JPH081281A - Method and apparatus for producing semi-solidified metallic material - Google Patents

Method and apparatus for producing semi-solidified metallic material

Info

Publication number
JPH081281A
JPH081281A JP13421694A JP13421694A JPH081281A JP H081281 A JPH081281 A JP H081281A JP 13421694 A JP13421694 A JP 13421694A JP 13421694 A JP13421694 A JP 13421694A JP H081281 A JPH081281 A JP H081281A
Authority
JP
Japan
Prior art keywords
cooling
semi
stirring tank
producing
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13421694A
Other languages
Japanese (ja)
Inventor
Akihiko Nanba
明彦 難波
Hiroyoshi Takahashi
広芳 高橋
Mitsuo Uchimura
光雄 内村
Tsukasa Niide
司 新出
Kazusato Hironaka
一聡 広中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leotec KK
Original Assignee
Leotec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leotec KK filed Critical Leotec KK
Priority to JP13421694A priority Critical patent/JPH081281A/en
Publication of JPH081281A publication Critical patent/JPH081281A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently stir a semi-solidified metallic material in a low electric power by executing the stirring with an electromagnetic force by rotary magnetic field for shifting along the outer periphery of a cooling and stirring vessel at one side of an N pole or an S pole of an electromagnetic coil. CONSTITUTION:The stirring with the circular fluid is given by the rotary magnetic field generated with a rotary magnetic field generating device 4 and the metal is made to be the semi-solidified metallic slurry 15' containing primary crystal grains generated accompanied with the progress of the solidification and shifted downward and discharged to out of the apparatus as the semi-solidified metallic slurry flow 16 through a discharging nozzle 5. In the arrangement of the electromagnetic coil 4' in this rotary magnetic field generating device 4, a case of a four-pole and three- layer is shown in the attached figure, and the electromagnetic coil are arranged at 12 pieces in the radiating state at the outer peri phery of the cooling and stirring vessel composed of a cooling cylinder 2 and a water-cooling jacket 3. These electromagnetic coils 4' supply three-phase AC current through an electric powder converting device and the magnetic pole near the cooling and stirring vessel always becomes the N pole. The rotary magnetic field with these electromagnetic coils 4' is shifted in order to generate the electric power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、初晶粒が分散した半
凝固金属スラリーとする過程を経る半凝固金属材料の、
電磁攪拌方式による製造方法及びその装置を提案するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-solid metal material which undergoes a process of forming a semi-solid metal slurry in which primary crystal grains are dispersed.
It proposes a manufacturing method and an apparatus therefor using an electromagnetic stirring system.

【0002】ここで半凝固金属材料とは、半凝固状態す
なわち半凝固金属スラリーを直接加工するレオ加工、半
凝固金属スラリーを一たん冷却凝固させたのち再加熱し
て半融状態で加工するチクソ加工、及び固相状態で加工
する鍛造加工などに供する素材のことをいい、材料特性
(加工性、品質等)の大幅な改善やコスト低減がはかれ
る有用な材料である。
The term "semi-solidified metal material" as used herein refers to a rheo process in which a semi-solidified metal slurry is directly processed, that is, a thixograph in which the semi-solidified metal slurry is once cooled and solidified and then reheated to be processed in a semi-molten state. It is a useful material that is used for processing and forging processing in the solid state, and is capable of significantly improving material properties (workability, quality, etc.) and reducing costs.

【0003】[0003]

【従来の技術】半凝固金属スラリーを製造する方法は数
多く提案されているが、工業的規模での製造方式として
は電磁攪拌方式が有力である。この電磁攪拌方式の半凝
固金属スラリーの製造手段としては、例えば特公昭62
−25464号公報(チクソトロピック金属スラリーの
製造方法および製造装置)に開示されている2極回転磁
界方式がある。
2. Description of the Related Art Although many methods for producing a semi-solidified metal slurry have been proposed, an electromagnetic stirring method is effective as an industrial scale production method. As a means for producing the semi-solidified metal slurry of this electromagnetic stirring system, for example, Japanese Patent Publication No.
There is a two-pole rotating magnetic field system disclosed in Japanese Patent Publication No. 25464 (method and apparatus for producing thixotropic metal slurry).

【0004】この2極回転磁界方式の主な利点として
は、溶湯を冷却する際のデンドライトの成長方向と直角
方向に電磁力が働くため、デンドライトを切断・分散す
るのに効率的であること、また攪拌対象物の中心部を磁
束が通過するため回転力が中心部にも働き、いわゆるデ
ッドゾーンがなくなることの2点が挙げられている。し
かし、生産規模を拡大するために、冷却・攪拌槽を大径
化するとき、上記2極回転磁界方式の場合は極間隔が拡
がると磁束密度が減衰する。そのため攪拌のための電力
効率が低下し電力量を必要以上に大きくしなければなら
ないという問題がある。
The main advantage of this two-pole rotating magnetic field system is that the electromagnetic force acts in the direction perpendicular to the growth direction of the dendrites when cooling the molten metal, so that it is efficient in cutting and dispersing the dendrites. Further, since magnetic flux passes through the central portion of the object to be stirred, the rotational force also acts on the central portion, so that there is no so-called dead zone. However, when increasing the diameter of the cooling / stirring tank in order to expand the production scale, in the case of the two-pole rotating magnetic field method, the magnetic flux density is attenuated as the pole spacing increases. Therefore, there is a problem that the power efficiency for stirring is lowered and the power amount must be increased more than necessary.

