WO2011155182A1 - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
WO2011155182A1
WO2011155182A1 PCT/JP2011/003202 JP2011003202W WO2011155182A1 WO 2011155182 A1 WO2011155182 A1 WO 2011155182A1 JP 2011003202 W JP2011003202 W JP 2011003202W WO 2011155182 A1 WO2011155182 A1 WO 2011155182A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial layer
layer
photoelectric conversion
solid
state imaging
Prior art date
Application number
PCT/JP2011/003202
Other languages
French (fr)
Japanese (ja)
Inventor
直人 山田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011155182A1 publication Critical patent/WO2011155182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14843Interline transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof

Definitions

  • the present invention relates to a solid-state imaging device, and more particularly to an interlaced type CMOS (Complementary Metal Oxide Semiconductor) type solid-state imaging device having a light shielding film.
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 1 the imaging region is composed of a photoelectric conversion region, a charge transfer electrode, a charge transfer region, a charge readout electrode, a charge readout region, an element isolation region, and the like.
  • FIG. 7A is a plan layout view of a general solid-state image sensor 101
  • FIG. 7B is a cross-sectional view (cross-sectional view taken along line A-A ′ in FIG. 7A) showing a schematic configuration of the solid-state image sensor 101.
  • epitaxial layers 111b and 111c are formed on a semiconductor substrate 111a, and a photoelectric conversion region 112 is formed in the epitaxial layer 111c.
  • the photoelectric conversion region 112 is composed of a hole accumulation layer 140 made of a p + layer formed in an upper layer, and an n + type diffusion layer 141 and a p well 120 formed in the lower layer.
  • the n + type diffusion layer 141 in the photoelectric conversion region 112 is formed up to a deep position of the epitaxial layer 111c in consideration of the formation of the hole accumulation layer 140 on the surface of the epitaxial layer 111c.
  • the n + -type diffusion layer 141 is not formed up to a position deeper than the film thickness of the epitaxial layer 111c.
  • a vertical transfer unit (vertical register) 116 is formed as a charge transfer region via a read gate (charge read region) 115.
  • the vertical transfer unit 116 includes an n-type layer 142 in the upper layer and a p-type layer 118a in the lower layer. Further, a p-type layer 118b constituting a pixel isolation region 118 that electrically isolates the pixel region (photoelectric conversion region 112) from other pixel regions in the horizontal direction is formed adjacent to the vertical transfer unit 116. .
  • a vertical transfer unit 116 of a pixel (unit cell) including another photoelectric conversion region 112 adjacent to the photoelectric conversion region 112 is formed via a p-type layer 118b.
  • a gate electrode 122 serving as a charge read electrode and a charge transfer electrode is formed via an insulating film 121 serving as a gate oxide film.
  • a light shielding film 133 having an opening 134 provided on the photoelectric conversion region 112 is formed via an interlayer insulating film.
  • An antireflection film 132 is formed in the opening 134, and an interlayer insulating film 131 is formed on the light shielding film 133.
  • FIGS. 7C and 7D are cross-sectional views for explaining a method for forming the solid-state imaging device 101 having the structure of FIGS. 7A and 7B.
  • a p-well 120 is formed in a substrate 111 composed of a semiconductor substrate 111a and epitaxial layers 111b and 111c. Thereafter, a protective film 160 is formed on the surface of the epitaxial layer 111c, a resist film 150 is formed by a lithography technique, and then an opening 151 is formed in the resist film 150.
  • the first conductivity type (n-type) of the photoelectric conversion region 112 is formed on the surface of the epitaxial layer 111c by an existing impurity doping technique (for example, ion implantation method) using the resist film 150 as a mask.
  • An island-like n + -type diffusion layer 141 as a region is formed.
  • the n + -type diffusion layer 141 is formed to a depth of 2 to 4 ⁇ m. The depth to be formed is determined in consideration of up to which range the light on the long wavelength side is photoelectrically converted.
