WO2011158298A1 - 通信装置、制御装置、送信パラメータの調整方法 - Google Patents

通信装置、制御装置、送信パラメータの調整方法 Download PDF

Info

Publication number
WO2011158298A1
WO2011158298A1 PCT/JP2010/004051 JP2010004051W WO2011158298A1 WO 2011158298 A1 WO2011158298 A1 WO 2011158298A1 JP 2010004051 W JP2010004051 W JP 2010004051W WO 2011158298 A1 WO2011158298 A1 WO 2011158298A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
cell
base station
time
traffic
Prior art date
Application number
PCT/JP2010/004051
Other languages
English (en)
French (fr)
Inventor
渡辺君夫
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012520165A priority Critical patent/JP5609974B2/ja
Priority to PCT/JP2010/004051 priority patent/WO2011158298A1/ja
Publication of WO2011158298A1 publication Critical patent/WO2011158298A1/ja
Priority to US13/690,987 priority patent/US8792878B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a technique for adjusting an operating state or transmission parameter of a radio base station for power saving of the entire system in a mobile communication system including a plurality of radio base stations.
  • a telecommunications carrier that provides a service determines a target cell coverage for each radio base station, and transmission parameters are set for the radio base station so that the cell coverage can be obtained.
  • the transmission parameters are, for example, radio transmission power for each cell of the radio base station, antenna height, antenna pattern (or beam forming), tilt angle, and the like.
  • the amount of traffic varies greatly depending on the time zone. Therefore, it is efficient to always operate all radio base stations in a predetermined area, or to always set the transmission parameter to a value that ensures wide cell coverage for all radio base stations. It may not be the case.
  • a mobile communication system intended to reduce power consumption by changing a zone configuration of a radio base station according to a communication traffic state of the system, and to prevent occurrence of an incommunicable region by changing the zone configuration Is known (Patent Document 1).
  • the radio control station centrally monitors communication traffic notified from the radio base station group, and the electric field strength of the main radio base station notified from each child radio base station in the radio base station group Means for centrally monitoring, means for transmitting a radio output variable control signal to radio base stations in a group of radio base stations, a database for managing the arrangement configuration of a main radio base station and a plurality of child radio base stations, Is provided.
  • a zone configuration change that is, a radio transmission function of a specific radio base station is performed.
  • Control is performed to stop and increase the radio transmission output of another radio base station.
  • mobile station handover is executed between cells formed by the radio base station, there is a high possibility that the mobile station will not be able to maintain communication before handover. The Such a problem will be described below with reference to FIGS.
  • FIG. 1 shows a mobile communication system in which a plurality of radio base stations eNB10 to 16 are fixedly arranged in a predetermined service area.
  • Each radio base station is a communication device that forms a cell.
  • all the radio base stations in the service area are in a normal operation state.
  • the radio base stations eNB11 to eNB13 remain in a normal operation state, but the radio base stations eNB10, 14, and 16 are in a power saving state.
  • the radio base station eNB15 is in a state in which the transmission power is higher than the normal operation state, whereby the cells formed by the radio base station eNB15 are usually the radio base stations eNB10, 14, 16 The cell formed in the operating state is covered.
  • FIG.1 (b) the case where the hand-over is performed with respect to the mobile station UE from the cell which the radio base station eNB12 forms to the cell which the radio base station eNB15 forms is assumed.
  • the cell area to be covered by the radio base station eNB15 is expanded, but the signal processing capability of the radio base station or the number of mobile stations that the radio base station can accommodate is in a state. Since it does not change before and after the change, a case where the newly handed over mobile station UE cannot be accommodated may occur. In such a case, if the handover is within a predetermined service area, the total amount of communication traffic within the service area does not change, and thus the control for changing the cell configuration (that is, the zone configuration) in the conventional mobile communication system described above. Is not done. That is, the control for changing the cell configuration from the configuration of FIG. 1 (b) to the configuration of FIG. 1 (a) is not performed, and the signal processing capability according to the handover of the mobile station UE cannot be improved.
  • FIG. 2 shows the problems related to the above-described handover of the mobile station UE along the time axis.
  • FIG. 2 shows the state of the radio base station eNB10 along the time axis, and (b) shows the communication speed of the mobile station UE along the time axis.
  • HO handover
  • time t0 time t0
  • the mobile station UE is wirelessly transmitted from the viewpoint of the signal processing capability of the radio base station eNB15.
  • the base station eNB15 cannot be accommodated, and it is determined to change the cell configuration from the state of FIG. 1 (b) to the state of FIG. 1 (a).
  • the communication speed of the mobile station UE is reduced between the time t0 and the time t1 (S1 ⁇ S0), or the communication is stopped.
  • the communication speed of the mobile station UE to be handed over is reduced or the communication is stopped in future mobile communication systems such as LTE (Long Term Evolution), UMB (Ultra Mobile Broadband), WiMAX (Worldwide Interoperability for Microwave Access). ) And other systems handle high bit rate calls, it is highly likely that they will occur frequently in the future.
  • a mobile communication system including a plurality of communication devices forming a cell
  • the operation state or transmission parameter of each communication device is adjusted, the communication of the mobile station between the cells of the communication device is continued. It is an object of the present invention to provide a communication device, a control device, and a transmission parameter adjustment method that can ensure reliability.
  • a communication device that forms a cell and performs wireless communication with a mobile station and is connected to another communication device via a communication link.
  • This communication device A first information acquisition unit that acquires a first traffic amount that is a traffic amount occurring at a first time in a cell of the own device;
  • a second information acquisition unit that acquires a second traffic amount that is a traffic amount generated at the first time in each cell of the second communication device by communication with the second communication device adjacent to the own device;
  • a calculation unit that calculates a predicted value of the traffic volume in the cell of the device in the future from the first time based on the first traffic volume and the second traffic volume;
  • a control device that is connected to each of a plurality of communication devices that form a cell and perform wireless communication with a mobile station via a communication link and controls the communication devices.
  • a first information acquisition unit that acquires a first traffic amount that is a traffic amount occurring at a first time in a cell of the first communication device;
  • a second information acquisition unit that acquires a second traffic amount that is a traffic amount occurring at the first time in each cell of the second communication device adjacent to the first communication device;
  • a calculation unit that calculates a predicted value of the traffic volume in the cell of the first communication device in the future from the first time based on the first traffic volume and the second traffic volume;
  • a control unit for controlling a transmission parameter to be instructed to the first communication device based on the predicted value; Is provided.
  • a transmission parameter adjusting method for adjusting a transmission parameter of a communication device in a mobile communication system including a plurality of communication devices.
  • control device in a mobile communication system including a plurality of communication devices forming a cell, when adjusting the operating state or transmission parameter of each communication device, the cell of the communication device It is possible to ensure the continuity of communication between mobile stations.
  • the figure for demonstrating the subject of the conventional mobile communication system The figure for demonstrating the subject of the conventional mobile communication system.
  • the figure for demonstrating the subject of the conventional mobile communication system The figure which shows the structural example of the mobile communication system of 1st Embodiment.
  • the block diagram which shows the principal part of the structure of the base station of 1st Embodiment.
  • the flowchart which shows the process performed with the base station of 1st Embodiment, and the adjacent base station of the base station.
  • the figure which shows the structural example of the mobile communication system of 2nd Embodiment The figure which shows the structural example of the mobile communication system of 3rd Embodiment.
  • the block diagram which shows schematic structure of EMS in 3rd Embodiment.
  • the flowchart which shows the process performed between each base station and EMS in 3rd Embodiment.
  • the figure which shows the preferable change method of the transmission parameter before and behind the change of a cell structure.
  • a radio base station and a mobile station are abbreviated as eNB and UE, respectively, as appropriate.
  • the mobile communication system of the present embodiment can adopt a plurality of cell configurations in a service area including a plurality of radio base stations (hereinafter simply referred to as “base stations”). Designed. For example, as shown in FIG. 1A, the mobile communication system of the present embodiment has a normal cell configuration formed by transmission parameters in a normal operation state (referred to as “first state”) of a plurality of radio base stations. (First cell configuration) is adopted. In the mobile communication system according to the present embodiment, as illustrated in FIG. 1B, a specific base station among a plurality of base stations transitions to a power saving state (referred to as “second state”).
  • a power-saving cell in which a base station other than the specific base station transitions to a state in which transmission parameters are adjusted (referred to as a “third state”) in order to cover a decrease in the cell area of the specific base station.
  • the configuration (second cell configuration) is adopted.
  • the base station In the second state, the base station is in a state where the operation is stopped or the transmission parameters are adjusted so that the cell area becomes narrower than the normal operation state.
  • the second cell configuration power saving cell configuration
  • the transmission parameters are adjusted in the base station in the third state so that the cell area becomes wider than the normal operation state.
  • FIG. 1 (b) shows an example in which transmission parameters are controlled so that the cell area of the base station eNB15 in the third state is wider than that in the first state.
  • the transmission parameters to be controlled are wireless transmission power, antenna height, antenna pattern (or beam forming), tilt angle, and the like.
  • Each base station in the service area is connected by a predetermined interface (for example, X2 interface in LTE), and the cell configuration is changed in cooperation between the base stations.
  • the base station eNB15 is notified by the communication between the base station eNB10 and the base station eNB15 that the base station eNB10 transitions from the normal operation state to the power saving state.
  • the transmission parameters of the base station eNB15 are adjusted. It may be determined in advance which base station covers a base station that has entered a power saving state within the service area.
  • the neighbor cell list which is information including a list of base stations (or cell IDs) adjacent to the own station, can be updated with the change of the cell configuration.
  • the state of the base station means any one of the first, second, and third states described above.
  • each base station in the service area selects the state of the own station (either the first, second or third state).
  • the index value will be described.
  • attention is focused on a base station X in the service area and a plurality of base stations adj_1, adj_2,..., Adj_N adjacent to the base station X.
  • the index value of the base station X is calculated as the following equation (1).
  • ⁇ ⁇ ⁇ Indicator value Traffic_X + ⁇ (Traffic_adj_n)... (1)
  • Traffic_X is the current traffic volume (for example, first time) generated in the cell of the base station X, that is, the traffic volume currently generated in the base station X (first traffic). Amount).
  • Traffic volume that is, the traffic volume currently generated in each base station (second traffic volume).
  • the amount of traffic generated in a base station adjacent to the base station X is measured by each base station and then a predetermined interface to the base station X (for example, X2 in LTE). Interface).
  • a predetermined interface for example, X2 in LTE. Interface
  • the measurement method of the traffic volume at each base station is not limited.
  • the resource block processed at each base station, the number of packets (number of PDUs) per unit time, or a sample of a predetermined time can be obtained.
  • a method of measuring the averaged amount or a method of measuring the throughput can be employed.