【0005】一方、永久磁石を冷却・攪拌槽の外周で高
速回転させる方法もあるが、永久磁石は熱的に弱いこ
と、鉄粉等のダストの付着堆積が著しくメンテナンスが
容易でないこと、などの問題があり実用的でない。
On the other hand, there is also a method of rotating the permanent magnet at a high speed on the outer circumference of the cooling / stirring tank, but the permanent magnet is thermally weak, and the adhesion and accumulation of dust such as iron powder is not easy to maintain. There is a problem and it is not practical.

【0006】[0006]

【発明が解決しようとする課題】したがって、この発明
は前記した問題点を有利に解決し、電磁攪拌方式により
たとえ冷却・攪拌槽が大型化されても低電力量で好適に
攪拌し固液混相の半凝固金属スラリーを得ることができ
る半凝固金属材料の製造方法及びその製造装置を提案す
ることを目的とする。
Therefore, the present invention advantageously solves the above-mentioned problems, and the electromagnetic stirring system favorably stirs with a low electric power even if the cooling / stirring tank is enlarged, and a solid-liquid mixed phase is obtained. An object of the present invention is to propose a method for producing a semi-solidified metal material capable of obtaining the semi-solidified metal slurry and the apparatus for producing the same.

【0007】[0007]

【課題を解決するための手段】発明者らの実験・検討結
果によれば、前記したように、2極回転磁界方式では、
装置の大型化すなわち冷却・攪拌槽の大型化にともない
極間隔が拡がり磁束密度の減衰が大きくなり攪拌のため
の電力効率が低下するという問題があった。
According to the results of experiments and studies by the inventors, as described above, in the two-pole rotating magnetic field system,
Along with the increase in size of the apparatus, that is, the increase in size of the cooling / stirring tank, there has been a problem that the pole spacing increases and the attenuation of the magnetic flux density increases and the power efficiency for stirring decreases.

【0008】そこで、さらに実験・検討を重ねた結果、 1.冷却・攪拌槽内で溶湯の凝固が進行し、初晶粒が生
成されるのは冷却・攪拌槽の内壁面近傍であるから、そ
の部分の溶湯に十分な攪拌流動を与えてやれば初晶粒の
懸濁した半凝固金属スラリーが得られ、必ずしも冷却・
攪拌槽中心部に電磁力を作用させてこの部分に積極的に
攪拌力を加える必要はない。
Therefore, as a result of further experiments and examinations, 1. The solidification of the molten metal in the cooling / stirring tank progresses and primary crystal grains are generated near the inner wall surface of the cooling / stirring tank. A semi-solidified metal slurry in which grains are suspended is obtained, and
It is not necessary to apply an electromagnetic force to the central portion of the stirring tank to positively apply the stirring force to this portion.

【0009】2.冷却・攪拌槽内壁面近傍のみを強力に
旋回流動させれば、これにつれて中心部分も適当な流動
が誘起される。なお、通常製造する固相率:0.3程度
までの半凝固金属スラリーは流動性がよく、中心部にも
旋回流動が誘導される。などの知見を得た。
2. If only the vicinity of the inner wall surface of the cooling / stirring tank is swirled strongly, appropriate flow is induced in the central portion as well. The semi-solidified metal slurry having a solid phase ratio of up to about 0.3, which is usually produced, has good fluidity, and swirl flow is also induced in the central portion. Etc.

【0010】したがって、外周から冷却する冷却・攪拌
槽内で半凝固金属スラリーを製造する場合、冷却・攪拌
槽の外周に配する電磁攪拌装置は2極回転磁界方式であ
る必要はなく、むしろ装置の大型化を考えた場合極間が
開く一方の上記方式は不利である。
Therefore, when the semi-solidified metal slurry is produced in the cooling / stirring tank for cooling from the outer circumference, the electromagnetic stirrer arranged on the outer circumference of the cooling / stirring tank does not need to be a two-pole rotating magnetic field system, but rather the apparatus. Considering the increase in size, the above-mentioned method, which has a gap between the gaps, is disadvantageous.

【0011】そこでこの発明は、装置の大型化にも好適
に対応でき効率の良好な電磁攪拌手段として、攪拌のた
めの電磁力を、冷却・攪拌槽内壁面近傍に作用させるよ
うにするものである。
In view of the above, the present invention serves as an electromagnetic stirrer having good efficiency and suitable for increasing the size of the apparatus, so that an electromagnetic force for stirring is applied near the inner wall surface of the cooling / stirring tank. is there.