  • 550 nm
  • 550 nm
  • a resist mask is formed each time by lithography technique and impurity doping technique, and the readout gate 115 having the opposite conductivity type in the photoelectric conversion region 112 (n + type diffusion layer 141), vertical transfer A p-type layer 118 a of the part 116 and a p-type layer 118 b of the pixel isolation region 118 are formed.
  • the lithography technique requires a high aspect ratio resist (for example, a resist film thickness of 6 ⁇ m or more and an aspect ratio of 15 or more) that prevents impurity doping by the ion implantation method. As a result, fine processing variations are likely to occur, and it is difficult to form the photoelectric conversion region 112 with a certain form with high accuracy.
  • Patent Document 1 proposes a structure having color filter groups of the same color on two adjacent pixels having different photoelectric conversion region depths for the purpose of generating an image with a wide dynamic range.
  • Patent Document 1 intends to increase sensitivity by controlling incident energy on the low illuminance side (shadow) and high illuminance side (highlight).
  • shadow low illuminance side
  • high illuminance side high light
  • An object of the present invention is to provide a solid-state imaging device capable of suppressing a decrease in sensitivity associated with a reduction in pixel size.
  • a solid-state imaging device includes a plurality of photoelectric conversion regions that photoelectrically convert incident light, a read gate for reading signal charges from the corresponding photoelectric conversion region, and the read gate by the read gate.
  • a first conductivity type second epitaxial layer formed on the first epitaxial layer, and the photoelectric conversion region is formed across the first epitaxial layer and the second epitaxial layer. It is characterized by that.
  • the first epitaxial layer is formed on the semiconductor substrate, and a part of the photoelectric conversion region is formed in an island shape by the existing lithography technique and impurity doping technique in the first epitaxial layer.
  • a second epitaxial layer is formed on the surface of the layer, and another part of the photoelectric conversion region is formed in an island shape so as to overlap with a part of the island-shaped photoelectric conversion region by the existing lithography technique and impurity doping technique.
  • the depth of the photoelectric conversion region can be arbitrarily set without using an ultra-high energy injection device, and patterning of the photoelectric conversion region can be performed without using a thick film resist having a high aspect ratio. it can. Therefore, the photoelectric conversion region in the imaging area can be processed and formed with high precision.
  • some of the plurality of photoelectric conversion regions may be formed in the second epitaxial layer without straddling the first epitaxial layer and the second epitaxial layer.
  • FIG. 1A is a plan layout diagram of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view (a cross-sectional view taken along line A-A ′ in FIG. 1A) showing a schematic configuration of the solid-state imaging device according to the embodiment.
  • FIG. 2A is a cross-sectional view showing a manufacturing process in the method for manufacturing the solid-state imaging device according to the embodiment.
  • FIG. 2B is a cross-sectional view showing a manufacturing process in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 2C is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 2D is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment.
  • FIG. 2E is a cross-sectional view showing the manufacturing process in the manufacturing method of the solid-state imaging element according to the embodiment.
  • FIG. 2F is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 3A is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging device according to the embodiment.
  • FIG. 3B is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 3C is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 3D is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 3E is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 4A is a cross-sectional view illustrating a schematic configuration of a modified example of the solid-state imaging device according to the embodiment.
  • FIG. 4B is a cross-sectional view illustrating a schematic configuration of a modified example of the solid-state imaging device according to the embodiment.
  • FIG. 4A is a cross-sectional view illustrating a schematic configuration of a modified example of the solid-state imaging device according to the embodiment.
  • FIG. 4B is a cross-sectional view illustrating a schematic configuration of a modified example of the solid-state imaging device according to
  • FIG. 5A is a cross-sectional view showing a schematic configuration of a solid-state imaging element according to the second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5C is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5D is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5E is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment.
  • FIG. 5F is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment.
  • FIG. 5G is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5H is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment.
  • FIG. 5I is a cross-sectional view showing the manufacturing process in the method for manufacturing the solid-state imaging device according to the embodiment.
