WO2011158477A1 - Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device - Google Patents

Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device Download PDF

Info

Publication number
WO2011158477A1
WO2011158477A1 PCT/JP2011/003300 JP2011003300W WO2011158477A1 WO 2011158477 A1 WO2011158477 A1 WO 2011158477A1 JP 2011003300 W JP2011003300 W JP 2011003300W WO 2011158477 A1 WO2011158477 A1 WO 2011158477A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
coil
power supply
coil elements
aluminum alloy
Prior art date
Application number
PCT/JP2011/003300
Other languages
French (fr)
Japanese (ja)
Inventor
幹夫 久保田
栄吉 鷺坂
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to JP2012520283A priority Critical patent/JPWO2011158477A1/en
Publication of WO2011158477A1 publication Critical patent/WO2011158477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the present invention relates to a method for producing an aluminum alloy cast bar for semi-melt forming, a continuous casting apparatus used in the method, and an electromagnetic stirring coil used in the continuous casting apparatus.
  • a method for forming an aluminum alloy cast rod into a required shape As a method for forming an aluminum alloy cast rod into a required shape, a method called a semi-melt forming method is known.
  • the material to be molded is heated to a temperature at which it is in a semi-molten state where the solid phase and the liquid phase coexist, and then transferred into a mold and pressed to form the required shape.
  • the fluidity In the semi-molten state where the solid phase and the liquid phase coexist, the fluidity is higher than the single-phase state with only the solid phase, so it can be easily formed into a complex shape even with a small pressure.
  • the fluidity since the fluidity is not as high as when the phase state is a single liquid phase, there is an advantage that entrainment of foreign substances such as bubbles can be suppressed during molding.
  • An aluminum alloy casting rod formed by such a semi-melt forming method is obtained by melting the alloy components to obtain a molten aluminum alloy, and then adjusting the chemical composition of the obtained molten aluminum alloy to form a rod shape.
  • a molten alloy such as aluminum is supplied from a hot top of a continuous casting apparatus to a mold disposed below the hot top.
  • a continuous casting method is used in which the molten alloy supplied to the mold is cooled and solidified, and the solidified molten alloy is drawn downward from the mold and continuously cast.
  • the solidification of the molten aluminum alloy diffuses the eutectic alloy component into the liquid phase and the peritectic alloy component in the solid phase.
  • the eutectic alloy component content is high around the growing solid phase crystal, and the peritectic alloy component content is low, which lowers the solidification start temperature of the liquid phase.
  • the solidification start temperature of the liquid phase does not decrease in places other than the surrounding solid phase crystal during growth, and the liquid phase other than the solid phase crystal is relatively inferior to the liquid phase around the solid phase crystal. Since it is easy to solidify, dendritic crystals are generated when an aluminum alloy cast bar for semi-melt forming is manufactured by continuously casting a molten aluminum alloy.
  • dendritic crystals have a higher melting point than the part between the dendrites, even if an aluminum alloy cast rod manufactured by continuous casting is heated to a temperature at which it is in a semi-molten state where the solid and liquid phases coexist, the dendritic crystals Does not melt and remains as a solid phase in a state where the tree branches are intertwined. Therefore, when a dendritic crystal is generated when an aluminum alloy cast rod for semi-molten forming is produced by continuously casting molten aluminum alloy, the aluminum alloy cast rod is formed by the semi-melt forming method. The fluidity of the molten aluminum alloy is significantly reduced, and a high pressure is required for the forming process.
  • the metal structure of the aluminum alloy cast bar is not a fine and uniform granular metal structure throughout the aluminum alloy cast bar.
  • the pressing force required for molding changes, and the molding process conditions cannot be stabilized. Therefore, in order to stabilize the forming conditions of the aluminum alloy casting rod, the formation of dendritic crystals is suppressed during the casting of the molten aluminum alloy, and the metal structure of the aluminum alloy casting rod is fine and uniform throughout the aluminum alloy casting rod. It is important to have a granular metal structure.
  • Patent Document 1 a method of continuously casting the molten aluminum alloy while performing mechanical stirring, electromagnetic stirring, etc. on the molten aluminum alloy has been proposed (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • the electromagnetic stirring mode is a rotating magnetic field.
  • an object of the present invention is to provide an aluminum alloy cast bar manufacturing method capable of manufacturing an aluminum alloy cast bar suitable for semi-melt forming. To do.
  • the metal structure of the aluminum alloy cast bar becomes a fine and uniform granular metal structure, and Studies have been made on methods suitable for application to the semi-melt molding process.
  • the material of the aluminum alloy cast rod it contains 3.0 to 10.0% by mass of Si, and the balance is Al, 1.0% by mass or less of Fe, trace additives and inevitable impurities.
  • the hypoeutectic Al-Si alloy is used, even if the magnetic stirring of the aluminum alloy melt is a rotating magnetic field using a commercial three-phase AC power source of 50 Hz to 60 Hz, the entire magnetic stirring coil has two magnetic poles.
  • a method for producing an aluminum alloy cast rod is a method for producing an aluminum alloy cast rod for semi-molten forming by continuously casting a molten aluminum alloy
  • a continuous casting apparatus for continuously casting the molten aluminum alloy a cylindrical mold for casting the molten aluminum alloy in a rod shape, and the mold is disposed on the mold so that the center of the molten metal is aligned with the center.
  • a plurality of coil elements electromagnetically induced in a circumferential direction of the hot top A continuous casting apparatus having an iron core held on the outer periphery of the steel plate, and containing 3.0 to 10.0% by mass of Si as the material of the aluminum alloy casting rod, with the balance being Al, 1.0% Rotation that occurs when three-phase AC power is applied to the coil element as a magnetic stirrer coil using a hypoeutectic Al-Si-based alloy consisting of Fe of less than mass%, trace additives and inevitable impurities
  • the aluminum alloy casting rod is manufactured by using a magnetic stirring coil having two magnetic poles in the entire magnetic stirring coil.
  • Fe is a major inevitable impurity in Al ingots, it may be added in the range of 1.0% by mass or less for the purpose of improving castability and / or semi-melt molding processability. Since the method for producing an aluminum alloy cast rod according to an aspect of the present invention is characterized in that no Al—Fe-based intermetallic compound is formed, Fe may be contained in an amount of 1.0% by mass or less. , May not be contained.
  • the aluminum alloy casting rod material includes 5.0 to 7.5% by mass of Si, the balance being Al, 0.50% by mass or less of Fe, and a trace additive. As below 0.70 mass% Mg, 0.50 mass% or less Mn, 0.50 mass% or less Cu, 0.20 mass% or less Ti, 0.07 mass% Be, and inevitable impurities This is a method for producing an aluminum alloy casting rod using a hypoeutectic Al—Si alloy.
  • the material for the aluminum alloy casting rod contains 6.5 to 7.5% by mass of Si, the balance being Al, 0.20% by mass or less of Fe, 0.20 to Sub-comprising 0.45 mass% Mg, 0.20 mass% or less Cu, 0.10 mass% or less Zn, 0.10 mass% or less Mn, 0.02 mass% or less Ti and inevitable impurities
  • Another aspect of the present invention is a method for producing an aluminum alloy cast bar in which the current value of the three-phase AC power is set to 5A to 20A and the molten aluminum alloy is electromagnetically stirred.
  • Another aspect of the present invention is a method for producing an aluminum alloy cast bar in which the magnetic flux density of the rotating magnetic field is set to 7 mT to 28 mT and the molten aluminum alloy is electromagnetically stirred.
  • the primary crystal Al crystal of the molten aluminum alloy continuously cast by the continuous casting apparatus is granular throughout the aluminum alloy cast bar, and the average grain size is 30 ⁇ m to 100 ⁇ m, with a standard deviation.
  • a method for producing an aluminum alloy casting rod wherein the aluminum alloy casting rod is produced while electromagnetically stirring the molten aluminum alloy with the electromagnetic stirring coil so that the average particle size becomes 1/3 or less.
  • Another aspect of the present invention is a method for manufacturing an aluminum alloy cast bar, wherein the aluminum alloy cast bar is manufactured by casting the molten aluminum alloy into a bar shape with a diameter of 70 mm to 120 mm using the mold.
  • a continuous casting apparatus is used when producing an aluminum alloy cast bar for semi-melt forming, contains 3.0 to 10.0% by mass of Si, and the balance is Al.
  • a cylindrical mold that casts a hypoeutectic Al-Si alloy melt consisting of 1.0 mass% or less of Fe, a trace additive, and inevitable impurities into a rod shape, and the mold is aligned with the center of the mold
  • a cylindrical hot top for supplying the molten aluminum alloy to the mold, and an electromagnetic stirring coil for electromagnetically stirring the molten Al—Si alloy inside the mold and the hot top.
  • a plurality of coil elements that electromagnetically induce the molten Al-Si alloy in the circumferential direction of the mold and the hot top, and an iron core that holds the coil elements on the mold and the outer periphery of the hot top.
  • the coil is a continuous casting apparatus, wherein the magnetic stirring coil is a two-pole magnetic stirring coil in which the magnetic pole of the rotating magnetic field generated when three-phase AC power is supplied to the coil element It is characterized by.
  • the iron core is formed in a cylindrical shape with an inner diameter larger than the outer diameter of the mold and the hot top, and the outer periphery of the mold and the hot top is aligned with the center of the mold.
  • a continuous casting apparatus is a continuous casting apparatus in which the number of coil elements is a multiple of six.
  • Another aspect of the present invention is a continuous casting apparatus in which the iron core has a plurality of slots formed at regular intervals on the inner peripheral surface of the iron core corresponding to the coil element.
  • the coil element is configured to coil a copper wire between two slots formed on the inner peripheral surface of the iron core by being shifted by 120 ° in the circumferential direction of the iron core among the plurality of slots. It is a continuous casting apparatus formed by winding in a shape. Another aspect of the present invention is a continuous casting apparatus in which the slot has a width of 6.0 mm to 12.0 mm and the slot has a depth of 15.0 mm to 35.0 mm. Another aspect of the present invention is a continuous casting apparatus in which the surface of the copper wire is coated with insulation. Another aspect of the present invention is a continuous casting apparatus in which the copper wire has a wire diameter of 0.6 mm to 1.7 mm and the number of turns of the copper wire is 33 to 67.
  • Another aspect of the present invention is a continuous casting apparatus in which the mold has a height of 30 mm to 60 mm, the hot top has a height of 100 mm to 300 mm, and the iron core has a height of 20 mm to 50 mm.
  • Another aspect of the present invention is a continuous casting apparatus in which the iron core is formed by laminating a plurality of electromagnetic steel plates having a thickness of 0.3 mm to 0.7 mm.
  • Another aspect of the present invention is a continuous casting apparatus in which the mold has a height of 30 mm to 60 mm, the hot top has a height of 100 mm to 300 mm, and the iron core has a height of 20 mm to 50 mm.
  • the number of the coil elements is 36, and the first to sixth, seventh to twelfth, thirteenth to eighteenth, and nineteenth to twenty-fourth of the 36 coil elements.
  • the 25th to 30th, 31st to 36th coil elements are connected in series, and the 1st, 18th, 24th and 31st coil elements are connected to the U-phase terminal of the three-phase AC power source,
  • the 12th, 19th, and 25th coil elements are connected to the V-phase terminal of the three-phase AC power supply, and the 7th, 13th, 30th, and 36th coil elements are connected to the W-phase terminal of the three-phase AC power supply. Continuous casting equipment.
  • the number of the coil elements is 42, and the first to seventh, eighth to fourteenth, fifteenth to twenty-first, twenty-second to twenty-eighth among the 42 coil elements.
  • the 29th to 35th, 36th to 42nd coil elements are connected in series, and the first, 21st, 28th and 36th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply.
  • the 14th, 22nd and 29th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 8th, 15th, 35th and 42nd coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
  • the number of the coil elements is 48, and the first to eighth, ninth to sixteenth, seventeenth to twenty-fourth, twenty-fifth to thirty-second of the 48 coil elements.
  • the thirty-third to forty-fourth, forty-first to forty-eighth coil elements are connected in series, and the first, twenty-fourth, thirty-second and forty-first coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply.
  • the 16th, 25th and 33rd coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the ninth, 17th, 40th and 48th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
  • the number of the coil elements is 54, and the first to ninth, tenth to eighteenth, nineteenth to twenty-seventh, twenty-eighth to thirty-sixth of the 54 coil elements.
  • the 37th to 45th, 46th to 54th coil elements are connected in series, and the first, 27th, 36th and 46th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply,
  • the 18th, 28th, and 37th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 10th, 19th, 45th, and 54th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
  • the number of the coil elements is 60, and the first to the tenth, the eleventh to the twentieth, the twenty-first to the thirtieth, the thirty-first to the forty-fourth of the 60 coil elements.
  • the 41st to 50th, 51st to 60th coil elements are connected in series, and the 1st, 30th, 40th and 51st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply.
  • the 20th, 31st and 41st coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 11th, 21st, 50th and 60th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
  • An electromagnetic stirring coil for a continuous casting apparatus includes a cylindrical mold for casting a molten aluminum alloy in a rod shape, and the mold is disposed on the mold so that the center coincides with the mold.
  • a plurality of coil elements used in a continuous casting apparatus including a cylindrical hot top for supplying molten metal to the mold, and electromagnetically inducing the molten aluminum alloy in a circumferential direction of the mold and the hot top; and the coil
  • An electromagnetic stirring coil for a continuous casting apparatus having an element that holds the mold and an iron core that holds the outer periphery of the hot top, wherein the magnetic pole of the rotating magnetic field generated when three-phase AC power is applied to the coil element The entire coil has two poles.
  • Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus, wherein the number of coil elements is a multiple of six.
  • Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus, wherein the iron core has a plurality of slots formed at regular intervals on the inner peripheral surface of the iron core corresponding to the coil element.
  • the coil element is configured to coil a copper wire between two slots formed on the inner peripheral surface of the iron core by being shifted by 120 degrees in the circumferential direction of the iron core among the plurality of slots. It is the electromagnetic stirring coil for continuous casting apparatuses formed by winding in the shape.
  • Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus in which the surface of the copper wire is coated with insulation.
  • Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus, wherein the copper wire has a wire diameter of 0.6 mm to 1.7 mm and the number of turns of the copper wire is 33 to 67.
  • the number of the coil elements is 36, and the first to sixth, seventh to twelfth, thirteenth to eighteenth, and nineteenth to twenty-fourth of the 36 coil elements.
  • the 25th to 30th, 31st to 36th coil elements are connected in series, and the 1st, 18th, 24th and 31st coil elements are connected to the U-phase terminal of the three-phase AC power source,
  • the 12th, 19th, and 25th coil elements are connected to the V-phase terminal of the three-phase AC power supply, and the 7th, 13th, 30th, and 36th coil elements are connected to the W-phase terminal of the three-phase AC power supply.
  • the number of the coil elements is 42, and the first to seventh, eighth to fourteenth, fifteenth to twenty-first, twenty-second to twenty-eighth among the 42 coil elements.
  • the 29th to 35th, 36th to 42nd coil elements are connected in series, and the first, 21st, 28th and 36th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply.
  • the 14th, 22nd and 29th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 8th, 15th, 35th and 42nd coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply.
  • This is an electromagnetic stirring coil for a continuous casting apparatus.
  • the number of the coil elements is 48, and the first to eighth, ninth to sixteenth, seventeenth to twenty-fourth, twenty-fifth to thirty-second of the 48 coil elements.
  • the thirty-third to forty-fourth, forty-first to forty-eighth coil elements are connected in series, and the first, twenty-fourth, thirty-second and forty-first coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply.
  • the 16th, 25th and 33rd coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the ninth, 17th, 40th and 48th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply.
  • This is an electromagnetic stirring coil for a continuous casting apparatus.
  • the number of the coil elements is 54, and the first to ninth, tenth to eighteenth, nineteenth to twenty-seventh, twenty-eighth to thirty-sixth of the 54 coil elements.
  • the 37th to 45th, 46th to 54th coil elements are connected in series, and the first, 27th, 36th and 46th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply,
  • the 18th, 28th, and 37th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 10th, 19th, 45th, and 54th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply.
  • This is an electromagnetic stirring coil for a continuous casting apparatus.
  • the number of the coil elements is 60, and the first to the tenth, the eleventh to the twentieth, the twenty-first to the thirtieth, the thirty-first to the forty-thousands of the 60 coil elements.
  • the 41st to 50th, 51st to 60th coil elements are connected in series, and the 1st, 30th, 40th and 51st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply.
  • the 20th, 31st and 41st coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 11th, 21st, 50th and 60th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply.
