JP2020076136A - Copper-iron alloy, and manufacturing method thereof - Google Patents

Copper-iron alloy, and manufacturing method thereof Download PDF

Info

Publication number
JP2020076136A
JP2020076136A JP2018211313A JP2018211313A JP2020076136A JP 2020076136 A JP2020076136 A JP 2020076136A JP 2018211313 A JP2018211313 A JP 2018211313A JP 2018211313 A JP2018211313 A JP 2018211313A JP 2020076136 A JP2020076136 A JP 2020076136A
Authority
JP
Japan
Prior art keywords
copper
iron
iron alloy
alloy according
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018211313A
Other languages
Japanese (ja)
Inventor
久雄 若海
Hisao Wakaumi
久雄 若海
秀世 小柴
Hideyo Koshiba
秀世 小柴
昌柞 朴
Chang Zuo Park
昌柞 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cfa Global Co Ltd
Cfa Japan Co Ltd
DOTETSU GOKIN KK
Original Assignee
Cfa Global Co Ltd
Cfa Japan Co Ltd
DOTETSU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cfa Global Co Ltd, Cfa Japan Co Ltd, DOTETSU GOKIN KK filed Critical Cfa Global Co Ltd
Priority to JP2018211313A priority Critical patent/JP2020076136A/en
Publication of JP2020076136A publication Critical patent/JP2020076136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a copper-iron alloy forgeable and rollable or the like, containing iron and copper at an optional ratio; and to provide a manufacturing method thereof.SOLUTION: A copper-iron alloy contains copper as much as 10.0-97.0 vol.%, and iron as much as 3.0-90.0 vol.%, and has a linear structure containing a plurality of linear parts in parallel with both cross sections, when observing visually each image having a magnification of 200 by an optical microscope of a cross section cut out in parallel with a rolling direction and a cross section cut out vertically thereto.SELECTED DRAWING: Figure 2

Description

本発明は、銅と鉄を含む銅鉄合金に関するものである。   The present invention relates to a copper-iron alloy containing copper and iron.

銅と鉄とを含む銅鉄合金を製造するための様々な試みは、以前からなされている。例えば、特許文献1(特開2013−237887号公報)には、気孔の混入を低減し、高品質な鋳塊を得ることができる銅鉄合金の製造方法が提案されている。特許文献2(特開2015−93311号公報)には、銅の基質中に鉄を含む晶体粒片を分散させた銅鉄ニューセラミックであるCFA(Cu−Fe Alloy)からなる共晶銅鉄合金の製造方法が提案されている。   Various attempts have been made to produce copper-iron alloys containing copper and iron. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2013-237887) proposes a method for producing a copper-iron alloy that can reduce the inclusion of pores and obtain a high-quality ingot. Patent Document 2 (JP-A-2005-93311) discloses a eutectic copper-iron alloy made of CFA (Cu-Fe Alloy), which is a copper-iron new ceramic in which crystal grain fragments containing iron are dispersed in a copper substrate. Has been proposed.

特開2013−237887号公報JP, 2013-237887, A 特開2015−93311号公報JP, 2005-93311, A

しかしながら、従来の技術で製造された銅鉄合金は、鉄の比率が2.7容量%以上になると、鍛造及び圧延等の加工ができなくなり、例えば、圧延加工の際には割れを生じる。そこで、本発明は、鉄及び銅が任意の割合で、鍛造及び圧延等の加工ができる銅鉄合金、及びその製造方法を提供することを目的とする。   However, in the copper-iron alloy produced by the conventional technique, when the iron ratio is 2.7% by volume or more, the processes such as forging and rolling cannot be performed, and for example, cracking occurs during rolling. Therefore, an object of the present invention is to provide a copper-iron alloy that can be processed such as forging and rolling at an arbitrary ratio of iron and copper, and a manufacturing method thereof.

以上の目的を達成するために、本発明者らは、鋭意研究を重ね、本発明に至った。すなわち、本発明の銅鉄合金は、銅を10.0〜97.0容量%、及び鉄を3.0〜90.0容量%含み、圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率200倍の画像を目視で観察すると両断面共に平行する複数の線状部を含む線状構造である。   In order to achieve the above object, the present inventors have earnestly conducted research and arrived at the present invention. That is, the copper-iron alloy of the present invention contains 10.0 to 97.0% by volume of copper and 3.0 to 90.0% by volume of iron, and has a cross section cut parallel to the rolling direction and a cross section cut perpendicularly. When an image with a magnification of 200 is visually observed with the optical microscope, it is a linear structure including a plurality of linear portions parallel to each other in both cross sections.

また、本発明の銅鉄合金の製造方法は、銅及び鉄を含む母合金と、銅又は鉄とを溶融する工程を備える。   Further, the method for producing a copper-iron alloy of the present invention includes a step of melting a mother alloy containing copper and iron and copper or iron.

以上のように、本発明によれば、鉄及び銅が任意の割合で、鍛造及び圧延等の加工ができる銅鉄合金、及びその製造方法を提供することができる。   INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to provide a copper-iron alloy in which iron and copper can be processed at a desired ratio such as forging and rolling, and a manufacturing method thereof.

