができる。
[第2の実施形態]
 続いて、前記29~36に記載の発明の第2の実施形態について説明する。なお、上記第1の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
Moreover, since the winding roll 3 winds the thin film glass G while the laser non-irradiated surface b is positioned on the inner peripheral side, even if a fine crack is generated on the laser non-irradiated surface b due to laser irradiation. In addition, the thin film glass G is not bent in a direction in which the crack easily develops during winding. Therefore, the progress of cracks can be suppressed, and the damage at the time of winding the thin film glass G caused by laser irradiation can be suppressed.
[Second Embodiment]
Subsequently, a second embodiment of the invention described in 29 to 36 will be described. In addition, the same code | symbol is attached | subjected to the component similar to the said 1st Embodiment, and the description is abbreviate | omitted.
 図11は、本第2の実施形態における搬送装置1Aの概略構成を示す図である。 FIG. 11 is a diagram illustrating a schematic configuration of the transfer apparatus 1A according to the second embodiment.
 この図に示すように、搬送装置1Aは、複数の搬送ロール4,…のうち、他の搬送ロール4とは薄膜ガラスGを屈曲させる方向が異なる逆曲げロール41を備えている。つまり、この逆曲げロール41は、他の搬送ロール4とは異なり、薄膜ガラスGのレーザー照射面aと接触しつつ当該薄膜ガラスGを搬送する。また、この逆曲げロール41は、90度未満の抱き角θで薄膜ガラスGのレーザー照射面aと接触するように配設されている。ここで、抱き角θとは、逆曲げロール41(搬送ロール4)の周面のうち薄膜ガラスGと接触する円弧部分の中心角である。 As shown in this figure, the conveying device 1A includes a reverse bending roll 41 that is different from the other conveying rolls 4 in the direction in which the thin film glass G is bent, among the plurality of conveying rolls 4,. That is, unlike the other conveyance rolls 4, the reverse bending roll 41 conveys the thin film glass G while being in contact with the laser irradiation surface a of the thin film glass G. Moreover, this reverse bending roll 41 is arrange | positioned so that the laser irradiation surface a of the thin film glass G may contact with the holding angle (theta) of less than 90 degree | times. Here, the holding angle θ is a central angle of an arc portion in contact with the thin film glass G in the peripheral surface of the reverse bending roll 41 (conveying roll 4).
 以上のように、薄膜ガラスGのレーザー照射面aと接触しつつ当該薄膜ガラスGを搬送する逆曲げロール41がある場合であっても、当該逆曲げロール41が90度未満の抱き角θで薄膜ガラスGのレーザー照射面aと接触するので、逆曲げロール41通過時においてレーザー非照射面bのクラックが進展しやすい方向へ薄膜ガラスGを過度に屈曲させることがない。したがって、クラックの進展を抑制することができ、レーザーの被照射に起因する薄膜ガラスGの搬送時での破損を抑制することができる。 As described above, even when there is the reverse bending roll 41 that conveys the thin film glass G while being in contact with the laser irradiation surface a of the thin film glass G, the reverse bending roll 41 has a holding angle θ of less than 90 degrees. Since the thin film glass G is in contact with the laser irradiation surface a of the thin film G, the thin film glass G is not excessively bent in a direction in which cracks on the laser non-irradiation surface b easily progress when passing through the reverse bending roll 41. Therefore, the progress of cracks can be suppressed, and the breakage of the thin film glass G due to laser irradiation can be suppressed.
 なお、前記29~36に記載の発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 The embodiments to which the inventions described in 29 to 36 are applicable are not limited to the above-described embodiments, and can be appropriately changed without departing from the gist of the present invention.
 例えば、上記実施形態では、薄膜ガラスGの幅方向両端がレーザーによって予め切断されているものとしたが、図12に搬送装置1Bとして示すように、ライン内にレーザーによる切断工程を組み込んでもよい。具体的には、この搬送装置1Bは、搬送ロール4の近傍に配置されたレーザー発振部81及び冷却部82と、その下流の搬送ロール4の近傍に配置された端材除去部83及び端材回収部84とを、それぞれ薄膜ガラスGの幅方向両端に一組ずつ備えている。 For example, in the above-described embodiment, both ends in the width direction of the thin film glass G are preliminarily cut with a laser, but a cutting process with a laser may be incorporated in the line as shown in FIG. Specifically, the transport device 1B includes a laser oscillation unit 81 and a cooling unit 82 disposed in the vicinity of the transport roll 4, and an end material removing unit 83 and an end material disposed in the vicinity of the transport roll 4 downstream thereof. One collection unit 84 is provided at each end of the thin film glass G in the width direction.
 この搬送装置1Bでは、薄膜ガラスGを搬送しつつ、レーザー発振部81でレーザー(例えばCO2レーザー)を照射し、且つ冷却部82で冷却することにより、薄膜ガラスGの幅方向両端に所定深さの切欠きが連続的に形成される。そして、その下流において、薄膜ガラスGのうち切欠きよりも端部側の端材cが端材除去部83により薄膜ガラスGから分離され、端材回収部84内に収容される。 In this transport apparatus 1B, a laser (for example, CO2 laser) is irradiated by the laser oscillation unit 81 while being cooled by the cooling unit 82 while transporting the thin film G, and a predetermined depth is formed at both ends in the width direction of the thin film glass G. The notch is continuously formed. Then, on the downstream side, the end material c of the thin film glass G that is closer to the end than the notch is separated from the thin film glass G by the end material removing unit 83 and accommodated in the end material collecting unit 84.
 また、搬送装置1Bでは、繰出ロール2から繰り出される元巻きガラスに、いわゆる合紙としての樹脂フィルムF1が挟み込まれており、この樹脂フィルムF1を巻き取るための合紙巻取ロール71が繰出ロール2の近傍に設けられている。同様に、巻取ロール3の近傍にも合紙としての樹脂フィルムF2を繰り出す合紙繰出ロール72が設けられ、巻取ロール3が当該樹脂フィルムF2を挟みつつ薄膜ガラスGを巻き取るように構成されている。 Moreover, in the conveying apparatus 1B, the resin film F1 as what is called a slip sheet is inserted | pinched between the original winding glass drawn | fed out from the supply roll 2, and the interleaf winding roll 71 for winding up this resin film F1 is the supply roll 2 It is provided in the vicinity. Similarly, an interleaf feeding roll 72 for feeding out the resin film F2 as interleaving paper is also provided in the vicinity of the winding roll 3, and the winding roll 3 is configured to wind up the thin film glass G while sandwiching the resin film F2. Has been.
 また、搬送ロール4の外径は、特に限定はされないが、薄膜ガラスGの破損を抑制する点において、100mm以上であることが好ましい。 Further, the outer diameter of the transport roll 4 is not particularly limited, but is preferably 100 mm or more in terms of suppressing breakage of the thin film glass G.