  • the dendritic crystals generated during the casting of the molten aluminum alloy are divided by the electromagnetic stirring in the circumferential direction. Therefore, when the semi-melt forming process is performed, the dendritic crystals are in a state of being intertwined with each other. It can suppress remaining as a phase.
  • the magnetic flux generated between the two magnetic poles of the electromagnetic stirring coil passes through the central part of the mold and the hot top, and the magnetic stirring of the N pole and S pole generated on the inner diameter side of the iron core is four poles.
  • the electromagnetic stirring force of the electromagnetic stirring coil does not weaken at the center of the mold and the hot top.
  • the dendritic portion of the dendritic crystals can be reliably divided, and the metal structure of the aluminum alloy casting rod is fine and uniform granular metal throughout the aluminum alloy casting rod. Since it becomes a structure, an aluminum alloy cast bar suitable for semi-melt forming can be manufactured. In addition, since the power supply circuit and the control mechanism are simple, an aluminum alloy cast rod suitable for semi-melt forming can be manufactured in a large amount and stably.
  • FIG. 1 is a view showing an example of a continuous casting apparatus used when manufacturing an aluminum alloy casting rod for semi-melt forming.
  • the continuous casting apparatus 1 shown in FIG. 1 includes a mold 2, a hot top 3, an electromagnetic stirrer. A coil 5 and a power regulator 6 are provided.
  • the mold 2 is for casting a molten aluminum alloy M into a rod shape.
  • the mold 2 is formed into a cylindrical shape with an outer diameter of 130 mm to 170 mm, an inner diameter of 70 mm to 120 mm, and a height of 30 mm to 60 mm. It is formed from a metal material having good thermal conductivity such as an alloy.
  • the mold 2 has a water cooling space 21 for cooling the molten aluminum alloy M with cooling water.
  • the water cooling space 21 is formed between the inner peripheral wall portion and the outer peripheral wall portion of the mold 2 over the entire circumference of the mold 2.
  • the mold 2 has a cooling water injection port 22 for injecting the cooling water supplied to the water cooling space 21 onto the surface of the solidified shell that has come out of the mold 2, and this cooling water injection port 22 is connected to the inner peripheral wall portion of the mold 2. It is formed over the entire periphery of the mold 2 at the joint with the bottom plate.
  • the hot top 3 supplies the molten aluminum alloy M supplied from the molten metal supply rod 4 to the mold 2 and has, for example, an outer diameter of 130 mm to 170 mm, an inner diameter of 60 mm to 110 mm, and a height of 100 mm to 300 mm. It is formed in a cylindrical shape, and is placed on the mold 2 so that its center coincides with the mold 2.
  • the hot top 3 has a molten metal inlet 31 for receiving the aluminum alloy molten metal M from the molten metal supply rod 4, and the molten metal inlet 31 is formed at the upper part of the outer peripheral surface of the hot top 3.
  • the electromagnetic stirring coil 5 electromagnetically stirs the molten aluminum alloy M inside the mold 2 and the hot top 3 and is configured to electromagnetically stir the molten aluminum alloy M by three-phase AC power from a commercial power source. .
  • the electromagnetic stirring coil 5 is formed in a cylindrical shape so as to surround the upper part of the outer peripheral surface of the mold 2 and the lower part of the outer peripheral surface of the hot top 3, and is provided coaxially with the mold 2 and the hot top 3.
  • the power regulator 6 adjusts the three-phase AC power supplied to the coil element C of the electromagnetic stirring coil 5, and this power regulator 6 converts the three-phase AC power of the commercial three-phase AC power source, for example, the current value. It is configured to adjust to 5A to 20A.
  • the electromagnetic stirring coil 5 includes a plurality (for example, multiples of 6) of coil elements C for electromagnetically inducing the molten aluminum alloy M in the circumferential direction of the mold 2 and the hot top 3, and these coil elements C are connected to the mold 2 and the hot top. 3 and an iron core 51 that is held on the outer periphery.
  • the iron core 51 of the electromagnetic stirring coil 5 has an inner diameter (for example, 140 mm to 190 mm) larger than the outer diameter of the mold 2 and the hot top 3 within a range of 10 mm to 30 mm and an outer diameter (for example, 220 mm to 300 mm) larger than the inner diameter. And is arranged on the outer periphery of the mold 2 and the hot top 3 so that the center coincides with the mold 2.
  • the iron core 51 is formed in a cylindrical shape with a height of 20 mm to 30 mm, and 0.3 mm to 0 mm. It is formed by laminating a large number of non-oriented electrical steel sheets having a thickness of about 7 mm.
  • the reason why the thickness of the electromagnetic steel sheet forming the iron core 51 is set to 0.3 mm to 0.7 mm is that when the thickness of the electromagnetic steel sheet is less than 0.3 mm, the rigidity of the electromagnetic steel sheet is lowered and the mechanical strength of the iron core 51 is reduced. If the thickness of the electromagnetic steel sheet exceeds 0.7 mm, the eddy current in the electromagnetic steel sheet increases and the amount of heat generation increases, causing overheating.
  • the material of the iron core 51 can be used if it is a non-oriented electrical steel plate, a thing with an iron loss value as small as possible is preferable.
  • the iron core 51 of the electromagnetic stirring coil 5 has the same number of slots S as the coil elements C (see FIGS. 4 to 8). These slots S, for example, have a width of 6.0 mm to 12.0 mm and a depth of 15.0 mm to 35.0 mm, and are formed in a comb-like shape at regular intervals on the inner peripheral surface of the iron core 51.
  • the number of slots S is less than 36, the energy required to magnetize the iron core comb teeth portion 52 formed between two adjacent slots increases, and the electromagnetic stirring effect of the electromagnetic stirring coil 5 increases. Decreases and causes overheating. Further, when the number of slots S exceeds 60, the width of the iron comb teeth 52 is reduced and the magnetic flux is not concentrated. Therefore, the number of slots S formed on the inner peripheral surface of the iron core 51 is 6 ⁇ 6, It is preferably 6 ⁇ 7, 6 ⁇ 8, 6 ⁇ 9, or 6 ⁇ 10.
  • the coil element C of the electromagnetic stirring coil 5 is made of a copper wire whose surface is insulated and coated with enamel paint or the like.
  • the wire diameter of the copper wire is 6.0 MA (megaampere) / m 2 or less, Desirably, the thickness is set to 0.6 mm to 1.7 mm so as to be 5.0 MA (megaampere) / m 2 or less.
  • each copper wire forming the coil element C has two magnetic poles of the rotating magnetic field generated when the coil element C is energized with three-phase AC power as shown in FIG.
  • the mold 2 and the hot top 3 are wound in the shape of a coil between two slots S formed on the inner peripheral surface of the iron core 51 with a shift of 120 degrees in the circumferential direction.
  • the number of turns of the copper wire is 33 to 67 so that the magnetic flux density of the rotating magnetic field generated when the coil element C is supplied with three-phase AC power having a current value of 5A to 20A is 7 mT to 28 mT. It is preferable to set the time.
  • each coil element C is covered with a coil insulating paper.
  • a coil insulating paper for example, Nitto Shinko Corporation (NITTO (SHINKO) Corporation, Sakai City, Fukui Prefecture, Japan) Insulation paper with high heat resistance, such as aramid paper and polyester resin laminated with urethane adhesive, sold as NTN222 (trade name) can be used.
  • NTN222 trademark
  • each coil element C is solidified with an enamel paint or the like so that each copper wire forming the coil element C does not contact the upper and lower surfaces of the iron core 51.
  • FIG. 9 to 13 are diagrams showing the electrical configuration of the electromagnetic stirring coil when the number of coil elements is any of 36, 42, 48, 54, and 60.
  • the coil elements C1 to C36 of the electromagnetic stirring coil 5 the coil elements C1 to C6, the coil elements C7 to C12, the coil elements C13 to C18, the coil elements C19 to C24, the coil The elements C25 to C30 and the coil elements C31 to C36 are connected in series, respectively.
  • the coil elements C1, C18, C24, and C31 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C6, C12, C19, and C25 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C7, C13, C30 and C36 are connected to the W-phase terminal T3 of the three-phase AC power source.
  • coil elements C1 to C7, coil elements C8 to C14, coil elements C15 to C21, coil elements among the coil elements C1 to C42 of the electromagnetic stirring coil 5, as shown in FIG. C22 to C28, coil elements C29 to C35, and coil elements C36 to C43 are respectively connected in series.
  • the coil elements C1, C21, C28, and C36 are connected to the U-phase terminal T1 of the three-phase AC power supply
  • the coil elements C7, C14, C22, and C29 are connected to the V-phase terminal T2 of the three-phase AC power supply
  • the coil elements C8, C15, C35 and C42 are connected to the W-phase terminal T3 of the three-phase AC power source.
  • the coil elements C1 to C48 of the electromagnetic stirring coil 5 When the number of coil elements is 48, as shown in FIG. 11, among the coil elements C1 to C48 of the electromagnetic stirring coil 5, the coil elements C1 to C8, the coil elements C9 to C16, the coil elements C17 to C24, the coil elements C25 to C32, coil elements C33 to C40, and coil elements C41 to C48 are respectively connected in series.
  • the coil elements C1, C24, C32, and C41 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C8, C16, C25, and C33 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C9, C17, C40 and C48 are connected to the W-phase terminal T3 of the three-phase AC power source.
  • coil elements C1 to C9, coil elements C10 to C18, coil elements C19 to C27, coil elements among coil elements C1 to C54 of the electromagnetic stirring coil 5 are provided.
  • C28 to C36, coil elements C37 to C45, and coil elements C46 to C54 are respectively connected in series.
  • the coil elements C1, C27, C36, and C46 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C9, C18, C28, and C37 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C10, C19, C45 and C54 are connected to the W-phase terminal T3 of the three-phase AC power source.
  • coil elements C1 to C10, coil elements C11 to C20, coil elements C21 to C30, coil elements among the coil elements C1 to C60 of the electromagnetic stirring coil 5, as shown in FIG. C31 to C40, coil elements C41 to C50, and coil elements C51 to C60 are respectively connected in series.
  • the coil elements C1, C30, C40, and C51 are connected to the U-phase terminal T1 of the three-phase AC power supply
  • the coil elements C10, C20, C31, and C41 are connected to the V-phase terminal T2 of the three-phase AC power supply
  • the coil elements C11, C21, C50 and C60 are connected to the W-phase terminal T3 of the three-phase AC power source.
  • the material of the aluminum alloy cast bar contains 3.0 to 10.0% by mass of Si, And the balance contains hypoeutectic Al-Si alloy composed of Al, 1.0 mass% or less of Fe, trace additives and inevitable impurities, preferably 5.0 to 7.5 mass% or less of Si. And a hypoeutectic Al—Si based alloy consisting of Al, 0.20% by mass or less of Fe, and a trace amount of additives and inevitable impurities, more preferably an A356.0 alloy or an A357.0 alloy shown in Table 1.
  • a hypoeutectic Al—Si based alloy shown as follows is used, and this hypoeutectic Al—Si based alloy is melted in a melting furnace to obtain a molten aluminum alloy M. Then, the molten aluminum alloy M obtained in the melting furnace is supplied from the molten metal supply rod 4 to the hot top 3.
  • the molten aluminum alloy M supplied to the hot top 3 flows down the inner diameter side of the hot top 3 and flows into the mold 2. Then, the molten aluminum alloy M flowing into the mold 2 is cooled by the cooling water supplied to the water cooling space 21 of the mold 2 and becomes an aluminum alloy casting rod R in a rod shape from the lower surface of the mold 2 as shown in FIG. Pulled out.
  • three-phase alternating current power having an alternating frequency of 50 Hz to 60 Hz and a current value of 5 A to 20 A is supplied from the power regulator 6 to the electromagnetic stirring coil 5, and the three-phase alternating current supplied from the power regulator 6 to the electromagnetic stirring coil 5.
  • a rotating magnetic field having a magnetic flux density of 7 mT to 28 mT is generated on the inner diameter side of the mold 2 and the hot top 3 by electric power.
  • the molten aluminum alloy M is continuously cast in a rod shape while being magnetically stirred in the circumferential direction of the mold 2 and the hot top 3 by the rotating magnetic field generated on the inner diameter side of the mold 2 and the hot top 3.
  • the dendritic portion of the dendritic crystal generated with cooling is divided by electromagnetic stirring.
  • the material of the aluminum alloy casting rod includes 3.0 to 10.0% by mass of Si, the balance being Al, 1.0% by mass or less of Fe, A hypoeutectic Al-Si alloy consisting of a trace amount of additives and inevitable impurities is used, but the dendritic crystals generated during casting of the molten aluminum alloy are separated by electromagnetic stirring in the circumferential direction. Therefore, it can suppress that the dendritic part of the dendritic crystal remains as a solid phase in an intertwined state.
  • the material of the aluminum alloy casting rod contains 5.0 to 7.5% by mass of Si, the balance being Al, 0.50% by mass or less of Fe, and 0.70% by mass or less as a trace additive.
  • Mg 0.50% by mass or less of Cu, 0.50% by mass or less of Cu, 0.20% by mass or less of Ti, 0.07% by mass of Be, and hypoeutectic Al—Si
  • Al is contained by 7% by mass of Si, 0.86% by mass of Fe, and 0.67% by mass of Mn as in the Al alloy described in paragraph No. 0031 of Patent Document 2.
  • -Fe-based intermetallic compounds are neither generated nor segregated.
  • the magnetic pole generated to generate a rotating magnetic field is a two-pole electromagnetic stirring coil 5 for the entire electromagnetic stirring coil.
  • the electromagnetic stirring force of the electromagnetic stirring coil is passed through the central part of the mold 2 and the hot top 3 and the magnetic stirring force of the electromagnetic stirring coil is the same as that of the mold and hot, as in the case of using the electromagnetic stirring coil having four poles for generating the rotating magnetic field. There is no weakening in the center of the top.
  • the dendritic portion of the dendritic crystals can be reliably divided, and the metal structure of the aluminum alloy casting rod is fine and uniform granular metal throughout the aluminum alloy casting rod. Since it becomes a structure, an aluminum alloy cast bar suitable for semi-melt forming can be manufactured.
  • an electromagnetic stirring coil for electromagnetically stirring the molten aluminum alloy a rotating magnetic field is generated on the inner diameter side of the mold 2 and the hot top 3 by a three-phase AC power from a commercial power source, so that the molten aluminum alloy is supplied to the mold 2 and the hot top 3.
  • the electromagnetic stirring coil 5 that performs electromagnetic stirring in the circumferential direction, the power supply circuit and the control mechanism of the power regulator 6 become simple. It can be manufactured stably.
  • the coil element C is delta-connected to the three-phase AC power source.
  • the rotating magnetic field generated when the coil element C is energized with the three-phase AC power is shown.
  • the connection relationship between the coil element and the three-phase AC power supply is not limited to delta connection, and may be, for example, star connection.
  • Example 2 A hypoeutectic Al—Si alloy having the chemical composition shown in Table 2 was used as the material for the aluminum alloy casting rod, and 10 A obtained by adjusting the commercial power supply to the coil element C of the electromagnetic stirring coil 5 with the power regulator 6.
  • a rotating magnetic field having a magnetic flux density of 13 mT is generated on the inner diameter side of the mold 2 and the hot top 3 by energizing the three-phase AC current, and the aluminum alloy melt is bar-shaped while electromagnetically stirring the mold 2 and the hot top 3 in the circumferential direction.
  • the mold 2 used had an outer diameter of 160 mm, an inner diameter of 75 mm, and a height of 45 mm, and the hot top 3 used an outer diameter of 160 mm, an inner diameter of 60 mm, and a height of 225 mm.
  • the electromagnetic stirring coil 5 has an iron core outer diameter of 260 mm, an iron core inner diameter of 165 mm, an iron core height of 50 mm, a slot number of 48, a copper wire diameter of 0.9 mm, a copper wire winding number of 45, and a coil element current density of 4.5 MA / m 2. The thing of was used.
  • Fig. 14 (a) shows a metal structure photograph of the aluminum alloy cast bar obtained in the example
  • Fig. 14 (b) shows a metal structure photograph of the aluminum alloy cast bar obtained in the comparative example.
  • the aluminum alloy cast bar obtained in the example was obtained in the comparative example, whereas the metal structure was composed of primary crystal Al and eutectic structure having a fine and uniform granular structure. It can be seen that the aluminum alloy casting rod has a dendritic primary Al and eutectic structure.
  • the inventors of the present invention obtained the metal structure of the aluminum alloy casting rod obtained in the example by 0.5 mm ⁇ 0.5 mm centering on three positions indicated by “a”, “b”, and “c” in FIG.
  • SEM-EBSD is used to analyze the boundary of a small tilt angle of less than 15 ° as a sub-grain boundary within the crystal grain, while the region surrounded by the tilt boundary of 15 ° or more is defined as one crystal grain. It was measured by the equivalent circle diameter of the crystal grains.
  • the average grain size of primary crystal Al of the aluminum alloy cast rod obtained in the example was 90 ⁇ m and the standard deviation was 25 ⁇ m.
  • the inventors cut the aluminum alloy casting rods obtained in Examples and Comparative Examples to a length of 35 mm, and then heated to a temperature at which the aluminum alloy casting rods are in a semi-molten state in an electric furnace. Then, it was taken out from the electric furnace. A semi-molten aluminum alloy cast rod is pressed in the axial direction at a speed of 16 mm / min with a plunger, and the maximum pressure applied to the plunger when the diameter of the aluminum alloy cast rod reaches 80 mm is measured. did. And this was performed about the seven aluminum alloy cast bars, and the average value and standard deviation of the maximum pressurizing force were calculated. The results are shown in Table 3.
  • the aluminum alloy cast bars obtained in the examples have an average value of the maximum pressure of 619.1 kN and a standard deviation of 6.2 kN.
  • the aluminum alloy cast bar obtained in the comparative example is found to have an average maximum pressure of 1222.1 kN and a standard deviation of 406.4 kN. Therefore, it can be seen that the aluminum alloy cast bar obtained in the example is more suitable for the semi-melt forming process than the aluminum alloy cast bar obtained in the comparative example.