図1は、実施例1に係る銅鉄合金を鋳造し圧延した圧延材であり、図中の矢印は顕微鏡で観察を行うための試験片を切り出した方向を示す。FIG. 1 is a rolled material obtained by casting and rolling the copper-iron alloy according to Example 1, and the arrow in the drawing indicates the direction in which a test piece for observation with a microscope is cut out. 図2は、圧延方向に垂直に切り出された圧延材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 2 is a photograph of a rolled material cut out perpendicularly to the rolling direction, taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図3は、圧延方向に垂直に切り出された圧延材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 3 is a photograph of a rolled material cut out perpendicularly to the rolling direction taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図4は、圧延方向に平行に切り出された圧延材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 4 is a photograph of a rolled material cut out in parallel with the rolling direction taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図5は、圧延方向に平行に切り出された圧延材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した圧延材の断面を研磨して撮影した写真、右は切り出した圧延材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 5 is a photograph of a rolled material cut in parallel to the rolling direction, taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cross section of the cut rolled material, and the right is a photograph taken by polishing the cross section of the cut rolled material and etching. 図6は、比較例1に係る銅鉄合金の鋳造材であり、図中の矢印は顕微鏡で観察を行うための試験片を切り出した方向を示す。FIG. 6 is a cast material of a copper-iron alloy according to Comparative Example 1, and the arrow in the figure indicates the direction in which a test piece for observing with a microscope is cut out. 図7は、長手方向に垂直に切り出された鋳造材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 7 is a photograph of a cast material cut out perpendicularly to the longitudinal direction taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図8は、長手方向に垂直に切り出された鋳造材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 8 is a photograph of a cast material cut out perpendicularly to the longitudinal direction taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図9は、長手方向に平行に切り出された鋳造材を光学顕微鏡を用いて200倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 9 is a photograph of a cast material cut out in parallel with the longitudinal direction taken at 200 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図10は、長手方向に平行に切り出された鋳造材を光学顕微鏡を用いて1000倍で撮影した写真である。左は切り出した鋳造材の断面を研磨して撮影した写真、右は切り出した鋳造材の断面を研磨し、エッチング処理して撮影した写真である。FIG. 10 is a photograph of a cast material cut in parallel with the longitudinal direction taken at 1000 times with an optical microscope. The left is a photograph taken by polishing the cut cross section of the cast material, and the right is a photograph taken by polishing the cross section of the cut cast material and etching. 図11は、本発明に係る銅鉄合金を含む誘導モータの回転子用筒材を使用して構成した回転子の概念図である。FIG. 11 is a conceptual diagram of a rotor configured by using the rotor tubular member of the induction motor including the copper-iron alloy according to the present invention.

《銅鉄合金》
本発明に係る銅鉄合金は、銅を10.0〜97.0容量%、及び鉄を3.0〜90.0容量%、好ましくは銅を10.0〜96.0容量%、及び鉄を4.0〜90.0容量%、より好ましくは銅を10.0〜95.0容量%、及び鉄を5.0〜90.0容量%、更に好ましくは銅を10.0〜94.0容量%、及び鉄を6.0〜90.0容量%、特に好ましくは銅を10.0〜93.0容量%、及び鉄を7.0〜90.0容量%である。銅と鉄の割合は、銅鉄合金の用途によって決めることができる。例えば、銅を多く含ませることにより、銅のより高い特性を合金に付与することができる。銅の特性としては、例えば、高導電率、高熱伝導率、及び抗菌性である。また、鉄を多く含ませることにより、鉄のより高い特性を合金に付与することができる。鉄の特性としては、例えば、高硬度、高引張強度、磁性、酸素吸着性、及び可撓性(弾性)である。
《Copper iron alloy》
The copper-iron alloy according to the present invention contains 10.0 to 97.0% by volume of copper, 3.0 to 90.0% by volume of iron, and preferably 10.0 to 96.0% by volume of copper, and iron. Of 4.0 to 90.0% by volume, more preferably 10.0 to 95.0% by volume of copper, and 5.0 to 90.0% by volume of iron, and further preferably 10.0 to 94.% of copper. 0% by volume and 6.0 to 90.0% by volume of iron, particularly preferably 10.0 to 93.0% by volume of copper and 7.0 to 90.0% by volume of iron. The ratio of copper to iron can be determined by the application of the copper-iron alloy. For example, the higher copper content may impart to the alloy the higher properties of copper. The properties of copper are, for example, high conductivity, high thermal conductivity, and antibacterial property. Further, by including a large amount of iron, it is possible to give the alloy higher properties of iron. The characteristics of iron are, for example, high hardness, high tensile strength, magnetism, oxygen adsorption, and flexibility (elasticity).

圧延された本発明に係る銅鉄合金は、圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率200倍の画像を目視で観察すると両断面共に平行する複数の線状部を含む線状構造である。図2及び図4に示されるように、複数の線は、同一方向に交差することなく概ね平行している。また、図3及び図5に示されるように、圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率1000倍の画像を目視で観察すると色の濃い不定形領域が点在している。   The rolled copper-iron alloy according to the present invention has a plurality of linear portions that are parallel to each other when visually observing images of a cross section cut parallel to the rolling direction and a cross section cut perpendicularly with an optical microscope at a magnification of 200 times. It is a linear structure including. As shown in FIGS. 2 and 4, the lines are substantially parallel without intersecting in the same direction. Further, as shown in FIGS. 3 and 5, when visually observing an image of a cross section cut in parallel to the rolling direction and a cross section cut in the vertical direction with an optical microscope at a magnification of 1000, irregular regions having a dark color are scattered. is doing.

本発明に係る銅鉄合金は、どのような形状に加工されていてもよく、例えば、スラブ、ビレット、粉末状、線状、板状でもよい。形状は、用途に応じて決定することができる。   The copper-iron alloy according to the present invention may be processed into any shape, and may be, for example, a slab, billet, powder, wire, or plate. The shape can be determined according to the application.

本発明に係る銅鉄合金は、用途にもよるが、導電率が5〜92%[IACS単位]、引張強度が300〜2500N/mm、及び熱伝導率が340W/m・K以下であることが好ましい。 The copper-iron alloy according to the present invention has an electrical conductivity of 5 to 92% [IACS unit], a tensile strength of 300 to 2500 N / mm 2 , and a thermal conductivity of 340 W / m · K or less, depending on the application. Preferably.