 後述の実施例8、9により、これらの発明についてさらに具体的に説明する。 These inventions will be described more specifically with Examples 8 and 9 described later.
 以下に、実施例1~6を挙げることにより、前記21~28に記載の発明をさらに具体的に説明する。但し、本発明はこの実施例に限定されるものではない。 Hereinafter, the inventions described in 21 to 28 will be described more specifically by giving Examples 1 to 6. However, the present invention is not limited to this example.
 〈実施例1〉
 実施例1では、巻き取りロールで巻き取るときの薄膜ガラスG(巻取りガラス)の破損(破断)状況について確認した。
<薄膜ガラス>
 薄膜ガラスGとして、COレーザーにて予め幅方向両端を切断済みのホウケイ酸ガラスを用いた。また、薄膜ガラスGの厚さ及び幅は、結果と併せて表1に示す。
<搬送条件>
 搬送は、図1の装置において送り込みロール42巻き取りロール3の配置を、図7に示すように送り込みロール42′で搬送し、隣り合う巻き取りロール3(それぞれロール径は200mm)で巻き取るように変更して試験を行った。薄膜ガラスを巻き取るに従って、張架された薄膜ガラスの長さが減少してゆき、巻取ロールに巻き取られたロール状の巻取りガラスと送り込みロール42′との間に張架される前記薄膜ガラスの搬送方向長さLは短くなり(減少してゆき)、一定長さ以下になった時点で破断する。何処で破断が起こったか前記Lと破断との関係を観察した。
<Example 1>
In Example 1, the damage (break) state of the thin film glass G (winding glass) when winding with a winding roll was confirmed.
<Thin glass>
As the thin-film glass G, borosilicate glass having been cut in advance in the width direction with a CO 2 laser was used. The thickness and width of the thin film glass G are shown in Table 1 together with the results.
<Conveying conditions>
In the apparatus of FIG. 1, the arrangement of the feed roll 42 and the take-up roll 3 is transported by the feed roll 42 'as shown in FIG. 7 and wound by the adjacent take-up rolls 3 (each roll diameter is 200 mm). The test was conducted after changing to. As the thin film glass is wound, the length of the thin film glass stretched decreases, and the roll glass wound around the take-up roll and the feed roll 42 'are stretched between the roll glass and the feed roll 42'. The conveyance direction length L of the thin film glass becomes shorter (decreases), and breaks when it becomes equal to or less than a certain length. The relationship between L and breakage was observed where the breakage occurred.
 搬送実験は、各薄膜ガラスについてそれぞれ150回行い、巻き取るとき何処(L)で破断が起きるかについて観察した。 The conveyance experiment was performed 150 times for each thin film glass, and observed where (L) the fracture occurred when winding.
 なお、送込ロール42′は、平型(薄膜ガラスGの全幅に亘って外径が均一なタイプ)の塩化ビニル製ロールとした。また、搬送速度は5m/min一定とした。巻取り条件は、ガラス幅によってそれぞれ以下の様に設定した。 The feeding roll 42 ′ was a flat type (made of a uniform outer diameter over the entire width of the thin film glass G) made of vinyl chloride. The conveyance speed was constant at 5 m / min. The winding conditions were set as follows depending on the glass width.
 ガラス幅300mm:初期張力40N/幅、テーパー:40%
 ガラス幅400mm:初期張力50N/幅、テーパー:40%
 ガラス幅600mm:初期張力60N/幅、テーパー:40%
 ガラス幅800mm:初期張力85N/幅、テーパー:40%
 なお、巻取り条件に示した「テーパー」とは、図5に示すように、薄膜ガラスGに作用させる搬送方向張力を巻き取り中に直線的に低下させることを意味しており、この「テーパー」の値は、巻き取り完了時の搬送方向張力を初期張力の何%まで低下させるかを意味している。
Glass width 300 mm: initial tension 40 N / width, taper: 40%
Glass width 400 mm: Initial tension 50 N / width, taper: 40%
Glass width 600 mm: initial tension 60 N / width, taper: 40%
Glass width 800 mm: initial tension 85 N / width, taper: 40%
As shown in FIG. 5, the “taper” shown in the winding condition means that the conveying direction tension acting on the thin film glass G is reduced linearly during winding. The value "" means to what percentage of the initial tension the conveyance direction tension at the completion of winding is reduced.
 各薄膜ガラスについて、巻き取りを行って、巻取ロールに巻き取られたロール状の巻取りガラスと送り込みロール42′との間に張架される前記薄膜ガラスの長さLが変わったとき、各薄膜ガラスについてそれぞれ150回の試験から搬送方向長さLのそれぞれの段階での破損率を算出した。 For each thin film glass, when the length L of the thin film glass stretched between the roll-shaped winding glass wound around the winding roll and the feeding roll 42 ′ is changed, For each thin film glass, the breakage rate at each stage of the length L in the transport direction was calculated from 150 tests.
 ○:破損率が0%
 △:破損率が0%より大きく5%未満
 ×:破損率が5%以上100%未満
 ××:破損率100%以上
 なお、試験における破断時の最長薄膜ガラス長さを表に付記した。
<結果>
 結果を表1に示す。
○: Damage rate is 0%
Δ: Breakage rate greater than 0% and less than 5% ×: Breakage rate of 5% or more and less than 100% XX: Breakage rate of 100% or more Note that the longest thin film glass length at break in the test is added to the table.
<Result>
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<まとめ>
 表1から、破断が、「破断時の張架された薄膜ガラスの長さL」でみたとき、巻き取りの段階で、短くなったとき、どの長さにおいて破損が起こるか、破損率でわかる。
<Summary>
From Table 1, it can be seen from the failure rate at which length the breakage occurs when the breakage is shortened at the winding stage when viewed as “the length L of the stretched thin film glass at the time of breakage”. .
 5%未満の破損率であれば可とした。それには、「破断時の張架された薄膜ガラスの長さL」は、少なくとも200mmを確保すべきであることが分かる。また、「送込ロール内面と巻取りガラス表面との距離」の値を薄膜ガラスGの幅で除した値は概ね0.5となるため、当該距離は薄膜ガラスGの幅の0.5倍以上あることが好ましい(破損率は0%となる)。 A failure rate of less than 5% was accepted. For this purpose, it is understood that “the length L of the stretched thin film glass at the time of breaking” should be at least 200 mm. Further, since the value obtained by dividing the value of “the distance between the inner surface of the feeding roll and the surface of the take-up glass” by the width of the thin film glass G is approximately 0.5, the distance is 0.5 times the width of the thin film glass G. It is preferable to have the above (breakage rate is 0%).