【0012】すなわち、この発明の要旨は以下の通りで
ある。 筒状の冷却・攪拌槽の上方から供給した金属溶湯
を、冷却下に電磁力による攪拌を加えて粒状の初晶が懸
濁した固液混相の半凝固金属スラリーとする過程を経る
半凝固金属材料の製造方法において、電磁力による攪拌
を、電磁コイルのN極又はS極のいずれか一方が、冷却
・攪拌槽の外周に沿って移動する回転磁界により行うこ
とを特徴とする半凝固金属材料の製造方法であり、上記
において、電磁力による攪拌が、冷却・攪拌槽と、該冷
却・攪拌槽内に配置した中子との間での旋回流動とする
ことを可とするものである。 筒状の冷却・攪拌槽の上方から供給した金属溶湯
を、冷却下に電磁力による攪拌を加えて粒状の初晶が懸
濁した固液混相の半凝固金属スラリーとする過程を経る
半凝固金属材料の製造装置において、冷却・攪拌槽の外
周に放射状に配置した複数の電磁コイルのN極又はS極
のいずれか一方が、該冷却・攪拌槽の外周に沿って順次
に移動する回転磁界発生装置を設置してなる半凝固金属
材料の製造装置であり、上記において、冷却・攪拌槽内
に中子を配置すること、さらに該中子は上下方向に移動
可能とし、冷却・攪拌槽に対し挿入・退避自在とするこ
とを可とするものである。なお、中子は冷却・攪拌槽と
同軸の関係に配置することがよい。
That is, the gist of the present invention is as follows. A semi-solid metal that undergoes a process in which a molten metal supplied from above a cylindrical cooling / stirring tank is made into a solid-liquid mixed-phase semi-solid metal slurry in which granular primary crystals are suspended by cooling with stirring by electromagnetic force. In the method of manufacturing a material, a semi-solid metal material characterized in that stirring by electromagnetic force is performed by a rotating magnetic field that is moved along the outer circumference of a cooling / stirring tank by either one of the N pole or S pole of the electromagnetic coil. In the above, the stirring by electromagnetic force can be a swirling flow between the cooling / stirring tank and the core arranged in the cooling / stirring tank. A semi-solid metal that undergoes a process in which a molten metal supplied from above a cylindrical cooling / stirring tank is made into a solid-liquid mixed-phase semi-solid metal slurry in which granular primary crystals are suspended by cooling with stirring by electromagnetic force. In a material manufacturing apparatus, a rotating magnetic field is generated in which one of N poles or S poles of a plurality of electromagnetic coils radially arranged on the outer circumference of a cooling / stirring tank sequentially moves along the outer circumference of the cooling / stirring tank. An apparatus for manufacturing a semi-solidified metal material, which comprises an apparatus, wherein a core is placed in a cooling / stirring tank, and the core is movable in the vertical direction to the cooling / stirring tank. It can be inserted and retracted. The core is preferably arranged coaxially with the cooling / stirring tank.

【0013】 項における半凝固金属材料の製造装
置の中子が、非磁性材料からなることを好適とするもの
である。
It is preferable that the core of the apparatus for producing a semi-solidified metal material in the item (1) is made of a non-magnetic material.

【0014】 又は項における半凝固金属材料の
製造装置の冷却・攪拌槽が、非磁性で熱伝導率の小さい
金属からなること、耐火物製スリーブを内装した非磁性
金属からなること、オーステナイト系ステンレス鋼から
なること、アルミナ製スリーブを内装したオーステナイ
ト系ステンレス鋼からなること、又は、アルミナ・グラ
ファイト製スリーブを内装したオーステナイト系ステン
レス鋼からなることなどを好適とするものである。
The cooling / stirring tank of the apparatus for producing a semi-solidified metal material according to the item 1 or 2 is made of a non-magnetic metal having a low thermal conductivity, a non-magnetic metal containing a refractory sleeve, and an austenitic stainless steel. It is preferable that it is made of steel, made of austenitic stainless steel containing an alumina sleeve, or made of austenitic stainless steel containing an alumina / graphite sleeve.

【0015】[0015]

【作用】この発明の作用効果について以下に述べる。こ
の発明は、筒状の冷却・攪拌槽内の金属溶湯を冷却下に
電磁攪拌を加えて粒状の初晶が懸濁した半凝固金属スラ
リーとする過程を経る、レオ加工用、チクソ加工用さら
には鍛造加工用素材として好適な半凝固金属材料を製造
するにあたって、電磁攪拌を、電磁コイルのN極又はS
極のいずれか一方が冷却・攪拌槽の外周に沿って移動す
る回転磁界により行うことを骨子とするもので、かくす
ることにより、電磁力は冷却・攪拌槽内壁面近くの溶湯
ないしは半凝固金属スラリーに集中的に作用し、それら
を旋回流動させて攪拌を行うことになり、装置の大型化
すなわち冷却・攪拌槽の径が大きくなっても関係なく低
電力量で効率的に攪拌を行うことができる。
The function and effect of the present invention will be described below. This invention is a process for forming a semi-solid metal slurry in which granular primary crystals are suspended by electromagnetically stirring a molten metal in a cylindrical cooling / stirring tank under cooling, for rheo processing, for thixo-processing. In producing a semi-solid metal material suitable as a material for forging, electromagnetic stirring is applied to the N pole or S pole of the electromagnetic coil.
The essence is that either one of the poles is performed by a rotating magnetic field that moves along the outer circumference of the cooling / stirring tank, and by doing so, the electromagnetic force is the molten metal or semi-solid metal near the inner wall of the cooling / stirring tank. The slurry acts intensively and swirls them to perform agitation, and efficient agitation with low power consumption regardless of the size of the device, that is, the diameter of the cooling / stirring tank increases. You can

【0016】さらに、冷却・攪拌槽内に中子を配した場
合、旋回流動させる溶湯ないしは半凝固金属スラリーは
中心部の中子の部分が排除されているため、電磁力を冷
却・攪拌槽内壁面近傍に集中的に作用させるこの発明の
電磁攪拌方式はより効率的になる。
Further, when the core is placed in the cooling / stirring tank, the molten metal or the semi-solidified metal slurry to be swirled is excluded from the central core portion, so that the electromagnetic force is kept in the cooling / stirring tank. The electromagnetic agitation method of the present invention, in which the magnetic field is concentrated near the wall surface, becomes more efficient.

【0017】なお、冷却・攪拌槽で製造される半凝固金
属スラリーは、そのままレオ加工に供することもよく、
鋳型あるいは連鋳機に供給して鋳造し鋳片としたのちチ
クソ加工や鋳造加工に供することもよい。
The semi-solidified metal slurry produced in the cooling / stirring tank may be directly subjected to rhe processing.
It is also possible to supply it to a mold or a continuous casting machine to cast it into a slab and then subject it to thixoforming or casting.