《銅鉄合金の製造方法》
本発明に係る銅鉄合金は、例えば、以下のような第1の方法又は第2の方法によって製造することができる。
<< Copper-iron alloy manufacturing method >>
The copper-iron alloy according to the present invention can be manufactured, for example, by the following first method or second method.

〈第1の方法〉
第1の方法においては、本発明に係る銅鉄合金は、銅及び鉄を含む母合金と、銅又は鉄とを溶融して製造することができる。
<First method>
In the first method, the copper-iron alloy according to the present invention can be manufactured by melting a mother alloy containing copper and iron and copper or iron.

母合金は、銅及び鉄を加熱して溶湯とし、溶湯を冷却して得るのが好ましい。銅と鉄の比率は、銅100容量部に対して、鉄が、好ましくは20〜500容量部、より好ましくは50〜200容量部である。母合金は、実質的に銅と鉄のみからなるのが好ましい。   The mother alloy is preferably obtained by heating copper and iron into a molten metal and then cooling the molten metal. The ratio of copper to iron is preferably 20 to 500 parts by volume, and more preferably 50 to 200 parts by volume, with respect to 100 parts by volume of copper. The mother alloy preferably consists essentially of copper and iron.

母合金の原料である銅と鉄は、合金の状態図に従って加熱される。また、銅と鉄が均一に加熱されるようにするのが好ましい。加熱して得られた溶湯は、室温下で自然冷却させることが好ましい。例えば、溶湯を、直接型枠に鋳込み、放置する。   The raw materials for the master alloy, copper and iron, are heated according to the alloy phase diagram. Further, it is preferable that the copper and iron are uniformly heated. The molten metal obtained by heating is preferably allowed to cool naturally at room temperature. For example, the molten metal is directly cast into a mold and left to stand.

得られた母合金と、銅又は鉄とを溶融する。好ましくは、母合金と銅とを溶融する。母合金と共に加熱される銅又は鉄の量は、最終的に得られる銅鉄合金の銅鉄比率を考慮して決定することができる。   The obtained master alloy and copper or iron are melted. Preferably, the master alloy and copper are melted. The amount of copper or iron heated with the mother alloy can be determined in consideration of the copper-iron ratio of the finally obtained copper-iron alloy.

母合金に銅又は鉄を加え加熱するが、銅又は鉄以外にその他の金属を加えてもよい。しかし、実質的に母合金と銅又は鉄のみからなる原材料を加熱するのが好ましい。原材料は合金の状態図に従って加熱するのが好ましい。加熱溶融した後、冷却する。冷却は、ゆっくり行うことが好ましい。例えば、室温下で自然冷却する。母合金を用いて銅鉄合金を製造する場合、ゆっくり冷却することができ、急速に冷却する必要が無い。以上のようにして、鉄の含有率が高く、加工性に優れた従来存在しない銅鉄合金、特に銅と鉄の二元合金を製造することができる。   Copper or iron is added to the mother alloy and heated, but other metals may be added in addition to copper or iron. However, it is preferred to heat a raw material consisting essentially of the master alloy and copper or iron. The raw materials are preferably heated according to the alloy phase diagram. After melting by heating, it is cooled. Cooling is preferably performed slowly. For example, it is naturally cooled at room temperature. When a copper-iron alloy is manufactured using a mother alloy, it can be cooled slowly and does not need to be cooled rapidly. As described above, a copper-iron alloy having a high iron content and excellent workability, which has not existed in the past, particularly a binary alloy of copper and iron can be manufactured.

〈第2の方法〉
第2の方法においては、まず、鉄、銅、及びコバルトを含む原料を誘導加熱炉内で溶解する。誘導加熱炉は、高周波誘導炉であることが好ましい。
<Second method>
In the second method, first, a raw material containing iron, copper, and cobalt is melted in an induction heating furnace. The induction heating furnace is preferably a high frequency induction furnace.

原料は、鉄、銅、及びコバルトを含み、鉄と銅は、好ましくは60:40〜40:60、より好ましくは55:45〜45:55の容量比である。鉄を分散させる観点から、コバルトが鉄と銅の合計に対して0.0001〜0.0020容量%、好ましくは0.0005〜0.0015容量%、更に好ましくは0.0010容量%である。   The raw material contains iron, copper, and cobalt, and iron and copper have a volume ratio of preferably 60:40 to 40:60, more preferably 55:45 to 45:55. From the viewpoint of dispersing iron, cobalt is 0.0001 to 0.0020% by volume, preferably 0.0005 to 0.0015% by volume, and more preferably 0.0010% by volume with respect to the total of iron and copper.

原料は、誘導加熱炉内で状態図に従って好ましくは1400℃〜1550℃、より好ましくは1450℃〜1500℃となるように加熱される。これにより原料が溶けて溶湯となる。   The raw material is heated in an induction heating furnace according to a phase diagram so as to be preferably 1400 ° C to 1550 ° C, more preferably 1450 ° C to 1500 ° C. As a result, the raw materials are melted and become molten metal.