 〈実施例2〉
 実施例2では、送込ロール42′として図3に示したものを用いたときの薄膜ガラスG(巻取りガラス)の破損(破断)状況を確認した。
<評価条件>
 送込ロール42′として、主軸の回りに片肉40mmのゴム(硬さ:JIS A 40度)を取り付け、その外表面をフッ素系の熱収縮チューブで覆った後、その表面を表面粗さRa1.0μm(JIS B 0601-1994)まで研磨したものを用いた。また、薄膜ガラスGまた搬送条件は上記実施例1と同様のものとし、搬送速度は5m/min一定とした。
<結果とまとめ>
 結果を表2に示す。この表2を表1と対比すると、送込ロール42′として3に示したような二重構造ロールを用いることにより、薄膜ガラスG(巻取りガラス)の破損を抑制できることが分かる。
<Example 2>
In Example 2, the damage (rupture) state of the thin film glass G (winding glass) when the one shown in FIG. 3 was used as the feeding roll 42 ′ was confirmed.
<Evaluation conditions>
As the feed roll 42 ', a 40 mm thick rubber (hardness: JIS A 40 degrees) is attached around the main shaft, and the outer surface is covered with a fluorine-based heat-shrinkable tube, and then the surface is surface roughness Ra1. Polished to 0.0 μm (JIS B 0601-1994) was used. The thin film glass G and the transport conditions were the same as those in Example 1, and the transport speed was constant at 5 m / min.
<Results and summary>
The results are shown in Table 2. When Table 2 is compared with Table 1, it can be seen that by using a double-structured roll as shown in 3 as the feed roll 42 ′, damage to the thin film glass G (winding glass) can be suppressed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〈実施例3〉
 実施例3では、送込ロール42′において、図2に示したようなLMガイド71を設け、張力計61により薄膜ガラスGの幅方向両端での各張力を計測し、当該各張力の張力差が閾値以上となった場合にLMガイド71により送込ロール42のアライメント調整を行った。そして、このときの薄膜ガラスG(巻取りガラス)の破損(破断)状況を確認した。
<評価条件>
 送込ロール42及び薄膜ガラスGまた搬送条件は上記実施例1と同様のものとし、搬送速度は5m/min一定とした。張力値については、搬送による変動もあることから、10秒間毎の移動平均処理値を用いた。幅方向両端での張力差については、20Nで制御が入る設定値とした。また、各薄膜ガラス所定の巻取り条件とするための張力設定は、駆動モータ31の制御によるものとした。
<結果とまとめ>
 結果を表3に示す。この表3を表1と対比すると、上記張力差に基づくアライメント調整制御を行うことにより、破断なく巻き取り可能な巻取りガラスの径を大きくできることが分かる。
<Example 3>
In Example 3, the feeding roll 42 ′ is provided with the LM guide 71 as shown in FIG. 2, and the tension gauge 61 measures each tension at both ends in the width direction of the thin film glass G, and the tension difference between the tensions. , The alignment of the feed roll 42 was adjusted by the LM guide 71. And the failure | damage (breaking | breaking) condition of the thin film glass G (winding glass) at this time was confirmed.
<Evaluation conditions>
The feeding roll 42 and the thin film glass G and the conveying conditions were the same as those in Example 1, and the conveying speed was constant at 5 m / min. Regarding the tension value, since there is a variation due to conveyance, a moving average processing value every 10 seconds was used. The tension difference at both ends in the width direction was set to a value that can be controlled at 20N. Further, the tension setting for setting the predetermined winding condition for each thin film glass was controlled by the drive motor 31.
<Results and summary>
The results are shown in Table 3. Comparing Table 3 with Table 1, it can be seen that the diameter of the wound glass that can be wound without breakage can be increased by performing alignment adjustment control based on the tension difference.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 〈実施例4〉
 実施例4では、元巻きロールから繰り出すときの薄膜ガラスGの破損(破断)状況について確認した。
<Example 4>
In Example 4, the state of damage (breaking) of the thin film glass G when the film was fed from the original winding roll was confirmed.
 即ち、図1の装置において、引出ロール41の位置を変化させて張架された薄膜ガラス長さを変えたときの、繰り出し直後の(巻出しガラス)の破損状況を確認した。張架された薄膜ガラス長さを表に示す6段階で実施した。なお、各長さ毎に150回の試験を行い、破損率については実施例1と同様に評価した。
<評価条件>
 薄膜ガラスGは上記実施例1と同様のものとした。元巻ガラスは、この薄膜ガラスGを外径400mmまで合紙を用いずに巻いたものとした。また、引出ロール41は、平型(薄膜ガラスGの全幅に亘って外径が均一なタイプ)の塩化ビニル製ロールとした。また、搬送速度は5m/min一定とし、繰り出し時の薄膜ガラスGの張力は70N/幅とした。
<結果とまとめ>
 結果を表4に示す。この表から、引出ロール41及び元巻きガラスロール間の張架された薄膜ガラスの長さLを200mm以上取ることにより、薄膜ガラスGの繰り出し直後の破断を抑制できることが分かる。
That is, in the apparatus of FIG. 1, the damage state of the unrolled glass immediately after feeding was confirmed when the length of the stretched thin film glass was changed by changing the position of the drawing roll 41. The length of the stretched thin film glass was implemented in 6 stages shown in the table. In addition, the test was performed 150 times for each length, and the breakage rate was evaluated in the same manner as in Example 1.
<Evaluation conditions>
The thin film glass G was the same as in Example 1 above. The original roll glass was obtained by winding the thin film glass G up to an outer diameter of 400 mm without using a slip sheet. The drawing roll 41 was a flat (made with a uniform outer diameter across the entire width of the thin film glass G) vinyl chloride roll. Moreover, the conveyance speed was fixed at 5 m / min, and the tension of the thin film glass G during feeding was 70 N / width.
<Results and summary>
The results are shown in Table 4. From this table, it can be seen that by taking a length L of the thin film glass stretched between the draw roll 41 and the original roll glass roll of 200 mm or more, breakage immediately after the thin film glass G is fed out can be suppressed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 〈実施例5〉
 実施例5では、実施例4と同様の方法で、引出ロール41として図3に示したものを用いたときの薄膜ガラスG(巻取りガラス)の破損(破断)状況を確認した。
<評価条件>
 引出ロール41として、上記実施例2で送込ロール42として用いたものを使用した。薄膜ガラスGは上記実施例1と同様のものとした。また、搬送速度は5m/min一定とし、繰り出し時の薄膜ガラスGの張力は70N/幅とした。
<結果とまとめ>
 結果を表5に示す。この表5を表4と対比すると、引出ロール41として図3に示したような二重構造ロールを用いることにより、破断なく当該引出ロール41と元巻ガラスとの距離を短くできることが分かる。
<Example 5>
In Example 5, in the same manner as in Example 4, the damage (break) state of the thin film glass G (winding glass) when using the drawing roll 41 shown in FIG. 3 was confirmed.
<Evaluation conditions>
As the drawing roll 41, the one used as the feeding roll 42 in Example 2 was used. The thin film glass G was the same as in Example 1 above. Moreover, the conveyance speed was fixed at 5 m / min, and the tension of the thin film glass G during feeding was 70 N / width.