  • FIG. 3 shows a mobile communication system in a service area including a base station eNB10 (corresponding to the base station X) that is a target for calculating an index value and a plurality of adjacent base stations eNB11 to 16 of the base station eNB10. Yes.
  • the mobile station UE currently connected to the base stations eNB11 to 16 may be handed over to the base station eNB10 in the future.
  • the index value calculated in the base station eNB10 is a predicted value of the future traffic volume of the base station eNB10 in the form of maximizing the traffic volume increase by the mobile station UE that can be handed over from the adjacent base station.
  • the base station eNB 10 is the base station that is the target of the index value calculation, but the index values are calculated in the same manner for other base stations.
  • the index value of the base station eNB16 in calculating the index value of the base station eNB16, the traffic volume of the adjacent base stations eNB10, 11, and 15 of the base station eNB16 is considered.
  • Each base station in the service area compares the calculated index value with a predetermined threshold value, and selects its own state (any one of the first, second, and third states). That is, when the index value exceeds a predetermined threshold, the first state (normal operation state) is selected, and when the index value is smaller than the predetermined threshold, the second state (power saving state) is selected.
  • the index value is calculated in the form of maximizing the amount of traffic increase by the mobile station UE that can be handed over from the adjacent base station, the state of the local station after the handover of the mobile station UE actually occurs There is no such thing as making a transition. This point will be further described with reference to FIG.
  • FIG. 4A the state of the base station eNB10 (see FIG. 3) is shown along the time axis as an example of the base station for which the index value is calculated, and in FIG. 4B, the base station eNB10 is handed over.
  • the communication speed of the mobile station UE is shown along the time axis.
  • the traffic amount due to the communication of the mobile station UE is the adjacent base station of the base station eNB10. And is notified to the base station eNB10.
  • the index value calculated by the base station eNB10 is calculated as a value larger than the amount of traffic occurring at the own station, for example, at the time tp before the time t0.
  • the base station eNB10 is in the second state until time tp, the transition from the second state to the first state is performed at time tp.
  • Mobile station UE can be accommodated. As a result, the communication and the communication speed of the mobile station UE are maintained before and after the handover of the mobile station UE.
  • FIG. 5 is a block diagram illustrating a main part of the configuration of the base station (eNB).
  • the base station of the present embodiment includes an antenna 10 for transmission and reception, a receiving unit 12, a demodulation decoding unit 13, a transmission path interface 14, a call processing unit 15, a coding modulation unit 16, a transmission unit 17, and a control.
  • Unit 18, transmission parameter adjustment unit 19, and storage unit 20 are included in the base station of the present embodiment.
  • the receiving unit 12 includes a band limiting filter, a low noise amplifier (LNA), a local frequency oscillator, a quadrature demodulator, an AGC (Automatic Gain Control) amplifier, an A / D (Analog to Digital) converter, and the like.
  • the receiving unit 12 converts the RF signal received from the mobile station at the antenna 10 into a digital baseband signal.
  • the receiving unit 12 further performs processing for separating the received signal into reference signals such as a data signal, a control signal, and a pilot signal.
  • the demodulation / decoding unit 13 performs demodulation and decoding processing on the data signal and the control signal. At this time, channel compensation for the data signal and the control signal is performed based on the channel estimation value obtained from the reference signal separated by the receiving unit 12.
  • the transmission path interface 14 is an adjacent base station, a core network device, and further EMS (Element Management System) and / or OPS (Operation System) (hereinafter referred to as EMS / OPS) as required. )).
  • EMS Electronic Management System
  • OPS Operaation System
  • the call processing unit 15 performs interface processing (for example, MAC (Media Access Control), RLC (Radio Link Control), PDCP (Packet Data Convergence Protocol), RRC ( Radio Resource Control), scheduling for radio resources for each connected mobile station.
  • interface processing for example, MAC (Media Access Control), RLC (Radio Link Control), PDCP (Packet Data Convergence Protocol), RRC ( Radio Resource Control), scheduling for radio resources for each connected mobile station.
  • the encoding / modulation unit 16 performs encoding and modulation processing on a reference signal such as a data signal, a control signal, and a pilot signal for each mobile station, and multiplexes the data signal, the control signal, and the reference signal.
  • the transmission unit 17 includes a D / A (Digital-to-Analog) converter, a local frequency transmitter, a mixer, a power amplifier, a filter, and the like, and up-converts a multiplexed transmission signal from a baseband frequency to a radio frequency. Later, the antenna 10 radiates into space.
  • the control unit 18 is mainly composed of a microcontroller, and performs various controls inside the base station and necessary signal processing.
  • the storage unit 20 stores data required for control performed by the control unit 18.
  • the storage unit 20 can be accessed by the control unit 18 for reading and writing data.
  • the control unit 18 calculates the traffic amount of the local station in cooperation with the call processing unit 15.
  • the calculation of the traffic amount is, for example, a method of measuring a resource block processed by the call processing unit 15, an amount per unit time of the number of packets (number of PDUs), or an amount obtained by averaging samples of a predetermined time, or This is done by a method for measuring the throughput.
  • the traffic amount calculated by the control unit 18 is notified to other base stations via a transmission path interface 14 through a predetermined interface (for example, X2 interface in LTE).
  • the control unit 18 calculates the index value shown in the above equation (1) based on the traffic volume of the own station calculated by itself and the traffic volume of other adjacent base stations notified via the transmission path interface 14. To do.
  • the control unit 18 further compares the calculated index value with a predetermined threshold value to select its own state (any one of the first, second, and third states), and a control signal corresponding to the state selection Is sent to the transmission parameter adjustment unit 19.
  • the control unit 18 functions as a first information acquisition unit and a calculation unit
  • the transmission path interface 14 functions as a second information acquisition unit.
  • the transmission parameter adjustment unit 19 adjusts the transmission parameter based on the control signal transmitted from the control unit 18 so that the state selected by the control unit 18 is obtained.
  • the transmission parameter to be adjusted is wireless transmission power
  • the amplification factor of the power amplifier in the transmission unit 17 is adjusted.
  • the transmission parameter to be adjusted is the tilt angle of the antenna
  • the tilt angle is adjusted to a desired value by a tilt angle adjusting mechanism (not shown).
  • a known mechanism can be used as the tilt angle adjusting mechanism, and will not be described in detail here.
  • a mechanical mechanism for controlling the tilt angle of an antenna that is actually tilted by driving a member that supports the antenna with a motor there is one disclosed in, for example, Japanese Patent Laid-Open No. 2005-051409.
  • the transmission parameter to be adjusted is an antenna pattern (or beamforming), for example, the antenna 10 includes a plurality of antenna elements.
  • the transmission parameter adjustment unit 19 sets a complex constant (weighting) to be multiplied by the signal assigned to each antenna element so that the electromagnetic wave transmitted from the antenna 10 can obtain a directivity characteristic in a desired direction. .
  • FIG. 6 is a flowchart showing processing executed by the base station X and the adjacent base station adj_1 of the base station X.
  • the traffic volume of the own station is measured by the control unit 18 (steps S10 and S12). Then, the adjacent base station adj_1 notifies the measured traffic amount to the base station X via the transmission path interface 14 (step S14). Similarly, the traffic amount measured at the base station X is also notified to the adjacent base station adj_1, but is omitted in the flowchart of FIG. The notification of the traffic volume measurement result to the base station X is performed not only from the adjacent base station adj_1 but also from all base stations adjacent to the base station X.
  • the control unit 18 of the base station X determines whether or not the state should be changed (step S18). When it is determined that the current state should be changed to another state (YES in step S18), a state transition notification including the new state of the base station X is transmitted to the adjacent base station via the transmission path interface 14.
  • Step S20 the process associated with the state transition is executed (Step S22).
  • the base station X has an operation stop process due to power interruption or a cell area narrower than the first state.
  • the process of adjusting the transmission parameter is performed by the control unit 18 and the transmission parameter adjusting unit 19. If it is determined in step S18 that the current state should not be changed to another state, nothing is done.
  • the adjacent base station adj_1 is predetermined as a base station that covers a decrease in the cell area of the base station X in the second state (labor saving state) among the plurality of adjacent base stations adjacent to the base station X. It is assumed that If the state transition notification received in step S20 indicates a transition from the first state to the second state of the base station X, the adjacent base station adj_1 performs the process of step S24. That is, in step S24, the adjacent base station adj_1 uses the control unit 18 and the transmission parameter adjustment unit 19 so that the cell region becomes wider than the first state in order to cover the decrease in the cell region of the base station X. Processing for adjusting the transmission parameters is performed. As a result, the first cell configuration is changed to the second cell configuration.
  • the mobile communication system of the present embodiment in each base station in the service area, not only the traffic volume of the local station but also the traffic volume of all adjacent base stations of the local station are considered.
  • An index value for selecting the state of the own station is calculated. This index value is calculated as a predicted value in the future in which the amount of traffic increase by the mobile station that can be handed over from the adjacent base station is estimated to the maximum. Therefore, the mobile station communication and its communication speed can be maintained before and after the mobile station handover, without the state transition of the local station being performed after the mobile station handover actually occurs.
  • the index value calculation method for selecting the state of the own station in each base station is different from the above equation (1).
  • the configuration of the base station can be the same as the configuration of the first embodiment (see FIG. 5).
  • each base station in the service area considers inflow and outflow of traffic volume due to handover with adjacent base stations, as well as generation and disappearance of calls within the own station, in calculating the index value.
  • FIG. 7 is a diagram showing the same system as FIG. As conceptually shown in FIG.
  • the base station eNB 10 receives and flows out traffic due to handover with the adjacent base stations eNB 11 to 16 and further generates calls within the own station. Disappearance is considered. At this time, the base station eNB10 accurately calculates a predicted value of the future traffic amount in consideration of a handover with each adjacent base station, and further, an outgoing call and an incoming call within the own station based on the statistical value.
  • the calculation method of the present embodiment for the index value in an arbitrary base station X in the service area will be described more specifically.
  • attention is paid to a certain base station X in the service area and a plurality of base stations adj_1, adj_2,..., Adj_N adjacent to the base station X.
  • the index value of the base station X is calculated as the following equation (2).
  • Traffic_X means the current traffic volume generated in the cell of the base station X, that is, the traffic volume currently generated in the base station X (first traffic volume).
  • Traffic volume that is, the traffic volume currently generated in each base station (second traffic volume).
  • H_in_n 1, 2,..., N
  • H_in_n 1, 2,..., N
  • Traffic_adj_n * H_in_n
  • the inflow rate is preferably updated by, for example, averaging relatively long-term samples and taking a moving average value.
  • H_out_n 1, 2,..., ⁇ N
  • H_out_n 1, 2,..., ⁇ N
  • This is the ratio of the amount of traffic that flows out due to the handover of the station, that is, the statistical value of the outflow rate due to handover.
  • the third term ( ⁇ (Traffic_X * H_out_n)) of Equation (2) means a predicted value of the sum of the traffic amounts flowing out from the base station X to the adjacent base station.
  • the outflow rate is sequentially updated, for example, by averaging a relatively long sample and calculating a moving average value.