次に、原料が溶解した溶湯を鋳型に注湯する。第2の方法においては、溶湯を磁場の中に置き振動を与えればよいが、注湯中に溶湯を磁場の中に置き振動を与えるのが好ましい。磁場は平均磁束密度1200〜2300ガウス、振動は20〜150Hzである。例えば、電磁コイルが巻かれた、耐熱セラミックと鉄系金属とからなる複層管に溶湯を流すことにより、溶湯を磁場の中に置くことができる。また、低周波発生器を用いて溶湯に振動を与えることができる。磁場の中で振動を与えることにより、銅と鉄の粒子の粒界エネルギーの変化が起こり、銅と鉄とが均一に混ざるものと考えられる。以上のようにして、鉄の含有率が高く、加工性に優れた従来存在しない銅鉄合金を製造することができる。   Next, the molten metal in which the raw materials are melted is poured into a mold. In the second method, the molten metal may be placed in a magnetic field and vibrated, but it is preferable that the molten metal be placed in a magnetic field during pouring and vibrated. The magnetic field has an average magnetic flux density of 1200 to 2300 gauss, and the vibration has a frequency of 20 to 150 Hz. For example, the molten metal can be placed in a magnetic field by flowing the molten metal through a multi-layer tube made of a heat-resistant ceramic and an iron-based metal around which an electromagnetic coil is wound. Further, it is possible to apply a vibration to the molten metal by using a low frequency generator. It is considered that when the vibration is applied in the magnetic field, the grain boundary energies of the copper and iron particles are changed, and the copper and iron are uniformly mixed. As described above, a copper-iron alloy having a high iron content and excellent workability, which has not existed in the past, can be manufactured.

本発明に係る銅鉄合金は、例えば以下のような用途がある。   The copper-iron alloy according to the present invention has the following applications, for example.

<回転子用筒材>
本発明に係る銅鉄合金は、誘導モータの回転子用筒材として用いることができる。銅による導電体としての性質と、鉄による磁性体として性質を併せ持っているため、磁性体(鉄系の物質)で形成した部材を使用することなく単一の材料(銅鉄合金のみ)で製造することが可能となり、加工も極めて簡単に行うことができる。
<Cylinder material for rotor>
The copper-iron alloy according to the present invention can be used as a tubular member for a rotor of an induction motor. Manufactured from a single material (copper iron alloy only) without using a member made of a magnetic material (iron-based material) because it has both the properties of copper as a conductor and the properties of iron as a magnetic material. It is possible to process, and processing can be performed very easily.

また、磁性体で形成した部材を使用した場合に比べて格段に軽量化されるとともに、導電率が高いことから電気抵抗による熱損失が小さく、動作性に優れたものとなる。例えば、俊敏な立ち上がりと俊敏な停止が可能なものとなる。   Further, compared with the case where a member made of a magnetic material is used, the weight is remarkably reduced, and since the electric conductivity is high, the heat loss due to the electric resistance is small and the operability is excellent. For example, it enables agile rising and agile stopping.

更に、銅と鉄の比率、及び厚み寸法を調整することにより、トルクやスピードなどの設計仕様を実現することができる。   Furthermore, design specifications such as torque and speed can be realized by adjusting the ratio of copper and iron and the thickness dimension.

図11は、本発明に係る銅鉄合金を用いた誘導モータの回転子用筒材を使用して構成した回転子の概念図である。回転子用筒材1の両底部開口には、回転軸3の支持板2が取り付けられ、回転子用筒材1の両底部にはこの支持板2を介して回転軸3が取り付けられている。   FIG. 11 is a conceptual diagram of a rotor configured by using the rotor tubular member of the induction motor using the copper-iron alloy according to the present invention. The support plates 2 of the rotary shaft 3 are attached to both bottom openings of the rotor cylinder 1, and the rotary shaft 3 is attached to both bottoms of the rotor cylinder 1 via the support plates 2. ..

回転子用筒材1は周壁には、両底部開口の縁辺11から間隔を空けた部位に端部を有する有底の溝12の複数が周方向に等間隔で設けられている。そして、両底部開口の縁辺11と複数の溝12の端部短辺の間の部分がなす環状帯部13の一組が、各溝の長辺の間の部分がなす直状帯部14の複数で接続された形状となっている。   A plurality of bottomed grooves 12 having ends at intervals from the edges 11 of the bottom openings are provided on the circumferential wall of the rotor tubular member 1 at equal intervals in the circumferential direction. A pair of annular strips 13 formed by the portions between the edges 11 of the bottom openings and the short sides of the ends of the plurality of grooves 12 is a straight strip 14 formed by the portions between the long sides of each groove. The shape is such that a plurality of them are connected.

また、この実施形態において、回転子用筒材1の周壁に設けられる溝12は、両底部開口の縁辺11に対し傾斜したものとなっているが、その傾斜角度に制限はなく、使用状況を考慮し適宜決めることができる。例えば、両底部開口の縁辺11に直交させてもよい。   In addition, in this embodiment, the groove 12 provided in the peripheral wall of the rotor tubular material 1 is inclined with respect to the edge 11 of both bottom openings, but the inclination angle is not limited, and the use condition is not limited. It can be appropriately determined in consideration. For example, you may make it orthogonal to the edge 11 of both bottom opening.

<板材>
本発明に係る銅鉄合金は、板材として用いることができる。銅鉄合金の銅と鉄との比率は、用途に応じて適宜変化させればよい。例えば、導電率の高い高導電性板材とする場合は、銅を90.0〜97.0容量%、及び鉄を3.0.0〜10.0容量%とすればよい。導電率は、好ましくは20〜92%[IACS単位]、より好ましくは60〜92%[IACS単位]とすることができる。
<Plate material>
The copper-iron alloy according to the present invention can be used as a plate material. The ratio of copper to iron in the copper-iron alloy may be appropriately changed depending on the application. For example, in the case of a highly conductive plate material having high conductivity, copper may be 90.0 to 97.0% by volume and iron may be 3.0 to 10.0% by volume. The electrical conductivity can be preferably 20 to 92% [IACS unit], more preferably 60 to 92% [IACS unit].