Abstract

In the production of an aluminum alloy cast bar (R) for semi-melt-molding processing by carrying out continuous casting while electromagnetically stirring an molten aluminum alloy (M) by means of an electromagnetic stirring coil (5), the aluminum alloy cast bar is produced using a hypoeutectic Al-Si-based alloy comprising 3.0 to 10.0 mass% of Si and a reminder made up by Al, 1.0 mass% or less of Fe, a trace amount of an additive and unavoidable impurities as a material for the aluminum alloy cast bar and using an electromagnetic stirring coil in which the magnetic pole of the rotating magnetic field that is generated upon the conduction of a three-phase alternate current electric power to multiple coil elements (C) is bipolar as a whole as the electromagnetic stirring coil (5).

Description

アルミニウム合金鋳造棒の製造方法および連続鋳造装置ならびに連続鋳造装置用電磁攪拌コイルAluminum alloy casting rod manufacturing method, continuous casting apparatus, and electromagnetic stirring coil for continuous casting apparatus
 本発明は、半溶融成形加工用のアルミニウム合金鋳造棒を製造する方法および該方法に用いられる連続鋳造装置ならびに該連続鋳造装置に用いられる電磁攪拌コイルに関する。 The present invention relates to a method for producing an aluminum alloy cast bar for semi-melt forming, a continuous casting apparatus used in the method, and an electromagnetic stirring coil used in the continuous casting apparatus.
 アルミニウム合金鋳造棒を所要の形状に成形加工する方法の一つとして、半溶融成形加工法と呼ばれる方法が知られている。この半溶融成形加工法は、成形加工される素材を固相と液相が共存する半溶融状態となる温度まで加熱し、その後、金型内に移送して加圧することにより所要の形状に成形加工する方法であって、固相と液相が共存する半溶融状態のほうが固相のみの単相状態よりも流動性が高いので、小さな加圧力でも容易に複雑な形状に成形することができ、しかも相状態が液相単相の場合ほどには流動性が高くないので、成形時に気泡などの異物の巻き込みを抑制することができるなどの利点を有している。 As a method for forming an aluminum alloy cast rod into a required shape, a method called a semi-melt forming method is known. In this semi-molten molding method, the material to be molded is heated to a temperature at which it is in a semi-molten state where the solid phase and the liquid phase coexist, and then transferred into a mold and pressed to form the required shape. In the semi-molten state where the solid phase and the liquid phase coexist, the fluidity is higher than the single-phase state with only the solid phase, so it can be easily formed into a complex shape even with a small pressure. In addition, since the fluidity is not as high as when the phase state is a single liquid phase, there is an advantage that entrainment of foreign substances such as bubbles can be suppressed during molding.
 このような半溶融成形加工法により成形加工されるアルミニウム合金鋳造棒は、合金成分を溶融してアルミニウム合金溶湯を得た後、得られたアルミニウム合金溶湯の化学成分を調整したうえで棒状に鋳造して製造されるのが一般的であり、アルミニウム合金溶湯を棒状に鋳造する方法としては、アルミニウムなどの合金溶湯を連続鋳造装置のホットトップから当該ホットトップの下部に配置された鋳型に供給し、鋳型に供給された合金溶湯を冷却して凝固させ、凝固した合金溶湯を鋳型から下方に引き出して連続鋳造する連続鋳造法が用いられる。 An aluminum alloy casting rod formed by such a semi-melt forming method is obtained by melting the alloy components to obtain a molten aluminum alloy, and then adjusting the chemical composition of the obtained molten aluminum alloy to form a rod shape. As a method of casting a molten aluminum alloy into a rod shape, a molten alloy such as aluminum is supplied from a hot top of a continuous casting apparatus to a mold disposed below the hot top. A continuous casting method is used in which the molten alloy supplied to the mold is cooled and solidified, and the solidified molten alloy is drawn downward from the mold and continuously cast.
 連続鋳造法を用いて半溶融成形加工用のアルミニウム合金鋳造棒を製造する場合、アルミニウム合金溶湯の凝固は共晶系の合金成分を液相内に拡散させ、包晶系の合金成分を固相内に拡散させながら進行するため、成長中の固相結晶周囲では、共晶系の合金成分含有量が高く、包晶系の合金成分含有量が低くなって液相の凝固開始温度が低下する。これに対し、成長中の固相結晶周囲以外の箇所では、液相の凝固開始温度が低下することはなく、固相結晶周囲以外の液相は固相結晶周囲の液相よりも相対的に凝固しやすいことから、アルミニウム合金溶湯を連続鋳造して半溶融成形加工用のアルミニウム合金鋳造棒を製造する際に樹枝状結晶が生成される。 When producing an aluminum alloy casting rod for semi-melt forming using the continuous casting method, the solidification of the molten aluminum alloy diffuses the eutectic alloy component into the liquid phase and the peritectic alloy component in the solid phase. As it progresses while diffusing in, the eutectic alloy component content is high around the growing solid phase crystal, and the peritectic alloy component content is low, which lowers the solidification start temperature of the liquid phase. . On the other hand, the solidification start temperature of the liquid phase does not decrease in places other than the surrounding solid phase crystal during growth, and the liquid phase other than the solid phase crystal is relatively inferior to the liquid phase around the solid phase crystal. Since it is easy to solidify, dendritic crystals are generated when an aluminum alloy cast bar for semi-melt forming is manufactured by continuously casting a molten aluminum alloy.
 樹枝状結晶は樹枝間の部分よりも融点が高いため、連続鋳造法にて製造されたアルミニウム合金鋳造棒を固相と液相が共存する半溶融状態になる温度まで加熱しても樹枝状結晶は溶融せず、樹枝部同士が絡み合った状態で固相として残存する。従って、アルミニウム合金溶湯を連続鋳造して半溶融成形加工用のアルミニウム合金鋳造棒を製造する際に樹枝状結晶が生成されると、アルミニウム合金鋳造棒を半溶融成形加工法により成形加工する際にアルミニウム合金溶湯の流動性が著しく低下し、成形加工に対して高い加圧力が必要となる。 Since dendritic crystals have a higher melting point than the part between the dendrites, even if an aluminum alloy cast rod manufactured by continuous casting is heated to a temperature at which it is in a semi-molten state where the solid and liquid phases coexist, the dendritic crystals Does not melt and remains as a solid phase in a state where the tree branches are intertwined. Therefore, when a dendritic crystal is generated when an aluminum alloy cast rod for semi-molten forming is produced by continuously casting molten aluminum alloy, the aluminum alloy cast rod is formed by the semi-melt forming method. The fluidity of the molten aluminum alloy is significantly reduced, and a high pressure is required for the forming process.
 また、アルミニウム合金鋳造棒の製造時に樹枝状結晶が生成されて成長すると、アルミニウム合金鋳造棒の金属組織がアルミニウム合金鋳造棒の全体にわたり微細で均一な粒状の金属組織でなくなるため、粗大な結晶が多く分布する箇所ほど流動性が低くなり、成形加工に際して大きな加圧力が必要となる。このため、結晶粒径の分布の不均一性に依存して、成形に必要な加圧力が変化することになり、成形加工条件を安定させることができなくなる。従って、アルミニウム合金鋳造棒の成形加工条件を安定させるためには、アルミニウム合金溶湯の鋳造時に樹枝状結晶の生成を抑制し、アルミニウム合金鋳造棒の金属組織をアルミニウム合金鋳造棒の全体にわたり微細で均一な粒状の金属組織とすることが重要である。 In addition, when dendritic crystals are generated and grown during the manufacture of an aluminum alloy cast bar, the metal structure of the aluminum alloy cast bar is not a fine and uniform granular metal structure throughout the aluminum alloy cast bar. The more distributed points, the lower the fluidity, and a larger pressing force is required for the molding process. For this reason, depending on the non-uniformity of the distribution of crystal grain sizes, the pressing force required for molding changes, and the molding process conditions cannot be stabilized. Therefore, in order to stabilize the forming conditions of the aluminum alloy casting rod, the formation of dendritic crystals is suppressed during the casting of the molten aluminum alloy, and the metal structure of the aluminum alloy casting rod is fine and uniform throughout the aluminum alloy casting rod. It is important to have a granular metal structure.
 そこで、アルミニウム合金溶湯の鋳造時に樹枝状結晶の生成を抑制する方法として、アルミニウム合金溶湯に対して機械攪拌、電磁攪拌などを実施しながらアルミニウム合金溶湯を連続鋳造する方法が提案されている(例えば、特許文献1、特許文献2、特許文献3参照)。 Therefore, as a method for suppressing the formation of dendritic crystals during casting of the molten aluminum alloy, a method of continuously casting the molten aluminum alloy while performing mechanical stirring, electromagnetic stirring, etc. on the molten aluminum alloy has been proposed (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
特開平07-068345号公報Japanese Patent Laid-Open No. 07-068345 特許第2967415号公報Japanese Patent No. 2967415 特開平07-051820号公報Japanese Patent Laid-Open No. 07-051820
 しかしながら、特許文献1に開示された方法では、アルミニウム合金溶湯を向心磁界の態様で電磁攪拌しながら連続鋳造しているため、特許文献3の段落0011に記載されているように、アルミニウム合金溶湯を回転磁界の態様で電磁攪拌する場合と比較して、アルミニウム合金溶湯の流動性が低下し、微細で均一な結晶粒を得られない可能性がある。
 一方、特許文献2に開示された発明では、アルミニウム合金溶湯を回転磁界の態様で電磁攪拌しているものの、回転磁界を発生させるための磁極が4極の電磁攪拌コイルを使用しているため、鋳型およびホットトップの内径側に発生する回転磁界の磁束密度が鋳型およびホットトップの中心部で低くなり、樹枝状結晶の生成を有効に抑制できない可能性がある。
However, in the method disclosed in Patent Document 1, since the aluminum alloy melt is continuously cast in an centripetal magnetic field while electromagnetically stirring, as described in paragraph 0011 of Patent Document 3, the molten aluminum alloy is used. Compared with the case of electromagnetic stirring in the form of a rotating magnetic field, the fluidity of the molten aluminum alloy is reduced, and fine and uniform crystal grains may not be obtained.
On the other hand, in the invention disclosed in Patent Document 2, although the aluminum alloy melt is electromagnetically stirred in the form of a rotating magnetic field, the magnetic pole for generating the rotating magnetic field uses an electromagnetic stirring coil having four poles. There is a possibility that the magnetic flux density of the rotating magnetic field generated on the inner diameter side of the mold and the hot top becomes low at the center of the mold and the hot top, and the generation of dendritic crystals cannot be effectively suppressed.
 特許文献3に開示された発明では、凝固温度範囲が狭く、鋳塊の径に対するサンプの比が0.2~0.5程度の値となるため、電磁攪拌の態様が回転磁界の場合には、アルミニウム合金鋳造棒中心部と外周部の間での対流が少なくなることに起因して、樹枝状結晶の生成を有効に抑制できない可能性がある。
 本発明は、このような問題を解消すべくなされたものであり、半溶融成形加工用として好適なアルミニウム合金鋳造棒を製造することのできるアルミニウム合金鋳造棒の製造方法を提供することを目的とする。
In the invention disclosed in Patent Document 3, since the solidification temperature range is narrow and the ratio of the sump to the ingot diameter is about 0.2 to 0.5, the electromagnetic stirring mode is a rotating magnetic field. There is a possibility that the formation of dendritic crystals cannot be effectively suppressed due to a decrease in convection between the central portion and the outer peripheral portion of the aluminum alloy casting rod.
The present invention has been made to solve such a problem, and an object of the present invention is to provide an aluminum alloy cast bar manufacturing method capable of manufacturing an aluminum alloy cast bar suitable for semi-melt forming. To do.
 また、本発明は、半溶融成形加工用として好適なアルミニウム合金鋳造棒を得ることのできる連続鋳造装置を提供することを目的とする。
 また、本発明は、アルミニウム合金溶湯を連続鋳造してアルミニウム合金鋳造棒を製造する際に樹枝状結晶の生成を有効に抑制することのできる連続鋳造装置用電磁攪拌コイルを提供することを目的とする。
Another object of the present invention is to provide a continuous casting apparatus capable of obtaining an aluminum alloy cast rod suitable for semi-melt forming.
Another object of the present invention is to provide an electromagnetic stirring coil for a continuous casting apparatus capable of effectively suppressing the formation of dendritic crystals when an aluminum alloy cast bar is produced by continuously casting molten aluminum alloy. To do.
 本発明者らは、商用電源を利用した回転磁界の態様でアルミニウム合金溶湯を電磁攪拌しながら棒状に連続鋳造するに際して、アルミニウム合金鋳造棒の金属組織が微細で均一な粒状の金属組織となり、かつ半溶融成形加工法への適用が好適な方法について検討を重ねてきた。その過程で、アルミニウム合金鋳造棒の素材として、3.0~10.0質量%のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金を用いる場合、アルミニウム合金溶湯の電磁攪拌が50Hz~60Hzの商用三相交流電源を利用した回転磁界の態様であっても電磁攪拌コイル全体の磁極が2極であるならば、樹枝状結晶の樹枝部を分断することができ、その結果、アルミニウム合金鋳造棒の金属組織がアルミニウム合金鋳造棒の全体にわたり微細で均一な粒状の金属組織になるという知見を得て本発明を完成するに至った。 When the present inventors continuously cast a molten aluminum alloy in a bar shape while electromagnetically stirring in a rotating magnetic field using a commercial power source, the metal structure of the aluminum alloy cast bar becomes a fine and uniform granular metal structure, and Studies have been made on methods suitable for application to the semi-melt molding process. In the process, as the material of the aluminum alloy cast rod, it contains 3.0 to 10.0% by mass of Si, and the balance is Al, 1.0% by mass or less of Fe, trace additives and inevitable impurities. When the hypoeutectic Al-Si alloy is used, even if the magnetic stirring of the aluminum alloy melt is a rotating magnetic field using a commercial three-phase AC power source of 50 Hz to 60 Hz, the entire magnetic stirring coil has two magnetic poles. If there is, it is possible to divide the dendritic portion of the dendritic crystal, and as a result, the knowledge that the metal structure of the aluminum alloy cast bar becomes a fine and uniform granular metal structure throughout the aluminum alloy cast bar is obtained. The present invention has been completed.
 上記課題を解決するために、本発明のある態様に係るアルミニウム合金鋳造棒の製造方法は、アルミニウム合金溶湯を連続鋳造して半溶融成形加工用のアルミニウム合金鋳造棒を製造する方法であって、前記アルミニウム合金溶湯を連続鋳造する連続鋳造装置として、前記アルミニウム合金溶湯を棒状に鋳造する円筒状の鋳型と、該鋳型と中心を一致させて前記鋳型の上に配置され、前記アルミニウム合金溶湯を前記鋳型に供給する円筒状のホットトップと、前記鋳型と前記ホットトップの内側で前記アルミニウム合金溶湯を電磁攪拌する電磁攪拌コイルとを具備し、かつ前記電磁攪拌コイルが前記アルミニウム合金溶湯を前記鋳型と前記ホットトップの円周方向に電磁誘導する複数のコイル要素と、該コイル要素を前記鋳型と前記ホットトップの外周に保持する鉄心とを有する連続鋳造装置を用いるとともに、前記アルミニウム合金鋳造棒の素材として、3.0~10.0質量%のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金を用い、かつ前記電磁攪拌コイルとして、前記コイル要素に三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極の電磁攪拌コイルを用いて、前記アルミニウム合金鋳造棒を製造することを特徴とする。 In order to solve the above problems, a method for producing an aluminum alloy cast rod according to an aspect of the present invention is a method for producing an aluminum alloy cast rod for semi-molten forming by continuously casting a molten aluminum alloy, As a continuous casting apparatus for continuously casting the molten aluminum alloy, a cylindrical mold for casting the molten aluminum alloy in a rod shape, and the mold is disposed on the mold so that the center of the molten metal is aligned with the center. A cylindrical hot top to be supplied to the mold; and an electromagnetic stirring coil for electromagnetically stirring the molten aluminum alloy inside the mold and the hot top; and the electromagnetic stirring coil supplies the molten aluminum alloy to the mold. A plurality of coil elements electromagnetically induced in a circumferential direction of the hot top; A continuous casting apparatus having an iron core held on the outer periphery of the steel plate, and containing 3.0 to 10.0% by mass of Si as the material of the aluminum alloy casting rod, with the balance being Al, 1.0% Rotation that occurs when three-phase AC power is applied to the coil element as a magnetic stirrer coil using a hypoeutectic Al-Si-based alloy consisting of Fe of less than mass%, trace additives and inevitable impurities The aluminum alloy casting rod is manufactured by using a magnetic stirring coil having two magnetic poles in the entire magnetic stirring coil.
 Feは、Al地金中の主要な不可避不純物である一方、鋳造性および/または半溶融成形加工性の向上を目的として、1.0質量%以下の範囲で添加される場合もある。本発明のある態様に係るアルミニウム合金鋳造棒の製造方法は、Al-Fe系の金属間化合物が生成しないことを特徴とするものであるので、Feは1.0質量%以下で含有されても、含有されていなくてもよい。 While Fe is a major inevitable impurity in Al ingots, it may be added in the range of 1.0% by mass or less for the purpose of improving castability and / or semi-melt molding processability. Since the method for producing an aluminum alloy cast rod according to an aspect of the present invention is characterized in that no Al—Fe-based intermetallic compound is formed, Fe may be contained in an amount of 1.0% by mass or less. , May not be contained.
 本発明の他の態様は、前記アルミニウム合金鋳造棒の素材として、5.0~7.5質量%のSiを含み、かつ残部がAlと、0.50質量%以下のFeと、微量添加物として0.70質量%以下のMg、0.50質量%以下のMn、0.50質量%以下のCu、0.20質量%以下のTi、0.07質量%のBe、および不可避不純物とからなる亜共晶Al-Si系合金を用いるアルミニウム合金鋳造棒の製造方法である。 In another aspect of the present invention, the aluminum alloy casting rod material includes 5.0 to 7.5% by mass of Si, the balance being Al, 0.50% by mass or less of Fe, and a trace additive. As below 0.70 mass% Mg, 0.50 mass% or less Mn, 0.50 mass% or less Cu, 0.20 mass% or less Ti, 0.07 mass% Be, and inevitable impurities This is a method for producing an aluminum alloy casting rod using a hypoeutectic Al—Si alloy.
 本発明の他の態様は、前記アルミニウム合金鋳造棒の素材として、6.5~7.5質量%のSiを含み、かつ残部がAlと、0.20質量%以下のFe、0.20~0.45質量%のMg、0.20質量%以下のCu、0.10質量%以下のZn、0.10質量%以下のMn、0.02質量%以下のTiおよび不可避不純物とからなる亜共晶Al-Si系合金、または6.5~7.5質量%のSiを含み、かつ残部がAlと、0.20質量%以下のFe、0.40~0.70質量%のMg、0.20質量%以下のCu、0.10質量%以下のZn、0.10質量%以下のMn、0.04~0.20質量%以下のTi、0.04~0.07質量%以下のBeおよび不可避不純物とからなる亜共晶Al-Si系合金を用いるアルミニウム合金鋳造棒の製造方法である。 In another aspect of the present invention, the material for the aluminum alloy casting rod contains 6.5 to 7.5% by mass of Si, the balance being Al, 0.20% by mass or less of Fe, 0.20 to Sub-comprising 0.45 mass% Mg, 0.20 mass% or less Cu, 0.10 mass% or less Zn, 0.10 mass% or less Mn, 0.02 mass% or less Ti and inevitable impurities A eutectic Al-Si alloy, or containing 6.5 to 7.5% by mass of Si and the balance being Al, 0.20% by mass or less of Fe, 0.40 to 0.70% by mass of Mg, Cu of 0.20 mass% or less, Zn of 0.10 mass% or less, Mn of 0.10 mass% or less, Ti of 0.04 to 0.20 mass% or less, 0.04 to 0.07 mass% or less Cast aluminum alloy using hypoeutectic Al-Si alloy consisting of Be and inevitable impurities It is a method of manufacturing a rod.
 本発明の他の態様は、前記三相交流電力の電流値を5A~20Aに設定して前記アルミニウム合金溶湯を電磁攪拌するアルミニウム合金鋳造棒の製造方法である。
 本発明の他の態様は、前記回転磁界の磁束密度を7mT~28mTに設定して前記アルミニウム合金溶湯を電磁攪拌するアルミニウム合金鋳造棒の製造方法である。
Another aspect of the present invention is a method for producing an aluminum alloy cast bar in which the current value of the three-phase AC power is set to 5A to 20A and the molten aluminum alloy is electromagnetically stirred.
Another aspect of the present invention is a method for producing an aluminum alloy cast bar in which the magnetic flux density of the rotating magnetic field is set to 7 mT to 28 mT and the molten aluminum alloy is electromagnetically stirred.
 本発明の他の態様は、前記連続鋳造装置により連続鋳造される前記アルミニウム合金溶湯の初晶Al結晶が前記アルミニウム合金鋳造棒の全体にわたり粒状であり、かつ平均粒径が30μm~100μm、標準偏差が平均粒径の1/3以下となるように、前記アルミニウム合金溶湯を前記電磁攪拌コイルにより電磁攪拌しながら前記アルミニウム合金鋳造棒を製造するアルミニウム合金鋳造棒の製造方法である。
 本発明の他の態様は、前記アルミニウム合金溶湯を前記鋳型により70mm~120mmの直径で棒状に鋳造して前記アルミニウム合金鋳造棒を製造するアルミニウム合金鋳造棒の製造方法である。