【0018】つぎに、半凝固金属スラリーの製造装置に
おいて、電磁攪拌装置すなわち回転磁界発生装置は、冷
却・攪拌槽の外周に複数の電磁コイルを放射状に配置
し、冷却・攪拌槽に近い磁極をN極又はS極のうちいず
れか一方に定め、順次隣接する電磁コイルに移動させて
電磁コイルに電力を供給することでよい。
Next, in the apparatus for producing semi-solidified metal slurry, the electromagnetic stirrer, that is, the rotating magnetic field generator, has a plurality of electromagnetic coils radially arranged on the outer periphery of the cooling / stirring tank, and magnetic poles close to the cooling / stirring tank are provided. Either the N pole or the S pole may be set, and the electromagnetic coils may be sequentially moved to the adjacent electromagnetic coils to supply power to the electromagnetic coils.

【0019】なお、上記において、電磁コイルへの電力
の供給はたとえば、直流電源を用いるか又は交流電源を
電力変換装置を介して用い、冷却・攪拌槽に近い電磁コ
イルの極が常に一定の極になるようにして磁界を回転さ
せる方向の隣接する電磁コイルに順次移動させて電力を
供給することでよい。また、磁極数は1極でもよいが設
備的に許容できる範囲内で適当に選択することがよい。
In the above description, power is supplied to the electromagnetic coil by using, for example, a direct current power source or an alternating current power source through a power conversion device, and the pole of the electromagnetic coil near the cooling / stirring tank is always constant. The electric power may be supplied by sequentially moving the magnetic coils adjacent to each other in the direction of rotating the magnetic field so that Further, the number of magnetic poles may be one, but it is preferable to appropriately select it within a range that is facility-friendly.

【0020】冷却・攪拌槽は、磁束密度の減衰を防ぐた
め非磁性とすることが好ましい。また、冷却・攪拌槽内
壁面に凝固シェルが生長すると、その凝固シェルによる
磁束密度の減衰が問題となることから、その凝固シェル
の生長を抑制するため抜熱速度を制御するすなわち冷却
・攪拌槽の熱伝導度を適当に小さくすることがよい。
The cooling / stirring tank is preferably non-magnetic so as to prevent the attenuation of the magnetic flux density. Further, when the solidified shell grows on the inner wall surface of the cooling / stirring tank, the attenuation of the magnetic flux density due to the solidifying shell poses a problem.Therefore, the heat removal rate is controlled to suppress the growth of the solidifying shell, that is, the cooling / stirring tank. It is preferable to appropriately reduce the thermal conductivity of.

【0021】このような冷却・攪拌槽としては、たとえ
ばオーステナイト系ステンレス鋼、アルミナあるいはア
ルミナ・ブラファイトなどの耐火物製スリーブを内装し
たオーステナイト系ステンレス鋼を用いることが好適で
ある。
As such a cooling / stirring tank, it is preferable to use, for example, austenitic stainless steel or austenitic stainless steel containing a refractory sleeve such as alumina or alumina brafite.

【0022】なお、中子はその位置関係から大きな影響
はないものの、電磁力の減衰防止のため非磁性とするこ
とが好ましい。
Although the core is not greatly affected by its positional relationship, it is preferably made non-magnetic in order to prevent the attenuation of electromagnetic force.

【0023】以上、この発明によれば、電磁攪拌方式と
して、前記した磁束を冷却・攪拌槽の中心を通過させる
2極回転磁界方式でなく、N極又はS極いずれか一方を
冷却・攪拌槽に沿わせて回転させる回転磁界方式とした
ため、冷却・攪拌槽内壁面近傍の溶湯ないしは半凝固金
属スラリーに強く電磁力を作用させ旋回流動させること
ができるようになり、半凝固金属スラリーをより低電力
量で製造することができる。この効果は装置の大型化に
伴いより顕著となる。さらに、中子を用いる場合、溶湯
ないしは半凝固金属は構造上冷却・攪拌槽内壁面近傍に
存在し、これらを流動させればよいので、この発明の有
意性がより顕著に発現する。
As described above, according to the present invention, the electromagnetic stirring system is not the two-pole rotating magnetic field system in which the magnetic flux passes through the center of the cooling / stirring tank, but either the N pole or the S pole is cooled / stirring tank. Since a rotating magnetic field system that rotates along with the semi-solidified metal slurry is used, the molten metal or semi-solidified metal slurry near the inner wall surface of the cooling / stirring tank can be strongly swirled by applying an electromagnetic force to the semi-solidified metal slurry. It can be manufactured with electric energy. This effect becomes more remarkable as the device becomes larger. Further, when the core is used, the molten metal or the semi-solidified metal is structurally present in the vicinity of the inner wall surface of the cooling / stirring tank, and it suffices to flow these, so that the significance of the present invention is more remarkably expressed.

【0024】なお、この発明は電磁コイルを用いている
ので、操業中に鉄粉やダストが付着してもこれらを除去
することは容易であり、永久磁石を用いる場合のように
付着物の除去が困難になることはなく、電磁コイルは水
冷Box内に装備でき熱的にも強いので永久磁石に比し
昇温することによって攪拌力が弱まることもない。
Since the present invention uses the electromagnetic coil, even if iron powder or dust adheres during operation, it is easy to remove them, and as in the case of using a permanent magnet, the adhered matter can be removed. However, since the electromagnetic coil can be installed in the water-cooled Box and is strong in terms of heat, the stirring force will not be weakened by raising the temperature as compared with the permanent magnet.