<Results and summary>
The results are shown in Table 5. When Table 5 is compared with Table 4, it can be seen that by using a double structure roll as shown in FIG. 3 as the drawing roll 41, the distance between the drawing roll 41 and the original glass can be shortened without breaking.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 〈実施例6〉
 実施例6では、実施例4と同様の方法で、但し、引出ロール41において上記実施例3と同様のアライメント調整制御を行ったときの、繰り出し直後の薄膜ガラスGの破損(破断)状況を確認した。
<評価条件>
 評価条件は、上記実施例3と同様のものとした。
<結果とまとめ>
 結果を表6に示す。この表6を表4と対比すると、引出ロール41に対し薄膜ガラスGの張力差に基づくアライメント調整制御を行うことにより、破断なく当該引出ロール41と元巻ガラスとの距離を短くできることが分かる。
<Example 6>
In Example 6, in the same manner as in Example 4, except that the alignment adjustment control similar to that in Example 3 was performed on the drawing roll 41, the damage (rupture) state of the thin film glass G immediately after feeding was confirmed. did.
<Evaluation conditions>
The evaluation conditions were the same as in Example 3 above.
<Results and summary>
The results are shown in Table 6. Comparing Table 6 with Table 4, it can be seen that by performing alignment adjustment control based on the tension difference of the thin film glass G with respect to the drawing roll 41, the distance between the drawing roll 41 and the original glass can be shortened without breaking.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以下に、実施例7を挙げることにより、前記21~28に記載の発明をさらに具体的に説明する。但し、本発明はこの実施例に限定されるものではない。 Hereinafter, the invention described in 21 to 28 will be described more specifically by giving Example 7. However, the present invention is not limited to this example.
 〈実施例7〉
 本実施例では、図9に示すように、6つの搬送ロール4(以下、上流側から第1ロール4a~第6ロール4fとする)で薄膜ガラスGを搬送する搬送系において、これらの搬送ロール4の抱き角θ1~θ5とロール間スパンL1~L5を変化させたときの薄膜ガラスGの破断状況を確認した。ここで、ロール間スパンとは、搬送ロール4間に張架された薄膜ガラスGの搬送方向長さのことである。なお搬送ロール4fでの抱き角θ6は略38度とした。
<薄膜ガラス>
 薄膜ガラスGとして、長手方向先端にポリエステル樹脂フィルムが繋げられたものを用い、このフィルム部分により安定した搬送状態となった後にガラス部分が各搬送ロール4を通過するようにした。また、薄膜ガラスGとして、COレーザーにて予め幅方向両端を切断済みの、幅400mmのホウケイ酸ガラスを用いた。なお、薄膜ガラスGの厚さ及び搬送方向張力は、結果と併せて表1~表3に示す。
<搬送条件>
 全ての搬送ロール4は、塩化ビニル製のものとし、それぞれ隣り合うロールの「幅方向のロール両端の軸間距離差」を「その平均軸間距離」で除した値が0.001(0.1%)以下となるまで芯出しした。また、搬送速度は5m/min一定とし、試験毎に薄膜ガラスGを25m(5min間)搬送して破断の有無を確認した。
<結果>
 各搬送ロール4の抱き角θ1~θ5を、40度前後で変化させたときの結果を表7に、90度前後で変化させたときの結果を表8に、120度前後で変化させたときの結果を表9に、それぞれ示す。
<Example 7>
In this embodiment, as shown in FIG. 9, in the transport system for transporting the thin film glass G by the six transport rolls 4 (hereinafter referred to as the first roll 4a to the sixth roll 4f from the upstream side), these transport rolls. The breaking state of the thin film glass G when the holding angle θ1 to θ5 of 4 and the spans L1 to L5 between rolls were changed was confirmed. Here, the span between rolls is the length in the transport direction of the thin film glass G stretched between the transport rolls 4. The holding angle θ6 on the transport roll 4f was approximately 38 degrees.
<Thin glass>
As the thin glass G, a glass resin having a polyester resin film connected to the front end in the longitudinal direction was used, and the glass portion passed through each transport roll 4 after the film portion was in a stable transport state. Further, as the thin film glass G, a borosilicate glass having a width of 400 mm, in which both ends in the width direction have been cut in advance with a CO 2 laser, was used. The thickness and the conveyance direction tension of the thin film glass G are shown in Tables 1 to 3 together with the results.
<Conveying conditions>
All the transport rolls 4 are made of vinyl chloride, and the value obtained by dividing the “difference between the axial distances of both ends in the width direction” of the adjacent rolls by the “average axial distance” is 0.001 (0. 1%) until centering or less. Moreover, the conveyance speed was made constant at 5 m / min, and the thin film glass G was conveyed for 25 m (for 5 minutes) for each test to confirm the presence or absence of breakage.
<Result>
Table 7 shows the results when the holding angles θ1 to θ5 of each transport roll 4 are changed around 40 degrees, Table 8 shows the results when the holding angles θ1 to θ5 are changed around 120 degrees, and Table 120 shows the results when changed around 120 degrees Table 9 shows the results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<まとめ>
 表7の結果から、40度以上の抱き角θの搬送ロール4が5つ連続すると、薄膜ガラスGが破断しやすくなることが分かる。また、搬送ロール4の外径やロール間スパンLが薄膜ガラスGの破断に及ぼす影響は、さほど大きくないといえる。
<Summary>
From the results in Table 7, it can be seen that the thin film glass G tends to break when five transport rolls 4 having a holding angle θ of 40 degrees or more are continuous. Moreover, it can be said that the influence which the outer diameter of the conveyance roll 4 and the span L between rolls have on the fracture | rupture of the thin film glass G is not so large.
 表8の結果から、90度以上の抱き角θの搬送ロール4が3つ連続すると、薄膜ガラスGが破断しやすくなることが分かる。また、90度以上の抱き角θの搬送ロール4が2つしか連続していない場合であっても、この2つの搬送ロール4間でのロール間スパンLが100mm未満であると、薄膜ガラスGが破断しやすくなることが分かる。搬送ロール4の外径については、100mm以上の場合には安全と言え、100mm未満では大きいほど好ましいと言える。 From the results of Table 8, it can be seen that when three transport rolls 4 having a holding angle θ of 90 degrees or more are continued, the thin film glass G is easily broken. Further, even when only two transport rolls 4 having a holding angle θ of 90 degrees or more are continuous, if the span L between the rolls between the two transport rolls 4 is less than 100 mm, the thin film glass G It turns out that it becomes easy to fracture. About the outer diameter of the conveyance roll 4, if it is 100 mm or more, it can be said that it is safe, and if it is less than 100 mm, it can be said that it is so preferable that it is large.