In another aspect of the present invention, the primary crystal Al crystal of the molten aluminum alloy continuously cast by the continuous casting apparatus is granular throughout the aluminum alloy cast bar, and the average grain size is 30 μm to 100 μm, with a standard deviation. Is a method for producing an aluminum alloy casting rod, wherein the aluminum alloy casting rod is produced while electromagnetically stirring the molten aluminum alloy with the electromagnetic stirring coil so that the average particle size becomes 1/3 or less.
Another aspect of the present invention is a method for manufacturing an aluminum alloy cast bar, wherein the aluminum alloy cast bar is manufactured by casting the molten aluminum alloy into a bar shape with a diameter of 70 mm to 120 mm using the mold.
 本発明の他の態様に係る連続鋳造装置は、半溶融成形加工用のアルミニウム合金鋳造棒を製造するときに用いられ、3.0~10.0質量%のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金溶湯を棒状に鋳造する円筒状の鋳型と、該鋳型と中心を一致させて前記鋳型の上に配置され、前記アルミニウム合金溶湯を前記鋳型に供給する円筒状のホットトップと、前記鋳型と前記ホットトップの内側で前記Al-Si系合金溶湯を電磁攪拌する電磁攪拌コイルとを具備し、前記Al-Si系合金溶湯を前記鋳型と前記ホットトップの円周方向に電磁誘導する複数のコイル要素と、該コイル要素を前記鋳型と前記ホットトップの外周に保持する鉄心とを前記電磁攪拌コイルが有する連続鋳造装置であって、前記電磁攪拌コイルが、前記コイル要素に三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極の電磁攪拌コイルであることを特徴とする。 A continuous casting apparatus according to another aspect of the present invention is used when producing an aluminum alloy cast bar for semi-melt forming, contains 3.0 to 10.0% by mass of Si, and the balance is Al. A cylindrical mold that casts a hypoeutectic Al-Si alloy melt consisting of 1.0 mass% or less of Fe, a trace additive, and inevitable impurities into a rod shape, and the mold is aligned with the center of the mold A cylindrical hot top for supplying the molten aluminum alloy to the mold, and an electromagnetic stirring coil for electromagnetically stirring the molten Al—Si alloy inside the mold and the hot top. A plurality of coil elements that electromagnetically induce the molten Al-Si alloy in the circumferential direction of the mold and the hot top, and an iron core that holds the coil elements on the mold and the outer periphery of the hot top. The coil is a continuous casting apparatus, wherein the magnetic stirring coil is a two-pole magnetic stirring coil in which the magnetic pole of the rotating magnetic field generated when three-phase AC power is supplied to the coil element It is characterized by.
 本発明の他の態様は、前記鉄心が、前記鋳型および前記ホットトップの外径より大きい内径で円筒状に形成されていると共に、前記鋳型と中心を一致させて前記鋳型と前記ホットトップの外周に配置されている連続鋳造装置である。
 本発明の他の態様は、前記コイル要素の個数が6の倍数である連続鋳造装置である。
 本発明の他の態様は、前記鉄心が、前記コイル要素に対応して前記鉄心の内周面に一定間隔で形成された複数のスロットを有する連続鋳造装置である。
In another aspect of the present invention, the iron core is formed in a cylindrical shape with an inner diameter larger than the outer diameter of the mold and the hot top, and the outer periphery of the mold and the hot top is aligned with the center of the mold. Is a continuous casting apparatus.
Another aspect of the present invention is a continuous casting apparatus in which the number of coil elements is a multiple of six.
Another aspect of the present invention is a continuous casting apparatus in which the iron core has a plurality of slots formed at regular intervals on the inner peripheral surface of the iron core corresponding to the coil element.
 本発明の他の態様は、前記コイル要素が、前記複数のスロットのうち前記鉄心の円周方向に120°ずれて前記鉄心の内周面に形成された2つのスロットの間で銅線をコイル状に巻回して形成されている連続鋳造装置である。
 本発明の他の態様は、前記スロットの幅が6.0mm~12.0mm、前記スロットの深さが15.0mm~35.0mmである連続鋳造装置である。
 本発明の他の態様は、前記銅線の表面が絶縁被覆されている連続鋳造装置である。
 本発明の他の態様は、前記銅線の線径が0.6mm~1.7mm、前記銅線の巻き数が33~67である連続鋳造装置である。
In another aspect of the present invention, the coil element is configured to coil a copper wire between two slots formed on the inner peripheral surface of the iron core by being shifted by 120 ° in the circumferential direction of the iron core among the plurality of slots. It is a continuous casting apparatus formed by winding in a shape.
Another aspect of the present invention is a continuous casting apparatus in which the slot has a width of 6.0 mm to 12.0 mm and the slot has a depth of 15.0 mm to 35.0 mm.
Another aspect of the present invention is a continuous casting apparatus in which the surface of the copper wire is coated with insulation.
Another aspect of the present invention is a continuous casting apparatus in which the copper wire has a wire diameter of 0.6 mm to 1.7 mm and the number of turns of the copper wire is 33 to 67.
 本発明の他の態様は、前記鋳型の高さが30mm~60mm、前記ホットトップの高さが100mm~300mm、前記鉄心の高さが20mm~50mmである連続鋳造装置である。
 本発明の他の態様は、前記鉄心が0.3mm~0.7mmmmの厚さを有する複数の電磁鋼板を積層して形成されている連続鋳造装置である。
 本発明の他の態様は、前記鋳型の高さが30mm~60mm、前記ホットトップの高さが100mm~300mm、前記鉄心の高さが20mm~50mmである連続鋳造装置である。
Another aspect of the present invention is a continuous casting apparatus in which the mold has a height of 30 mm to 60 mm, the hot top has a height of 100 mm to 300 mm, and the iron core has a height of 20 mm to 50 mm.
Another aspect of the present invention is a continuous casting apparatus in which the iron core is formed by laminating a plurality of electromagnetic steel plates having a thickness of 0.3 mm to 0.7 mm.
Another aspect of the present invention is a continuous casting apparatus in which the mold has a height of 30 mm to 60 mm, the hot top has a height of 100 mm to 300 mm, and the iron core has a height of 20 mm to 50 mm.
 本発明の他の態様は、前記コイル要素の個数が36個であり、前記36個のコイル要素のうち第1~第6、第7~第12、第13~第18、第19~第24、第25~第30、第31~第36のコイル要素は直列に接続され、かつ第1、第18、第24、第31のコイル要素は三相交流電源のU相端子に、第6、第12、第19、第25のコイル要素は三相交流電源のV相端子に、第7、第13、第30、第36のコイル要素は三相交流電源のW相端子に接続されている連続鋳造装置である。 In another aspect of the present invention, the number of the coil elements is 36, and the first to sixth, seventh to twelfth, thirteenth to eighteenth, and nineteenth to twenty-fourth of the 36 coil elements. The 25th to 30th, 31st to 36th coil elements are connected in series, and the 1st, 18th, 24th and 31st coil elements are connected to the U-phase terminal of the three-phase AC power source, The 12th, 19th, and 25th coil elements are connected to the V-phase terminal of the three-phase AC power supply, and the 7th, 13th, 30th, and 36th coil elements are connected to the W-phase terminal of the three-phase AC power supply. Continuous casting equipment.
 本発明の他の態様は、前記コイル要素の個数が42個であり、前記42個のコイル要素のうち第1~第7、第8~第14、第15~第21、第22~第28、第29~第35、第36~第42のコイル要素は直列に接続され、かつ第1、第21、第28、第36のコイル要素は三相交流電源のU相電源端子に、第7、第14、第22、第29のコイル要素は三相交流電源のV相電源端子に、第8、第15、第35、第42のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置である。 In another aspect of the present invention, the number of the coil elements is 42, and the first to seventh, eighth to fourteenth, fifteenth to twenty-first, twenty-second to twenty-eighth among the 42 coil elements. The 29th to 35th, 36th to 42nd coil elements are connected in series, and the first, 21st, 28th and 36th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply. The 14th, 22nd and 29th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 8th, 15th, 35th and 42nd coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
 本発明の他の態様は、前記コイル要素の個数が48個であり、前記48個のコイル要素のうち第1~第8、第9~第16、第17~第24、第25~第32、第33~第40、第41~第48のコイル要素は直列に接続され、かつ第1、第24、第32、第41のコイル要素は三相交流電源のU相電源端子に、第8、第16、第25、第33のコイル要素は三相交流電源のV相電源端子に、第9、第17、第40、第48のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置である。 In another aspect of the present invention, the number of the coil elements is 48, and the first to eighth, ninth to sixteenth, seventeenth to twenty-fourth, twenty-fifth to thirty-second of the 48 coil elements. The thirty-third to forty-fourth, forty-first to forty-eighth coil elements are connected in series, and the first, twenty-fourth, thirty-second and forty-first coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply. The 16th, 25th and 33rd coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the ninth, 17th, 40th and 48th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
 本発明の他の態様は、前記コイル要素の個数が54個であり、前記54個のコイル要素のうち第1~第9、第10~第18、第19~第27、第28~第36、第37~第45、第46~第54のコイル要素は直列に接続され、かつ第1、第27、第36、第46のコイル要素は三相交流電源のU相電源端子に、第9、第18、第28、第37のコイル要素は三相交流電源のV相電源端子に、第10、第19、第45、第54のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置である。 In another aspect of the present invention, the number of the coil elements is 54, and the first to ninth, tenth to eighteenth, nineteenth to twenty-seventh, twenty-eighth to thirty-sixth of the 54 coil elements. The 37th to 45th, 46th to 54th coil elements are connected in series, and the first, 27th, 36th and 46th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, The 18th, 28th, and 37th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 10th, 19th, 45th, and 54th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
 本発明の他の態様は、前記コイル要素の個数が60個であり、前記60個のコイル要素のうち第1~第10、第11~第20、第21~第30、第31~第40、第41~第50、第51~第60のコイル要素は直列に接続され、かつ第1、第30、第40、第51のコイル要素は三相交流電源のU相電源端子に、第10、第20、第31、第41のコイル要素は三相交流電源のV相電源端子に、第11、第21、第50、第60のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置である。 In another aspect of the present invention, the number of the coil elements is 60, and the first to the tenth, the eleventh to the twentieth, the twenty-first to the thirtieth, the thirty-first to the forty-fourth of the 60 coil elements. The 41st to 50th, 51st to 60th coil elements are connected in series, and the 1st, 30th, 40th and 51st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply. The 20th, 31st and 41st coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 11th, 21st, 50th and 60th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. It is a continuous casting device.
 本発明の他の態様に係る連続鋳造装置用電磁攪拌コイルは、アルミニウム合金溶湯を棒状に鋳造する円筒状の鋳型と、該鋳型と中心を一致させて前記鋳型の上に配置され、前記アルミニウム合金溶湯を前記鋳型に供給する円筒状のホットトップとを備えた連続鋳造装置に用いられ、前記アルミニウム合金溶湯を前記鋳型と前記ホットトップの円周方向に電磁誘導する複数のコイル要素と、該コイル要素を前記鋳型と前記ホットトップの外周に保持する鉄心とを有する連続鋳造装置用電磁攪拌コイルであって、前記コイル要素に三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極であることを特徴とする。 An electromagnetic stirring coil for a continuous casting apparatus according to another aspect of the present invention includes a cylindrical mold for casting a molten aluminum alloy in a rod shape, and the mold is disposed on the mold so that the center coincides with the mold. A plurality of coil elements used in a continuous casting apparatus including a cylindrical hot top for supplying molten metal to the mold, and electromagnetically inducing the molten aluminum alloy in a circumferential direction of the mold and the hot top; and the coil An electromagnetic stirring coil for a continuous casting apparatus having an element that holds the mold and an iron core that holds the outer periphery of the hot top, wherein the magnetic pole of the rotating magnetic field generated when three-phase AC power is applied to the coil element The entire coil has two poles.
 本発明の他の態様は、前記コイル要素の個数が6の倍数である連続鋳造装置用電磁攪拌コイルである。
 本発明の他の態様は、前記鉄心が、前記コイル要素に対応して前記鉄心の内周面に一定間隔で形成された複数のスロットを有している連続鋳造装置用電磁攪拌コイルである。
 本発明の他の態様は、前記コイル要素が、前記複数のスロットのうち前記鉄心の円周方向に120度ずれて前記鉄心の内周面に形成された2つのスロットの間で銅線をコイル状に巻回して形成されている連続鋳造装置用電磁攪拌コイルである。
 本発明の他の態様は、前記銅線の表面が絶縁被覆されている連続鋳造装置用電磁攪拌コイルである。
Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus, wherein the number of coil elements is a multiple of six.
Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus, wherein the iron core has a plurality of slots formed at regular intervals on the inner peripheral surface of the iron core corresponding to the coil element.
In another aspect of the present invention, the coil element is configured to coil a copper wire between two slots formed on the inner peripheral surface of the iron core by being shifted by 120 degrees in the circumferential direction of the iron core among the plurality of slots. It is the electromagnetic stirring coil for continuous casting apparatuses formed by winding in the shape.
Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus in which the surface of the copper wire is coated with insulation.
 本発明の他の態様は、前記銅線の線径が0.6mm~1.7mm、前記銅線の巻き数が33~67である連続鋳造装置用電磁攪拌コイルである。
 本発明の他の態様は、前記コイル要素の個数が36個であり、前記36個のコイル要素のうち第1~第6、第7~第12、第13~第18、第19~第24、第25~第30、第31~第36のコイル要素は直列に接続され、かつ第1、第18、第24、第31のコイル要素は三相交流電源のU相端子に、第6、第12、第19、第25のコイル要素は三相交流電源のV相端子に、第7、第13、第30、第36のコイル要素は三相交流電源のW相端子に接続されている連続鋳造装置用電磁攪拌コイルである。
Another aspect of the present invention is an electromagnetic stirring coil for a continuous casting apparatus, wherein the copper wire has a wire diameter of 0.6 mm to 1.7 mm and the number of turns of the copper wire is 33 to 67.
In another aspect of the present invention, the number of the coil elements is 36, and the first to sixth, seventh to twelfth, thirteenth to eighteenth, and nineteenth to twenty-fourth of the 36 coil elements. The 25th to 30th, 31st to 36th coil elements are connected in series, and the 1st, 18th, 24th and 31st coil elements are connected to the U-phase terminal of the three-phase AC power source, The 12th, 19th, and 25th coil elements are connected to the V-phase terminal of the three-phase AC power supply, and the 7th, 13th, 30th, and 36th coil elements are connected to the W-phase terminal of the three-phase AC power supply. It is an electromagnetic stirring coil for continuous casting apparatuses.
 本発明の他の態様は、前記コイル要素の個数が42個であり、前記42個のコイル要素のうち第1~第7、第8~第14、第15~第21、第22~第28、第29~第35、第36~第42のコイル要素は直列に接続され、かつ第1、第21、第28、第36のコイル要素は三相交流電源のU相電源端子に、第7、第14、第22、第29のコイル要素は三相交流電源のV相電源端子に、第8、第15、第35、第42のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置用電磁攪拌コイルである。 In another aspect of the present invention, the number of the coil elements is 42, and the first to seventh, eighth to fourteenth, fifteenth to twenty-first, twenty-second to twenty-eighth among the 42 coil elements. The 29th to 35th, 36th to 42nd coil elements are connected in series, and the first, 21st, 28th and 36th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply. The 14th, 22nd and 29th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 8th, 15th, 35th and 42nd coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. This is an electromagnetic stirring coil for a continuous casting apparatus.
 本発明の他の態様は、前記コイル要素の個数が48個であり、前記48個のコイル要素のうち第1~第8、第9~第16、第17~第24、第25~第32、第33~第40、第41~第48のコイル要素は直列に接続され、かつ第1、第24、第32、第41のコイル要素は三相交流電源のU相電源端子に、第8、第16、第25、第33のコイル要素は三相交流電源のV相電源端子に、第9、第17、第40、第48のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置用電磁攪拌コイルである。 In another aspect of the present invention, the number of the coil elements is 48, and the first to eighth, ninth to sixteenth, seventeenth to twenty-fourth, twenty-fifth to thirty-second of the 48 coil elements. The thirty-third to forty-fourth, forty-first to forty-eighth coil elements are connected in series, and the first, twenty-fourth, thirty-second and forty-first coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply. The 16th, 25th and 33rd coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the ninth, 17th, 40th and 48th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. This is an electromagnetic stirring coil for a continuous casting apparatus.
 本発明の他の態様は、前記コイル要素の個数が54個であり、前記54個のコイル要素のうち第1~第9、第10~第18、第19~第27、第28~第36、第37~第45、第46~第54のコイル要素は直列に接続され、かつ第1、第27、第36、第46のコイル要素は三相交流電源のU相電源端子に、第9、第18、第28、第37のコイル要素は三相交流電源のV相電源端子に、第10、第19、第45、第54のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置用電磁攪拌コイルである。 In another aspect of the present invention, the number of the coil elements is 54, and the first to ninth, tenth to eighteenth, nineteenth to twenty-seventh, twenty-eighth to thirty-sixth of the 54 coil elements. The 37th to 45th, 46th to 54th coil elements are connected in series, and the first, 27th, 36th and 46th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, The 18th, 28th, and 37th coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 10th, 19th, 45th, and 54th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. This is an electromagnetic stirring coil for a continuous casting apparatus.
 本発明の他の態様は、前記コイル要素の個数が60個であり、前記60個のコイル要素のうち第1~第10、第11~第20、第21~第30、第31~第40、第41~第50、第51~第60のコイル要素は直列に接続され、かつ第1、第30、第40、第51のコイル要素は三相交流電源のU相電源端子に、第10、第20、第31、第41のコイル要素は三相交流電源のV相電源端子に、第11、第21、第50、第60のコイル要素は三相交流電源のW相電源端子に接続されている連続鋳造装置用電磁攪拌コイルである。 In another aspect of the present invention, the number of the coil elements is 60, and the first to the tenth, the eleventh to the twentieth, the twenty-first to the thirtieth, the thirty-first to the forty-thousands of the 60 coil elements. The 41st to 50th, 51st to 60th coil elements are connected in series, and the 1st, 30th, 40th and 51st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply. The 20th, 31st and 41st coil elements are connected to the V-phase power supply terminal of the three-phase AC power supply, and the 11th, 21st, 50th and 60th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. This is an electromagnetic stirring coil for a continuous casting apparatus.
 本発明によれば、アルミニウム合金溶湯の鋳造時に発生する樹枝状結晶が円周方向の電磁攪拌によって分断されるので、半溶融成形加工される際に樹枝状結晶の樹枝部が絡み合った状態で固相として残存することを抑制することができる。また、電磁攪拌コイルの2つの磁極間に発生する磁束が鋳型とホットトップの中心部を通過するようになり、鉄心の内径側に発生するN極とS極の磁極数が4極の電磁撹拌コイルを用いた場合のように、電磁撹拌コイルの電磁撹拌力が鋳型およびホットトップの中心部で弱まることがない。従って、アルミニウム合金溶湯の凝固時に樹枝状結晶が発生しても樹枝状結晶の樹枝部を確実に分断でき、アルミニウム合金鋳造棒の金属組織がアルミニウム合金鋳造棒の全体にわたり微細で均一な粒状の金属組織となるので、半溶融成形加工用として好適なアルミニウム合金鋳造棒を製造することができる。また、電源回路や制御機構が簡便なものとなるので、半溶融成形加工用として好適なアルミニウム合金鋳造棒を大量かつ安定的に製造することができる。 According to the present invention, the dendritic crystals generated during the casting of the molten aluminum alloy are divided by the electromagnetic stirring in the circumferential direction. Therefore, when the semi-melt forming process is performed, the dendritic crystals are in a state of being intertwined with each other. It can suppress remaining as a phase. In addition, the magnetic flux generated between the two magnetic poles of the electromagnetic stirring coil passes through the central part of the mold and the hot top, and the magnetic stirring of the N pole and S pole generated on the inner diameter side of the iron core is four poles. As in the case of using a coil, the electromagnetic stirring force of the electromagnetic stirring coil does not weaken at the center of the mold and the hot top. Therefore, even if dendritic crystals are generated during solidification of the molten aluminum alloy, the dendritic portion of the dendritic crystals can be reliably divided, and the metal structure of the aluminum alloy casting rod is fine and uniform granular metal throughout the aluminum alloy casting rod. Since it becomes a structure, an aluminum alloy cast bar suitable for semi-melt forming can be manufactured. In addition, since the power supply circuit and the control mechanism are simple, an aluminum alloy cast rod suitable for semi-melt forming can be manufactured in a large amount and stably.