  • FIG. 6 is a diagram illustrating an impurity concentration distribution in the photoelectric conversion region of the solid-state imaging device.
  • FIG. 7A is a plan layout diagram of a general solid-state imaging device.
  • FIG. 7A is a plan layout diagram of a general solid-state imaging device.
  • FIG. 7B is a cross-sectional view (a cross-sectional view taken along the line A-A ′ in FIG. 7A) showing a schematic configuration of a general solid-state imaging device.
  • FIG. 7C is a cross-sectional view for explaining a general method for forming a solid-state imaging device.
  • FIG. 7D is a cross-sectional view for explaining a general method for forming a solid-state imaging element.
  • FIG. 1A is a plan layout view of the solid-state image sensor 1
  • FIG. 1B is a cross-sectional view (cross-sectional view taken along line AA ′ in FIG. 1A) showing a schematic configuration of the solid-state image sensor 1.
  • a semiconductor substrate 11a such as a silicon substrate
  • a conversion region 12 is formed.
  • the substrate 11 includes a semiconductor substrate 11a, a first epitaxial layer 11b formed on the semiconductor substrate 11a, and a second epitaxial layer 11c formed on the first epitaxial layer 11b.
  • a read gate 15 and a transfer unit 16 are formed inside.
  • each of the plurality of photoelectric conversion regions 12 is formed across the first epitaxial layer 11b and the second epitaxial layer 11c.
  • the plurality of photoelectric conversion regions 12 are arranged in a matrix (matrix).
  • the photoelectric conversion region 12 formed across the first epitaxial layer 11b and the second epitaxial layer 11c is a region that photoelectrically converts incident light, and is an n-type layer (first layer) of the same conductivity type. ) 41a and n-type layer (second layer) 41b, p + -type hole accumulation layer 40 and p-type layer (p-well) 20.
  • the photoelectric conversion region 12 after the second epitaxial layer 11c is formed on the first epitaxial layer 11b on which the n-type layer 41a and the p-type layer 20 are formed, the n-type layer 41b is formed on the second epitaxial layer 11c. And the hole accumulation layer 40 is formed.
  • the n-type layer 41a is formed only on the first epitaxial layer 11b, but the n-type layer 41b is formed across the first epitaxial layer 11b and the second epitaxial layer 11c, and the n-type layer 41b is formed. It overlaps with the whole or a part of the layer 41a.
  • the n-type layer 41a and the n-type layer 41b are electrically connected.
  • the photoelectric conversion region 12 includes a hole accumulation layer 40 in the upper layer, and includes n-type layers 41 a and 41 b and a p-type layer 20 in the lower layer.
  • the n-type layer 41b is formed so that the n-type layer 41a and the n-type layer 41b overlap each other when the second epitaxial layer 11c is viewed from the surface.
  • a process alignment mark used for determination is formed.
  • the film thickness of the second epitaxial layer 11c is 5 ⁇ m or less. By setting the film thickness to 5 ⁇ m or less, impurities can be injected with high accuracy and can be reliably connected to the first epitaxial layer 11b.
  • the first epitaxial layer 11b is formed with a film thickness of 3 to 5 ⁇ m, for example.
  • the second epitaxial layer 11c is formed with a film thickness of, for example, 1 to 3 ⁇ m.
  • the first epitaxial layer 11b and the second epitaxial layer 11c are formed so that their resistance values are, for example, 0.1 to 100 ⁇ ⁇ cm for an n-type layer.
  • a pixel separation region (pixel horizontal separation region) 18, that is, a readout gate (charge readout region) 15, a transfer unit (vertical transfer unit) 16 as a charge transfer region, and a p-type layer 18b. Is formed.
  • Read gate 15 is provided corresponding to each of the plurality of photoelectric conversion regions 12, and reads signal charges from the corresponding photoelectric conversion regions 12.
  • the transfer unit 16 is a transfer path for transferring the signal charges read by the read gate 15, and includes an n-type layer 42 in the upper layer and a p-type layer 18a in the lower layer.