  • MOCq_X is an average value (statistical value) of the traffic volume generated by the outgoing call and incoming call generated in the base station X.
  • MOC_X is a rate (statistical value) of outgoing calls and incoming calls generated in the base station X.
  • MOCq_X is, for example, an average value (statistical value) of daily traffic generated by outgoing calls and incoming calls generated in the base station X.
  • MOC_X is, for example, the ratio of the mobile stations that cause outgoing calls or incoming calls among all the mobile stations in the base station X.
  • the fourth term (MOCq_X * MOC_X) in the equation (2) means a predicted value of the traffic volume generated by the outgoing call and incoming call generated in the base station X at a desired time of the day. Since MOCq_X and MOC_X are assumed to be statistical values that are greatly different for each day of the week or time, it is preferable to sequentially acquire samples for each day of the week and time and update MOCq_X and MOC_X in the base station X. MOCq_X and MOC_X are updated by, for example, taking a moving average value for samples for each day of the week and time.
  • MTq_X is an average value (statistical value) of the traffic amount lost by the call terminated in the base station X.
  • MT_X is the rate (statistical value) of calls terminated within the base station X.
  • MTq_X is, for example, an average value (statistical value) of the daily traffic volume that disappears due to a call terminated in the base station X.
  • MT_X is, for example, the ratio of the mobile stations for ending the call among all the mobile stations in the base station X.
  • the fifth term (MTq_X * MT_X) in Equation (2) means a predicted value of the traffic volume that is lost due to a call that ends in the base station X at a desired time of the day.
  • MTq_X or MT_X is assumed to be a statistical value that varies greatly depending on the day of the week or time, it is preferable to acquire MTq_X and MT_X in the base station X by sequentially acquiring samples for each day of the week and time.
  • the update of MTq_X and MT_X is performed, for example, by taking a moving average value for samples for each day of the week and time.
  • Each statistical value used in the calculation of Equation (2) is stored in the storage unit 20 (see FIG. 5) of the base station X.
  • the index value in the first embodiment is a predicted value of the future traffic volume of the base station X calculated from the sum of the traffic volume of the current base station X and the adjacent base station. It can be considered that the quantity is overestimated. Under such circumstances, it is preferable from the viewpoint of surely avoiding the deterioration of communication of the mobile station to be handed over, but the tendency to adopt the first cell configuration (normal cell configuration) becomes higher than necessary, and the power saving performance is sacrificed to some extent. Can be.
  • the calculation method of the index value of the present embodiment takes into account the inflow and outflow of traffic due to handover of the base station X, and the occurrence and disappearance of calls within the own station. As compared with the embodiment, it becomes possible to predict the future traffic volume with higher accuracy. For example, the amount of traffic in the base station X after a predetermined time has passed can be predicted with high accuracy based on the above equation (2), and the current state of the base station X can be selected based on the predicted value. it can. Thereby, according to the index value calculation method of the present embodiment, the first cell configuration (normal cell configuration) and the second cell configuration (power-saving cell configuration) are selected more appropriately than the first embodiment. Can do. That is, in this embodiment, the communication continuity and power saving performance of the mobile station can be achieved at a high level.
  • each base station in the service area predicts the traffic amount of the own station after a predetermined time has elapsed from the current time based on the above equation (2).
  • the predetermined time can be arbitrarily set.
  • the predetermined time may be set long enough to ensure a transition time between the first cell configuration (normal cell configuration) and the second cell configuration (power saving cell configuration).
  • the base station that has entered the second state has a cell to be covered when the own station is in the first state (normal operation state).
  • a statistical value in a region (hereinafter referred to as “region A1”) cannot be acquired by itself as a sample. Therefore, under the second cell configuration, the base station that is in the third state (hereinafter referred to as “base station Y1”) is the base station that is in the second state (hereinafter referred to as “base station Y2”).
  • a statistical value in a cell area to be covered when the base station Y2 is in the first state is acquired as a sample. Then, the base station Y1 obtains the sample acquired under the second cell configuration at an appropriate timing after the power supply of the base station Y2 is restored, for example, the timing when the base station Y1 transitions from the second cell configuration to the first cell configuration. Is preferably provided to the base station Y2. As a result, the base station Y2 can continue to appropriately update the statistical value regardless of the cell configuration.
  • the base station Y1 In performing the above processing, since the base station Y1 obtains, as a sample, a statistical value in the cell area (the area A1) to be covered when the base station Y2 is in the first state, the geographical information of the area A1 Is held in advance. In addition, the base station Y1 receives location information of each mobile station connected under the second cell configuration (for example, GPS (Global Positioning System) information) is acquired, and when calculating the traffic volume related to the mobile station, it is sequentially confirmed whether or not it is included in the area A1. As a result, the base station Y1 can distinguish samples in the area A1 from samples in other areas.
  • GPS Global Positioning System
  • the index value may be calculated only from the second and third terms in consideration of only handover, or the index is considered only in terms of the second and fourth terms added to the first term in order to estimate a large value.
  • a value may be calculated.
  • the mobile communication system according to the present embodiment is different from the above embodiments in that an EMS or OPS is provided as a control device that manages index values of all base stations in the service area. .
  • the EMS as the control device performs the selection of the state of each base station and the determination of the cell configuration in an integrated manner based on the index value of each base station.
  • FIG. 8 shows an outline example of the mobile communication system of the present embodiment.
  • Each base station eNB10 to 16 in the service area is connected to an external EMS 100 and a communication link (whether wired or wireless), and the control of this embodiment is performed by this communication link.
  • each base station in the present embodiment may be substantially the same as that shown in FIG. 5, but in the base station in the present embodiment, the control unit 18 does not have to perform index value calculation and state selection processing. Good.
  • FIG. 9 is a block diagram showing a schematic configuration of the EMS of the present embodiment.
  • the EMS of the present embodiment includes a transmission path interface 21, a control unit 22, and a storage unit 23 for communicating with the base stations eNB10 to 16 in the service area through the communication link.
  • the control unit 22 is mainly composed of a microcontroller, and performs various controls inside the EMS and necessary signal processing.
  • the storage unit 23 stores data required for control performed by the control unit 22.
  • the storage unit 23 can be accessed by the control unit 22 for reading and writing data.
  • the control unit 22 acquires the traffic amount of each base station via the transmission path interface 21. For example, for each base station, the control unit 22 calculates the index value shown in the above equation (1) based on the traffic volume of the base station and the traffic volume of the adjacent base station of the base station. The control unit 22 further determines the state of each base station (either the first, second, or third state) by comparing the calculated index value with a predetermined threshold value. That is, the cell configuration is determined. The control unit 22 notifies the determined state of each base station to each base station via the transmission path interface 21. When the control unit 22 calculates the index value shown in the above equation (2), samples for calculating various statistical values from each base station are provided from each base station via the transmission path interface 21. . Various statistical values are centrally held in the storage unit 23 and sequentially updated by the control unit 22.
  • FIG. 10 is a flowchart showing processing executed by each base station and the EMS.
  • the flowchart shown in FIG. 10 shows the case where the index value is calculated according to the above equation (1), but it is obvious that the method can be applied to other index value calculation methods (for example, the calculation method of equation (2)). .
  • the traffic amount of the own station is measured by the control unit 18 in each base station (step S30), and the measurement result is notified to the EMS by the transmission path interface (step S32).
  • the control unit 22 calculates the index value shown in the above equation (1) based on the traffic amount of each base station notified in step S32 for each base station (step S34).
  • the control unit 22 further determines the state (any one of the first, second, and third states) for each base station by comparing the index value calculated in step S34 with a predetermined threshold value. That is, the cell configuration is determined. (Step S36).
  • the determined state of each base station is notified to each base station (step S38).
  • Each base station performs a required process so that it may be in the state notified by step S38 (step S40). This required processing includes operation stop processing due to power interruption or transmission parameter adjustment processing.
  • the cell configuration in the service area is changed centrally by the EMS.
  • the horizontal axis represents time
  • the vertical axis represents radio transmission power of the base station eNB10 and the base station eNB15 with transmission parameters.
  • the base station is in the first cell configuration (normal cell configuration)
  • both the base stations eNBs 10 and 15 are in the first state (normal operation state).
  • the second cell configuration (power saving cell configuration) is established, the base station eNB10 is in the second state (power saving state), and the base station eNB15 is in the third state (state in which transmission power is increased).
  • the cell is again in the first cell configuration (normal cell configuration), and both the base stations eNBs 10 and 15 are in the first state (normal operation state). That is, from time t0 to t7, the cell configuration changes from the first cell configuration to the second cell configuration to the first cell configuration as the traffic decreases and increases.
  • the transmission power in the first state is 50%
  • the transmission power in the second state is 0%
  • the transmission power in the third state is 100%.
  • the communication band is divided in cooperation between the base station eNB10 and the base station eNB15.
  • the transmission power is gradually changed in the bands F1, F2, and F3).
  • the transmission power may be changed at the same rate of change in all bands, or may be changed with a time difference for each band as shown in FIG. In FIG.
  • the base station eNB15 changes the transmission power of the band F1 from 50% ⁇ 100%, and the base station eNB10 changes the transmission power of the band F1 from 50% ⁇ 0%.
  • the base station eNB15 gradually changes the transmission power of the bands F2 and F3 from 50% to 100% from time t0 to t3, and the base station eNB10 changes the transmission power of the bands F2 and F3 to 50%.
  • ⁇ Change gradually to 0%. Since the number of mobile stations that can be accommodated in the base station for each band is almost determined, the mobile station in the transition period can be changed by changing the transmission power for each band in cooperation between the base station eNB10 and the base station eNB15. Can be smoothly performed between the base station eNB10 and the base station eNB15. Therefore, the processing load of the base station in each base station does not increase rapidly before and after the cell configuration change.
  • the cell is formed by the base station, and the transmission parameter of the base station that controls the cell area is assumed to be the adjustment target.
  • the base station is configured to adjust the transmission parameter in units of a plurality of sectors forming a single cell, it can be considered that the base station is configured by a communication device for each sector.
  • the transmission parameter is adjusted for each communication device constituting the base station. That is, the state (any one of the first, second, and third states) is selected or determined for each communication device that configures the base station.
  • eNB Base station (communication device) DESCRIPTION OF SYMBOLS 10 ... Antenna 12 ... Reception part 13 ... Demodulation decoding part 14 ... Transmission path interface 15 ... Call processing part 16 ... Encoding modulation part 17 ... Transmission part 18 ... Control part 19 ... Transmission parameter adjustment part 20 ... Storage part EMS ... Element management System (control device) 21 ... Transmission path interface 22 ... Control unit 23 ... Storage unit