【0025】また、非磁性で熱伝導度の適度に小さい冷
却・攪拌槽を用いることにより、装置及び凝固シェルの
生長による磁束密度の減衰を防止し、攪拌力を低減する
ことなく、強攪拌を維持できる。
Further, by using a cooling / stirring tank which is non-magnetic and has an appropriately small thermal conductivity, the magnetic flux density is prevented from being attenuated due to the growth of the apparatus and the solidification shell, and strong stirring is performed without reducing the stirring force. Can be maintained.

【0026】[0026]

【実施例】この発明に適合する半凝固金属スラリーの製
造装置の一例を図1及び図2に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a semi-solidified metal slurry manufacturing apparatus according to the present invention will be described with reference to FIGS.

【0027】図1は、電磁攪拌法による半凝固金属スラ
リーの製造装置の説明図である。図1において、非磁性
で熱伝導の適当に小さい冷却・攪拌槽は冷却円筒2と水
冷ジャケット3とからなり、冷却・攪拌部の外周には電
源を14とする回転磁界発生装置4が設置されている。
そして冷却・攪拌槽の下部から冷却水13を供給し、冷
却円筒2の外面を通って上部から排水(13′)され、
供給される溶湯15に適当な冷却効果を与えるようにな
っている。
FIG. 1 is an explanatory view of an apparatus for producing a semi-solidified metal slurry by the electromagnetic stirring method. In FIG. 1, a cooling / stirring tank that is non-magnetic and appropriately small in heat conduction comprises a cooling cylinder 2 and a water cooling jacket 3, and a rotating magnetic field generator 4 having a power source 14 is installed on the outer periphery of the cooling / stirring section. ing.
Then, the cooling water 13 is supplied from the lower part of the cooling / stirring tank, passes through the outer surface of the cooling cylinder 2 and is drained (13 ') from the upper part,
The molten metal 15 supplied is given an appropriate cooling effect.

【0028】この冷却・攪拌槽の上端には耐火材1′を
内張りしたタンディッシュ1が接続され、底部には排出
ノズル5が設けられている。また、冷却・攪拌槽の中心
には、非磁性の中子6を配し、この中子6は支持アーム
8に軸受7を介して回転可能に支持し、支持アーム8は
支持台11に油圧シリンダー12等の昇降手段を介して
昇降可能に取付けられ、冷却・攪拌槽への挿入及び冷却
・攪拌槽からの退避を可能にしているとともに、中子6
と排出ノズル5との隙間間隔を調整することで、排出速
度、排出される半凝固金属スラリーの固相率の制御を行
う。また、中子6はトルク計10に接続されていてトル
クの測定により操業状況をチェックできるようになって
いる。
A tundish 1 lined with a refractory material 1'is connected to the upper end of the cooling / stirring tank, and a discharge nozzle 5 is provided at the bottom. A non-magnetic core 6 is arranged at the center of the cooling / stirring tank, and the core 6 is rotatably supported by a support arm 8 via a bearing 7. The support arm 8 is hydraulically supported by a support base 11. It is mounted so as to be able to move up and down through a lifting means such as a cylinder 12 so that it can be inserted into the cooling / stirring tank and retracted from the cooling / stirring tank.
By adjusting the gap distance between the discharge nozzle 5 and the discharge nozzle 5, the discharge speed and the solid phase ratio of the discharged semi-solidified metal slurry are controlled. Further, the core 6 is connected to a torque meter 10 so that the operating condition can be checked by measuring the torque.

【0029】さて、この装置での半凝固金属スラリーの
製造は、溶湯15を連続的にタンディッシュ1に供給す
ることによって該溶湯15は冷却・攪拌槽へ流入する。
この溶湯15は冷却・攪拌槽で適当な冷却と、回転磁界
発生装置4によって発生する回転磁界によって旋回流動
による攪拌が付与され、凝固の進行にともなって生成す
る初晶粒を含む半凝固金属スラリー15′となって下方
へ移動し、排出ノズル5を経て半凝固金属スラリー流1
6として装置外へ排出される。
In the production of the semi-solidified metal slurry with this apparatus, the molten metal 15 is continuously supplied to the tundish 1 so that the molten metal 15 flows into the cooling / stirring tank.
This molten metal 15 is appropriately cooled in a cooling / stirring tank, and is stirred by a rotating magnetic field generated by the rotating magnetic field generator 4 by swirling flow, and a semi-solidified metal slurry containing primary crystal grains generated as solidification progresses. 15 'and moves downward, and through the discharge nozzle 5, the semi-solidified metal slurry flow 1
6 is discharged out of the apparatus.

【0030】一方、図2は、上記回転磁界発生装置の電
磁コイルの配置と回転磁界発生機構の説明図である。図
2(a),(b),(c)は4極3相の場合を示すもの
で、冷却円筒2と水冷ジャケット3とからなる冷却・攪
拌槽の外周に放射状に電磁コイル4′が12個配置され
ている。これらの電磁コイル4′は3相交流を電力変換
装置(図示省略)を介して供給することにより、冷却・
攪拌槽に近い磁極が常にN極になるようになっている。
なお図中の点線は磁力線を示す。
On the other hand, FIG. 2 is an explanatory view of the arrangement of electromagnetic coils and the rotating magnetic field generating mechanism of the rotating magnetic field generating device. 2 (a), (b), and (c) show the case of four poles and three phases, in which 12 electromagnetic coils 4'are radially arranged on the outer circumference of a cooling / stirring tank composed of a cooling cylinder 2 and a water cooling jacket 3. Individually arranged. These electromagnetic coils 4 ′ are cooled by supplying 3-phase alternating current through a power converter (not shown).
The magnetic pole close to the stirring tank is always N pole.
The dotted lines in the figure indicate the lines of magnetic force.