  • a p-type layer 20 that forms a vertical overflow drain is formed below the photoelectric conversion region 12.
  • Adjacent to the transfer unit 16, a p-type layer 18b for electrically separating the pixel region from other pixel regions in the horizontal direction is formed.
  • An antireflection film 32 that prevents reflection of incident light entering the substrate 11 is formed above the hole accumulation layer 40 in the upper layer of the photoelectric conversion region 12.
  • the refractive index of the antireflection film 32 is larger than the refractive index of the substrate 11 and smaller than the refractive index of the interlayer insulating film on the antireflection film 32.
  • a gate insulating film 21 is formed on the surface of the substrate 11, and a gate electrode 22 serving as a charge readout electrode and a charge transfer electrode is formed on the gate insulating film 21.
  • the gate electrode 22 is formed with a one-layer structure, but may be formed with a two-layer structure, a three-layer structure, or a four-layer structure.
  • the gate electrode 22 is preferably formed immediately above the read gate 15 and the transfer unit 16 as shown in the figure.
  • An interlayer insulating film 31 covering the gate electrode 22 and the gate insulating film 21 is formed on the surface of the substrate 11. Further, a light shielding film 33 having an opening formed above the photoelectric conversion region 12 is formed between the interlayer insulating film 31 and the gate electrode 22 and the gate insulating film 21.
  • FIGS. 2A to 2F are cross-sectional views showing manufacturing steps in the method for manufacturing the solid-state imaging device 1.
  • a first conductive type first epitaxial layer 11b is formed on a semiconductor substrate 11a by a chemical vapor deposition method (for example, CVD: Chemical Vapor Deposition) at a high temperature of 1100 ° C. or higher. Form. Thereafter, a protective film 60 made of an oxide film or a nitride film is formed on the surface of the first epitaxial layer 11b with a film thickness of 5 to 50 nm, for example.
  • CVD Chemical Vapor Deposition
  • a resist film 50 in which the openings 51 are formed is formed by a lithography fluffy technique.
  • the resist film 50 has a thickness of 1 to 3 ⁇ m and an aspect ratio of 10 or less.
  • a plurality of n-type layers 41a serving as photoelectric conversion regions are formed in the first epitaxial layer 11b by an impurity doping technique (for example, ion implantation method).
  • the n-type layer 41a is formed of, for example, atoms having a large mass such as Sb that is difficult to outdope.
  • the n-type layer 41a is made to be the first epitaxial layer so that the n-type impurity concentration on the surface is less than 10 ⁇ 10 atoms / cm 3. Formed in layer 11b.
  • the protective film 60 is removed by an etching technique (for example, wet etching).
  • a second epitaxial layer 11c is formed on the surface of the first epitaxial layer 11b by, for example, chemical vapor deposition (for example, CVD) at a high temperature of 1100 ° C. or higher.
  • CVD chemical vapor deposition
  • a protective film 61 made of an oxide film or a nitride film is formed on the surface of the second epitaxial layer 11c with a film thickness of, for example, 5 to 50 nm.
  • a p-type layer (p well) 20 is formed below the n-type layer 41a to be the photoelectric conversion region 12 by a resist mask and an ion implantation method.
  • a vertical overflow drain is formed by the p-type layer 20, and an electronic shutter voltage is set by the p-type layer 20.
  • a resist film 50 having an opening 51 formed on the surface of the second epitaxial layer 11c is formed.
  • the resist film 50 has a thickness of 2 to 5 ⁇ m and an aspect ratio of 10 or less.
  • an n-type layer 41b to be the photoelectric conversion region 12 is formed in the second epitaxial layer 11c by an impurity doping technique (for example, ion implantation method).
  • a plurality of n-type layers 41b are formed so as to correspond to the n-type layer 41a, and are electrically connected to the corresponding n-type layer 41a.
  • an alignment mark formed on the surface of the first epitaxial layer 11b is used.