また、例えば、引張強度の高い高強度板材とする場合は、銅を10.0〜70.0容量%、及び鉄を30.0〜90.0容量%とすればよい。引張強度は、600〜1000N/mmとすることができ、銅鉄合金の加工処理(減面率)によっては1000〜2000N/mmとすることができる。 Further, for example, in the case of a high-strength plate material having high tensile strength, copper may be 10.0 to 70.0% by volume and iron may be 30.0 to 90.0% by volume. The tensile strength can be 600 to 1000 N / mm 2, and can be 1000 to 2000 N / mm 2 depending on the processing treatment (area reduction rate) of the copper-iron alloy.

銅鉄合金からなる板材は、放熱材、電磁波シールド、抗菌材、殺菌材、高強度材、及び高導電性材などとして用いることができる。   The plate material made of a copper-iron alloy can be used as a heat dissipation material, an electromagnetic wave shield, an antibacterial material, a bactericidal material, a high strength material, a highly conductive material and the like.

<線材>
本発明に係る銅鉄合金は、線材として用いることができる。銅鉄合金の銅と鉄との比率は、用途に応じて適宜変化させればよい。例えば、導電率の高い高導電性線材とする場合は、銅を90.0〜97.0容量%、及び鉄を3.0.0〜10.0容量%とすればよい。導電率は、好ましくは20〜92%[IACS単位]、より好ましくは60〜92%[IACS単位]とすることができる。
<Wire material>
The copper-iron alloy according to the present invention can be used as a wire rod. The ratio of copper to iron in the copper-iron alloy may be appropriately changed depending on the application. For example, in the case of a high-conductivity wire having high conductivity, copper may be 90.0 to 97.0% by volume and iron may be 3.0 to 10.0% by volume. The electrical conductivity can be preferably 20 to 92% [IACS unit], more preferably 60 to 92% [IACS unit].

また、例えば、引張強度の高い高強度線材とする場合は、銅を10.0〜70.0容量%、及び鉄を30.0〜90.0容量%とすればよい。引張強度は、600〜1000N/mmとすることができ、銅鉄合金の加工処理(減面率)によっては1000〜2000N/mmとすることができる。 Further, for example, in the case of a high-strength wire having high tensile strength, copper may be 10.0 to 70.0% by volume and iron may be 30.0 to 90.0% by volume. The tensile strength can be 600 to 1000 N / mm 2, and can be 1000 to 2000 N / mm 2 depending on the processing treatment (area reduction rate) of the copper-iron alloy.

銅鉄合金からなる線材は、オーディオのケーブルの心線、イヤホンのケーブルの心線、モータの巻き線(マグネットワイヤ)、シールド用編組線、ベリリウム銅線の代替品、及びEDM(放電加工ワイヤ)などに用いることができる。オーディオのケーブルやイヤホンのケーブルに用いられると、音質が大きく向上し、音域も広がり、外部雑音が大きくても音が良く聞こえる。モータの巻き線(マグネットワイヤ)やシールド用編組線に用いられると、断線や電気伝導度の大幅な低下が防げ、また引張強度が高いので巻数を増やせる。   Wires made of copper-iron alloy are audio cable cores, earphone cable cores, motor windings (magnet wires), shield braids, beryllium copper wire substitutes, and EDM (electric discharge machining wires). It can be used for When used as an audio cable or earphone cable, the sound quality is greatly improved, the range is expanded, and the sound can be heard well even if external noise is large. When used in a motor winding (magnet wire) or a braided wire for shielding, it is possible to prevent disconnection and a large decrease in electrical conductivity, and since the tensile strength is high, the number of windings can be increased.

<放電加工用電極>
本発明に係る銅鉄合金は、放電加工用電極の材料として用いることができる。この場合、銅鉄合金は、好ましくは銅を20.0〜95.0容量%、及び鉄を5.0〜80.0容量%含み、より好ましくは銅を20.0〜70.0容量%、及び鉄を30.0〜80.0容量%含む。
<Electric discharge machining electrode>
The copper-iron alloy according to the present invention can be used as a material for an electric discharge machining electrode. In this case, the copper-iron alloy preferably contains 20.0 to 95.0% by volume of copper and 5.0 to 80.0% by volume of iron, and more preferably 20.0 to 70.0% by volume of copper. , And 30.0 to 80.0% by volume of iron.

本発明に係る銅鉄合金は、銅の熱伝導率と鉄の磁気特性、強度特性を併せ持ち、形彫り放電加工の加工速度を上げることができる。純銅の熱伝導率は約400W/m・K(300℃)であり高いが、純鉄の熱伝導率は約80W/m・K(300℃)であり低い。この純銅と純鉄を合金化すると、熱伝導率は純銅の値よりも下がる。純銅よりも熱伝導率が低い銅鉄合金を電極に用いることにより、電極へのエネルギー配分が減り、工作物側へ流れ込むエネルギーが増え、工作物の加工速度(mg/s)が増加するものと考えられる。   The copper-iron alloy according to the present invention has both the thermal conductivity of copper and the magnetic properties and strength properties of iron, and can increase the machining speed of die-sinking electric discharge machining. The thermal conductivity of pure copper is about 400 W / m · K (300 ° C), which is high, whereas the thermal conductivity of pure iron is about 80 W / m · K (300 ° C), which is low. When this pure copper and pure iron are alloyed, the thermal conductivity is lower than that of pure copper. By using a copper-iron alloy having a lower thermal conductivity than pure copper for the electrode, the energy distribution to the electrode is reduced, the energy flowing into the workpiece is increased, and the machining speed (mg / s) of the workpiece is increased. Conceivable.