半溶融成形加工用のアルミニウム合金鋳造棒を製造するときに用いられる連続鋳造装置の一例を示す図である。It is a figure which shows an example of the continuous casting apparatus used when manufacturing the aluminum alloy casting rod for semi-molten forming processes. アルミニウム合金溶湯を電磁攪拌する電磁攪拌コイルの一例を示す図である。It is a figure which shows an example of the electromagnetic stirring coil which electromagnetically stirs aluminum alloy molten metal. 電磁攪拌コイルのコイル要素の形状を模式的に示す図である。It is a figure which shows typically the shape of the coil element of an electromagnetic stirring coil. コイル要素の個数が48個である場合の電磁攪拌コイルの鉄心を示す平面図である。It is a top view which shows the iron core of an electromagnetic stirring coil in case the number of coil elements is 48 pieces. コイル要素の個数が36個である場合の電磁攪拌コイルの鉄心を示す平面図である。It is a top view which shows the iron core of an electromagnetic stirring coil in case the number of coil elements is 36 pieces. コイル要素の個数が42個である場合の電磁攪拌コイルの鉄心を示す平面図である。It is a top view which shows the iron core of an electromagnetic stirring coil in case the number of coil elements is 42 pieces. コイル要素の個数が54個である場合の電磁攪拌コイルの鉄心を示す平面図である。It is a top view which shows the iron core of an electromagnetic stirring coil in case the number of coil elements is 54 pieces. コイル要素の個数が60個である場合の電磁攪拌コイルの鉄心を示す平面図である。It is a top view which shows the iron core of an electromagnetic stirring coil in case the number of coil elements is 60 pieces. コイル要素の個数が36個である場合の電磁攪拌コイルの電気的構成を示す図である。It is a figure which shows the electrical constitution of an electromagnetic stirring coil in case the number of coil elements is 36 pieces. コイル要素の個数が42個である場合の電磁攪拌コイルの電気的構成を示す図である。It is a figure which shows the electrical structure of an electromagnetic stirring coil in case the number of coil elements is 42 pieces. コイル要素の個数が48個である場合の電磁攪拌コイルの電気的構成を示す図である。It is a figure which shows the electrical structure of an electromagnetic stirring coil in case the number of coil elements is 48 pieces. コイル要素の個数が54個である場合の電磁攪拌コイルの電気的構成を示す図である。It is a figure which shows the electrical structure of an electromagnetic stirring coil in case the number of coil elements is 54 pieces. コイル要素の個数が60個である場合の電磁攪拌コイルの電気的構成を示す図である。It is a figure which shows the electrical constitution of an electromagnetic stirring coil in case the number of coil elements is 60 pieces. 本発明の実施例と比較例で得られたアルミニウム合金鋳造棒の金属組織写真を示す図である。It is a figure which shows the metal structure photograph of the aluminum alloy casting rod obtained by the Example and comparative example of this invention. 本発明の実施例と比較例で得られたアルミニウム合金鋳造棒の金属組織をSEM-EBSDにて解析したときの解析範囲を模式的に示す図である。It is a figure which shows typically the analysis range when analyzing the metal structure of the aluminum alloy casting rod obtained by the Example and comparative example of this invention by SEM-EBSD.
 以下、図1~図15を参照して本発明の実施の形態について説明する。
 図1は半溶融成形加工用のアルミニウム合金鋳造棒を製造するときに用いられる連続鋳造装置の一例を示す図であり、図1に示される連続鋳造装置1は鋳型2、ホットトップ3、電磁攪拌コイル5および電力調整器6を具備している。
 鋳型2はアルミニウム合金溶湯Mを棒状に鋳造するものであって、例えば外径が130mm~170mm、内径が70mm~120mm、高さが30mm~60mmの寸法で円筒状に形成されているとともに、銅合金等の熱伝導性の良好な金属材料から形成されている。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a view showing an example of a continuous casting apparatus used when manufacturing an aluminum alloy casting rod for semi-melt forming. The continuous casting apparatus 1 shown in FIG. 1 includes a mold 2, a hot top 3, an electromagnetic stirrer. A coil 5 and a power regulator 6 are provided.
The mold 2 is for casting a molten aluminum alloy M into a rod shape. For example, the mold 2 is formed into a cylindrical shape with an outer diameter of 130 mm to 170 mm, an inner diameter of 70 mm to 120 mm, and a height of 30 mm to 60 mm. It is formed from a metal material having good thermal conductivity such as an alloy.
 また、鋳型2はアルミニウム合金溶湯Mを冷却水により冷却するための水冷空間21を有し、この水冷空間21は鋳型2の内側周壁部と外側周壁部との間に鋳型2の全周にわたって形成されている。さらに、鋳型2は水冷空間21に供給された冷却水を鋳型2から出た凝固シェルの表面に噴射する冷却水噴射口22を有し、この冷却水噴射口22は鋳型2の内側周壁部と底板部との接合部に鋳型2の全周にわたって形成されている。 The mold 2 has a water cooling space 21 for cooling the molten aluminum alloy M with cooling water. The water cooling space 21 is formed between the inner peripheral wall portion and the outer peripheral wall portion of the mold 2 over the entire circumference of the mold 2. Has been. Further, the mold 2 has a cooling water injection port 22 for injecting the cooling water supplied to the water cooling space 21 onto the surface of the solidified shell that has come out of the mold 2, and this cooling water injection port 22 is connected to the inner peripheral wall portion of the mold 2. It is formed over the entire periphery of the mold 2 at the joint with the bottom plate.
 ホットトップ3は溶湯供給樋4から供給されたアルミニウム合金溶湯Mを鋳型2に供給するものであって、例えば外径が130mm~170mm、内径が60mm~110mm、高さが100mm~300mmの寸法で円筒状に形成されているとともに、鋳型2と中心を一致させて鋳型2の上に設置されている。また、ホットトップ3は溶湯供給樋4からアルミニウム合金溶湯Mを受け入れる溶湯受入口31を有し、この溶湯受入口31はホットトップ3の外周面上部に形成されている。 The hot top 3 supplies the molten aluminum alloy M supplied from the molten metal supply rod 4 to the mold 2 and has, for example, an outer diameter of 130 mm to 170 mm, an inner diameter of 60 mm to 110 mm, and a height of 100 mm to 300 mm. It is formed in a cylindrical shape, and is placed on the mold 2 so that its center coincides with the mold 2. The hot top 3 has a molten metal inlet 31 for receiving the aluminum alloy molten metal M from the molten metal supply rod 4, and the molten metal inlet 31 is formed at the upper part of the outer peripheral surface of the hot top 3.
 電磁攪拌コイル5はアルミニウム合金溶湯Mを鋳型2とホットトップ3の内側で電磁攪拌するものであって、商用電源からの三相交流電力によりアルミニウム合金溶湯Mを電磁攪拌するように構成されている。また、電磁攪拌コイル5は鋳型2の外周面上部とホットトップ3の外周面下部を囲繞するように円筒状に形成され、かつ鋳型2およびホットトップ3と同軸に設けられている。 The electromagnetic stirring coil 5 electromagnetically stirs the molten aluminum alloy M inside the mold 2 and the hot top 3 and is configured to electromagnetically stir the molten aluminum alloy M by three-phase AC power from a commercial power source. . The electromagnetic stirring coil 5 is formed in a cylindrical shape so as to surround the upper part of the outer peripheral surface of the mold 2 and the lower part of the outer peripheral surface of the hot top 3, and is provided coaxially with the mold 2 and the hot top 3.
 電力調整器6は電磁攪拌コイル5のコイル要素Cに通電される三相交流電力を調整するものであり、この電力調整器6は商用三相交流電源の三相交流電力を、例えば電流値が5A~20Aとなるように調整するように構成されている。
 電磁攪拌コイル5は、アルミニウム合金溶湯Mを鋳型2とホットトップ3の円周方向に電磁誘導する複数個(例えば6の倍数)のコイル要素Cと、これらのコイル要素Cを鋳型2とホットトップ3の外周に保持する鉄心51とを含んでいる。
The power regulator 6 adjusts the three-phase AC power supplied to the coil element C of the electromagnetic stirring coil 5, and this power regulator 6 converts the three-phase AC power of the commercial three-phase AC power source, for example, the current value. It is configured to adjust to 5A to 20A.
The electromagnetic stirring coil 5 includes a plurality (for example, multiples of 6) of coil elements C for electromagnetically inducing the molten aluminum alloy M in the circumferential direction of the mold 2 and the hot top 3, and these coil elements C are connected to the mold 2 and the hot top. 3 and an iron core 51 that is held on the outer periphery.
 電磁攪拌コイル5の鉄心51は、鋳型2とホットトップ3の外径より10mm~30mmの範囲内で大きい内径(例えば140mm~190mm)で且つ該内径より50mm以上大きい外径(例えば220mm~300mm)で円筒状に形成され、鋳型2と中心を一致させて鋳型2とホットトップ3の外周に配置されている。
 また、鋳型2の高さが30mm~60mm、ホットトップ3の高さが100mm~300mmである場合、鉄心51は20mm~30mmの高さで円筒状に形成されているとともに、0.3mm~0.7mm程度の厚さを有する多数枚の無方向性電磁鋼板を積層して形成されている。
The iron core 51 of the electromagnetic stirring coil 5 has an inner diameter (for example, 140 mm to 190 mm) larger than the outer diameter of the mold 2 and the hot top 3 within a range of 10 mm to 30 mm and an outer diameter (for example, 220 mm to 300 mm) larger than the inner diameter. And is arranged on the outer periphery of the mold 2 and the hot top 3 so that the center coincides with the mold 2.
When the height of the mold 2 is 30 mm to 60 mm and the height of the hot top 3 is 100 mm to 300 mm, the iron core 51 is formed in a cylindrical shape with a height of 20 mm to 30 mm, and 0.3 mm to 0 mm. It is formed by laminating a large number of non-oriented electrical steel sheets having a thickness of about 7 mm.
 鉄心51を形成する電磁鋼板の厚さを0.3mm~0.7mmとした理由は、電磁鋼板の厚さが0.3mm未満であると電磁鋼板の剛性が低下して鉄心51の機械的強度を所要の強度に確保できなくなり、また、電磁鋼板の厚さが0.7mmを超えると電磁鋼板内の渦電流が大きくなり、発熱量が増大して過熱の要因となるためである。なお、鉄心51の材質は無方向性電磁鋼板であれば使用可能であるが、鉄損値がなるべく小さいものが好ましい。 The reason why the thickness of the electromagnetic steel sheet forming the iron core 51 is set to 0.3 mm to 0.7 mm is that when the thickness of the electromagnetic steel sheet is less than 0.3 mm, the rigidity of the electromagnetic steel sheet is lowered and the mechanical strength of the iron core 51 is reduced. If the thickness of the electromagnetic steel sheet exceeds 0.7 mm, the eddy current in the electromagnetic steel sheet increases and the amount of heat generation increases, causing overheating. In addition, although the material of the iron core 51 can be used if it is a non-oriented electrical steel plate, a thing with an iron loss value as small as possible is preferable.
 電磁攪拌コイル5の鉄心51は、コイル要素Cと同数のスロットS(図4~図8参照)を有している。これらのスロットSは、例えば6.0mm~12.0mmの幅と15.0mm~35.0mmの深さで鉄心51の内周面に一定間隔で櫛歯状に形成されている。
 ここで、スロットSの数が36未満の場合には、隣り合う2つのスロット間に形成された鉄心櫛歯部52を磁化させるのに必要なエネルギーが大きくなり、電磁攪拌コイル5の電磁攪拌効果が低下すると共に過熱の要因となる。また、スロットSの数が60を超えると鉄心櫛歯部52の幅が小さくなって磁束が集中しなくなるため、鉄心51の内周面に形成されるスロットSの数としては、6×6、6×7、6×8、6×9、6×10の何れかであることが好ましい。
The iron core 51 of the electromagnetic stirring coil 5 has the same number of slots S as the coil elements C (see FIGS. 4 to 8). These slots S, for example, have a width of 6.0 mm to 12.0 mm and a depth of 15.0 mm to 35.0 mm, and are formed in a comb-like shape at regular intervals on the inner peripheral surface of the iron core 51.
Here, when the number of slots S is less than 36, the energy required to magnetize the iron core comb teeth portion 52 formed between two adjacent slots increases, and the electromagnetic stirring effect of the electromagnetic stirring coil 5 increases. Decreases and causes overheating. Further, when the number of slots S exceeds 60, the width of the iron comb teeth 52 is reduced and the magnetic flux is not concentrated. Therefore, the number of slots S formed on the inner peripheral surface of the iron core 51 is 6 × 6, It is preferably 6 × 7, 6 × 8, 6 × 9, or 6 × 10.
 電磁攪拌コイル5のコイル要素Cは、表面をエナメル塗料等により絶縁被覆された銅線からなり、銅線の線径としては、コイル要素の電流密度を6.0MA(megaampere)/m2以下、望ましくは5.0MA(megaampere)/m2以下とするために、0.6mm~1.7mmとすることが好ましい。
 また、コイル要素Cを形成する各銅線は、コイル要素Cに三相交流電力を通電したときに発生する回転磁界の磁極を電磁誘導コイル全体で2極とするため、図3に示すように、鋳型2とホットトップ3の円周方向に120度ずれて鉄心51の内周面に形成された2つのスロットSの間でコイル状に巻回されている。ここで、銅線の巻き数は、コイル要素Cに電流値が5A~20Aの三相交流電力を通電したときに発生する回転磁界の磁束密度を7mT~28mTとするために、33回~67回とすることが好ましい。
The coil element C of the electromagnetic stirring coil 5 is made of a copper wire whose surface is insulated and coated with enamel paint or the like. The wire diameter of the copper wire is 6.0 MA (megaampere) / m 2 or less, Desirably, the thickness is set to 0.6 mm to 1.7 mm so as to be 5.0 MA (megaampere) / m 2 or less.
In addition, each copper wire forming the coil element C has two magnetic poles of the rotating magnetic field generated when the coil element C is energized with three-phase AC power as shown in FIG. The mold 2 and the hot top 3 are wound in the shape of a coil between two slots S formed on the inner peripheral surface of the iron core 51 with a shift of 120 degrees in the circumferential direction. Here, the number of turns of the copper wire is 33 to 67 so that the magnetic flux density of the rotating magnetic field generated when the coil element C is supplied with three-phase AC power having a current value of 5A to 20A is 7 mT to 28 mT. It is preferable to set the time.
 また、スロット内で2つのコイル要素同士がショートするのを防止するため、各コイル要素Cをコイル絶縁紙により絶縁被覆することが好ましく、コイル絶縁紙としては、例えば、日東シンコー株式会社(NITTO SHINKO CORPORATION,日本国福井県坂井市)から、NTN222(商品名)として販売される、アラミド紙とポリエステル樹脂をウレタン系接着剤でラミネートしたもののような、耐熱性の高い絶縁紙を用いることができる。さらに、コイル要素Cを形成する各銅線が鉄心51の上下面と接触しないように、各コイル要素Cをエナメル塗料などにより塗り固めることも好ましい。 In order to prevent the two coil elements from short-circuiting in the slot, it is preferable that each coil element C is covered with a coil insulating paper. As the coil insulating paper, for example, Nitto Shinko Corporation (NITTO (SHINKO) Corporation, Sakai City, Fukui Prefecture, Japan) Insulation paper with high heat resistance, such as aramid paper and polyester resin laminated with urethane adhesive, sold as NTN222 (trade name) can be used. Furthermore, it is also preferable that each coil element C is solidified with an enamel paint or the like so that each copper wire forming the coil element C does not contact the upper and lower surfaces of the iron core 51.
 コイル要素CとスロットSの個数が48個である場合、図4に示すように、コイル要素C1,C2,‥‥,C16,C17,C18,‥‥,C32,C33,C34,‥‥,C48を形成する各銅線は、スロットS1,S2,‥‥,S16,S17,S18,‥‥,S32,S33,S34,‥‥,S48とスロットS17,S18,‥‥,S32,S33,S34,‥‥,S48,S1,S2,‥‥,S16との間でコイル状に巻回されている。 When the number of coil elements C and slots S is 48, as shown in FIG. 4, coil elements C1, C2,..., C16, C17, C18,..., C32, C33, C34,. , S16, S17, S18, ..., S32, S33, S34, ..., S48 and slots S17, S18, ..., S32, S33, S34, ,..., S48, S1, S2,.
 コイル要素CとスロットSの個数が36個である場合、図5に示すように、コイル要素C1,C2,‥‥,C12,C13,C14,‥‥,C24,C25,C26,‥‥,C36を形成する各銅線は、スロットS1,S2,‥‥,S12,S13,S14,‥‥,S24,S25,S26,‥‥,S36とスロットS13,S14,‥‥,S24,S25,S26,‥‥,S36,S1,S2,‥‥,S12との間でコイル状に巻回されている。 When the number of coil elements C and slots S is 36, as shown in FIG. 5, coil elements C1, C2,..., C12, C13, C14,..., C24, C25, C26,. , S12, S13, S14, ..., S24, S25, S26, ..., S36 and slots S13, S14, ..., S24, S25, S26, ,..., S36, S1, S2,.
 コイル要素CとスロットSの個数が42個である場合、図6に示すように、コイル要素C1,C2,‥‥,C14,C15,C16,‥‥,C28,C29,C30,‥‥,C42を形成する各銅線は、スロットS1,S2,‥‥,S14,S15,S16,‥‥,S28,S29,S30,‥‥,S42とスロットS15,S16,‥‥,S28,S29,S30,‥‥,S42,S1,S2,‥‥,S14との間でコイル状に巻回されている。 When the number of coil elements C and slots S is 42, as shown in FIG. 6, coil elements C1, C2,..., C14, C15, C16,..., C28, C29, C30,. , S14, S15, S16, ..., S28, S29, S30, ..., S42 and slots S15, S16, ..., S28, S29, S30, ,..., S42, S1, S2,.
 コイル要素CとスロットSの個数が54個である場合、図7に示すように、コイル要素C1,C2,‥‥,C18,C19,C20,‥‥,C36,C37,C38,‥‥,C54を形成する各銅線は、スロットS1,S2,‥‥,S18,S19,S20,‥‥,S36,S37,S38,‥‥,S54とスロットS19,S20,‥‥,S36,S37,S38,‥‥,S54,S1,S2,‥‥,S18との間でコイル状に巻回されている。 When the number of coil elements C and slots S is 54, as shown in FIG. 7, coil elements C1, C2,..., C18, C19, C20,..., C36, C37, C38,. , S18, S19, S20, ..., S36, S37, S38, ..., S54 and slots S19, S20, ..., S36, S37, S38, ,..., S54, S1, S2,.
 コイル要素CとスロットSの個数が60個である場合、図8に示すように、コイル要素C1,C2,‥‥,C20,C21,C22,‥‥,C40,C41,C42,‥‥,C60を形成する各銅線は、スロットS1,S2,‥‥,S20,S21,S22,‥‥,S40,S41,S42,‥‥,S60とスロットS21,S22,‥‥,S40,S41,S42,‥‥,S60,S1,S2,‥‥,S20との間でコイル状に巻回されている。 When the number of coil elements C and slots S is 60, as shown in FIG. 8, coil elements C1, C2,..., C20, C21, C22,..., C40, C41, C42,. , S20, S21, S22, ..., S40, S41, S42, ..., S60 and slots S21, S22, ..., S40, S41, S42, ,..., S60, S1, S2,.
 図9~図13はコイル要素の個数が36個、42個、48個、54個、60個の何れかである場合の電磁攪拌コイルの電気的構成を示す図であり、コイル要素の個数が36個である場合、図9に示すように、電磁攪拌コイル5のコイル要素C1~C36のうちコイル要素C1~C6、コイル要素C7~C12、コイル要素C13~C18、コイル要素C19~C24、コイル要素C25~C30、コイル要素C31~C36は、それぞれ直列に接続されている。また、コイル要素C1,C18,C24,C31は三相交流電源のU相端子T1に、コイル要素C6,C12,C19,C25は三相交流電源のV相端子T2に、コイル要素C7,C13,C30,C36は三相交流電源のW相端子T3に接続されている。 9 to 13 are diagrams showing the electrical configuration of the electromagnetic stirring coil when the number of coil elements is any of 36, 42, 48, 54, and 60. In the case of 36, as shown in FIG. 9, among the coil elements C1 to C36 of the electromagnetic stirring coil 5, the coil elements C1 to C6, the coil elements C7 to C12, the coil elements C13 to C18, the coil elements C19 to C24, the coil The elements C25 to C30 and the coil elements C31 to C36 are connected in series, respectively. The coil elements C1, C18, C24, and C31 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C6, C12, C19, and C25 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C7, C13, C30 and C36 are connected to the W-phase terminal T3 of the three-phase AC power source.
 コイル要素の個数が42個である場合、図10に示すように、電磁攪拌コイル5のコイル要素C1~C42のうちコイル要素C1~C7、コイル要素C8~C14、コイル要素C15~C21、コイル要素C22~C28、コイル要素C29~C35、コイル要素C36~C43は、それぞれ直列に接続されている。また、コイル要素C1,C21,C28,C36は三相交流電源のU相端子T1に、コイル要素C7,C14,C22,C29は三相交流電源のV相端子T2に、コイル要素C8,C15,C35,C42は三相交流電源のW相端子T3に接続されている。 When the number of coil elements is 42, coil elements C1 to C7, coil elements C8 to C14, coil elements C15 to C21, coil elements among the coil elements C1 to C42 of the electromagnetic stirring coil 5, as shown in FIG. C22 to C28, coil elements C29 to C35, and coil elements C36 to C43 are respectively connected in series. The coil elements C1, C21, C28, and C36 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C7, C14, C22, and C29 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C8, C15, C35 and C42 are connected to the W-phase terminal T3 of the three-phase AC power source.