 表9の結果から、120度以上の抱き角θの搬送ロール4があるときには、当該搬送ロールが2つしか連続していない場合であっても、この2つの搬送ロール4間でのロール間スパンLが100mm未満であると、薄膜ガラスGが破断しやすくなることが分かる。 From the results of Table 9, when there is a transport roll 4 having a holding angle θ of 120 degrees or more, even when only two transport rolls are continuous, the span between rolls between the two transport rolls 4 It turns out that it becomes easy to fracture | rupture the thin film glass G as L is less than 100 mm.
 次に、実施例8~9により、前記29~36に記載の発明をさらに具体的に説明する。但し、本発明はこの実施例に限定されるものではない。 Next, the inventions described in 29 to 36 will be more specifically described by Examples 8 to 9. However, the present invention is not limited to this example.
 〈実施例8〉
 実施例8では、巻取ロール3での薄膜ガラスGの巻き取り時において、内周側に巻き込む面をレーザー照射面aとレーザー非照射面bとで変化させたときに、薄膜ガラスGを全長に亘って破損(破断)無く巻き取り可能か否かを確認した。(図10の装置にあたる、ただし被膜処理部5による処理は行わず、巻き取り試験を行った。なお、図では、図12に示すような繰出ロール近傍の合紙巻取ロール、同様に、巻取ロール近傍の合紙繰出ロールについては省略されている。)
<薄膜ガラス>
 薄膜ガラスGとして、COレーザーにて予め幅方向両端を切断済みの、全長200mのホウケイ酸ガラスを用いた。また、薄膜ガラスGの厚さ及び幅は、結果と併せて表1に示す。
<搬送条件>
 薄膜ガラスGの巻き取り速度は5m/min一定とした。また、巻取ローラ3(コア)の外径は200mmとし、巻き取りには合紙を用いた。その他の条件は、結果と併せて表10に示す。
<結果>
 結果を表10に示す。なお、表中の巻取り条件に示した「テーパー」とは、薄膜ガラスGに作用させる搬送方向張力を巻き取り中に直線的に低下させることを意味しており、この「テーパー」欄の値は、巻き取り完了時の搬送方向張力を初期張力の何%まで低下させるかを意味している。この値は、厳密には巻径変化に対する張力変化率であり、本実施例8では巻径200~400mmを0~100%とした(200~400mmのときに何%低下させたか)。また、表中の「端面エッジ安定性」とは、巻き取った薄膜ガラスGの幅方向両端面の状態を評価したものであり、この欄の各記号はそれぞれ以下の内容を示している。
<Example 8>
In Example 8, when the thin film glass G was taken up by the take-up roll 3, when the surface to be wound on the inner peripheral side was changed between the laser irradiation surface a and the laser non-irradiation surface b, the thin film glass G was full length. It was confirmed whether or not it could be wound up without breakage (breakage). (This corresponds to the apparatus shown in FIG. 10, but the winding process was not performed, and the winding test was performed. In the figure, the interleaf winding roll in the vicinity of the feeding roll as shown in FIG. (The slip sheet feeding roll near the roll is omitted.)
<Thin glass>
As the thin-film glass G, borosilicate glass having a total length of 200 m, which had been cut in both ends in the width direction with a CO 2 laser, was used. The thickness and width of the thin film glass G are shown in Table 1 together with the results.
<Conveying conditions>
The winding speed of the thin film glass G was constant at 5 m / min. Moreover, the outer diameter of the winding roller 3 (core) was 200 mm, and a slip sheet was used for winding. Other conditions are shown in Table 10 together with the results.
<Result>
The results are shown in Table 10. The “taper” shown in the winding conditions in the table means that the conveying direction tension acting on the thin film glass G is linearly reduced during winding, and the value in this “taper” column Means to what percentage of initial tension the conveyance direction tension at the completion of winding is reduced. Strictly speaking, this value is the rate of change in tension with respect to the change in the winding diameter. In Example 8, the winding diameter of 200 to 400 mm was set to 0 to 100% (how much was reduced when the diameter was 200 to 400 mm). Further, “end face edge stability” in the table is an evaluation of the state of both end faces in the width direction of the wound thin film glass G, and each symbol in this column indicates the following contents.
 また巻き取り結果については破断なく巻き取れたものを○で表示した。 Also, as for the winding result, those that were wound without breaking were indicated by ○.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 ◎:巻取ロールのコア端と両端面とがほぼ揃っている。 ◎: The core end and both end faces of the take-up roll are almost aligned.
 ○:巻取ロールのコア端に対する両端面のずれが0.5~1.0mmの範囲内である。 ◯: The deviation of both end faces with respect to the core end of the winding roll is in the range of 0.5 to 1.0 mm.
 △:巻取ロールのコア端に対する両端面のずれが1.0mm以上である。
<まとめ>
 表10の結果から、レーザー非照射面bを内周側に位置させつつ薄膜ガラスGを巻き取ることにより、薄膜ガラスGの巻き取り時での破損を抑制できていることが分かる。
(Triangle | delta): The shift | offset | difference of the both end surfaces with respect to the core end of a winding roll is 1.0 mm or more.
<Summary>
From the results of Table 10, it can be seen that the thin film glass G is wound while the laser non-irradiated surface b is positioned on the inner peripheral side, so that the damage at the time of winding the thin film glass G can be suppressed.
 〈実施例9〉
 実施例9では、図13に示すように、抱き角θ1~θ3を変更可能な3つの搬送ロール4,…(以下、第1ロール4a~第3ロール4cとする)を含む搬送系において、以下の条件で各ロールにおける薄膜ガラスの抱き角θ1~θ3を変化させたときの薄膜ガラスGの破損(破断)状況を確認した。また第3ロール4cに接触する薄膜ガラス面も変化させた。
<薄膜ガラス>
 薄膜ガラスGとして、長手方向先端にポリエステル樹脂フィルムが繋げられたものを用い、このフィルム部分により安定した搬送状態となった後にガラス部分が各搬送ロール4を通過するようにした。また、薄膜ガラスGとして、COレーザーにて予め幅方向両端を切断済みのホウケイ酸ガラスを用いた。その他、薄膜ガラスGの厚さ及び幅は、結果と併せて表11に示す。
<搬送条件>
 薄膜ガラスGの巻き取り速度は5m/min一定とした。そして、試験毎に薄膜ガラスGを25m(5min間)搬送して破損の有無を確認した。その他の条件は、結果と併せて表11に示す。
<結果>
 結果を表11に示す。なお、表中の「破損有無」の欄の記号は、それぞれ以下の内容を示している。
<Example 9>
In Example 9, as shown in FIG. 13, in a transport system including three transport rolls 4,... (Hereinafter referred to as first roll 4a to third roll 4c) whose holding angles θ1 to θ3 can be changed, Under the conditions described above, the state of breakage (breaking) of the thin film glass G when the holding angle θ1 to θ3 of the thin film glass in each roll was changed was confirmed. Moreover, the thin film glass surface which contacts the 3rd roll 4c was also changed.