銅鉄合金は、合金中に銅を含むので熱伝導率が高くなる。熱伝導率は、好ましくは340W/m・K(300℃)以下である。   The copper-iron alloy has high thermal conductivity because it contains copper. The thermal conductivity is preferably 340 W / m · K (300 ° C) or less.

<溶接棒用心線>
本発明に係る銅鉄合金は、溶接棒(被覆アーク溶接棒)の心線として用いることができる。溶接棒は、心線に被覆剤(フラックス)が塗布されている。心線に用いられる銅鉄合金は、好ましくは銅を50.0〜70.0容量%、及び鉄を30.0〜50.0容量%含む。
<Welding rod core wire>
The copper-iron alloy according to the present invention can be used as a core wire of a welding rod (coated arc welding rod). A coating material (flux) is applied to the core wire of the welding rod. The copper-iron alloy used for the core wire preferably contains 50.0 to 70.0% by volume of copper and 30.0 to 50.0% by volume of iron.

銅を含む銅系合金と鋼やステンレスなどの鉄を含む鉄系合金との溶接を、本発明に係る銅鉄合金からなる心線を備える溶接棒を用いて容易に行うことができる。   The welding of the copper-based alloy containing copper and the iron-based alloy containing iron such as steel or stainless steel can be easily performed using the welding rod provided with the core wire made of the copper-iron alloy according to the present invention.

溶接棒の心線の直径は用途に応じて適宜決定すればよいが、例えば0.03〜0.5mmとすることができる。   The diameter of the core wire of the welding rod may be appropriately determined according to the application, but can be, for example, 0.03 to 0.5 mm.

<その他>
コネクター及びリードフレームの材料;電磁調理器及び一般炊飯器の筐体部の材料;ベリリウム銅の代替品;ICタグ、磁気センサ、及び磁気メモリの素材;3Dプリンターのターゲット材;樹脂、プラスチック、及び塗料などに混合するフィラー、モータの軸受及び自動車のブレーキパッドの材料;並びに、蒸着、スパッタリング及び接着材料などの用途がある。
<Other>
Material of connector and lead frame; Material of housing part of electromagnetic cooker and general rice cooker; Substitute for beryllium copper; Material of IC tag, magnetic sensor and magnetic memory; Target material of 3D printer; Resin, plastic, and There are applications such as fillers mixed in paints and the like, materials for motor bearings and automobile brake pads; and vapor deposition, sputtering and adhesive materials.

[実施例1]
銅(電線用純銅)質量35kgと鉄(JFEスティール社製純鉄)質量35kgを秤量したのちに、70kgの容量の高周波誘導炉へ投入して1500℃で加熱して完全溶解を行った。これを型枠へ流し込んで室温になるまで自然冷却し母合金のインゴットを鋳造した。
[Example 1]
After weighing 35 kg of copper (pure copper for electric wire) and 35 kg of iron (pure iron manufactured by JFE Steel Co., Ltd.), the mixture was put into a high-frequency induction furnace having a capacity of 70 kg and heated at 1500 ° C. for complete melting. This was poured into a mold and naturally cooled to room temperature to cast a master alloy ingot.

銅90容量%、鉄10容量%になるように母合金のインゴットと銅(固体)とを混合し、1250〜1300℃に加熱溶融して銅希釈を行った後、厚み10mmのスラブに鋳造して実施例1に係る銅鉄合金を得た。   A master alloy ingot and copper (solid) were mixed so that the copper content was 90% by volume and the iron content was 10% by volume, and the mixture was heated and melted at 1250 to 1300 ° C to dilute the copper, and then cast into a slab having a thickness of 10 mm. A copper-iron alloy according to Example 1 was obtained.

[実施例2]
銅80容量%、鉄20容量%となるように銅希釈した以外は実施例1と同様にして実施例2に係る銅鉄合金を得た。
[Example 2]
A copper-iron alloy according to Example 2 was obtained in the same manner as in Example 1 except that the copper was diluted to 80% by volume of copper and 20% by volume of iron.

[実施例3]
銅70容量%、鉄30容量%となるように銅希釈した以外は実施例1と同様にして実施例3に係る銅鉄合金を得た。
[Example 3]
A copper-iron alloy according to Example 3 was obtained in the same manner as in Example 1 except that the copper was diluted to 70% by volume of copper and 30% by volume of iron.

[比較例1]
市販の鋳造銅鉄合金(SIRUI社製)を比較例1に係る銅鉄合金として用いた。
[Comparative Example 1]
A commercially available cast copper-iron alloy (manufactured by SIRUI) was used as the copper-iron alloy according to Comparative Example 1.

《実験例1》
<構造解析1>
実施例1で得られた銅鉄合金を圧延して、図1の写真に示す銅鉄合金の圧延材(板材)を得た。実施例1で得られた銅鉄合金は圧延しても割れが殆ど生じず、容易に圧延材を製造することができた。この圧延材の圧延方向から垂直に切り出した試験片A及び圧延方向から平行に切り出した試験片Bを得た。
<< Experimental Example 1 >>
<Structural analysis 1>
The copper iron alloy obtained in Example 1 was rolled to obtain a rolled material (plate material) of the copper iron alloy shown in the photograph of FIG. The copper-iron alloy obtained in Example 1 hardly cracked even when rolled, and a rolled material could be easily manufactured. A test piece A cut out vertically from the rolling direction of this rolled material and a test piece B cut out parallel to the rolling direction were obtained.