 コイル要素の個数が48個である場合、図11に示すように、電磁攪拌コイル5のコイル要素C1~C48のうちコイル要素C1~C8、コイル要素C9~C16、コイル要素C17~C24、コイル要素C25~C32、コイル要素C33~C40、コイル要素C41~C48は、それぞれ直列に接続されている。また、コイル要素C1,C24,C32,C41は三相交流電源のU相端子T1に、コイル要素C8,C16,C25,C33は三相交流電源のV相端子T2に、コイル要素C9,C17,C40,C48は三相交流電源のW相端子T3に接続されている。 When the number of coil elements is 48, as shown in FIG. 11, among the coil elements C1 to C48 of the electromagnetic stirring coil 5, the coil elements C1 to C8, the coil elements C9 to C16, the coil elements C17 to C24, the coil elements C25 to C32, coil elements C33 to C40, and coil elements C41 to C48 are respectively connected in series. The coil elements C1, C24, C32, and C41 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C8, C16, C25, and C33 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C9, C17, C40 and C48 are connected to the W-phase terminal T3 of the three-phase AC power source.
 コイル要素の個数が54個である場合、図12に示すように、電磁攪拌コイル5のコイル要素C1~C54のうちコイル要素C1~C9、コイル要素C10~C18、コイル要素C19~C27、コイル要素C28~C36、コイル要素C37~C45、コイル要素C46~C54は、それぞれ直列に接続されている。また、コイル要素C1,C27,C36,C46は三相交流電源のU相端子T1に、コイル要素C9,C18,C28,C37は三相交流電源のV相端子T2に、コイル要素C10,C19,C45,C54は三相交流電源のW相端子T3に接続されている。 When the number of coil elements is 54, as shown in FIG. 12, coil elements C1 to C9, coil elements C10 to C18, coil elements C19 to C27, coil elements among coil elements C1 to C54 of the electromagnetic stirring coil 5 are provided. C28 to C36, coil elements C37 to C45, and coil elements C46 to C54 are respectively connected in series. The coil elements C1, C27, C36, and C46 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C9, C18, C28, and C37 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C10, C19, C45 and C54 are connected to the W-phase terminal T3 of the three-phase AC power source.
 コイル要素の個数が60個である場合、図13に示すように、電磁攪拌コイル5のコイル要素C1~C60のうちコイル要素C1~C10、コイル要素C11~C20、コイル要素C21~C30、コイル要素C31~C40、コイル要素C41~C50、コイル要素C51~C60は、それぞれ直列に接続されている。また、コイル要素C1,C30,C40,C51は三相交流電源のU相端子T1に、コイル要素C10,C20,C31,C41は三相交流電源のV相端子T2に、コイル要素C11,C21,C50,C60は三相交流電源のW相端子T3に接続されている。 When the number of coil elements is 60, coil elements C1 to C10, coil elements C11 to C20, coil elements C21 to C30, coil elements among the coil elements C1 to C60 of the electromagnetic stirring coil 5, as shown in FIG. C31 to C40, coil elements C41 to C50, and coil elements C51 to C60 are respectively connected in series. The coil elements C1, C30, C40, and C51 are connected to the U-phase terminal T1 of the three-phase AC power supply, and the coil elements C10, C20, C31, and C41 are connected to the V-phase terminal T2 of the three-phase AC power supply, and the coil elements C11, C21, C50 and C60 are connected to the W-phase terminal T3 of the three-phase AC power source.
 図1に示した連続鋳造装置を用いて半溶融成形加工用のアルミニウム合金鋳造棒を製造する場合は、アルミニウム合金鋳造棒の素材として、3.0~10.0質量%以下のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金、好ましくは5.0~7.5質量%以下のSiを含み、かつ残部がAlと、0.20質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金、より好ましくは表1にA356.0合金またはA357.0合金として示される亜共晶Al-Si系合金を用い、この亜共晶Al-Si系合金を溶解炉で溶解してアルミニウム合金溶湯Mを得る。そして、溶解炉で得られたアルミニウム合金溶湯Mを溶湯供給樋4からホットトップ3に供給する。 In the case of producing an aluminum alloy cast bar for semi-melt forming using the continuous casting apparatus shown in FIG. 1, the material of the aluminum alloy cast bar contains 3.0 to 10.0% by mass of Si, And the balance contains hypoeutectic Al-Si alloy composed of Al, 1.0 mass% or less of Fe, trace additives and inevitable impurities, preferably 5.0 to 7.5 mass% or less of Si. And a hypoeutectic Al—Si based alloy consisting of Al, 0.20% by mass or less of Fe, and a trace amount of additives and inevitable impurities, more preferably an A356.0 alloy or an A357.0 alloy shown in Table 1. A hypoeutectic Al—Si based alloy shown as follows is used, and this hypoeutectic Al—Si based alloy is melted in a melting furnace to obtain a molten aluminum alloy M. Then, the molten aluminum alloy M obtained in the melting furnace is supplied from the molten metal supply rod 4 to the hot top 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ホットトップ3に供給されたアルミニウム合金溶湯Mは、ホットトップ3の内径側を流下して鋳型2に流入する。そして、鋳型2に流入したアルミニウム合金溶湯Mは鋳型2の水冷空間21に供給された冷却水により冷却され、図1に示すように、アルミニウム合金鋳造棒Rとなって鋳型2の下面から棒状に引き出される。 The molten aluminum alloy M supplied to the hot top 3 flows down the inner diameter side of the hot top 3 and flows into the mold 2. Then, the molten aluminum alloy M flowing into the mold 2 is cooled by the cooling water supplied to the water cooling space 21 of the mold 2 and becomes an aluminum alloy casting rod R in a rod shape from the lower surface of the mold 2 as shown in FIG. Pulled out.
 このとき、電磁攪拌コイル5には交番周波数50Hz~60Hz、電流値5A~20Aの三相交流電力が電力調整器6から供給され、電力調整器6から電磁攪拌コイル5に供給された三相交流電力によって鋳型2およびホットトップ3の内径側に磁束密度が7mT~28mTの回転磁界が発生する。そして、鋳型2およびホットトップ3の内径側に発生した回転磁界によってアルミニウム合金溶湯Mが鋳型2およびホットトップ3の円周方向に電磁攪拌されながら棒状に連続鋳造されるとともに、アルミニウム合金溶湯Mの冷却に伴って発生する樹枝状結晶の樹枝部が電磁攪拌によって分断される。 At this time, three-phase alternating current power having an alternating frequency of 50 Hz to 60 Hz and a current value of 5 A to 20 A is supplied from the power regulator 6 to the electromagnetic stirring coil 5, and the three-phase alternating current supplied from the power regulator 6 to the electromagnetic stirring coil 5. A rotating magnetic field having a magnetic flux density of 7 mT to 28 mT is generated on the inner diameter side of the mold 2 and the hot top 3 by electric power. The molten aluminum alloy M is continuously cast in a rod shape while being magnetically stirred in the circumferential direction of the mold 2 and the hot top 3 by the rotating magnetic field generated on the inner diameter side of the mold 2 and the hot top 3. The dendritic portion of the dendritic crystal generated with cooling is divided by electromagnetic stirring.
 上述した本発明の一実施形態のように、アルミニウム合金鋳造棒の素材として、3.0~10.0質量%のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる、鋳造性に優れた亜共晶Al-Si系合金を用いているが、アルミニウム合金溶湯の鋳造時に発生する樹枝状結晶は、円周方向の電磁攪拌によって分断されるので、樹枝状結晶の樹枝部が絡み合った状態で固相として残存することを抑制することができる。 As in the above-described embodiment of the present invention, the material of the aluminum alloy casting rod includes 3.0 to 10.0% by mass of Si, the balance being Al, 1.0% by mass or less of Fe, A hypoeutectic Al-Si alloy consisting of a trace amount of additives and inevitable impurities is used, but the dendritic crystals generated during casting of the molten aluminum alloy are separated by electromagnetic stirring in the circumferential direction. Therefore, it can suppress that the dendritic part of the dendritic crystal remains as a solid phase in an intertwined state.
 また、アルミニウム合金鋳造棒の素材として、5.0~7.5質量%のSiを含み、かつ残部がAlと、0.50質量%以下のFeと、微量添加物として0.70質量%以下のMg、0.50質量%以下のMn、0.50質量%以下のCu、0.20質量%以下のTi、0.07質量%のBe、および不可避不純物とからなる亜共晶Al-Si系合金を用いたことで、特許文献2の段落番号0031に記載されたAl合金のように、Siを7質量%、Feを0.86質量%、Mnを0.67質量%含むことによってAl-Fe系の金属間化合物が生成、偏析することもない。 Further, the material of the aluminum alloy casting rod contains 5.0 to 7.5% by mass of Si, the balance being Al, 0.50% by mass or less of Fe, and 0.70% by mass or less as a trace additive. Mg, 0.50% by mass or less of Cu, 0.50% by mass or less of Cu, 0.20% by mass or less of Ti, 0.07% by mass of Be, and hypoeutectic Al—Si By using an Al alloy, Al is contained by 7% by mass of Si, 0.86% by mass of Fe, and 0.67% by mass of Mn as in the Al alloy described in paragraph No. 0031 of Patent Document 2. -Fe-based intermetallic compounds are neither generated nor segregated.
 また、アルミニウム合金溶湯を電磁撹拌する電磁撹拌コイルとして、回転磁界を発生させるための磁極が電磁撹拌コイル全体で2極の電磁撹拌コイル5を用いたことで、2つの磁極間に発生する磁束が鋳型2とホットトップ3の中心部を通過するようになり、回転磁界を発生させるための磁極が4極の電磁撹拌コイルを用いた場合のように、電磁撹拌コイルの電磁撹拌力が鋳型およびホットトップの中心部で弱まることがない。従って、アルミニウム合金溶湯の凝固時に樹枝状結晶が発生しても樹枝状結晶の樹枝部を確実に分断でき、アルミニウム合金鋳造棒の金属組織がアルミニウム合金鋳造棒の全体にわたり微細で均一な粒状の金属組織となるので、半溶融成形加工用として好適なアルミニウム合金鋳造棒を製造することができる。 In addition, as an electromagnetic stirring coil for electromagnetically stirring the molten aluminum alloy, the magnetic pole generated to generate a rotating magnetic field is a two-pole electromagnetic stirring coil 5 for the entire electromagnetic stirring coil. The electromagnetic stirring force of the electromagnetic stirring coil is passed through the central part of the mold 2 and the hot top 3 and the magnetic stirring force of the electromagnetic stirring coil is the same as that of the mold and hot, as in the case of using the electromagnetic stirring coil having four poles for generating the rotating magnetic field. There is no weakening in the center of the top. Therefore, even if dendritic crystals are generated during solidification of the molten aluminum alloy, the dendritic portion of the dendritic crystals can be reliably divided, and the metal structure of the aluminum alloy casting rod is fine and uniform granular metal throughout the aluminum alloy casting rod. Since it becomes a structure, an aluminum alloy cast bar suitable for semi-melt forming can be manufactured.
 また、アルミニウム合金溶湯を電磁撹拌する電磁撹拌コイルとして、鋳型2およびホットトップ3の内径側に回転磁界を商用電源からの三相交流電力により発生させてアルミニウム合金溶湯を鋳型2およびホットトップ3の円周方向に電磁撹拌する電磁撹拌コイル5を用いたことで、電力調整器6の電源回路や制御機構が簡便なものとなるので、半溶融成形加工用として好適なアルミニウム合金鋳造棒を大量かつ安定的に製造することができる。 Further, as an electromagnetic stirring coil for electromagnetically stirring the molten aluminum alloy, a rotating magnetic field is generated on the inner diameter side of the mold 2 and the hot top 3 by a three-phase AC power from a commercial power source, so that the molten aluminum alloy is supplied to the mold 2 and the hot top 3. By using the electromagnetic stirring coil 5 that performs electromagnetic stirring in the circumferential direction, the power supply circuit and the control mechanism of the power regulator 6 become simple. It can be manufactured stably.
 図9~図13に示した電磁攪拌コイルでは、コイル要素Cが三相交流電源にデルタ結線されたものを示したが、コイル要素Cに三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極となるようになっていれば、コイル要素と三相交流電源との接続関係はデルタ結線に限られるものではなく、例えばスター結線であってもよい。
 次に、本発明の実施例と比較例について説明する。
In the electromagnetic stirring coil shown in FIGS. 9 to 13, the coil element C is delta-connected to the three-phase AC power source. However, the rotating magnetic field generated when the coil element C is energized with the three-phase AC power is shown. As long as the magnetic pole has two poles in the entire electromagnetic stirring coil, the connection relationship between the coil element and the three-phase AC power supply is not limited to delta connection, and may be, for example, star connection.
Next, examples and comparative examples of the present invention will be described.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例)
 アルミニウム合金鋳造棒の素材として、表2に示す化学成分の亜共晶Al-Si系合金を用い、電磁攪拌コイル5のコイル要素Cに、商用電源を電力調整器6で調整して得た10Aの三相交流電流を通電して鋳型2およびホットトップ3の内径側に磁束密度が13mTの回転磁界を発生させ、アルミニウム合金溶湯を鋳型2およびホットトップ3の円周方向に電磁攪拌しながら棒状に鋳造して外径が75mmの円柱形のアルミニウム合金鋳造棒を得た。そして、得られたアルミニウム合金鋳造棒の金属組織を光学顕微鏡で観察、写真撮影した。
(Example)
A hypoeutectic Al—Si alloy having the chemical composition shown in Table 2 was used as the material for the aluminum alloy casting rod, and 10 A obtained by adjusting the commercial power supply to the coil element C of the electromagnetic stirring coil 5 with the power regulator 6. A rotating magnetic field having a magnetic flux density of 13 mT is generated on the inner diameter side of the mold 2 and the hot top 3 by energizing the three-phase AC current, and the aluminum alloy melt is bar-shaped while electromagnetically stirring the mold 2 and the hot top 3 in the circumferential direction. To obtain a cylindrical aluminum alloy casting rod having an outer diameter of 75 mm. And the metal structure of the obtained aluminum alloy casting rod was observed and photographed with an optical microscope.
 なお、鋳型2としては外径160mm、内径75mm、高さ45mmのものを用い、ホットトップ3としては外径160mm、内径60mm、高さ225mmのものを用いた。また、電磁攪拌コイル5としては鉄心外径260mm、鉄心内径165mm、鉄心高さ50mm、スロット数48、銅線径0.9mm、銅線巻き数45回、コイル要素電流密度4.5MA/m2のものを用いた。 The mold 2 used had an outer diameter of 160 mm, an inner diameter of 75 mm, and a height of 45 mm, and the hot top 3 used an outer diameter of 160 mm, an inner diameter of 60 mm, and a height of 225 mm. The electromagnetic stirring coil 5 has an iron core outer diameter of 260 mm, an iron core inner diameter of 165 mm, an iron core height of 50 mm, a slot number of 48, a copper wire diameter of 0.9 mm, a copper wire winding number of 45, and a coil element current density of 4.5 MA / m 2. The thing of was used.
(比較例)
 アルミニウム合金鋳造棒の素材、鋳型およびホットトップとして、上述した実施例と同じものを用い、電磁攪拌を行わずにアルミニウム合金溶湯を棒状に鋳造して外径が75mmの円柱形のアルミニウム合金鋳造棒を得た。そして、得られたアルミニウム合金鋳造棒の金属組織を光学顕微鏡で観察、写真撮影した。
(Comparative example)
The same aluminum alloy casting rod material, mold and hot top as those used in the above-described embodiment were used, and a cast aluminum alloy rod having a 75 mm outer diameter was cast by casting an aluminum alloy melt into a rod shape without electromagnetic stirring. Got. And the metal structure of the obtained aluminum alloy casting rod was observed and photographed with an optical microscope.
 実施例で得られたアルミニウム合金鋳造棒の金属組織写真を図14(a)に、また比較例で得られたアルミニウム合金鋳造棒の金属組織写真を図14(b)に示す。図14に示すように、実施例で得られたアルミニウム合金鋳造棒は金属組織が微細かつ均一な粒状組織の初晶Alと共晶組織とからなっているのに対し、比較例で得られたアルミニウム合金鋳造棒は金属組織が樹枝状結晶の初晶Alと共晶組織とからなっていることがわかる。 Fig. 14 (a) shows a metal structure photograph of the aluminum alloy cast bar obtained in the example, and Fig. 14 (b) shows a metal structure photograph of the aluminum alloy cast bar obtained in the comparative example. As shown in FIG. 14, the aluminum alloy cast bar obtained in the example was obtained in the comparative example, whereas the metal structure was composed of primary crystal Al and eutectic structure having a fine and uniform granular structure. It can be seen that the aluminum alloy casting rod has a dendritic primary Al and eutectic structure.
 本発明者らは、実施例で得られたアルミニウム合金鋳造棒の金属組織を、図15中「a」、「b」、「c」で示す3つの位置を中心として0.5mm×0.5mmの範囲でSEM-EBSDにて解析し、15°未満の小傾角の境界を結晶粒内の亜結晶粒界とみなす一方、15°以上の傾角の境界で囲まれる領域をひとつの結晶粒とし、その結晶粒の円相当径により測定した。そして、結晶粒の平均粒径と標準偏差を算出した結果、実施例で得られたアルミニウム合金鋳造棒の初晶Alの平均粒径は90μm、標準偏差は25μmであることを確認できた。なお、図15は円柱形のアルミニウム合金鋳造棒の断面を示すものであり、当該断面において、「c」はアルミニウム合金鋳造棒の中心、「a」はアルミニウム合金鋳造棒の表面から5mmの位置であり、「b」は「a」と「c」の中間点である。 The inventors of the present invention obtained the metal structure of the aluminum alloy casting rod obtained in the example by 0.5 mm × 0.5 mm centering on three positions indicated by “a”, “b”, and “c” in FIG. SEM-EBSD is used to analyze the boundary of a small tilt angle of less than 15 ° as a sub-grain boundary within the crystal grain, while the region surrounded by the tilt boundary of 15 ° or more is defined as one crystal grain. It was measured by the equivalent circle diameter of the crystal grains. As a result of calculating the average grain size and standard deviation of the crystal grains, it was confirmed that the average grain size of primary crystal Al of the aluminum alloy cast rod obtained in the example was 90 μm and the standard deviation was 25 μm. FIG. 15 shows a cross section of a cylindrical aluminum alloy cast bar. In the cross section, “c” is the center of the aluminum alloy cast bar, and “a” is 5 mm from the surface of the aluminum alloy cast bar. Yes, “b” is an intermediate point between “a” and “c”.
 また、本発明者らは実施例と比較例で得られたアルミニウム合金鋳造棒を長さ35mmに切断した後、電気炉で半溶融状態となる温度まで加熱し、アルミニウム合金鋳造棒が半溶融状態となったところで電気炉から取り出した。そして、半溶融状態のアルミニウム合金鋳造棒をプランジャーにより毎分16mmの速度で軸方向に加圧成形し、アルミニウム合金鋳造棒の直径が80mmになった時点でのプランジャーの最大加圧力を測定した。そして、これを7本のアルミニウム合金鋳造棒について行い、最大加圧力の平均値と標準偏差を算出した。その結果を表3に示す。 In addition, the inventors cut the aluminum alloy casting rods obtained in Examples and Comparative Examples to a length of 35 mm, and then heated to a temperature at which the aluminum alloy casting rods are in a semi-molten state in an electric furnace. Then, it was taken out from the electric furnace. A semi-molten aluminum alloy cast rod is pressed in the axial direction at a speed of 16 mm / min with a plunger, and the maximum pressure applied to the plunger when the diameter of the aluminum alloy cast rod reaches 80 mm is measured. did. And this was performed about the seven aluminum alloy cast bars, and the average value and standard deviation of the maximum pressurizing force were calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す最大加圧力の平均値と標準偏差の算出結果から明らかなように、実施例で得られたアルミニウム合金鋳造棒は最大加圧力の平均値が619.1kN、標準偏差が6.2kNであるのに対し、比較例で得られたアルミニウム合金鋳造棒は最大加圧力の平均値が1222.1kN、標準偏差が406.4kNであることがわかる。従って、比較例で得られたアルミニウム合金鋳造棒よりも実施例で得られたアルミニウム合金鋳造棒のほうが半溶融成形加工に適していることがわかる。 As apparent from the calculation results of the average value and the standard deviation of the maximum pressure shown in Table 3, the aluminum alloy cast bars obtained in the examples have an average value of the maximum pressure of 619.1 kN and a standard deviation of 6.2 kN. On the other hand, the aluminum alloy cast bar obtained in the comparative example is found to have an average maximum pressure of 1222.1 kN and a standard deviation of 406.4 kN. Therefore, it can be seen that the aluminum alloy cast bar obtained in the example is more suitable for the semi-melt forming process than the aluminum alloy cast bar obtained in the comparative example.
 1…連続鋳造装置
 2…鋳型
 3…ホットトップ
 4…溶湯供給樋
 5…電磁攪拌コイル
 51…鉄心
 S…スロット
 C…コイル要素
 6…電力調整器
 T1…三相交流電源のU相端子
 T2…三相交流電源のV相端子
 T3…三相交流電源のW相端子
DESCRIPTION OF SYMBOLS 1 ... Continuous casting apparatus 2 ... Mold 3 ... Hot top 4 ... Molten supply tank 5 ... Electromagnetic stirring coil 51 ... Iron core S ... Slot C ... Coil element 6 ... Power regulator T1 ... U-phase terminal of a three-phase alternating current power supply T2 ... Three Phase AC power supply V-phase terminal T3: Three-phase AC power supply W-phase terminal