<Thin glass>
As the thin glass G, a glass resin having a polyester resin film connected to the front end in the longitudinal direction was used, and the glass portion passed through each transport roll 4 after the film portion was in a stable transport state. Further, as the thin film glass G, borosilicate glass having been cut in advance in the width direction with a CO 2 laser was used. In addition, the thickness and width of the thin film glass G are shown in Table 11 together with the results.
<Conveying conditions>
The winding speed of the thin film glass G was constant at 5 m / min. And the thin film glass G was conveyed 25m (for 5 minutes) for every test, and the presence or absence of the damage was confirmed. Other conditions are shown in Table 11 together with the results.
<Result>
The results are shown in Table 11. In the table, the symbols in the “presence / absence of breakage” column respectively indicate the following contents.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 ○:薄膜ガラスに破損は確認されなかった。 ○: No damage was found in the thin film glass.
 △:薄膜ガラスが搬送ロール4を通過した後しばらくして破損した。 Δ: The thin film was damaged after passing through the transport roll 4.
 ×:薄膜ガラスが搬送ロール4を通過した直後に破損した。
<まとめ>
 表11の結果から、抱き角θ3と破損発生率の関係をまとめたものを図14に示す。この図から、薄膜ガラスGのレーザー照射面aを搬送ロール4(逆曲げロール41)と接触させた場合であっても、当該搬送ロール4(逆曲げロール41)の抱き角θを90度未満とすることにより、薄膜ガラスGの搬送時での破損を好適に抑制できることが分かる。
X: The thin film glass was damaged immediately after passing through the transport roll 4.
<Summary>
FIG. 14 shows a summary of the relationship between the holding angle θ3 and the damage occurrence rate based on the results in Table 11. From this figure, even when the laser irradiation surface a of the thin film glass G is brought into contact with the transport roll 4 (reverse bending roll 41), the holding angle θ of the transport roll 4 (reverse bending roll 41) is less than 90 degrees. By doing, it turns out that the breakage at the time of conveyance of thin film glass G can be controlled suitably.
 1、1a、1b、1A、1B 搬送装置
 2 繰出ロール(繰出軸)
 3 巻取ロール(巻取軸)
 4 搬送ロール
 41a 逆曲げロール(他の搬送ロール)
 41,41A 引出ロール(搬送ロール)
 42,42A 送込ロール(搬送ロール)
 5 被膜処理部
 10 制御部(制御手段)
 21 駆動モータ
 31 駆動モータ
 61 張力計(張力検出手段)
 71 LMガイド(調整手段)
 G 薄膜ガラス
 θ 抱き角
 71 合紙巻取ロール
 72 合紙繰出ロール
 81 レーザー発振部
 82 冷却部
 83 端材除去部
 84 端材回収部
 F1 樹脂フィルム
 F2 樹脂フィルム
 a レーザー照射面
 b レーザー非照射面
 c 端材
1, 1a, 1b, 1A, 1B Conveying device 2 Feeding roll (feeding shaft)
3 Winding roll (winding shaft)
4 Transport rolls 41a Reverse bending roll (other transport rolls)
41, 41A Pulling roll (conveying roll)
42,42A Feeding roll (conveying roll)
5 Coating processing part 10 Control part (control means)
21 drive motor 31 drive motor 61 tension meter (tension detection means)
71 LM guide (adjustment means)
G thin film glass θ holding angle 71 interleaf take-up roll 72 interleaf feed roll 81 laser oscillation part 82 cooling part 83 scrap removal part 84 scrap recovery part F1 resin film F2 resin film a laser irradiation surface b laser non-irradiation surface c edge Material

Claims (20)

  1.  長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送装置において、
     前記搬送ロールは、前記巻取軸に巻き取られたロール状の巻取りガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されていることを特徴とする薄膜ガラスの搬送装置。
    In a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
    The transport roll is arranged so that a transport direction length of the thin film glass stretched between the transport roll and the roll-shaped winding glass wound around the winding shaft is 200 mm or more. A thin-film glass conveying device.
  2.  前記搬送ロールは、当該搬送ロールと、
     前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されていることを特徴とする請求項1に記載の薄膜ガラスの搬送装置。
    The transport roll includes the transport roll,
    It is arranged so that the length in the transport direction of the thin film glass stretched between the roll-shaped winding glass wound around the winding shaft is 0.5 times or more the width of the thin film glass. The apparatus for transporting thin film glass according to claim 1, wherein:
  3.  前記搬送ロールと前記巻取軸との少なくとも一方は、当該搬送ロールと前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されていることを特徴とする請求項1又は2に記載の薄膜ガラスの搬送装置。 At least one of the transport roll and the winding shaft has a transport direction length of the thin film glass stretched between the transport roll and a roll-shaped winding glass wound on the winding shaft. It is comprised so that a movement is possible so that adjustment is possible, The conveying apparatus of the thin film glass of Claim 1 or 2 characterized by the above-mentioned.
  4.  長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送装置において、
     前記搬送ロールは、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されていることを特徴とする薄膜ガラスの搬送装置。
    In a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
    The transport roller is a transport device for thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in a radial direction.
  5.  長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送装置において、
     前記搬送ロールと前記巻取軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、
     前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、
     前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御する制御手段と、
     を備えることを特徴とする薄膜ガラスの搬送装置。
    In a thin film glass transporting device that transports a long thin film glass along a longitudinal direction with a transporting roll and winds it in a roll shape with a winding shaft adjacent to the transporting roll,
    Adjusting means capable of adjusting the distances at both ends in the width direction of the thin film glass between the transport roll and the winding shaft;
    Tension detection means capable of detecting each tension in the conveyance direction on both sides in the width direction of the thin film glass passing through the conveyance roll;
    Control means for controlling the adjustment means so that the tension difference is less than the predetermined threshold when the tension difference detected by the tension detection means is equal to or greater than a predetermined threshold;
    A thin-film glass conveying apparatus comprising:
  6.  繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送装置において、
     前記搬送ロールは、前記繰出軸に巻かれたロール状の元巻ガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されていることを特徴とする薄膜ガラスの搬送装置。
    In the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
    The transport roll is arranged so that the transport direction length of the thin film glass stretched between the roll-shaped original roll glass wound around the feeding shaft and the transport roll is 200 mm or more. A thin-film glass conveying device.
  7.  前記搬送ロールは、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されていることを特徴とする請求項6に記載の薄膜ガラスの搬送装置。 The conveyance roll has a length in the conveyance direction of the thin film glass stretched between the conveyance roll and a roll-shaped original glass wound around the feeding shaft, which is 0.5 times or more the width of the thin film glass. It is arrange | positioned so that it may become. The conveyance apparatus of the thin film glass of Claim 6 characterized by the above-mentioned.