Abstract

 セルを形成する通信装置を複数含む移動通信システムにおいて、システム全体の省電力化のために各通信装置の稼動状態または送信パラメータを調整するときに、通信装置のセル間における移動局の通信の継続性を確保することができるようにした、通信装置、制御装置、送信パラメータの調整方法が提供される。各通信装置において、自装置のトラフィック量のみならず自装置のすべての隣接基地局のトラフィック量を考慮して、将来の自装置のトラフィック量の予測値を算出する。この予測値に基づいて自装置の稼動状態または送信パラメータが調整される。

Description

通信装置、制御装置、送信パラメータの調整方法
 本発明は、複数の無線基地局を含む移動通信システムにおいて、システム全体の省電力化のために無線基地局の稼動状態または送信パラメータを調整する技術に関する。
 従来、移動通信システムでは、予めサービスを提供する通信事業者が無線基地局ごとに目標となるセルカバレッジを決定し、そのセルカバレッジが得られるように無線基地局に対して送信パラメータが設定されている。送信パラメータは例えば、無線基地局の各セルに対する無線送信電力、アンテナの高さ、アンテナパターン(又はビームフォーミング)、及びチルト角等である。このとき、システムを運用中、例えば時間帯などに応じてトラフィック量は大きく変動する。そのため、所定のエリアにおいてすべての無線基地局を常時稼動させること、又はすべての無線基地局に対して、そのセルカバレッジを広く確保するような値に送信パラメータを常時設定しておくことは、効率的でない場合がありうる。
 上記観点に関連して、システムの通信トラフィック状態によって無線基地局のゾーン構成を変更することにより電力消費を低減させ、ゾーン構成の変更によって通信不可能領域の発生を防ぐことを意図した移動通信システムが知られている(特許文献1)。この移動通信システムでは、無線制御局が、無線基地局群から通知される通信トラフィックを集中監視する手段と、無線基地局群内の各子無線基地局から通知される主無線基地局の電界強度を集中監視する手段と、無線基地局群内の無線基地局に対して無線出力可変制御信号を送信する手段と、主無線基地局と複数の子無線基地局の配置構成を管理するデータベースと、を備える。
特開平10-145842号公報
 上述した従来の移動通信システムによれば、複数の無線基地局が含まれる所定のサービスエリア内の通信トラフィックが閾値を下回る場合にゾーン構成の変更、すなわち、特定の無線基地局の無線送信機能を停止し、別の無線基地局の無線送信出力を上げるという制御が行われる。しかしながら、かかる制御では、無線基地局が形成するセル間において移動局のハンドオーバが実行されるときに、その移動局がハンドオーバ前の通信を維持できない局面が多くなる可能性が高いという問題が懸念される。かかる問題について、以下、図1および図2を参照して説明する。
 図1は、所定のサービスエリアに複数の無線基地局eNB10~16が固定して配置されている移動通信システムを示している。各無線基地局は、セルを形成する通信装置である。図1において、(a)ではサービスエリア内のすべての無線基地局が通常稼動状態となっている。一方、(b)では無線基地局eNB11~13が通常稼動状態のままであるが、無線基地局eNB10,14,16が省電力状態となっている。(b)ではさらに、無線基地局eNB15は、送信電力を通常稼動状態よりも上げた状態となっており、それによって、無線基地局eNB15が形成するセルは無線基地局eNB10,14,16が通常稼動状態において形成していたセルをカバーするようになっている。このとき、図1(b)において、移動局UEに対して、無線基地局eNB12が形成するセルから無線基地局eNB15が形成するセルへハンドオーバが実行された場合を想定する。
 図1(b)に示したセル構成において、無線基地局eNB15がカバーすべきセル領域が拡大されているが、無線基地局の信号処理能力または無線基地局が収容可能な移動局の数が状態変化の前後で変わらないため、新たにハンドオーバされた移動局UEを収容できない場合が生じうる。かかる場合、所定のサービスエリア内でのハンドオーバであれば、そのサービスエリア内の通信トラフィックの総量に変化がないため、上述した従来の移動通信システムではセル構成(すなわち、ゾーン構成)の変更する制御が行われない。すなわち、セル構成を図1(b)の構成から図1(a)の構成へ変更する制御が行われず、移動局UEのハンドオーバに応じた信号処理能力の向上が図られない。
 また仮に、移動局UEのハンドオーバの検出に基づいてセル構成を図1(b)の構成から図1(a)の構成へ変更する制御が行われたとしても、セル構成の変更には一定の時間が掛かるため、ハンドオーバ直後に移動局UEがハンドオーバ前の通信状態を維持できない可能性がある。すなわち、移動局UEのハンドオーバ後に通信が停止させられるか、又は通信速度が低下させられる可能性がある。この問題点についてさらに、図2を参照して説明する。
 上述した移動局UEのハンドオーバに関連する問題点を時間軸に沿って示したものが図2である。図2では、 (a)に無線基地局eNB10の状態を時間軸に沿って示し、(b)に移動局UEの通信速度を時間軸に沿って示している。図2において、あるハンドオーバ(HO)のタイミング(時刻t0)が経過し、無線基地局eNB15に移動局UEがハンドオーバされると、無線基地局eNB15の信号処理能力の観点からその移動局UEを無線基地局eNB15が収容できず、セル構成を図1(b)の状態から図1(a)の状態へ変更することが決定される。しかしながら、セル構成の変更が行われる時刻t1まで時間が掛かるため、時刻t0から時刻t1の間に移動局UEの通信速度が低下させられるか(S1→S0)、又は通信が停止させられる。上述したようにハンドオーバされる移動局UEの通信速度の低下、又は通信の停止は、今後の移動通信システム、例えばLTE(Long Term Evolution),UMB(Ultra Mobile Broadband), WiMAX(Worldwide Interoperability for Microwave Access)等のシステムにおいて高ビットレートの呼を処理することから、今後高頻度で生ずる可能性が高いといえる。
 よって、発明の1つの側面では、セルを形成する通信装置を複数含む移動通信システムにおいて、各通信装置の稼動状態または送信パラメータを調整するときに、通信装置のセル間における移動局の通信の継続性を確保することができるようにした、通信装置、制御装置、送信パラメータの調整方法を提供することを目的とする。
 第1の観点では、セルを形成して移動局と無線通信を行うとともに、他の通信装置と通信リンクによって接続されている通信装置、が提供される。
 この通信装置は、
 自装置のセル内で第1時刻において生じているトラフィック量である第1トラフィック量を取得する第1情報取得部;
 自装置と隣接する第2通信装置との通信によって、当該第2通信装置の各々のセル内で上記第1時刻において生じているトラフィック量である第2トラフィック量を取得する第2情報取得部;
 上記第1トラフィック量及び上記第2トラフィック量に基づいて、上記第1時刻よりも将来における自装置のセル内のトラフィック量の予測値を算出する算出部;
 上記予測値に基づいて自装置の送信パラメータを調整する調整部;
を備える。
 第2の観点では、セルを形成して移動局と無線通信を行う複数の通信装置の各々と通信リンクによって接続され、上記各通信装置を制御する制御装置、が提供される。
 第1通信装置のセル内で第1時刻において生じているトラフィック量である第1トラフィック量を取得する第1情報取得部;
 上記第1通信装置と隣接する第2通信装置の各々のセル内で前記第1時刻において生じているトラフィック量である第2トラフィック量を取得する第2情報取得部;
 上記第1トラフィック量及び上記第2トラフィック量に基づいて、上記第1時刻よりも将来における上記第1通信装置のセル内のトラフィック量の予測値を算出する算出部;
 上記予測値に基づいて、上記第1通信装置に対して指示すべき送信パラメータを制御する制御部;
を備える。
 第3の観点では、複数の通信装置を含む移動通信システムにおいて、通信装置の送信パラメータを調整する、送信パラメータの調整方法が提供される。
 開示の通信装置、制御装置、送信パラメータの調整方法によれば、セルを形成する通信装置を複数含む移動通信システムにおいて、各通信装置の稼動状態または送信パラメータを調整するときに、通信装置のセル間における移動局の通信の継続性を確保することができる。
従来の移動通信システムの課題を説明するための図。 従来の移動通信システムの課題を説明するための図。 第1の実施形態の移動通信システムの構成例を示す図。 第1の実施形態の基地局の状態と当該基地局へハンドオーバされる移動局の通信速度を時間軸に沿って示す図。 第1の実施形態の基地局の構成の要部を示すブロック図。 第1の実施形態の基地局と、その基地局の隣接基地局とで実行される処理を示すフローチャート。 第2の実施形態の移動通信システムの構成例を示す図。 第3の実施形態の移動通信システムの構成例を示す図。 第3の実施形態においてEMSの概略構成を示すブロック図。 第3の実施形態において、各基地局とEMSの間で実行される処理を示すフローチャート。 セル構成の変更の前後における送信パラメータの好ましい変更方法を示す図。
 以下の実施形態の説明において、無線基地局、移動局は適宜、それぞれeNB、UEと略記する。
 (1)第1の実施形態
 以下、第1の実施形態について説明する。
 (1-1)移動通信システム
 本実施形態の移動通信システムは、複数の無線基地局(以下、単に「基地局」と略記する。)を含むサービスエリア内で複数のセル構成を採りうるように設計されている。例えば、本実施形態の移動通信システムは、図1(a)に示したように、複数の無線基地局の通常稼動状態(「第1状態」という。)の送信パラメータによって形成される通常セル構成(第1セル構成)を採る。また、本実施形態の移動通信システムは、図1(b)に例示したように、複数の基地局の中の特定の基地局が省力化状態(「第2状態」という。)に遷移するとともに、その特定の基地局以外の他の基地局が特定の基地局のセルの領域の減少をカバーするために送信パラメータが調整された状態(「第3状態」という。)に遷移する省電力セル構成(第2セル構成)を採る。
 基地局は、第2状態において、稼動が停止させられるか、又はセルの領域が通常稼動状態よりも狭くなるように送信パラメータが調整された状態となっている。また、第2セル構成(省電力セル構成)を採る場合には、第3状態にある基地局では、セルの領域が通常稼動状態よりも広くなるように送信パラメータが調整されている。