Claims (35)

  1.  アルミニウム合金溶湯を連続鋳造して半溶融成形加工用のアルミニウム合金鋳造棒を製造する方法であって、
     前記アルミニウム合金溶湯を連続鋳造する連続鋳造装置として、前記アルミニウム合金溶湯を棒状に鋳造する円筒状の鋳型と、該鋳型と中心を一致させて前記鋳型の上に配置され、前記アルミニウム合金溶湯を前記鋳型に供給する円筒状のホットトップと、前記鋳型と前記ホットトップの内側で前記アルミニウム合金溶湯を電磁攪拌する電磁攪拌コイルとを具備し、かつ前記電磁攪拌コイルが前記アルミニウム合金溶湯を前記鋳型と前記ホットトップの円周方向に電磁誘導する複数のコイル要素と、該コイル要素を前記鋳型と前記ホットトップの外周に保持する鉄心とを有する連続鋳造装置を用いるとともに、
     前記アルミニウム合金鋳造棒の素材として、3.0~10.0質量%のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金を用い、
     かつ前記電磁攪拌コイルとして、前記コイル要素に三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極の電磁攪拌コイルを用いて、
     前記アルミニウム合金鋳造棒を製造することを特徴とするアルミニウム合金鋳造棒の製造方法。
    A method for producing an aluminum alloy casting rod for semi-molten forming by continuously casting a molten aluminum alloy,
    As a continuous casting apparatus for continuously casting the molten aluminum alloy, a cylindrical mold that casts the molten aluminum alloy into a rod shape, and the mold is arranged on the mold so that the center coincides with the mold. A cylindrical hot top to be supplied to the mold; and an electromagnetic stirring coil for electromagnetically stirring the molten aluminum alloy inside the mold and the hot top; and the electromagnetic stirring coil supplies the molten aluminum alloy to the mold. While using a continuous casting apparatus having a plurality of coil elements that electromagnetically induce in the circumferential direction of the hot top, and an iron core that holds the coil elements on the outer periphery of the mold and the hot top,
    As a material of the aluminum alloy casting rod, a silicon alloy containing 3.0 to 10.0% by mass of Si, the balance being Al, 1.0% by mass or less of Fe, trace additives and inevitable impurities. Crystal Al-Si alloy,
    And as the electromagnetic stirring coil, the magnetic pole of the rotating magnetic field generated when the three-phase AC power is supplied to the coil element is a two-pole electromagnetic stirring coil in the entire electromagnetic stirring coil,
    A method for producing an aluminum alloy casting rod, comprising producing the aluminum alloy casting rod.
  2.  前記アルミニウム合金鋳造棒の素材として、5.0~7.5質量%のSiを含み、かつ残部がAlと、0.50質量%以下のFeと、微量添加物として0.70質量%以下のMg、0.50質量%以下のMn、0.50質量%以下のCu、0.20質量%以下のTi、0.07質量%のBe、および不可避不純物とからなる亜共晶Al-Si系合金を用いて前記アルミニウム合金鋳造棒を製造することを特徴とする請求項1に記載のアルミニウム合金鋳造棒の製造方法。 The material of the aluminum alloy casting rod contains 5.0 to 7.5% by mass of Si, the balance being Al, 0.50% by mass or less of Fe, and a trace additive of 0.70% by mass or less. Hypoeutectic Al-Si system comprising Mg, 0.50 mass% or less Mn, 0.50 mass% or less Cu, 0.20 mass% or less Ti, 0.07 mass% Be, and inevitable impurities The method of manufacturing an aluminum alloy cast bar according to claim 1, wherein the aluminum alloy cast bar is manufactured using an alloy.
  3.  前記アルミニウム合金鋳造棒の素材として、6.5~7.5質量%のSiを含み、かつ残部がAlと、0.20質量%以下のFe、0.20~0.45質量%のMg、0.20質量%以下のCu、0.10質量%以下のZn、0.10質量%以下のMn、0.02質量%以下のTiおよび不可避不純物とからなる亜共晶Al-Si系合金を用いて前記アルミニウム合金鋳造棒を製造することを特徴とする請求項2に記載のアルミニウム合金鋳造棒の製造方法。 As a material of the aluminum alloy casting rod, 6.5 to 7.5% by mass of Si, with the balance being Al, 0.20% by mass or less of Fe, 0.20 to 0.45% by mass of Mg, A hypoeutectic Al-Si alloy comprising 0.20 mass% or less of Cu, 0.10 mass% or less of Zn, 0.10 mass% or less of Mn, 0.02 mass% or less of Ti, and inevitable impurities. The method for producing an aluminum alloy cast bar according to claim 2, wherein the aluminum alloy cast bar is produced by using the aluminum alloy cast bar.
  4.  前記アルミニウム合金鋳造棒の素材として、6.5~7.5質量%のSiを含み、かつ残部がAlと、0.20質量%以下のFe、0.40~0.70質量%のMg、0.20質量%以下のCu、0.10質量%以下のZn、0.10質量%以下のMn、0.04~0.20質量%以下のTi、0.04~0.07質量%以下のBeおよび不可避不純物とからなる亜共晶Al-Si系合金を用いて前記アルミニウム合金鋳造棒を製造することを特徴とする請求項2に記載のアルミニウム合金鋳造棒の製造方法。 As a material of the aluminum alloy casting rod, 6.5 to 7.5% by mass of Si, the balance being Al, 0.20% by mass or less of Fe, 0.40 to 0.70% by mass of Mg, Cu of 0.20 mass% or less, Zn of 0.10 mass% or less, Mn of 0.10 mass% or less, Ti of 0.04 to 0.20 mass% or less, 0.04 to 0.07 mass% or less 3. The method for producing an aluminum alloy cast rod according to claim 2, wherein the aluminum alloy cast rod is produced using a hypoeutectic Al-Si alloy comprising Be and unavoidable impurities.
  5.  前記三相交流電力の電流値を5A~20Aに設定して前記アルミニウム合金溶湯を電磁攪拌することを特徴とする請求項1~4のいずれか一項に記載のアルミニウム合金鋳造棒の製造方法。 The method for producing an aluminum alloy casting rod according to any one of claims 1 to 4, wherein the current value of the three-phase AC power is set to 5A to 20A and the molten aluminum alloy is electromagnetically stirred.
  6.  前記回転磁界の磁束密度を7mT~28mTに設定して前記アルミニウム合金溶湯を電磁攪拌することを特徴とする請求項1~5のいずれか一項に記載のアルミニウム合金鋳造棒の製造方法。 6. The method for producing an aluminum alloy cast bar according to claim 1, wherein the magnetic flux density of the rotating magnetic field is set to 7 mT to 28 mT and the molten aluminum alloy is electromagnetically stirred.
  7.  前記連続鋳造装置により連続鋳造される前記アルミニウム合金溶湯の初晶Al結晶が前記アルミニウム合金鋳造棒の全体にわたり粒状であり、かつ平均粒径が30μm~100μm、標準偏差が平均粒径の1/3以下となるように、前記アルミニウム合金溶湯を前記電磁攪拌コイルにより電磁攪拌しながら前記アルミニウム合金鋳造棒を製造することを特徴とする請求項1~6のいずれか一項に記載のアルミニウム合金鋳造棒の製造方法。 The primary aluminum crystal of the molten aluminum alloy continuously cast by the continuous casting apparatus is granular throughout the aluminum alloy casting rod, and the average grain size is 30 μm to 100 μm, and the standard deviation is 1/3 of the average grain size. The aluminum alloy casting rod according to any one of claims 1 to 6, wherein the aluminum alloy casting rod is manufactured while the aluminum alloy molten metal is electromagnetically stirred by the electromagnetic stirring coil so as to satisfy the following conditions. Manufacturing method.
  8.  前記アルミニウム合金溶湯を前記鋳型により70mm~120mmの直径で棒状に鋳造して前記アルミニウム合金鋳造棒を製造することを特徴とする請求項1~7のいずれか一項に記載のアルミニウム合金鋳造棒の製造方法。 The aluminum alloy cast rod according to any one of claims 1 to 7, wherein the aluminum alloy cast rod is manufactured by casting the aluminum alloy molten metal into a rod shape with a diameter of 70 mm to 120 mm using the mold. Production method.
  9.  半溶融成形加工用のアルミニウム合金鋳造棒を製造するときに用いられ、3.0~10.0質量%のSiを含み、かつ残部がAlと、1.0質量%以下のFeと、微量添加物および不可避不純物とからなる亜共晶Al-Si系合金溶湯を棒状に鋳造する円筒状の鋳型と、該鋳型と中心を一致させて前記鋳型の上に配置され、前記アルミニウム合金溶湯を前記鋳型に供給する円筒状のホットトップと、前記鋳型と前記ホットトップの内側で前記Al-Si系合金溶湯を電磁攪拌する電磁攪拌コイルとを具備し、前記Al-Si系合金溶湯を前記鋳型と前記ホットトップの円周方向に電磁誘導する複数のコイル要素と、該コイル要素を前記鋳型と前記ホットトップの外周に保持する鉄心とを前記電磁攪拌コイルが有する連続鋳造装置であって、
     前記電磁攪拌コイルが、前記コイル要素に三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極の電磁攪拌コイルであることを特徴とする連続鋳造装置。
    Used when producing an aluminum alloy cast bar for semi-melt forming, containing 3.0 to 10.0% by mass of Si, the balance being Al, Fe of 1.0% by mass or less, and a small amount of addition A cylindrical mold that casts a hypoeutectic Al-Si alloy melt composed of a material and inevitable impurities into a rod shape, and is placed on the mold so that the center of the mold coincides with the mold, and the aluminum alloy melt is placed on the mold A cylindrical hot top to be supplied to the mold, and an electromagnetic stirring coil for electromagnetically stirring the Al—Si based alloy melt inside the mold and the hot top, and the Al—Si based alloy melt as the mold and the above A continuous casting apparatus in which the electromagnetic stirring coil has a plurality of coil elements electromagnetically induced in a circumferential direction of the hot top, and an iron core that holds the coil elements on the outer periphery of the mold and the hot top,
    The continuous casting apparatus, wherein the magnetic stirring coil is a two-pole magnetic stirring coil in which the magnetic field of the rotating magnetic field generated when three-phase AC power is supplied to the coil element.
  10.  前記鉄心は、前記鋳型および前記ホットトップの外径より大きい内径で円筒状に形成されていると共に、前記鋳型と中心を一致させて前記鋳型と前記ホットトップの外周に配置されていることを特徴とする請求項9に記載の連続鋳造装置。 The iron core is formed in a cylindrical shape with an inner diameter larger than the outer diameter of the mold and the hot top, and is arranged on the outer periphery of the mold and the hot top so as to coincide with the center of the mold. The continuous casting apparatus according to claim 9.
  11.  前記コイル要素の個数が6の倍数であることを特徴とする請求項9または10に記載の連続鋳造装置。 The continuous casting apparatus according to claim 9 or 10, wherein the number of the coil elements is a multiple of six.
  12.  前記コイル要素は、前記コイル要素に対応して前記鉄心の内周面に一定間隔で形成された複数のスロットを有することを特徴とする請求項11に記載の連続鋳造装置。 12. The continuous casting apparatus according to claim 11, wherein the coil element has a plurality of slots formed at regular intervals on an inner peripheral surface of the iron core corresponding to the coil element.
  13.  前記コイル要素は、前記複数のスロットのうち前記鉄心の円周方向に120°ずれて前記鉄心の内周面に形成された2つのスロットの間で銅線をコイル状に巻回して形成されていることを特徴とする請求項12に記載の連続鋳造装置。 The coil element is formed by winding a copper wire in a coil shape between two slots formed on the inner peripheral surface of the iron core with a 120 ° shift in the circumferential direction of the iron core among the plurality of slots. The continuous casting apparatus according to claim 12, wherein:
  14.  前記スロットの幅が6.0mm~12.0mm、前記スロットの深さが15.0mm~35.0mmであることを特徴とする請求項13に記載の連続鋳造装置。 14. The continuous casting apparatus according to claim 13, wherein the slot has a width of 6.0 mm to 12.0 mm and a depth of the slot of 15.0 mm to 35.0 mm.
  15.  前記銅線の表面が絶縁被覆されていることを特徴とする請求項14に記載の連続鋳造装置。 The continuous casting apparatus according to claim 14, wherein a surface of the copper wire is covered with an insulating coating.
  16.  前記銅線の線径が0.6mm~1.7mm、前記銅線の巻き数が33~67であることを特徴とする請求項15に記載の連続鋳造装置。 The continuous casting apparatus according to claim 15, wherein a wire diameter of the copper wire is 0.6 mm to 1.7 mm, and a winding number of the copper wire is 33 to 67.
  17.  前記鋳型の高さが30mm~60mm、前記ホットトップの高さが100mm~300mm、前記鉄心の高さが20mm~50mmであることを特徴とする請求項9~16のいずれか一項に記載の連続鋳造装置。 The height of the mold is 30 mm to 60 mm, the height of the hot top is 100 mm to 300 mm, and the height of the iron core is 20 mm to 50 mm. Continuous casting equipment.
  18.  前記鉄心が0.3mm~0.7mmmmの厚さを有する複数の電磁鋼板を積層して形成されていることを特徴とする請求項17に記載の連続鋳造装置。 The continuous casting apparatus according to claim 17, wherein the iron core is formed by laminating a plurality of electromagnetic steel sheets having a thickness of 0.3 mm to 0.7 mm.
  19.  前記鋳型と前記ホットトップの外径より10mm~30mmの範囲内で大きい内径と、該内径より50mm以上大きい外径とを、前記鉄心が有することを特徴とする請求項18に記載の連続鋳造装置。 19. The continuous casting apparatus according to claim 18, wherein the iron core has an inner diameter larger than the outer diameter of the mold and the hot top within a range of 10 mm to 30 mm and an outer diameter larger than the inner diameter by 50 mm or more. .
  20.  前記コイル要素の個数が36個であり、前記36個のコイル要素のうち第1~第6、第7~第12、第13~第18、第19~第24、第25~第30、第31~第36のコイル要素は直列に接続され、かつ第1、第18、第24、第31のコイル要素は三相交流電源のU相端子に、第6、第12、第19、第25のコイル要素は三相交流電源のV相端子に、第7、第13、第30、第36のコイル要素は三相交流電源のW相端子に接続されていることを特徴とする請求項19に記載の連続鋳造装置。 The number of the coil elements is 36. Among the 36 coil elements, the first to sixth, seventh to twelfth, thirteenth to eighteenth, nineteenth to twenty-fourth, twenty-fifth to thirtieth, The thirty-first to thirty-sixth coil elements are connected in series, and the first, eighteenth, twenty-fourth, and thirty-first coil elements are connected to the U-phase terminal of the three-phase AC power source, and the sixth, twelfth, nineteenth, twenty-fifth. The coil element is connected to the V-phase terminal of the three-phase AC power supply, and the seventh, thirteenth, thirty-th, and thirty-sixth coil elements are connected to the W-phase terminal of the three-phase AC power supply. The continuous casting apparatus described in 1.
  21.  前記コイル要素の個数が42個であり、前記42個のコイル要素のうち第1~第7、第8~第14、第15~第21、第22~第28、第29~第35、第36~第42のコイル要素は直列に接続され、かつ第1、第21、第28、第36のコイル要素は三相交流電源のU相電源端子に、第7、第14、第22、第29のコイル要素は三相交流電源のV相電源端子に、第8、第15、第35、第42のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項19に記載の連続鋳造装置。 The number of the coil elements is 42, and the first to seventh, eighth to fourteenth, fifteenth to twenty-first, twenty-second to twenty-eighth, twenty-ninth to thirty-fifth of the 42 coil elements. The 36th to 42nd coil elements are connected in series, and the 1st, 21st, 28th, and 36th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, and the 7th, 14th, 22nd, and 2nd coil elements. The 29th coil element is connected to the V-phase power supply terminal of the three-phase AC power supply, and the 8th, 15th, 35th and 42nd coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. The continuous casting apparatus according to claim 19.
  22.  前記コイル要素の個数が48個であり、前記48個のコイル要素のうち第1~第8、第9~第16、第17~第24、第25~第32、第33~第40、第41~第48のコイル要素は直列に接続され、かつ第1、第24、第32、第41のコイル要素は三相交流電源のU相電源端子に、第8、第16、第25、第33のコイル要素は三相交流電源のV相電源端子に、第9、第17、第40、第48のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項19に記載の連続鋳造装置。 The number of the coil elements is 48. Of the 48 coil elements, the first to eighth, ninth to sixteenth, seventeenth to twenty-fourth, twenty-fifth to thirty-second, thirty-third to forty, The 41st to 48th coil elements are connected in series, and the first, 24th, 32nd and 41st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, and the eighth, sixteenth, twenty-fifth, The coil element 33 is connected to a V-phase power supply terminal of a three-phase AC power supply, and the ninth, seventeenth, fortieth and forty-eighth coil elements are connected to a W-phase power supply terminal of the three-phase AC power supply. The continuous casting apparatus according to claim 19.
  23.  前記コイル要素の個数が54個であり、前記54個のコイル要素のうち第1~第9、第10~第18、第19~第27、第28~第36、第37~第45、第46~第54のコイル要素は直列に接続され、かつ第1、第27、第36、第46のコイル要素は三相交流電源のU相電源端子に、第9、第18、第28、第37のコイル要素は三相交流電源のV相電源端子に、第10、第19、第45、第54のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項19に記載の連続鋳造装置。 The number of coil elements is 54. Of the 54 coil elements, the first to ninth, tenth to eighteenth, nineteenth to twenty-seventh, twenty-eighth to thirty-sixth, thirty-seventh to forty-fifth, The 46th to 54th coil elements are connected in series, and the first, 27th, 36th and 46th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, and the ninth, 18th, 28th and 28th coils. The coil element 37 is connected to the V-phase power supply terminal of the three-phase AC power supply, and the tenth, nineteenth, 45th and 54th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. The continuous casting apparatus according to claim 19.
  24.  前記コイル要素の個数が60個であり、前記60個のコイル要素のうち第1~第10、第11~第20、第21~第30、第31~第40、第41~第50、第51~第60のコイル要素は直列に接続され、かつ第1、第30、第40、第51のコイル要素は三相交流電源のU相電源端子に、第10、第20、第31、第41のコイル要素は三相交流電源のV相電源端子に、第11、第21、第50、第60のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項19に記載の連続鋳造装置。 The number of the coil elements is 60. Among the 60 coil elements, the first to the tenth, the eleventh to the twentieth, the twenty-first to the thirty-first, the thirty-first to the forty-th, the forty-first to the fifty-th, The 51st to 60th coil elements are connected in series, and the 1st, 30th, 40th, and 51st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, the 10th, 20th, 31st, and The coil element 41 is connected to the V-phase power supply terminal of the three-phase AC power supply, and the eleventh, twenty-first, fifty-th and 60th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. The continuous casting apparatus according to claim 19.
  25.  アルミニウム合金溶湯を棒状に鋳造する円筒状の鋳型と、該鋳型と中心を一致させて前記鋳型の上に配置され、前記アルミニウム合金溶湯を前記鋳型に供給する円筒状のホットトップとを備えた連続鋳造装置に用いられ、前記アルミニウム合金溶湯を前記鋳型と前記ホットトップの円周方向に電磁誘導する複数のコイル要素と、該コイル要素を前記鋳型と前記ホットトップの外周に保持する鉄心とを有する連続鋳造装置用電磁攪拌コイルであって、
     前記コイル要素に三相交流電力を通電したときに発生する回転磁界の磁極が電磁攪拌コイル全体で2極であることを特徴とする連続鋳造装置用電磁攪拌コイル。
    A continuous mold comprising a cylindrical mold for casting a molten aluminum alloy into a rod shape, and a cylindrical hot top that is arranged on the mold so that the center of the mold coincides with the mold and supplies the molten aluminum alloy to the mold A plurality of coil elements that are used in a casting apparatus and electromagnetically induce the molten aluminum alloy in a circumferential direction of the mold and the hot top, and an iron core that holds the coil elements on the outer periphery of the mold and the hot top. An electromagnetic stirring coil for a continuous casting device,
    An electromagnetic stirring coil for a continuous casting apparatus, wherein the magnetic pole of a rotating magnetic field generated when three-phase AC power is supplied to the coil element is two poles as a whole.
  26.  前記コイル要素の個数が6の倍数であることを特徴とする請求項25に記載の連続鋳造装置用電磁攪拌コイル。 26. The electromagnetic stirring coil for a continuous casting apparatus according to claim 25, wherein the number of coil elements is a multiple of six.
  27.  前記鉄心は、前記コイル要素に対応して前記鉄心の内周面に一定間隔で形成された複数のスロットを有することを特徴とする請求項26に記載の連続鋳造装置用電磁攪拌コイル。 27. The electromagnetic stirring coil for a continuous casting apparatus according to claim 26, wherein the iron core has a plurality of slots formed at regular intervals on an inner peripheral surface of the iron core corresponding to the coil element.
  28.  前記コイル要素は、前記複数のスロットのうち前記鉄心の円周方向に120度ずれて前記鉄心の内周面に形成された2つのスロットの間で銅線をコイル状に巻回して形成されていることを特徴とする請求項27に記載の連続鋳造装置用電磁攪拌コイル。 The coil element is formed by winding a copper wire in a coil shape between two slots formed on the inner peripheral surface of the iron core, shifted by 120 degrees in the circumferential direction of the iron core among the plurality of slots. 28. The electromagnetic stirring coil for a continuous casting apparatus according to claim 27, wherein:
  29.  前記銅線の表面が絶縁被覆されていることを特徴とする請求項28に記載の連続鋳造装置用電磁攪拌コイル。 The electromagnetic stirring coil for a continuous casting apparatus according to claim 28, wherein a surface of the copper wire is covered with an insulating coating.
  30.  前記銅線の線径が0.6mm~1.7mm、前記銅線の巻き数が33~67であることを特徴とする請求項29に記載の連続鋳造装置用電磁攪拌コイル。 30. The electromagnetic stirring coil for a continuous casting apparatus according to claim 29, wherein a wire diameter of the copper wire is 0.6 mm to 1.7 mm and a winding number of the copper wire is 33 to 67.
  31.  前記コイル要素の個数が36個であり、前記36個のコイル要素のうち第1~第6、第7~第12、第13~第18、第19~第24、第25~第30、第31~第36のコイル要素は直列に接続され、かつ第1、第18、第24、第31のコイル要素は三相交流電源のU相端子に、第6、第12、第19、第25のコイル要素は三相交流電源のV相端子に、第7、第13、第30、第36のコイル要素は三相交流電源のW相端子に接続されていることを特徴とする請求項30に記載の連続鋳造装置用電磁攪拌コイル。 The number of the coil elements is 36. Among the 36 coil elements, the first to sixth, seventh to twelfth, thirteenth to eighteenth, nineteenth to twenty-fourth, twenty-fifth to thirtieth, The thirty-first to thirty-sixth coil elements are connected in series, and the first, eighteenth, twenty-fourth, and thirty-first coil elements are connected to the U-phase terminal of the three-phase AC power source, and the sixth, twelfth, nineteenth, twenty-fifth. The coil element is connected to a V-phase terminal of a three-phase AC power supply, and the seventh, thirteenth, thirty-th, and thirty-sixth coil elements are connected to a W-phase terminal of the three-phase AC power supply. An electromagnetic stirring coil for a continuous casting apparatus as described in 1.
  32.  前記コイル要素の個数が42個であり、前記42個のコイル要素のうち第1~第7、第8~第14、第15~第21、第22~第28、第29~第35、第36~第42のコイル要素は直列に接続され、かつ第1、第21、第28、第36のコイル要素は三相交流電源のU相電源端子に、第7、第14、第22、第29のコイル要素は三相交流電源のV相電源端子に、第8、第15、第35、第42のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項30に記載の連続鋳造装置用電磁攪拌コイル。 The number of the coil elements is 42, and the first to seventh, eighth to fourteenth, fifteenth to twenty-first, twenty-second to twenty-eighth, twenty-ninth to thirty-fifth of the 42 coil elements. The 36th to 42nd coil elements are connected in series, and the 1st, 21st, 28th, and 36th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, and the 7th, 14th, 22nd, and 2nd coil elements. The 29th coil element is connected to the V-phase power supply terminal of the three-phase AC power supply, and the 8th, 15th, 35th and 42nd coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. The electromagnetic stirring coil for continuous casting apparatuses of Claim 30.
  33.  前記コイル要素の個数が48個であり、前記48個のコイル要素のうち第1~第8、第9~第16、第17~第24、第25~第32、第33~第40、第41~第48のコイル要素は直列に接続され、かつ第1、第24、第32、第41のコイル要素は三相交流電源のU相電源端子に、第8、第16、第25、第33のコイル要素は三相交流電源のV相電源端子に、第9、第17、第40、第48のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項30に記載の連続鋳造装置用電磁攪拌コイル。 The number of the coil elements is 48. Of the 48 coil elements, the first to eighth, ninth to sixteenth, seventeenth to twenty-fourth, twenty-fifth to thirty-second, thirty-third to forty, The 41st to 48th coil elements are connected in series, and the first, 24th, 32nd and 41st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, and the eighth, sixteenth, twenty-fifth, The coil element 33 is connected to a V-phase power supply terminal of a three-phase AC power supply, and the ninth, seventeenth, fortieth and forty-eighth coil elements are connected to a W-phase power supply terminal of the three-phase AC power supply. The electromagnetic stirring coil for continuous casting apparatuses of Claim 30.
  34.  前記コイル要素の個数が54個であり、前記54個のコイル要素のうち第1~第9、第10~第18、第19~第27、第28~第36、第37~第45、第46~第54のコイル要素は直列に接続され、かつ第1、第27、第36、第46のコイル要素は三相交流電源のU相電源端子に、第9、第18、第28、第37のコイル要素は三相交流電源のV相電源端子に、第10、第19、第45、第54のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項30に記載の連続鋳造装置用電磁攪拌コイル。 The number of coil elements is 54. Of the 54 coil elements, the first to ninth, tenth to eighteenth, nineteenth to twenty-seventh, twenty-eighth to thirty-sixth, thirty-seventh to forty-fifth, The 46th to 54th coil elements are connected in series, and the first, 27th, 36th and 46th coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, and the ninth, 18th, 28th and 28th coils. The coil element 37 is connected to the V-phase power supply terminal of the three-phase AC power supply, and the tenth, nineteenth, 45th and 54th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. The electromagnetic stirring coil for continuous casting apparatuses of Claim 30.
  35.  前記コイル要素の個数が60個であり、前記60個のコイル要素のうち第1~第10、第11~第20、第21~第30、第31~第40、第41~第50、第51~第60のコイル要素は直列に接続され、かつ第1、第30、第40、第51のコイル要素は三相交流電源のU相電源端子に、第10、第20、第31、第41のコイル要素は三相交流電源のV相電源端子に、第11、第21、第50、第60のコイル要素は三相交流電源のW相電源端子に接続されていることを特徴とする請求項30に記載の連続鋳造装置用電磁攪拌コイル。 The number of the coil elements is 60. Among the 60 coil elements, the first to the tenth, the eleventh to the twentieth, the twenty-first to the thirty-first, the thirty-first to the forty-th, the forty-first to the fifty-th, The 51st to 60th coil elements are connected in series, and the 1st, 30th, 40th, and 51st coil elements are connected to the U-phase power supply terminal of the three-phase AC power supply, the 10th, 20th, 31st, and The coil element 41 is connected to the V-phase power supply terminal of the three-phase AC power supply, and the eleventh, twenty-first, fifty-th and 60th coil elements are connected to the W-phase power supply terminal of the three-phase AC power supply. The electromagnetic stirring coil for continuous casting apparatuses of Claim 30.
PCT/JP2011/003300 2010-06-14 2011-06-10 Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device WO2011158477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012520283A JPWO2011158477A1 (en) 2010-06-14 2011-06-10 Aluminum alloy casting rod manufacturing method, continuous casting apparatus, and electromagnetic stirring coil for continuous casting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-135139 2010-06-14
JP2010135139 2010-06-14