  8.  前記搬送ロールと前記繰出軸との少なくとも一方は、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されていることを特徴とする請求項6又は7に記載の薄膜ガラスの搬送装置。 At least one of the transport roll and the feeding shaft can adjust the transport direction length of the thin film glass stretched between the transport roll and the roll-shaped original winding glass wound around the feeding shaft. As described above, the apparatus for transporting thin film glass according to claim 6 or 7 is configured to be movable.
  9.  繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送装置において、
     前記搬送ロールは、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されていることを特徴とする薄膜ガラスの搬送装置。
    In the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
    The transport roller is a transport device for thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in a radial direction.
  10.  繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送装置において、
     前記搬送ロールと前記繰出軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、
     前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、
     前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御する制御手段と、
     を備えることを特徴とする薄膜ガラスの搬送装置。
    In the thin film glass transporting device that feeds the long thin film glass wound around the feed shaft in a roll shape from the feed shaft along the longitudinal direction, and transports it by the transport roll adjacent to the feed shaft.
    Adjustment means capable of adjusting each distance at both ends in the width direction of the thin-film glass with the transport roll and the feeding shaft;
    Tension detection means capable of detecting each tension in the conveyance direction on both sides in the width direction of the thin film glass passing through the conveyance roll;
    Control means for controlling the adjustment means so that the tension difference is less than the predetermined threshold when the tension difference detected by the tension detection means is equal to or greater than a predetermined threshold;
    A thin-film glass conveying apparatus comprising:
  11.  長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送方法において、
     前記搬送ロールとして、前記巻取軸に巻き取られたロール状の巻取りガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されているものを用いることを特徴とする薄膜ガラスの搬送方法。
    In the method of transporting thin film glass, which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
    As said conveyance roll, it arrange | positions so that the conveyance direction length of the said thin film glass stretched between the roll-shaped winding glass wound by the said winding shaft and the said conveyance roll may be 200 mm or more. What is used is a method for transporting thin film glass.
  12.  前記搬送ロールとして、当該搬送ロールと前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されているものを用いることを特徴とする請求項11に記載の薄膜ガラスの搬送方法。 As said conveyance roll, the conveyance direction length of the said thin film glass stretched between the said conveyance roll and the roll-shaped winding glass wound up by the said winding shaft is 0.5 of the width | variety of the said thin film glass. The method for transporting thin film glass according to claim 11, wherein a film disposed so as to be twice or more is used.
  13.  前記搬送ロールと前記巻取軸との少なくとも一方として、当該搬送ロールと前記巻取軸に巻き取られたロール状の巻取りガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されているものを用いることを特徴とする請求項11又は12に記載の薄膜ガラスの搬送方法。 As at least one of the transport roll and the winding shaft, a length in the transport direction of the thin film glass stretched between the transport roll and a roll-shaped winding glass wound around the winding shaft. The method for transporting a thin film glass according to claim 11 or 12, wherein a material configured to be movable so as to be adjustable is used.
  14.  長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送方法において、
     前記搬送ロールとして、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されているものを用いることを特徴とする薄膜ガラスの搬送方法。
    In the method of transporting thin film glass, which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
    A method for transporting thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in the radial direction as the transport roll.
  15.  長尺な薄膜ガラスを長手方向に沿って搬送ロールで搬送し、当該搬送ロールと隣り合う巻取軸でロール状に巻き取る薄膜ガラスの搬送方法において、
     前記搬送ロールと前記巻取軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、を用い、
     前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御することを特徴とする薄膜ガラスの搬送方法。
    In the method of transporting thin film glass, which is transported along a longitudinal direction with a transport roll along a longitudinal direction, and wound into a roll with a winding shaft adjacent to the transport roll,
    Adjustment means capable of adjusting each distance in the width direction both ends of the thin film glass between the transport roll and the winding shaft, and each of the thin film glass passing through the transport roll in the transport direction on both sides in the width direction. A tension detecting means capable of detecting the tension, and
    The thin film glass, wherein when the tension difference between the tensions detected by the tension detection means is equal to or greater than a predetermined threshold, the adjustment means is controlled so that the tension difference is less than the predetermined threshold. Transport method.
  16.  繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送方法において、
     前記搬送ロールとして、前記繰出軸に巻かれたロール状の元巻ガラスと当該搬送ロールとの間に張架される前記薄膜ガラスの搬送方向長さが200mm以上となるように配設されているものを用いることを特徴とする薄膜ガラスの搬送方法。
    In the method of transporting thin film glass, which is rolled out from the feed shaft along the longitudinal direction of the long thin film glass wound in a roll shape on the feed shaft, and transported by a transport roll adjacent to the feed shaft,
    As said conveyance roll, it arrange | positions so that the conveyance direction length of the said thin film glass stretched between the roll-shaped original winding glass wound by the said delivery axis | shaft and the said conveyance roll may be 200 mm or more. What is used is a method for transporting thin-film glass.
  17.  前記搬送ロールとして、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さが当該薄膜ガラスの幅の0.5倍以上となるように配設されているものを用いることを特徴とする請求項16に記載の薄膜ガラスの搬送方法。 As said conveyance roll, the conveyance direction length of the said thin film stretched between the said roll and the roll-shaped original winding glass wound by the said delivery axis | shaft is 0.5 times or more of the width | variety of the said thin film glass What is arrange | positioned so that it may become is used, The conveyance method of the thin film glass of Claim 16 characterized by the above-mentioned.
  18.  前記搬送ロールと前記繰出軸との少なくとも一方として、当該搬送ロールと前記繰出軸に巻かれたロール状の元巻ガラスとの間に張架される前記薄膜ガラスの搬送方向長さを調整可能なように、移動可能に構成されているものを用いることを特徴とする請求項16又は17に記載の薄膜ガラスの搬送方法。 As at least one of the transport roll and the feeding shaft, the length in the transport direction of the thin film glass stretched between the transport roll and the roll-shaped original glass wound around the feed shaft can be adjusted. The method of transporting a thin film glass according to claim 16 or 17, wherein a material configured to be movable is used.
  19.  繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送方法において、
     前記搬送ロールとして、前記薄膜ガラスと接触するロール部分が径方向に弾性変形可能に構成されているものを用いることを特徴とする薄膜ガラスの搬送方法。
    In the method of transporting thin film glass, which is rolled out from the feed shaft along the longitudinal direction of the long thin film glass wound in a roll shape on the feed shaft, and transported by a transport roll adjacent to the feed shaft,
    A method for transporting thin film glass, characterized in that a roll portion in contact with the thin film glass is configured to be elastically deformable in the radial direction as the transport roll.