【0031】これら電磁コイル4′による回転磁界は、
1 時には(a)のφ1 の電磁コイル4′に、つぎのT
2 時には(b)のφ2 の電磁コイル4′に、T3 時には
(c)のφ3 の電磁コイル4′に順次移動して電力を供
給することによって発生させる。
The rotating magnetic field generated by these electromagnetic coils 4'is
At the time of T 1 , the following T is applied to the φ 1 electromagnetic coil 4'of (a).
At 2 o'clock, it is generated by supplying electric power to the φ 2 electromagnetic coil 4'of (b) and at T 3 by sequentially moving to the φ 3 electromagnetic coil 4'of (c).

【0032】つぎに、上記図1及び図2に示した装置を
用いて半凝固金属スラリーを製造した結果について述べ
る。
Next, the result of producing a semi-solidified metal slurry using the apparatus shown in FIGS. 1 and 2 will be described.

【0033】なお、上記において、冷却・攪拌槽には、
内径:220mmφのSUS304製円筒に厚さ:10
mmのアルミナ・グラファイトの耐火物製スリーブを内
装した冷却円筒2とSUS304製水冷ジャケット3を
用い、中子6には外径:100mmφのアルミナ・グラ
ファイト製のものを用いた。
In the above, in the cooling / stirring tank,
Inner diameter: 220 mmφ SUS304 cylinder, thickness: 10
A cooling cylinder 2 having a mm-mm refractory sleeve made of alumina / graphite and a water cooling jacket 3 made of SUS304 were used, and a core 6 made of alumina / graphite having an outer diameter of 100 mmφ was used.

【0034】適正温度に加熱溶解したAl−10mas
s%Cu合金の溶湯15を、タンディッシュ1を介して
冷却・攪拌槽に供給し、水冷ジャケット3を介する冷却
下に回転磁界発生装置4により回転磁界を加えて攪拌し
て半凝固金属スラリーとし、中子6の昇降により排出量
を20l/分として排出ノズル5から連続的に半凝固金
属スラリー16を排出した。なお、冷却・攪拌槽冷却円
筒内壁面における磁束密度は約1000ガウスであっ
た。
Al-10mas melted by heating to an appropriate temperature
A molten metal 15 of s% Cu alloy is supplied to a cooling / stirring tank through a tundish 1, and a rotating magnetic field is applied by a rotating magnetic field generator 4 under cooling through a water cooling jacket 3 to stir to obtain a semi-solidified metal slurry. The semi-solidified metal slurry 16 was continuously discharged from the discharge nozzle 5 at a discharge amount of 20 l / min by raising and lowering the core 6. The magnetic flux density on the inner wall surface of the cooling / stirring tank cooling cylinder was about 1000 gauss.

【0035】この結果、固相率:0.25の半凝固金属
スラリーを連続的に安定して製造できた。
As a result, a semi-solidified metal slurry having a solid phase ratio of 0.25 could be continuously and stably produced.

【0036】さらに、中子6を退避させた以外は上記と
同様の条件で半凝固金属スラリー16の排出を行った。
この結果、冷却・攪拌槽における溶湯の自由表面の中央
部の凹は大きくなったが、排出量:25l/分で固相
率:0.20の半凝固金属スラリーを連続的に安定して
製造できた。なお、この実施例で示した装置スケールに
おいて、2極3相方式の従来法では700KVAの電源
容量が必要であったのに対し、この発明によれば500
KVAで同等の攪拌ができ同様の半凝固金属スラリーが
製造できることを確認した。
Further, the semi-solidified metal slurry 16 was discharged under the same conditions as above except that the core 6 was retracted.
As a result, the central part of the free surface of the molten metal in the cooling / stirring tank became large, but a semi-solid metal slurry with a solid phase ratio of 0.20 was continuously and stably produced at a discharge rate of 25 l / min. did it. In addition, in the apparatus scale shown in this embodiment, the power supply capacity of 700 KVA was required in the conventional method of the two-pole three-phase system, but according to the present invention, it is 500.
It was confirmed that equivalent stirring can be performed with KVA and a similar semi-solidified metal slurry can be produced.

【0037】[0037]

【発明の効果】この発明は、電磁攪拌による半凝固金属
材料の製造において、電磁攪拌を電磁コイルのN極又は
S極のいずれか一方が冷却・攪拌槽の外周に沿って移動
する回転磁界により行うものであり、この発明によれ
ば、低電力量で効率よく攪拌することができ、かつ生産
規模の拡大すなわち装置の大型化にも好適に対応してそ
の効果はより顕著となり、半凝固金属材料のコスト低減
に大きく貢献する。
According to the present invention, in the production of a semi-solid metal material by electromagnetic stirring, electromagnetic stirring is performed by a rotating magnetic field in which either the N pole or the S pole of the electromagnetic coil moves along the outer circumference of the cooling / stirring tank. According to the present invention, it is possible to efficiently stir with a low electric power amount, and the effect becomes more remarkable in response to the expansion of the production scale, that is, the enlargement of the apparatus. It greatly contributes to cost reduction of materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】電磁攪拌法による半凝固金属スラリーの説明図
である。
FIG. 1 is an explanatory view of a semi-solidified metal slurry by an electromagnetic stirring method.