Publications (1)

Publication Number Publication Date
WO2011158477A1 true WO2011158477A1 (en) 2011-12-22

Family

ID=45347893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003300 WO2011158477A1 (en) 2010-06-14 2011-06-10 Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device

Country Status (2)

Country Link
JP (1) JPWO2011158477A1 (en)
WO (1) WO2011158477A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489676A (en) * 2011-12-26 2012-06-13 大连理工大学 Ultrasonic and electromagnetic block-type amorphous alloy continuous casting device and method thereof
CN103614579A (en) * 2013-12-12 2014-03-05 兴发铝业(成都)有限公司 Energy-saving and efficient aluminum alloy casting process
CN104722730A (en) * 2013-12-20 2015-06-24 北京有色金属研究总院 Device and method for continuous preparation of large-size high-quality aluminum alloy cast ingots
WO2015166992A1 (en) * 2014-05-02 2015-11-05 株式会社浅沼技研 Heat radiator fin comprising aluminum alloy and method for manufacturing same
WO2015179677A1 (en) * 2014-05-21 2015-11-26 Novelis Inc. Non-contacting molten metal flow control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021004086A2 (en) * 2018-09-10 2021-05-25 Ergolines Lab S.R.L. electromagnetic stirring device in a mold for casting aluminum or aluminum alloys, stirring method in a mold for casting aluminum or aluminum alloys, die and casting machine for casting aluminum or aluminum alloys and factory for production and machining of aluminum bars or aluminum alloys

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117556A (en) * 1979-02-26 1980-09-09 Itt Preparation of thixotropic metallic slurry and its manufacturing device
JPH081281A (en) * 1994-06-16 1996-01-09 Leotec:Kk Method and apparatus for producing semi-solidified metallic material
JPH09135563A (en) * 1995-11-08 1997-05-20 Nippon Steel Corp Rotating field generator and continuous casting machine
JPH1088269A (en) * 1996-09-10 1998-04-07 Hitachi Metals Ltd Differential gear case and manufacture thereof
JP2967415B1 (en) * 1998-07-01 1999-10-25 本田技研工業株式会社 Stirring continuous casting of Al alloy
JP2005002394A (en) * 2003-06-11 2005-01-06 Japan Ajax Magnethermic Co Ltd Method and device for heating material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387788B2 (en) * 2003-12-26 2009-12-24 日本軽金属株式会社 Vertical casting machine for aluminum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117556A (en) * 1979-02-26 1980-09-09 Itt Preparation of thixotropic metallic slurry and its manufacturing device
JPH081281A (en) * 1994-06-16 1996-01-09 Leotec:Kk Method and apparatus for producing semi-solidified metallic material
JPH09135563A (en) * 1995-11-08 1997-05-20 Nippon Steel Corp Rotating field generator and continuous casting machine
JPH1088269A (en) * 1996-09-10 1998-04-07 Hitachi Metals Ltd Differential gear case and manufacture thereof
JP2967415B1 (en) * 1998-07-01 1999-10-25 本田技研工業株式会社 Stirring continuous casting of Al alloy
JP2005002394A (en) * 2003-06-11 2005-01-06 Japan Ajax Magnethermic Co Ltd Method and device for heating material

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489676A (en) * 2011-12-26 2012-06-13 大连理工大学 Ultrasonic and electromagnetic block-type amorphous alloy continuous casting device and method thereof
CN103614579A (en) * 2013-12-12 2014-03-05 兴发铝业(成都)有限公司 Energy-saving and efficient aluminum alloy casting process
CN103614579B (en) * 2013-12-12 2015-07-15 兴发铝业(成都)有限公司 Energy-saving and efficient aluminum alloy casting process
CN104722730B (en) * 2013-12-20 2018-03-16 北京有色金属研究总院 A kind of continuous apparatus and method for preparing large scale high-quality aluminum alloy ingot casting
CN104722730A (en) * 2013-12-20 2015-06-24 北京有色金属研究总院 Device and method for continuous preparation of large-size high-quality aluminum alloy cast ingots
WO2015166992A1 (en) * 2014-05-02 2015-11-05 株式会社浅沼技研 Heat radiator fin comprising aluminum alloy and method for manufacturing same
JP2015212408A (en) * 2014-05-02 2015-11-26 株式会社浅沼技研 Radiation fin consisting of aluminum alloy and manufacturing method therefor
US10619231B2 (en) 2014-05-02 2020-04-14 Asanuma Giken Co., Ltd. Radiating fin formed of aluminum alloy and method for producing the same
WO2015179677A1 (en) * 2014-05-21 2015-11-26 Novelis Inc. Non-contacting molten metal flow control
JP2019150883A (en) * 2014-05-21 2019-09-12 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
JP2017515688A (en) * 2014-05-21 2017-06-15 ノベリス・インコーポレイテッドNovelis Inc. Mixing eductor nozzle and flow control device
KR20180095129A (en) * 2014-05-21 2018-08-24 노벨리스 인크. Mixing eductor nozzle and flow control device
KR101890903B1 (en) * 2014-05-21 2018-08-24 노벨리스 인크. Mixing eductor nozzle and flow control device
US10118221B2 (en) 2014-05-21 2018-11-06 Novelis Inc. Mixing eductor nozzle and flow control device
EP3453472A1 (en) * 2014-05-21 2019-03-13 Novelis Inc. Non-contacting molten metal flow control
CN107073573A (en) * 2014-05-21 2017-08-18 诺维尔里斯公司 Contactless melting metal flow control
US10464127B2 (en) 2014-05-21 2019-11-05 Novelis Inc. Non-contacting molten metal flow control
WO2015179680A3 (en) * 2014-05-21 2016-02-18 Novelis Inc. Mixing eductor nozzle and flow control device
US10835954B2 (en) 2014-05-21 2020-11-17 Novelis Inc. Mixing eductor nozzle and flow control device
KR20210046851A (en) * 2014-05-21 2021-04-28 노벨리스 인크. Mixing eductor nozzle and flow control device
KR102305894B1 (en) * 2014-05-21 2021-09-28 노벨리스 인크. Mixing eductor nozzle and flow control device
US11383296B2 (en) 2014-05-21 2022-07-12 Novelis, Inc. Non-contacting molten metal flow control
KR102421018B1 (en) * 2014-05-21 2022-07-14 노벨리스 인크. Mixing eductor nozzle and flow control device

Also Published As

Publication number Publication date
JPWO2011158477A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
WO2011158477A1 (en) Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device
EP0071822B1 (en) Mold for use in metal or metal alloy casting systems and process for mixing a molten metal or metal alloy
US4294304A (en) Electromagnetic centrifuging inductor for rotating a molten metal about its casting axis
CA1176819A (en) Process and apparatus for making thixotropic metal slurries
EP2669396B1 (en) High electric resistance aluminum alloy
CN102990027A (en) Low-energy-consumption electromagnetic stirring method for continuous casting and metal continuous casting device
JP2012527533A (en) Method for producing β-γ-TiAl based alloy
CN102554165B (en) Electromagnetic device for stirring metal melt spirally
JPH0255650A (en) Manufacture of thixotropic metallic product through continuous casting
CN108463568B (en) Copper alloy wire rod and method for manufacturing copper alloy wire rod
JP2010162588A (en) Continuous casting method for magnesium alloy
KR100419757B1 (en) A electromagnet stirrer in continuous casting machine
CN105525142A (en) Low cost titanium alloy and homogenization preparation method thereof
JPH05280871A (en) Water-cooled divided copper crucible for induction melting service
CN112689543A (en) Electromagnetic stirring device for casting moulds for casting aluminium or aluminium alloys, stirring method for casting moulds for casting aluminium or aluminium alloys, moulds and casting machine for casting aluminium or aluminium alloys
US4121926A (en) Squirrel-cage rotor
KR200253509Y1 (en) A electromagnet stirrer in continuous casting machine
CN201300196Y (en) Copper alloy slab electromagnetic stirrer
JP2017217680A (en) Manufacturing method of copper-iron clad wire rod
CN109825728A (en) Aluminum for electric engineering alloy conductor material and preparation method
RU2237542C1 (en) Apparatus for electromagnetic agitation of liquid core of ingot in mold
JP2005238276A (en) Electromagnetic-stirring casting apparatus
SE516850C2 (en) Method and apparatus for controlling agitation in a casting string
US20090021336A1 (en) Inductor for the excitation of polyharmonic rotating magnetic fields
JP2020076136A (en) Copper-iron alloy, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520283

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795385

Country of ref document: EP

Kind code of ref document: A1