 図1(b)では、第3状態にある基地局eNB15のセルの領域が第1状態よりも広くなるように送信パラメータが制御されている例を示した。ここで、制御対象の送信パラメータは、無線送信電力、アンテナの高さ、アンテナパターン(又はビームフォーミング)、及びチルト角等である。サービスエリア内の各基地局は、所定のインタフェース(例えばLTEではX2インタフェース)で接続されており、セル構成の変更は基地局間で連携して行われる。例えば、図1(b)に示した例では、基地局eNB10と基地局eNB15の間の通信によって、基地局eNB15は、基地局eNB10が通常稼動状態から省電力状態へ遷移することが通知され、この通知を受けて、基地局eNB15の送信パラメータが調整される。サービスエリア内で省電力状態となった基地局をどの基地局がカバーするかについては、予め決めておけばよい。
 なお、各基地局では、セル構成の変更に伴い、自局に隣接している基地局(又はセルID)のリストを含む情報である隣接セルリストが更新されうる。
 以下の説明において、基地局の状態とは、上述した第1、第2または第3状態のいずれかの状態を意味する。
 (1-2)基地局の状態を選択するための指標値
 次に、サービスエリア内の各基地局において自局の状態(第1、第2または第3状態のいずれか)を選択するための指標値について説明する。ここで、サービスエリア内のある基地局Xと、基地局Xに隣接している複数の基地局adj_1, adj_2, …, adj_Nとについて着目する。このとき、基地局Xの指標値は、以下の式(1)のとおり算出される。
 指標値=Traffic_X + Σ(Traffic_adj_n) …(1)
 但し、上記式(1)において、Traffic_Xは、基地局Xのセル内で発生している現在(例えば、第1時刻)のトラフィック量、すなわち基地局Xで現在生じているトラフィック量(第1トラフィック量)を意味する。上記式(1)において、Traffic_adj_n (n=1, 2, …, N)はそれぞれ、基地局Xに隣接している複数の基地局adj_1, adj_2, …, adj_Nのセル内で発生している現在のトラフィック量、すなわち各基地局で現在生じているトラフィック量(第2トラフィック量)を意味する。Σ(Traffic_adj_n)のΣは、n=1, 2, …, Nにおける総和である。
 基地局Xに隣接している基地局(以下、「隣接基地局」という。)で発生しているトラフィック量は、各基地局で計測された後に基地局Xへ所定のインタフェース(例えばLTEではX2インタフェース)によって通知される。また、各基地局でのトラフィック量の測定方法は問わないが、例えば、各基地局で処理されているリソースブロック、パケット数(PDUの数)の単位時間当たりの量、或いは所定時間のサンプルを平均化した量を測定する方法、又はスループットを測定する方法などを採ることができる。
 上記指標値の算出に当たり、自局のトラフィック量に対して自局の隣接基地局のトラフィック量を加算する理由について、図3を参照して説明する。図3は、指標値の算出の対象となる基地局eNB10(上記基地局Xに相当)と、基地局eNB10の複数の隣接基地局eNB11~16とを含むサービスエリア内の移動通信システムを示している。図3に概念的に示すように、基地局eNB11~16に現在接続している移動局UEは将来、基地局eNB10へハンドオーバされる可能性がある。そこで、本実施形態では、ある基地局の指標値の算出に当たって、その基地局のトラフィック量のみならず、その基地局の隣接基地局のトラフィック量がすべて考慮される。つまり、基地局eNB10において算出される指標値は、隣接基地局からハンドオーバされうる移動局UEによるトラフィック量増加分を最大限見積もった形で、基地局eNB10の将来のトラフィック量の予測値となっている。
 なお、図3に示した一例では、基地局eNB10を指標値の算出の対象となる基地局としたが、他の基地局についても同様にして指標値が算出される。例えば、図3において、基地局eNB16の指標値の算出に当たっては、基地局eNB16の隣接基地局eNB10,11,15のトラフィック量が考慮される。
 サービスエリア内の各基地局は、算出した指標値を所定の閾値と比較して自局の状態(第1、第2または第3状態のいずれか)を選択する。すなわち、指標値が所定の閾値を超えている場合には第1状態(通常稼動状態)が選択され、指標値が所定の閾値よりも小さい場合には第2状態(省電力状態)が選択される。このとき、指標値が、隣接基地局からハンドオーバされうる移動局UEによるトラフィック量増加分を最大限見積もった形で算出されているため、移動局UEのハンドオーバが実際に生じてから自局の状態の遷移を行う、ということがない。この点についてさらに、図4を参照して説明する。
 図4の(a)では、指標値の算出の対象となる基地局の一例として基地局eNB10(図3参照)の状態を時間軸に沿って示し、(b)では基地局eNB10へハンドオーバされる移動局UEの通信速度を時間軸に沿って示している。図4において、移動局UEの基地局eNB10へのハンドオーバ(HO)が実際に行われるタイミング(時刻t0)に達する前に、その移動局UEの通信によるトラフィック量は、基地局eNB10の隣接基地局のトラフィック量として算出され、基地局eNB10へ通知される。そのため、基地局eNB10で算出される指標値は、例えば時刻t0より前の時刻tpにおいて、自局で生じているトラフィック量よりも大きな値として算出される。ここで、基地局eNB10では、仮に時刻tpまで第2状態であるとすれば、時刻tpにおいて第2状態から第1状態への遷移が行われるため、基地局eNB10の処理能力上問題なくハンドオーバされる移動局UEを収容できる。その結果、その移動局UEのハンドオーバの前後で移動局UEの通信およびその通信速度が維持される。
 (1-3)基地局の構成
 次に、基地局の構成について、図5を参照して説明する。図5は、基地局(eNB)の構成の要部を示すブロック図である。
 図5を参照すると、本実施形態の基地局は、送受信共用のアンテナ10、受信部12、復調復号部13、伝送路インタフェース14、呼処理部15、符号化変調部16、送信部17、制御部18、送信パラメータ調整部19および記憶部20を備える。
 受信部12は、帯域制限フィルタ、ローノイズアンプ(LNA: Low Noise Amplifier)、ローカル周波数発信器、直交復調器、AGC(Automatic Gain Control)アンプ、A/D(Analog to Digital)変換器などを含む。受信部12は、アンテナ10において移動局から受信したRF信号をデジタルベースバンド信号に変換する。受信部12ではさらに、受信信号をデータ信号、制御信号、及びパイロット信号等の参照信号に分離する処理を行う。
 復調復号部13は、データ信号及び制御信号に対して復調及び復号処理を行う。このとき、受信部12で分離された参照信号から得られるチャネル推定値に基づいて、データ信号及び制御信号についてのチャネル補償が行われる。
 伝送路インタフェース14は、隣接基地局、コアネットワーク装置、さらには必要に応じてEMS(Element Management System;エレメント管理システム)および/又はOPS(OPeration System;オペレーションシステム)(以下、EMS/OPSと表記する。)との間のインタフェース回路を備える。
 呼処理部15は、無線の送信信号および受信信号の物理層よりも上位層のインタフェース処理(例えば、MAC(Media Access Control), RLC (Radio Link Control), PDCP (Packet Data Convergence Protocol), RRC (Radio Resource Control)の処理)、接続している移動局ごとの無線リソースに対するスケジューリングなどを行う。
 符号化変調部16は、移動局ごとのデータ信号、制御信号、及びパイロット信号等の参照信号に対して符号化及び変調処理を行うとともに、データ信号、制御信号、及び参照信号を多重化する。送信部17は、D/A(Digital to Analog)変換器、ローカル周波数発信器、ミキサ、パワーアンプ、フィルタ等を備え、多重化された送信信号を、ベースバンド周波数から無線周波数へアップコンバート等した後に、アンテナ10から空間へ放射する。
 制御部18は、マイクロコントローラを主体として構成され、基地局内部の各種の制御、所要の信号処理を行う。記憶部20は、制御部18で行われる制御に要するデータを記憶している。記憶部20は、データの読み出し、書き込みのために制御部18によってアクセスされうる。
 制御部18は、呼処理部15と協働して自局のトラフィック量を算出する。トラフィック量の算出は、例えば、呼処理部15で処理されているリソースブロック、パケット数(PDUの数)の単位時間当たりの量、或いは所定時間のサンプルを平均化した量を測定する方法、又はスループットを測定する方法などによって行われる。なお、制御部18で算出されたトラフィック量は、伝送路インタフェース14を介して所定のインタフェース(例えばLTEではX2インタフェース)によって他の基地局へ通知される。
 制御部18は、自ら算出した自局のトラフィック量と、伝送路インタフェース14を介して通知される他の隣接基地局のトラフィック量とに基づいて、上記(1)式に示した指標値を算出する。制御部18はさらに、算出した指標値を所定の閾値と比較することによって、自局の状態(第1、第2または第3状態のいずれか)を選択し、その状態選択に応じた制御信号を送信パラメータ調整部19へ送出する。
 なお、上述した説明の例では、制御部18は第1情報取得部および算出部として機能し、伝送路インタフェース14は第2情報取得部として機能する。
 送信パラメータ調整部19は、制御部18から送出された制御信号に基づき、制御部18で選択された状態となるように、送信パラメータを調整する。調整対象の送信パラメータが無線送信電力である場合には、送信部17内のパワーアンプの増幅度が調整される。
 調整対象の送信パラメータがアンテナのチルト角である場合には、チルト角調整機構(図示せず)によってチルト角が所望の値に調整される。チルト角調整機構は公知の機構を利用することができ、ここでは詳細に説明しない。アンテナを支持する部材をモータによって駆動することによって、実際に傾斜させるアンテナのチルト角を制御する機械的機構としては、例えば特開2005-051409号公報に開示されているものがある。また、鉛直方向に複数のアンテナユニットを設け、各アンテナユニットに対する給電の位相を制御することで、実際にアンテナを傾斜させることなく、実質的にアンテナのチルト角方向の指向性を調整する電気的機構としては、例えば特許4040042号公報に開示されているものがある。