【図2】この発明に適合する回転磁界発生装置の電磁コ
イルの配置と回転磁界発生機構の説明図である。
FIG. 2 is an explanatory view of an arrangement of electromagnetic coils and a rotating magnetic field generating mechanism of a rotating magnetic field generating device according to the present invention.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 1′ 耐火材 2 冷却円筒 3 水冷ジャケット 4 回転磁界発生装置 4′ 電磁コイル 5 排出ノズル 6 中子 7 軸受 8 支持アーム 9 連結軸 10 トルク計 11 支持台 12 油圧シリンダー 13 冷却水(給水) 13′ 冷却水(排水) 14 電源 15 溶湯 15′ 半凝固金属スラリー 16 排出された半凝固金属スラリー 1 Tundish 1'Refractory material 2 Cooling cylinder 3 Water cooling jacket 4 Rotating magnetic field generator 4'Electromagnetic coil 5 Ejection nozzle 6 Core 7 Bearing 8 Support arm 9 Connecting shaft 10 Torque meter 11 Support 12 Hydraulic cylinder 13 Cooling water (water supply) ) 13 'Cooling water (drainage) 14 Power supply 15 Molten metal 15' Semi-solidified metal slurry 16 Discharged semi-solidified metal slurry

フロントページの続き (72)発明者 新出 司 千葉県千葉市中央区川崎町1番地 株式会 社レオテック内 (72)発明者 広中 一聡 千葉県千葉市中央区川崎町1番地 株式会 社レオテック内Front Page Continuation (72) Inventor Tsuji Shinji 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, within Reotech Co., Ltd. (72) Inventor Isamu Hironaka 1, Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, within Reotech Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 筒状の冷却・攪拌槽の上方から供給した
金属溶湯を、冷却下に電磁力による攪拌を加えて粒状の
初晶が懸濁した固液混相の半凝固金属スラリーとする過
程を経る半凝固金属材料の製造方法において、 電磁力による攪拌を、電磁コイルのN極又はS極のいず
れか一方が、冷却・攪拌槽の外周に沿って移動する回転
磁界により行うことを特徴とする半凝固金属材料の製造
方法。
1. A process in which a molten metal supplied from above a cylindrical cooling / stirring tank is stirred by electromagnetic force under cooling to form a solid-liquid mixed phase semi-solid metal slurry in which granular primary crystals are suspended. In the method for producing a semi-solidified metal material, the stirring by electromagnetic force is performed by a rotating magnetic field in which either the N pole or the S pole of the electromagnetic coil moves along the outer circumference of the cooling / stirring tank. A method for producing a semi-solid metal material.
【請求項2】 電磁力による攪拌が、冷却・攪拌槽と、
該冷却・攪拌槽内に配置した中子との間での旋回流動で
ある請求項1に記載の半凝固金属材料の製造方法。
2. Stirring by electromagnetic force comprises a cooling / stirring tank,
The method for producing a semi-solid metal material according to claim 1, wherein the flow is a swirling flow between a core arranged in the cooling / stirring tank.
【請求項3】 筒状の冷却・攪拌槽の上方から供給した
金属溶湯を、冷却下に電磁力による攪拌を加えて粒状の
初晶が懸濁した固液混相の半凝固金属スラリーとする過
程を経る半凝固金属材料の製造装置において、 冷却・攪拌槽の外周に放射状に配置した複数の電磁コイ
ルのN極又はS極のいずれか一方が、該冷却・攪拌槽の
外周に沿って順次に移動する回転磁界発生装置を設置し
てなる半凝固金属材料の製造装置。
3. A process in which a metal melt supplied from above a cylindrical cooling / stirring tank is stirred by electromagnetic force under cooling to form a solid-liquid mixed phase semi-solid metal slurry in which granular primary crystals are suspended. In the apparatus for manufacturing a semi-solidified metal material, the N pole or the S pole of a plurality of electromagnetic coils radially arranged on the outer circumference of the cooling / stirring tank is sequentially arranged along the outer circumference of the cooling / stirring tank. An apparatus for manufacturing semi-solid metal materials, which is equipped with a moving rotating magnetic field generator.
【請求項4】 冷却・攪拌槽内に、中子を配置してなる
請求項3に記載の半凝固金属材料の製造装置。
4. An apparatus for producing a semi-solid metal material according to claim 3, wherein a core is arranged in the cooling / stirring tank.
【請求項5】 上下方向に移動でき、かつ該冷却・攪拌
槽に対して挿入・退避可能な中子を配してなる請求項3
に記載の半凝固金属材料の製造装置。
5. A core which is vertically movable and is insertable / retractable with respect to the cooling / stirring tank.
An apparatus for producing a semi-solid metal material according to.
【請求項6】 中子が、非磁性材料からなる請求項4又
は5に記載の半凝固金属材料の製造装置。
6. The apparatus for producing a semi-solid metal material according to claim 4, wherein the core is made of a non-magnetic material.
【請求項7】 冷却・攪拌槽が、非磁性で熱伝導率の小
さい金属からなる請求項3,4,5又は6に記載の半凝
固金属材料の製造装置。
7. The apparatus for producing a semi-solid metal material according to claim 3, 4, 5 or 6, wherein the cooling / stirring tank is made of a non-magnetic metal having a small thermal conductivity.
【請求項8】 冷却・攪拌槽が、耐火物製スリーブを内
装した非磁性金属からなる請求項3,4,5又は6に記
載の半凝固金属材料の製造装置。
8. The apparatus for producing a semi-solid metal material according to claim 3, 4, 5 or 6, wherein the cooling / stirring tank is made of a non-magnetic metal containing a refractory sleeve.
【請求項9】 冷却・攪拌槽が、オーステナイト系ステ
ンレス鋼からなる請求項3,4,5又は6に記載の半凝
固金属材料の製造装置。
9. The apparatus for producing a semi-solid metallic material according to claim 3, 4, 5 or 6, wherein the cooling / stirring tank is made of austenitic stainless steel.
【請求項10】 冷却・攪拌槽が、アルミナ製スリーブ
を内装したオーステナイト系ステンレス鋼からなる請求
項3,4,5又は6に記載の半凝固金属材料の製造装
置。
10. The apparatus for producing a semi-solid metal material according to claim 3, 4, 5 or 6, wherein the cooling / stirring tank is made of austenitic stainless steel containing an alumina sleeve.
【請求項11】 冷却・攪拌槽が、アルミナ・グラファ
イト製スリーブを内装したオーステナイト系ステンレス
鋼からなる請求項3,4,5又は6に記載の半凝固金属
材料の製造装置。
11. The apparatus for producing a semi-solid metal material according to claim 3, 4, 5 or 6, wherein the cooling / stirring tank is made of austenitic stainless steel having an alumina / graphite sleeve inside.
JP13421694A 1994-06-16 1994-06-16 Method and apparatus for producing semi-solidified metallic material Pending JPH081281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13421694A JPH081281A (en) 1994-06-16 1994-06-16 Method and apparatus for producing semi-solidified metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13421694A JPH081281A (en) 1994-06-16 1994-06-16 Method and apparatus for producing semi-solidified metallic material