試験片Aについて、切り出し断面を研磨した試験片A1、及び切り出し断面を研磨しエッチング処理した試験片A2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片A1の写真を図2の左に、試験片A2の写真を図2の右に示す。   As for the test piece A, a test piece A1 having a cut out cross section polished and a test piece A2 having a cut out cross section polished and etched were prepared, and photographed with an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation) at a magnification of 200 times. Was taken. A photograph of the test piece A1 is shown on the left of FIG. 2, and a photograph of the test piece A2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片A1の写真を図3の左に、試験片A2の写真を図3の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece A1 is shown on the left of FIG. 3, and a photograph of the test piece A2 is shown on the right of FIG.

試験片Bについて、切り出し断面を研磨した試験片B1、及び切り出し断面を研磨しエッチング処理した試験片B2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片B1の写真を図4の左に、試験片B2の写真を図4の右に示す。   As for the test piece B, a test piece B1 having a cut out cross section polished and a test piece B2 having a cut out cross section polished and etched were prepared, and photographed at a magnification of 200 times using an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation). Was taken. A photograph of the test piece B1 is shown on the left of FIG. 4, and a photograph of the test piece B2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片B1の写真を図5の左に、試験片B2の写真を図5の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece B1 is shown on the left of FIG. 5, and a photograph of the test piece B2 is shown on the right of FIG.

<構造解析2>
比較例1の銅鉄合金の鋳造材は図6に示すように、円柱形状であった。この円柱形状の鋳造材を円柱の高さ方向(長手方向)から垂直に切り出した試験片C及び長手方向から平行に切り出した試験片Dを得た。
<Structural analysis 2>
The cast material of the copper-iron alloy of Comparative Example 1 had a columnar shape as shown in FIG. A test piece C obtained by vertically cutting out the columnar cast material from the height direction (longitudinal direction) of the column and a test piece D obtained by cutting out parallel to the longitudinal direction are obtained.

試験片Cについて、切り出し断面を研磨した試験片C1、及び切り出し断面を研磨しエッチング処理した試験片C2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片C1の写真を図7の左に、試験片C2の写真を図7の右に示す。   As for the test piece C, a test piece C1 having a cut-out cross section polished and a test piece C2 having a cut-out cross section polished and etched were prepared, and photographed at a magnification of 200 using an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation). Was taken. A photograph of the test piece C1 is shown on the left of FIG. 7, and a photograph of the test piece C2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片C1の写真を図8の左に、試験片C2の写真を図8の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece C1 is shown on the left of FIG. 8, and a photograph of the test piece C2 is shown on the right of FIG.

試験片Dについて、切り出し断面を研磨した試験片D1、及び切り出し断面を研磨しエッチング処理した試験片D2をそれぞれ準備し、光学顕微鏡(エピフォトTME300,ニコン社製)を用いて、倍率200倍で写真を撮影した。試験片D1の写真を図9の左に、試験片D2の写真を図9の右に示す。   As for the test piece D, a test piece D1 having a cut out cross section polished and a test piece D2 having a cut out cross section polished and etched were prepared, and photographed at a magnification of 200 using an optical microscope (Epiphoto TME300, manufactured by Nikon Corporation). Was taken. A photograph of the test piece D1 is shown on the left of FIG. 9, and a photograph of the test piece D2 is shown on the right of FIG.

光学顕微鏡の倍率を1000倍とした以外は同様にして、写真を撮影した。試験片D1の写真を図10の左に、試験片D2の写真を図10の右に示す。   A photograph was taken in the same manner except that the magnification of the optical microscope was 1000 times. A photograph of the test piece D1 is shown on the left of FIG. 10, and a photograph of the test piece D2 is shown on the right of FIG.

比較例1に係る銅鉄合金は、圧延すると割れてしまった。また、鋳造材は、切り出し断面の一方は線状構造であったが、他方の切り出し断面は線状構造ではなく、不規則な構造であることが分かる。   The copper-iron alloy according to Comparative Example 1 cracked when rolled. Further, it can be seen that one of the cut-out cross sections of the cast material had a linear structure, but the other cut-out cross section had an irregular structure instead of a linear structure.

《実験例2》
表1及び2に示す種々の供試体を製造し、HV硬度、平行方向と垂直方向のKb値、引張強さ、0.2%耐力、伸び、及びヤング率を測定した。結果を表1及び2に示す。
<< Experimental example 2 >>
Various specimens shown in Tables 1 and 2 were manufactured, and HV hardness, Kb values in the parallel and vertical directions, tensile strength, 0.2% proof stress, elongation, and Young's modulus were measured. The results are shown in Tables 1 and 2.

−:未測定又は測定不可 -: Not measured or unmeasured

−:未測定又は測定不可 -: Not measured or unmeasured

《実験例3》
<線材>
実施例1に係る銅鉄合金から、線径が異なる銅鉄ワイヤ(線材)を製造した。得られた線材について、加工歪、引張強度、伸び、及び導電率を測定した。結果を表3に示す。
<< Experimental example 3 >>
<Wire material>
Copper-iron wires (wires) having different wire diameters were produced from the copper-iron alloy according to Example 1. The processing strain, tensile strength, elongation, and electric conductivity of the obtained wire rod were measured. The results are shown in Table 3.

《実験例4》
<溶接棒用心線>
実施例3に係る銅鉄合金を心線の材料として用い、溶接棒(直径3.0mm)を得た。
<< Experimental Example 4 >>
<Welding rod core wire>
The copper-iron alloy according to Example 3 was used as the material of the core wire to obtain a welding rod (diameter 3.0 mm).

得られた溶接棒を用いて、試験材SS400(一般構造用圧延鋼材)と脱酸銅(3mm厚)とをTIG溶接した。溶接電流は、190〜200amp、ガス流量は5〜8L/min、開先角度は70°とした。溶接作業は予熱なしで開始した。結果、溶接ができた。   Using the obtained welding rod, the test material SS400 (rolled steel material for general structure) and deoxidized copper (thickness 3 mm) were TIG-welded. The welding current was 190 to 200 amp, the gas flow rate was 5 to 8 L / min, and the groove angle was 70 °. The welding operation started without preheating. As a result, welding was completed.