 調整対象の送信パラメータがアンテナパターン(又はビームフォーミング)である場合には、例えばアンテナ10が複数のアンテナ素子から構成される。このとき、アンテナ10から送出される電磁波が所望の方向の指向特性を得られるように、各アンテナ素子に割り当てられた信号に乗算される複素定数(重み付け)が送信パラメータ調整部19により設定される。
 (1-4)送信パラメータの制御方法
 次に、図6を参照して、基地局Xと、基地局Xの隣接基地局adj_1とで実行される送信パラメータの制御方法の一例について説明する。図6は、基地局Xと、基地局Xの隣接基地局adj_1とで実行される処理を示すフローチャートである。
 図6において先ず、基地局Xおよび隣接基地局adj_1の双方において、制御部18により自局のトラフィック量が測定される(ステップS10、S12)。そして、隣接基地局adj_1は、測定したトラフィック量を伝送路インタフェース14を介して基地局Xへ通知する(ステップS14)。基地局Xで測定されたトラフィック量も同様に隣接基地局adj_1へ通知されるが、図6のフローチャートでは省略している。また、基地局Xに対するトラフィック量の測定結果の通知は、隣接基地局adj_1のみならず、基地局Xに隣接するすべての基地局から行われる。
 基地局Xでは、制御部18が、ステップS10で自ら算出した自局のトラフィック量と、伝送路インタフェース14を介して通知される他の隣接基地局のトラフィック量とに基づいて、上記(1)式に示した指標値を算出する(ステップS16)。基地局Xの制御部18はさらに、ステップS16で算出した指標値を所定の閾値と比較することによって、自局の状態(第1、第2または第3状態のいずれか)を選択し、現在の状態から遷移させるべきか否か判断する(ステップS18)。現在の状態から別の状態へ遷移させるべきと判断した場合には(ステップS18のYES)、基地局Xの新しい状態を含む状態遷移通知を伝送路インタフェース14を介して隣接基地局へ送出するとともに(ステップS20)、状態の遷移に伴う処理の実行を行う(ステップS22)。例えば、第1状態(通常稼動状態)から第2状態(省力化状態)へ遷移する場合には、基地局Xでは、電源遮断による稼動停止処理、又はセルの領域が第1状態よりも狭くなるように、制御部18および送信パラメータ調整部19によって送信パラメータを調整する処理が行われる。ステップS18で現在の状態から別の状態へ遷移させるべきでないと判断した場合には何もしない。
 ここで、隣接基地局adj_1が、基地局Xに隣接する複数の隣接基地局のうち、第2状態(省力化状態)にある基地局Xのセルの領域の減少をカバーする基地局として予め定められている場合を想定する。そして、ステップS20で受けた状態遷移通知が、基地局Xの第1状態から第2状態への遷移を示すものである場合には、隣接基地局adj_1はステップS24の処理を行う。すなわち、ステップS24において、隣接基地局adj_1では、基地局Xのセルの領域の減少をカバーすべく、セルの領域が第1状態よりも広くなるように、制御部18および送信パラメータ調整部19によって送信パラメータを調整する処理が行われる。これにより、第1セル構成から第2セル構成へ変更がなされる。
 以上説明したように、本実施形態の移動通信システムによれば、サービスエリア内の各基地局において、自局のトラフィック量のみならず自局のすべての隣接基地局のトラフィック量を考慮して、自局の状態を選択するための指標値が算出される。この指標値は、隣接基地局からハンドオーバされうる移動局によるトラフィック量増加分を最大限見積もった将来の予測値として算出されている。そのため、移動局のハンドオーバが実際に生じてから自局の状態の遷移を行うということがなく、移動局のハンドオーバの前後で移動局の通信およびその通信速度を維持することができる。
 (2)第2の実施形態
 以下、第2の実施形態について説明する。
 本実施形態の移動通信システムでは、各基地局において自局の状態を選択するための指標値の算出方法が上記(1)式と異なる。基地局の構成は、第1の実施形態の構成(図5参照)と同一のものを採ることができる。
 本実施形態では、サービスエリア内の各基地局では、指標値を算出するに当たって、隣接基地局との間のハンドオーバによるトラフィック量の流入および流出、さらには自局内の呼の発生および消失が考慮される。例えば、図3と同一のシステムを示す図である図7を参照して説明する。図7に概念的に示すように、基地局eNB10は、指標値を算出するに当たって、隣接基地局eNB11~16との間のハンドオーバによるトラフィック量の流入および流出、さらには自局内の呼の発生および消失が考慮される。このとき、基地局eNB10は、各隣接基地局との間のハンドオーバ、さらには自局内の発呼および着呼を考慮した将来のトラフィック量の予測値を、統計値に基づいて精度良く算出する。
 以下、サービスエリア内の任意の基地局Xにおける指標値の本実施形態の算出方法について、さらに具体的に説明する。
 先ず、サービスエリア内のある基地局Xと、基地局Xに隣接している複数の基地局adj_1, adj_2, …, adj_Nとについて着目する。このとき、本実施形態において、基地局Xの指標値は、以下の式(2)のとおり算出される。
 指標値=Traffic_X 
          + Σ(Traffic_adj_n * H_in_n)
          - Σ(Traffic_X * H_out_n)
          + MOCq_X * MOC_X
          - MTq_X * MT_X     …(2)
 上記式(2)において、Traffic_Xは、基地局Xのセル内で発生している現在のトラフィック量、すなわち基地局Xで現在生じているトラフィック量(第1トラフィック量)を意味する。上記式(1)において、Traffic_adj_n (n=1, 2, …, N)はそれぞれ、基地局Xに隣接している複数の基地局adj_1, adj_2, …, adj_Nのセル内で発生している現在のトラフィック量、すなわち各基地局で現在生じているトラフィック量(第2トラフィック量)を意味する。なお、式(2)の各項で、Σはn=1, 2, …, Nにおける総和である。
 上記式(2)において、H_in_n(n=1, 2, …, N)は、基地局Xに隣接している複数の基地局adj_1, adj_2, …, adj_Nの各々から基地局Xに移動局のハンドオーバによって流入するトラフィック量の割合、いわばハンドオーバによる流入率の統計値である。よって、式(2)の第2項(Σ(Traffic_adj_n
* H_in_n))は、隣接基地局から基地局Xに流入するトラフィック量の総和の予測値を意味する。なお、上記流入率は例えば、比較的長期間のサンプルを平均化して算出し、移動平均値をとること等により逐次更新していくことが好ましい。
 上記式(2)において、H_out_n(n=1, 2, …, N)は、基地局Xに隣接している複数の基地局adj_1, adj_2, …, adj_Nの各々に対して基地局Xから移動局のハンドオーバによって流出するトラフィック量の割合、いわばハンドオーバによる流出率の統計値である。よって、式(2)の第3項(Σ(Traffic_X * H_out_n))は、隣接基地局に対して基地局Xから流出するトラフィック量の総和の予測値を意味する。なお、上記流出率は例えば、比較的長期間のサンプルを平均化して算出し、移動平均値をとること等により逐次更新していくことが好ましい。
 上記式(2)において、MOCq_Xは、基地局X内で発生する発呼および着呼によって発生するトラフィック量の平均値(統計値)である。MOC_Xは、基地局X内で発生する発呼および着呼の率(統計値)である。MOCq_Xは例えば、基地局X内で発生する発呼および着呼によって生ずる、1日のトラフィック量の平均値(統計値)である。MOC_Xは例えば、基地局X内のすべての移動局のうち発呼または着呼を生じさせる移動局の時間ごとの割合である。この場合、式(2)の第4項(MOCq_X * MOC_X)は、1日のうちの所望の時刻において基地局X内で発生する発呼および着呼によって生ずるトラフィック量の予測値を意味する。MOCq_XおよびMOC_Xは曜日又は時間ごとに大きく異なる統計値となることが想定されるため、曜日および時間ごとに逐次サンプルを取得して基地局X内でMOCq_XおよびMOC_Xを更新していくことが好ましい。MOCq_XおよびMOC_Xの更新は例えば、曜日および時間ごとのサンプルについて移動平均値をとることによって行われる。
 上記式(2)において、MTq_Xは、基地局X内で終了する呼によって消失するトラフィック量の平均値(統計値)である。MT_Xは、基地局X内で終了する呼の率(統計値)である。MTq_Xは例えば、基地局X内で終了する呼によって消失する、1日のトラフィック量の平均値(統計値)である。MT_Xは例えば、基地局X内のすべての移動局のうち呼を終了させる移動局の時間ごとの割合である。この場合、式(2)の第5項(MTq_X * MT_X)は、1日のうちの所望の時刻において基地局X内で終了する呼によって消失するトラフィック量の予測値を意味する。MTq_XまたはMT_Xは曜日又は時間ごとに大きく異なる統計値となることが想定されるため、曜日および時間ごとに逐次サンプルを取得して基地局X内でMTq_XおよびMT_Xを更新していくことが好ましい。MTq_XおよびMT_Xの更新は例えば、曜日および時間ごとのサンプルについて移動平均値をとることによって行われる。
 式(2)の算出に当たって使用される各統計値は、基地局Xの記憶部20(図5参照)に記憶されることになる。
 第1の実施形態と本実施形態の指標値の算出方法を比較すると、以下のとおりである。
 先ず、第1の実施形態における指標値は、現在の基地局Xと隣接基地局のトラフィック量の総和から算出した基地局Xの将来のトラフィック量の予測値であり、基地局Xの将来のトラフィック量としては多く見積もり過ぎている状況が考えられる。かかる状況下では、ハンドオーバされる移動局の通信の劣化を確実に回避するという観点では好ましいが、必要以上に第1セル構成(通常セル構成)を採る傾向が高くなり、省電力性能がある程度犠牲にされうる。これに対し、本実施形態の指標値の算出方法は、上述したように、基地局Xのハンドオーバによるトラフィック量の流入および流出、さらには自局内の呼の発生および消失が考慮され、第1の実施形態のものと比較して、より高精度で将来のトラフィック量を予測することが可能となる。例えば、上記式(2)に基づいて現在よりも所定時間経過した後の基地局Xにおけるトラフィック量が高精度で予測され、この予測値に基づいて現在における基地局Xの状態を選択することができる。これにより、本実施形態の指標値の算出方法によれば、第1セル構成(通常セル構成)と第2セル構成(省電力セル構成)を、第1の実施形態よりも適切に選択することができる。すなわち、本実施形態では、移動局の通信継続性と省電力性能を高いレベルで両立することができる。