  20.  繰出軸にロール状に巻かれた長尺な薄膜ガラスを長手方向に沿って前記繰出軸から繰り出して、当該繰出軸と隣り合う搬送ロールで搬送する薄膜ガラスの搬送方法において、
     前記搬送ロールと前記繰出軸との前記薄膜ガラスの幅方向両端部での各距離を調整可能な調整手段と、前記搬送ロールを通過する前記薄膜ガラスの幅方向両側での搬送方向への各張力を検出可能な張力検出手段と、を用い、
     前記張力検出手段が検出した前記各張力の張力差が所定の閾値以上となった場合に、当該張力差が前記所定の閾値未満となるように前記調整手段を制御することを特徴とする薄膜ガラスの搬送方法。
    In the method of transporting thin film glass, which is rolled out from the feed shaft along the longitudinal direction of the long thin film glass wound in a roll shape on the feed shaft, and transported by a transport roll adjacent to the feed shaft,
    Adjusting means capable of adjusting distances between the transport roll and the feeding shaft at both ends in the width direction of the thin film glass, and tensions in the transport direction on both sides in the width direction of the thin film glass passing through the transport roll A tension detecting means capable of detecting
    The thin film glass, wherein when the tension difference between the tensions detected by the tension detection means is equal to or greater than a predetermined threshold, the adjustment means is controlled so that the tension difference is less than the predetermined threshold. Transport method.
PCT/JP2011/061158 2010-06-18 2011-05-16 Conveyance device and conveyance method for thin film glass WO2011158584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012520329A JPWO2011158584A1 (en) 2010-06-18 2011-05-16 Thin film glass conveying apparatus and thin film glass conveying method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010139527 2010-06-18
JP2010-139393 2010-06-18
JP2010139452 2010-06-18
JP2010139393 2010-06-18
JP2010-139452 2010-06-18
JP2010-139527 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158584A1 true WO2011158584A1 (en) 2011-12-22

Family

ID=45347993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061158 WO2011158584A1 (en) 2010-06-18 2011-05-16 Conveyance device and conveyance method for thin film glass

Country Status (2)

Country Link
JP (1) JPWO2011158584A1 (en)
WO (1) WO2011158584A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079188A (en) * 2011-10-03 2013-05-02 Corning Inc Traction roller used in glass production process, and glass production process having the same incorporated therein
WO2013153706A1 (en) * 2012-04-13 2013-10-17 株式会社ニコン Cassette apparatus, substrate transfer apparatus, substrate processing apparatus, and substrate processing method
JP2017105686A (en) * 2015-12-11 2017-06-15 日本電気硝子株式会社 Production method of glass ribbon
JP2018087127A (en) * 2012-05-30 2018-06-07 コーニング インコーポレイテッド Apparatus and method for inspecting flexible glass ribbon
US12021182B2 (en) 2018-11-20 2024-06-25 Lg Energy Solution, Ltd. Battery manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500990A (en) * 1986-05-02 1989-04-06 デポジション・テクノロジー・インコーポレイテッド Sputter-coated thin glass sheeting roll and its continuous manufacturing method
JPH08283041A (en) * 1994-12-05 1996-10-29 Agfa Gevaert Nv Method for applying layer on glass provided in form of roll
JP2007119322A (en) * 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd Glass roll and manufacturing method of glass substrate with functional film using the same
JP2008013849A (en) * 2006-06-22 2008-01-24 Applied Materials Gmbh & Co Kg Vacuum coating installation with transport roller for planar substrate
JP2008214033A (en) * 2007-03-05 2008-09-18 Sharp Corp Display panel carrying device
JP2010105900A (en) * 2008-10-01 2010-05-13 Nippon Electric Glass Co Ltd Glass roll and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500990A (en) * 1986-05-02 1989-04-06 デポジション・テクノロジー・インコーポレイテッド Sputter-coated thin glass sheeting roll and its continuous manufacturing method
JPH08283041A (en) * 1994-12-05 1996-10-29 Agfa Gevaert Nv Method for applying layer on glass provided in form of roll
JP2007119322A (en) * 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd Glass roll and manufacturing method of glass substrate with functional film using the same
JP2008013849A (en) * 2006-06-22 2008-01-24 Applied Materials Gmbh & Co Kg Vacuum coating installation with transport roller for planar substrate
JP2008214033A (en) * 2007-03-05 2008-09-18 Sharp Corp Display panel carrying device
JP2010105900A (en) * 2008-10-01 2010-05-13 Nippon Electric Glass Co Ltd Glass roll and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079188A (en) * 2011-10-03 2013-05-02 Corning Inc Traction roller used in glass production process, and glass production process having the same incorporated therein
WO2013153706A1 (en) * 2012-04-13 2013-10-17 株式会社ニコン Cassette apparatus, substrate transfer apparatus, substrate processing apparatus, and substrate processing method
JPWO2013153706A1 (en) * 2012-04-13 2015-12-17 株式会社ニコン Cassette apparatus, substrate transfer apparatus, substrate processing apparatus, and substrate processing method
JP2018087127A (en) * 2012-05-30 2018-06-07 コーニング インコーポレイテッド Apparatus and method for inspecting flexible glass ribbon
JP2017105686A (en) * 2015-12-11 2017-06-15 日本電気硝子株式会社 Production method of glass ribbon
US12021182B2 (en) 2018-11-20 2024-06-25 Lg Energy Solution, Ltd. Battery manufacturing method

Also Published As

Publication number Publication date
JPWO2011158584A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5617556B2 (en) Strip glass film cleaving apparatus and strip glass film cleaving method
JP4656344B2 (en) Web conveying method and apparatus
WO2011158584A1 (en) Conveyance device and conveyance method for thin film glass
US9834389B2 (en) Methods and apparatus for fabricating glass ribbon of varying widths
US9822028B2 (en) Methods of processing a glass ribbon
JP5881374B2 (en) Flexible glass ribbon guiding method and apparatus
TWI820156B (en) How to make glass rolls
US11192743B2 (en) Glass roll production method
WO2011158594A1 (en) Device for conveying thin-film glass, and method for conveying thin-film glass
JP2012236676A (en) Device of correcting winding deviation of film and method of correcting winding deviation
JP2012236675A (en) Device of correcting winding deviation of glass film and method of correcting winding deviation
US11199802B2 (en) Layer transfer device
TWI730108B (en) Managing mechanically induced stress on a crack tip when separating a flexible glass ribbon
US11305958B2 (en) Roll manufacturing method and manufacturing device
WO2012114820A1 (en) Method for producing film and apparatus for producing film
JP5315884B2 (en) Sheet-like material conveying method and conveying apparatus, and sheet-like material winding body manufacturing method
JPWO2016152685A1 (en) Method for producing rubbed strip substrate and rubbing apparatus
WO2013094758A1 (en) Laser light irradiation system, laser light irradiation method, and recording medium
JP2014144842A (en) End position detection device and conveying device
TW202120417A (en) Production method for glass roll
JP2018152231A (en) Carbon paper transport device from entrainment roll
JP2000086031A (en) Sheet type object conveying device and manufacture of sheet type object
TW202239721A (en) Roll body manufacturing method
JP2006168926A (en) Take-up method for web
JP2013159410A (en) Film base material conveying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520329

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795492

Country of ref document: EP

Kind code of ref document: A1