1 回転子用筒材
2 支持板
3 回転軸
1 Rotor cylinder 2 Support plate 3 Rotating shaft

Claims (12)

銅を10.0〜97.0容量%、及び鉄を3.0〜90.0容量%含み、
圧延方向に平行に切り出した断面及び垂直に切り出した断面の光学顕微鏡による倍率200倍の画像を目視で観察すると両断面共に平行する複数の線状部を含む線状構造である
ことを特徴とする銅鉄合金。
Contains 10.0 to 97.0% by volume of copper and 3.0 to 90.0% by volume of iron,
Visual observation of images of a cross section cut parallel to the rolling direction and a cross section cut perpendicularly with an optical microscope at a magnification of 200 is characterized by a linear structure including a plurality of linear portions parallel to each other. Copper iron alloy.
導電率が5〜92%[IACS単位]、引張強度が300〜2500N/mm、及び熱伝導率が340W/m・K以下である請求項1に記載の銅鉄合金。 The copper iron alloy according to claim 1, which has an electric conductivity of 5 to 92% [IACS unit], a tensile strength of 300 to 2500 N / mm 2 , and a thermal conductivity of 340 W / m · K or less. 銅及び鉄を含む母合金と、銅又は鉄とを溶融する工程を備える請求項1又は2に記載の銅鉄合金の製造方法。   The method for producing a copper-iron alloy according to claim 1, comprising a step of melting a mother alloy containing copper and iron and copper or iron. 銅及び鉄を加熱して溶湯とし、前記溶湯を冷却して前記母合金を得る工程を備える請求項3に記載の銅鉄合金の製造方法。   The method for producing a copper-iron alloy according to claim 3, further comprising a step of heating copper and iron into a molten metal and cooling the molten metal to obtain the master alloy. 鉄、銅、及びコバルトを含む原料を誘導加熱炉内で溶解して溶湯を得る工程、及び
前記溶湯に、平均磁束密度1200〜2300ガウスの磁場の中で20〜150Hzの振動を与える工程
を備える請求項1又は2に記載の銅鉄合金の製造方法。
A step of melting a raw material containing iron, copper, and cobalt in an induction heating furnace to obtain a molten metal, and a step of giving the molten metal a vibration of 20 to 150 Hz in a magnetic field having an average magnetic flux density of 1200 to 2300 gauss The method for manufacturing the copper-iron alloy according to claim 1.
銅及び鉄を含む母合金と、銅又は鉄とを溶融する工程を備えることを特徴とする銅鉄合金の製造方法。   A method for producing a copper-iron alloy, comprising a step of melting a mother alloy containing copper and iron and copper or iron. 銅及び鉄を加熱して溶湯とし、前記溶湯を冷却して前記母合金を得る工程を備える請求項6に記載の銅鉄合金の製造方法。   The method for producing a copper-iron alloy according to claim 6, further comprising a step of heating copper and iron into a molten metal and cooling the molten metal to obtain the master alloy. 請求項1又は2に記載の銅鉄合金を含む回転子用筒材。   A rotor tubular material containing the copper-iron alloy according to claim 1. 請求項1又は2に記載の銅鉄合金を含む線材。   A wire rod comprising the copper-iron alloy according to claim 1. 請求項1又は2に記載の銅鉄合金を含む板材。   A plate material containing the copper-iron alloy according to claim 1. 請求項1又は2に記載の銅鉄合金を含む放電加工用電極。   An electric discharge machining electrode comprising the copper-iron alloy according to claim 1. 請求項1又は2に記載の銅鉄合金を含む溶接棒用心線。   A welding rod core wire containing the copper-iron alloy according to claim 1.
JP2018211313A 2018-11-09 2018-11-09 Copper-iron alloy, and manufacturing method thereof Pending JP2020076136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018211313A JP2020076136A (en) 2018-11-09 2018-11-09 Copper-iron alloy, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211313A JP2020076136A (en) 2018-11-09 2018-11-09 Copper-iron alloy, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020076136A true JP2020076136A (en) 2020-05-21

Family

ID=70723666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211313A Pending JP2020076136A (en) 2018-11-09 2018-11-09 Copper-iron alloy, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020076136A (en)

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5713230B2 (en) Cu-Ag alloy wire and method for producing Cu-Ag alloy wire
KR102641049B1 (en) High strength/highly conductive copper alloy plate material and method for producing same
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
EP2669396A1 (en) High electric resistance aluminum alloy
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP2009242932A (en) Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2014032751A (en) Copper aluminum complex wire for motor winding
EP3550044B1 (en) Copper alloy wire rod and method for producing copper alloy wire rod
WO2011158477A1 (en) Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device
JP2020076136A (en) Copper-iron alloy, and manufacturing method thereof
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
CN104928537A (en) Aluminum alloy conductor material with high compressive creep resistance and low resistivity and preparation method thereof, and cable
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2011162826A (en) Aluminum alloy wire
JP4391382B2 (en) Copper alloy for coaxial connector excellent in machinability and method for producing the same
JP2017190479A (en) Copper alloy backing tube and method for manufacturing the same
WO2018100916A1 (en) Copper alloy wire rod
JP2016211053A (en) Copper alloy excellent in heat resistance
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
WO2018101249A1 (en) Electroconductive support member and method for manufacturing same
JP2020076137A (en) Copper-iron alloy for stainless steel modification, and modified stainless steel
JP2019090097A (en) Copper alloy and manufacturing method therefor