 上述したように、本実施形態では、サービスエリア内の各基地局が上記式(2)に基づいて現在よりも所定時間経過した後の自局のトラフィック量を予測することが好ましいが、ここでの所定時間は任意に設定することができる。例えば、この所定時間は、第1セル構成(通常セル構成)と第2セル構成(省電力セル構成)の間の遷移時間を確保できる程度に長く設定されるようにしてもよい。
 なお、本実施形態において、上記式(2)で使用される統計値が各基地局で逐次更新されていく点について述べた。しかしながら、第2セル構成(省電力セル構成)の下では、第2状態(省電力状態)となった基地局は、自局が第1状態(通常稼動状態)のときにカバーすべきセルの領域(以下、「領域A1」とする。)における統計値を、サンプルとして自ら取得することができない。そこで、第2セル構成の下では、第3状態となった基地局(以下、「基地局Y1」とする。)は、第2状態となった基地局(以下、「基地局Y2」とする。)のために、基地局Y2が第1状態のときにカバーすべきセルの領域における統計値を、サンプルとして取得しておく。そして、基地局Y1は、基地局Y2の電源が復帰した後の適切なタイミング、例えば第2セル構成から第1セル構成に遷移したタイミングで、第2セル構成の下で取得しておいたサンプルを基地局Y2へ提供することが好ましい。これにより、基地局Y2は、セル構成如何に関わらず、継続して統計値を適切に更新し続けることが可能となる。
 なお、上記処理を行うに当たり、基地局Y1は、基地局Y2が第1状態のときにカバーすべきセルの領域(上記領域A1)における統計値をサンプルとして取得するため、領域A1の地理的情報を予め保持しておく。また、基地局Y1は、第2セル構成の下で接続している各移動局の位置情報(例えばGPS(Global
Positioning System)情報)を取得し、その移動局に関するトラフィック量を算出するときに、上記領域A1に含まれるか否かを逐次確認する。これにより、基地局Y1は、上記領域A1におけるサンプルをその他の領域におけるサンプルを区別できるようになる。
 上記式(2)において、第2項以降の各項について必ずしもすべての項を含まなくてもよい。例えば、ハンドオーバのみを考慮して第2、第3項のみから指標値を算出してもよいし、大きな値を見積もるために第1項に加算される第2、4項のみを考慮して指標値を算出してもよい。
 (3)第3の実施形態
 以下、第3の実施形態について説明する。
 (3-1)移動通信システム
 本実施形態の移動通信システムでは、サービスエリア内のすべての基地局の指標値を管理する制御装置として、EMS又はOPSを備える点で、上記各実施形態と相違する。以下に示す例では、制御装置としてのEMSが、各基地局の指標値に基づいて各基地局の状態の選択、セル構成の決定を一元的に行う。
 図8に、本実施形態の移動通信システムの概要例を示す。サービスエリア内の各基地局eNB10~16は、外部のEMS100と通信リンク(有線、無線を問わない。)と接続されており、この通信リンクによって本実施形態の制御が行われる。なお、EMS100で指標値を算出するに当たった適用される算出方法は、上記各実施形態で示したものを適用することができる。本実施形態の各基地局の構成は概ね図5に示したものと同一でよいが、本実施形態の基地局では、制御部18が指標値の算出、および状態の選択処理を行わなくてもよい。
 図9は、本実施形態のEMSの概略構成を示すブロック図である。
 図9に示すように、本実施形態のEMSは、サービスエリア内の基地局eNB10~16と上記通信リンクによる通信を行うための伝送路インタフェース21、制御部22および記憶部23を備える。
 制御部22は、マイクロコントローラを主体として構成され、EMS内部の各種の制御、所要の信号処理を行う。記憶部23は、制御部22で行われる制御に要するデータを記憶している。記憶部23は、データの読み出し、書き込みのために制御部22によってアクセスされうる。
 制御部22は、伝送路インタフェース21を介して各基地局のトラフィック量を取得する。
 制御部22は、例えば、基地局ごとに、基地局のトラフィック量と、その基地局の隣接基地局のトラフィック量とに基づいて、上記(1)式に示した指標値を算出する。制御部22はさらに、算出した指標値を所定の閾値と比較することによって、各基地局の状態(第1、第2または第3状態のいずれか)を決定する。すなわち、セル構成が決定される。制御部22は、決定した各基地局の状態を伝送路インタフェース21を介して各基地局へ通知する。
 制御部22が上記(2)式に示した指標値を算出する場合には、各基地局から各種の統計値を算出するためのサンプルが伝送路インタフェース21を介して各基地局から提供される。各種の統計値は記憶部23で一元的に保持され、制御部22によって逐次更新される。
 (3-2)送信パラメータの制御方法
 次に、図10を参照して、サービスエリア内の各基地局とEMSの間で実行される送信パラメータの制御方法の一例について説明する。図10は、各基地局と、EMSとで実行される処理を示すフローチャートである。図10に示すフローチャートは、上記(1)式に従って指標値を算出する場合について示してあるが、他の指標値の算出方法(例えば式(2)の算出方法)についても適用できることは明らかである。
 図10において先ず、各基地局において制御部18により自局のトラフィック量が測定され(ステップS30)、その測定結果が伝送路インタフェースによってEMSへ通知される(ステップS32)。
 EMSでは、制御部22が基地局ごとに、ステップS32で通知される各基地局のトラフィック量に基づいて、上記(1)式に示した指標値を算出する(ステップS34)。EMSでは、制御部22がさらに、ステップS34で算出した指標値を所定の閾値と比較することによって、基地局ごとに状態(第1、第2または第3状態のいずれか)を決定する。すなわち、セル構成が決定される。(ステップS36)。決定された基地局ごとの状態は各基地局へ通知される(ステップS38)。各基地局は、ステップS38で通知される状態となるように所要の処理を実行する(ステップS40)。この所要の処理には、電源遮断による稼動停止処理、又は送信パラメータの調整処理が含まれる。
 以上説明したように、本実施形態の移動通信システムによれば、サービスエリア内のセル構成の変更がEMSによって一元的に行われるようにした。これにより第1および第2の実施形態と同様の作用効果を奏することは明らかである。
 以上、本発明の実施形態について詳細に説明したが、本発明の通信装置、制御装置、送信パラメータの調整方法は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 (変形例)
 セル構成の変更では、基地局の処理の負荷が急増しないような方法で送信パラメータを円滑に変更することが好ましい。かかる観点から、セル構成の変更の前後における送信パラメータの好ましい変更方法について、図11を参照して説明する。
 図11では、横軸を時間、縦軸を送信パラメータとしての基地局eNB10および基地局eNB15の無線送信電力、を示している。ここで、時刻t0では第1セル構成(通常セル構成)にあり、基地局eNB10,15共に第1状態(通常稼動状態)である。時刻t3~t4では第2セル構成(省電力セル構成)であり、基地局eNB10は第2状態(省力化状態)であり、基地局eNB15は第3状態(送信電力を上げた状態)である。時刻t7では再び第1セル構成(通常セル構成)にあり、基地局eNB10,15共に第1状態(通常稼動状態)である。すなわち、時刻t0~t7では、トラフィックの減少および増加に伴ってセル構成が第1セル構成→第2セル構成→第1セル構成と推移していく状態を示している。図11では一例として、第1状態の送信電力を50%、第2状態の送信電力を0%、第3状態の送信電力を100%、としている。
 このとき、状態変更の過渡期間、すなわち、図11の時刻t0~t3および時刻t4~t7において、基地局eNB10と基地局eNB15の間で連携して、通信帯域を分割した領域ごと(図11では一例として、帯域F1, F2, F3)に、徐々に送信電力を変化させる。このとき、過渡期間の間、すべての帯域で同程度の変化率で送信電力を変化させてもよく、また、図11に示すように帯域ごとに時間差をもって変化させてもよい。図11では一例として、時刻t1で基地局eNB15は帯域F1の送信電力を50%→100%と変化させ、基地局eNB10は帯域F1の送信電力を50%→0%と変化させる。また、図11では一例として、時刻t0~t3において基地局eNB15は帯域F2, F3の送信電力を50%→100%と徐々に変化させ、基地局eNB10は帯域F2, F3の送信電力を50%→0%と徐々に変化させる。帯域ごとに基地局で収容可能な移動局の数はほぼ決まっているので、基地局eNB10と基地局eNB15の間で連携して帯域ごとに送信電力を変化させることで、上記過渡期間における移動局のハンドオーバを基地局eNB10と基地局eNB15の間で円滑に行うことができる。そのため、各基地局における基地局の処理の負荷が、セル構成の変更の前後で急増しないようになる。
 上述した記述では、基地局によってセルが形成され、セルの領域を制御する基地局の送信パラメータを調整対象であるものとして説明した。しかしながら、単一のセルを形成する複数のセクタ単位で基地局が送信パラメータを調整対象に構成されている場合には、基地局がセクタごとの通信装置によって構成されていると見なすことができる。この場合、基地局を構成する通信装置ごとに、送信パラメータが調整される。すなわち、基地局を構成する通信装置ごとに状態(第1、第2または第3状態のいずれかの状態)が選択または決定される。
 eNB…基地局(通信装置)
  10…アンテナ
  12…受信部
  13…復調復号部
  14…伝送路インタフェース
  15…呼処理部
  16…符号化変調部
  17…送信部
  18…制御部
  19…送信パラメータ調整部
  20…記憶部
 EMS…エレメント管理システム(制御装置)
  21…伝送路インタフェース
  22…制御部
  23…記憶部