Publications (1)

Publication Number Publication Date
JPH081281A true JPH081281A (en) 1996-01-09

Family

ID=15123148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13421694A Pending JPH081281A (en) 1994-06-16 1994-06-16 Method and apparatus for producing semi-solidified metallic material

Country Status (1)

Country Link
JP (1) JPH081281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700360B1 (en) * 2004-11-18 2007-03-27 주식회사동서기전 The supplying apparatus of semi-solid slurry with electromagnetic stirring
JP2009148771A (en) * 2007-12-18 2009-07-09 Ritera:Kk Metal slurry production method and device, and metal working method
WO2011158477A1 (en) * 2010-06-14 2011-12-22 日本軽金属株式会社 Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device
KR101470490B1 (en) * 2013-04-19 2014-12-08 세일정기 (주) Continuous casting device
WO2020242024A1 (en) * 2019-05-31 2020-12-03 한주금속(주) Electromagnetic vibration stirring device of semi-solid high pressure casting equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700360B1 (en) * 2004-11-18 2007-03-27 주식회사동서기전 The supplying apparatus of semi-solid slurry with electromagnetic stirring
JP2009148771A (en) * 2007-12-18 2009-07-09 Ritera:Kk Metal slurry production method and device, and metal working method
WO2011158477A1 (en) * 2010-06-14 2011-12-22 日本軽金属株式会社 Process for production of aluminum alloy cast bar, continuous casting device, and electromagnetic stirring coil for continuous casting device
JPWO2011158477A1 (en) * 2010-06-14 2013-08-19 日本軽金属株式会社 Aluminum alloy casting rod manufacturing method, continuous casting apparatus, and electromagnetic stirring coil for continuous casting apparatus
KR101470490B1 (en) * 2013-04-19 2014-12-08 세일정기 (주) Continuous casting device
WO2020242024A1 (en) * 2019-05-31 2020-12-03 한주금속(주) Electromagnetic vibration stirring device of semi-solid high pressure casting equipment
EP3978163A4 (en) * 2019-05-31 2022-04-27 Hanjoometal Co.,Ltd Electromagnetic vibration stirring device of semi-solid high pressure casting equipment
US20220241853A1 (en) * 2019-05-31 2022-08-04 Hanjoometal Co., Ltd Electromagnetic vibration stirring device of semi-solid high pressure casting equipment
US11858035B2 (en) 2019-05-31 2024-01-02 Hanjoometal Co., Ltd Electromagnetic vibration stirring device of semi-solid high pressure casting equipment

Similar Documents

Publication Publication Date Title
US4465118A (en) Process and apparatus having improved efficiency for producing a semi-solid slurry
US4434837A (en) Process and apparatus for making thixotropic metal slurries
US2963758A (en) Production of fine grained metal castings
Vivès Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys
EP0071822B2 (en) Mold for use in metal or metal alloy casting systems and process for mixing a molten metal or metal alloy
CA1176819A (en) Process and apparatus for making thixotropic metal slurries
CA1176820A (en) Apparatus for making thixotropic metal slurries
US4457355A (en) Apparatus and a method for making thixotropic metal slurries
US7449143B2 (en) Systems and methods of electromagnetic influence on electroconducting continuum
JPS5947621B2 (en) Continuous casting method
GB2109724A (en) Improvements in or relating to electromagnetic stirring in the continuous casting of steel
US4607682A (en) Mold for use in metal or metal alloy casting systems
JPH081281A (en) Method and apparatus for producing semi-solidified metallic material
JP3207965B2 (en) Production method of semi-solid metal slurry by magnetic stirrer
CN1275724C (en) Multifunction cold crucible electromagnetic precision shaping and directional solidification device
JP3348836B2 (en) Continuous casting equipment for semi-solid metal
CN108526424B (en) Magnetic field generator of dual-frenquency electromagnetic stirring
CN102398005B (en) Built-in type electromagnetic stirring device and application method thereof
JP3348838B2 (en) Continuous casting equipment for semi-solid metal
CN104707960A (en) Meniscus radial strong shear electromagnetic stirring round billet continuous casting device and method
JPH06234050A (en) Method for continuously casting half-solidified metal and apparatus therefor
JPH06328199A (en) Manufacture of continuous semi-solidified metallic slurry
CN201168772Y (en) Hollow copper and electromagnetic horizontal continuous casting apparatus of copper alloy tube thereof
CN101214533A (en) Electromagnetism horizontally continuously casting device for hollow copper and copper alloy tube thereof
RU2160177C1 (en) Apparatus for agitating melt metal in mold