Claims (13)

  1.  セルを形成して移動局と無線通信を行うとともに、他の通信装置と通信リンクによって接続されている通信装置であって、
     自装置のセル内で第1時刻において生じているトラフィック量である第1トラフィック量を取得する第1情報取得部と、
     自装置と隣接する第2通信装置との通信によって、当該第2通信装置の各々のセル内で前記第1時刻において生じているトラフィック量である第2トラフィック量を取得する第2情報取得部と、
     前記第1トラフィック量及び前記第2トラフィック量に基づいて、前記第1時刻よりも将来における自装置のセル内のトラフィック量の予測値を算出する算出部と、
     前記予測値に基づいて自装置の送信パラメータを調整する調整部と、
     を備えた、通信装置。
  2.  第1統計値として、日時ごとの自装置と第2通信装置の各々のセル間の移動局のハンドオーバの発生率、を記憶する第1記憶部、を備え、
     前記算出部はさらに、前記第1統計値を参照し、前記第1時刻よりも所定時間経過した後の前記ハンドオーバの発生率に基づいて前記予測量を算出する、
     請求項1に記載された、通信装置。
  3.  第2統計値として、日時ごとに自装置のセル内で発生するトラフィック量、および自装置のセル内で終了するトラフィック量、を記憶する第2記憶部、を備え、
     前記算出部はさらに、前記第2統計値を参照し、前記第1時刻よりも所定時間経過した後に自装置のセル内で発生する第3トラフィック量、および自装置のセル内で終了する第4トラフィック量に基づいて前記予測量を算出する、
     請求項1又は2に記載された、通信装置。
  4.  日時ごとのサンプルを取得して、前記第1統計値及び/又は前記第2統計値を逐次更新する、
     請求項2又は3に記載された、通信装置。
  5.  セルを形成して移動局と無線通信を行う複数の通信装置の各々と通信リンクによって接続され、前記各通信装置を制御する制御装置であって、
     第1通信装置のセル内で第1時刻において生じているトラフィック量である第1トラフィック量を取得する第1情報取得部と、
     前記第1通信装置と隣接する第2通信装置の各々のセル内で前記第1時刻において生じているトラフィック量である第2トラフィック量を取得する第2情報取得部と、
     前記第1トラフィック量及び前記第2トラフィック量に基づいて、前記第1時刻よりも将来における前記第1通信装置のセル内のトラフィック量の予測値を算出する算出部と、
     前記予測値に基づいて、前記第1通信装置に対して指示すべき送信パラメータを制御する制御部と、
     を備えた、制御装置。
  6.  第1統計値として、日時ごとの前記第1通信装置と前記第2通信装置の各々のセル間の移動局のハンドオーバの発生率、を記憶する第1記憶部、を備え、
     前記算出部はさらに、前記第1統計値を参照し、前記第1時刻よりも所定時間経過した後の前記ハンドオーバの発生率に基づいて前記予測量を算出する、
     請求項5に記載された、制御装置。
  7.  第2統計値として、日時ごとに前記第1通信装置のセル内で発生するトラフィック量、および第1通信装置のセル内で終了するトラフィック量、を記憶する第2記憶部、を備え、
     前記算出部はさらに、前記第2統計値を参照し、前記第1時刻よりも所定時間経過した後に第1通信装置のセル内で発生する第3トラフィック量、および第1通信装置のセル内で終了する第4トラフィック量に基づいて前記予測量を算出する、
     請求項5又は6に記載された、制御装置。
  8.  日時ごとのサンプルを取得して、前記第1統計値及び/又は前記第2統計値を逐次更新する、
     請求項6又は7に記載された、制御装置。
  9.  複数の通信装置を含む移動通信システムにおいて、通信装置の送信パラメータを調整する、送信パラメータの調整方法であって、
     第1通信装置のセル内で第1時刻において生じているトラフィック量である第1トラフィック量を取得し、
     前記第1通信装置と隣接する第2通信装置の各々のセル内で前記第1時刻において生じているトラフィック量である第2トラフィック量を取得し、
     前記第1トラフィック量及び前記第2トラフィック量に基づいて、前記第1時刻よりも将来における前記第1通信装置のセル内のトラフィック量の予測値を算出し、
     前記予測値に基づいて、前記第1通信装置の送信パラメータを調整する、
     ことを含む、送信パラメータの調整方法。
  10.  第1統計値として、日時ごとの前記第1通信装置と前記第2通信装置の各々のセル間の移動局のハンドオーバの発生率を記憶すること、を含み、
     前記予測値を算出することはさらに、前記第1統計値を参照し、前記第1時刻よりも所定時間経過した後の前記ハンドオーバの発生率に基づいて前記予測量を算出すること、を含む、
     請求項9に記載された、送信パラメータの調整方法。
  11.  第2統計値として、日時ごとに前記第1通信装置のセル内で発生するトラフィック量、および第1通信装置のセル内で終了するトラフィック量、を記憶すること、を含み、
     前記予測値を算出することはさらに、前記第2統計値を参照し、前記第1時刻よりも所定時間経過した後に第1通信装置のセル内で発生する第3トラフィック量、および第1通信装置のセル内で終了する第4トラフィック量に基づいて前記予測量を算出すること、を含む、
     請求項9又は10に記載された、送信パラメータの調整方法。
  12.  日時ごとのサンプルを取得して、前記第1統計値及び/又は前記第2統計値を逐次更新すること、を含む、
     請求項10又は11に記載された、送信パラメータの調整方法。
  13.  前記第1通信装置の送信パラメータの調整によって第1通信装置のセルの領域が減少させられ、かつ、前記第2通信装置が、第1通信装置のセルの領域の減少をカバーするように第2通信装置の送信パラメータを調整する場合には、
     第1通信装置と第2通信装置との間で送信パラメータの変化率が一致するように、協調して送信パラメータを調整すること、を含む
     請求項9~12のいずれかに記載された、送信パラメータの調整方法。
PCT/JP2010/004051 2010-06-17 2010-06-17 通信装置、制御装置、送信パラメータの調整方法 WO2011158298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012520165A JP5609974B2 (ja) 2010-06-17 2010-06-17 通信装置、制御装置、通信装置の制御方法
PCT/JP2010/004051 WO2011158298A1 (ja) 2010-06-17 2010-06-17 通信装置、制御装置、送信パラメータの調整方法
US13/690,987 US8792878B2 (en) 2010-06-17 2012-11-30 Communication device, control device, and method for adjusting transmission parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004051 WO2011158298A1 (ja) 2010-06-17 2010-06-17 通信装置、制御装置、送信パラメータの調整方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/690,987 Continuation US8792878B2 (en) 2010-06-17 2012-11-30 Communication device, control device, and method for adjusting transmission parameter

Publications (1)

Publication Number Publication Date
WO2011158298A1 true WO2011158298A1 (ja) 2011-12-22

Family

ID=45347728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004051 WO2011158298A1 (ja) 2010-06-17 2010-06-17 通信装置、制御装置、送信パラメータの調整方法

Country Status (3)

Country Link
US (1) US8792878B2 (ja)
JP (1) JP5609974B2 (ja)
WO (1) WO2011158298A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4149681B2 (ja) * 2001-04-09 2008-09-10 三星エスディアイ株式会社 リチウム二次電池及びリチウム二次電池の製造方法
US9585038B2 (en) * 2013-03-13 2017-02-28 Futurewei Technologies, Inc. Forward traffic announcements for enhanced resource reservation in high speed mobile relays
KR102292990B1 (ko) * 2015-11-20 2021-08-26 삼성전자 주식회사 상태 관련 정보 공유 방법 및 장치
EP3745761A1 (en) * 2019-05-28 2020-12-02 Samsung Electronics Co., Ltd. Virtualization of ran functions based on load of the base stations
WO2023050176A1 (en) * 2021-09-29 2023-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for adjusting parameter of power amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136442A (ja) * 1996-10-25 1998-05-22 At & T Corp 無線通信システムの自己調節のための方法
JPH11234739A (ja) * 1998-02-19 1999-08-27 Nec Saitama Ltd 無線基地局装置
JP2003111133A (ja) * 2001-09-27 2003-04-11 Nec Microsystems Ltd 移動体通信システムおよびそのトラフィック制御法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145842A (ja) 1996-11-08 1998-05-29 Nec Corp 無線基地局パワーセーブ移動通信システム
KR101026623B1 (ko) * 2005-10-14 2011-04-04 콸콤 인코포레이티드 기지국 전송 전력을 제어하기 위한 방법 및 장치
JP5359331B2 (ja) * 2009-02-05 2013-12-04 日本電気株式会社 基地局、無線通信システム、基地局の制御方法、無線通信方法、コンピュータプログラム、および移動局
JP5212182B2 (ja) * 2009-03-03 2013-06-19 富士通株式会社 ルータ、パケットルーティングプログラム、およびパケットルーティング方法
KR101676033B1 (ko) * 2010-01-08 2016-11-29 삼성전자주식회사 무선 통신 시스템에서 기지국의 전력 소모 감소 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136442A (ja) * 1996-10-25 1998-05-22 At & T Corp 無線通信システムの自己調節のための方法
JPH11234739A (ja) * 1998-02-19 1999-08-27 Nec Saitama Ltd 無線基地局装置
JP2003111133A (ja) * 2001-09-27 2003-04-11 Nec Microsystems Ltd 移動体通信システムおよびそのトラフィック制御法

Also Published As

Publication number Publication date
US8792878B2 (en) 2014-07-29
US20130109373A1 (en) 2013-05-02
JP5609974B2 (ja) 2014-10-22
JPWO2011158298A1 (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
EP2668804B1 (en) A method and a network node for determining an offset for selection of a cell of a first radio network node
JP5642164B2 (ja) 無線通信システム、無線基地局、及び通信制御方法
US8750876B2 (en) Methods and devices for adjusting resource management procedures in heterogeneous communication networks based on cell information
KR101477567B1 (ko) 무선 네트워크 자원 적응
US9344946B2 (en) Methods and arrangements in a network node
US9237519B2 (en) Managing power consumption of transmission circuitry in a wireless communication device
EP2566261A2 (en) Small base station and uplink power control method thereof
EP2807852B1 (en) Radio communication system
US20120108245A1 (en) Energy Reduction in Cooperating Radio Access Systems
EP2556704B1 (en) Method and arrangement in a wireless network for determining an uplink received power target value
JP4138769B2 (ja) 無線通信端末、無線通信方法、及び無線通信システム
WO2011151857A1 (ja) 通信装置、サービスエリア調整方法、移動通信システム
US20120134284A1 (en) Methods and Nodes in a Wireless Communication Network
EP2954735B1 (en) Efficient transmission parameter selection
JP5609974B2 (ja) 通信装置、制御装置、通信装置の制御方法
JP2013544039A (ja) 無線通信システム、基地局、管理サーバ及び無線通信方法
JP5423582B2 (ja) 無線基地局、無線パラメータの調整方法
JP2010219970A (ja) 無線パラメータ制御装置および制御方法ならびに制御システム
WO2009002241A1 (en) Adaptive handover in a cellular wireless access network
WO2015081570A1 (en) Method for scheduling user equipment in a heterogeneous network
US9265014B2 (en) Wireless communication system, management station, and method for managing
EP2485543A1 (en) Wireless communication system, large cell base station and communication control method
EP2943003B1 (en) Small cell base station deployment in cellular networks
JP2010193415A (ja) 基地局装置
JP2017028464A (ja) 基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520165

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853181

Country of ref document: EP

Kind code of ref document: A1