  • a p-type layer that electrically separates the photoelectric conversion region 12 and the transfer unit 16 between a pair of the plurality of n-type layers 41 a and 41 b, that is, between the plurality of photoelectric conversion regions 12.
  • the read gate 15 and the p-type layers 18a and 18b are formed by a lithography technique and an impurity doping technique, for example, by forming a resist mask each time.
  • the gate insulating film 21, the gate electrode 22, the antireflection film 32, and the like are formed on the surface of the second epitaxial layer 11c.
  • FIGS. 3A to 3E are cross-sectional views of the solid-state imaging device 1 showing the process of forming the alignment mark.
  • the alignment mark is formed in a region around the solid-state imaging device or a position around the semiconductor wafer. There is a mark for alignment in each manufacturing process.
  • a resist film 50 in which an opening 51 is formed is formed, and an n-type layer 41a is formed by using this.
  • a resist film (not shown) having an opening formed only in the alignment mark region is formed.
  • the surface of the first epitaxial layer 11 b and the protective film 60 above the n-type layer 41 a is covered with a resist film 50.
  • the resist film 50 is etched using the protective film 60 as a hard mask by an etching technique (for example, dry etching), and the alignment mark is transferred to the surface of the first epitaxial layer 11b.
  • the step of the alignment mark is 0.2 ⁇ m or more.
  • the surface of the first epitaxial layer 11b is exposed by removing the protective film 60 by an etching technique (for example, wet etching), and then the second epitaxial layer 11c is formed.
  • an etching technique for example, wet etching
  • the first epitaxial layer 11b formed on the semiconductor substrate 11a has the first purpose of suppressing the decrease in sensitivity due to the reduction in pixel size.
  • the island-shaped n-type layer 41a is formed, and the second island-shaped n-type layer 41b is formed on the entire surface of the n-type layer 41a or the second epitaxial layer 11c formed on the surface of the first epitaxial layer 11b. It is formed so as to overlap a part, and is realized by forming the transfer portion 16 and the read gate 15 on the surface of the second epitaxial layer 11c.
  • the photoelectric conversion region 12 is formed at the same time as each epitaxial layer, it is possible to form a fine and deep photoelectric conversion region by the existing lithography technique and impurity doping technique (for example, ion implantation method). Therefore, it is possible to improve sensitivity and dynamic range.
  • impurity doping technique for example, ion implantation method
  • the lateral size of the n-type layer 41b is smaller than that of the n-type layer 41a, and as shown in FIG. 4A, both side ends of the n-type layer 41b are n-type layers. You may be located inside the both ends of 41a. By doing in this way, the photoelectric conversion area
  • the first epitaxial layer 11b may be formed with a conductivity type opposite to that of the photoelectric conversion region 12 (n-type layer 41b).
  • FIG. 5A is a cross-sectional view showing a schematic configuration of the solid-state imaging device 1. Note that the planar layout of the solid-state imaging device 1 according to the present embodiment is the same as FIG. 1A, and FIG. 5A is a cross-sectional view taken along the line AA ′ in FIG.
  • a first conductivity type first epitaxial layer 11b and a first conductivity type second epitaxial layer 11c on the surface of a semiconductor substrate 11a such as a silicon substrate are formed.
  • the photoelectric conversion region 12 is straddled (continuously across the first epitaxial layer 11b and the second epitaxial layer 11c across the boundary between the first epitaxial layer 11b and the second epitaxial layer 11c).
  • a photoelectric conversion region 12 is formed in each of the first epitaxial layer 11b and the second epitaxial layer 11c independently in an island shape.
  • a second pixel comprising are arranged adjacent.
  • a part of the plurality of photoelectric conversion regions 12 is formed across the first epitaxial layer 11b and the second epitaxial layer 11c, and the other part of the plurality of photoelectric conversion regions 12 is the first.
  • the first epitaxial layer 11b and the second epitaxial layer 11c are formed so as not to straddle.
  • the photoelectric conversion region 12 formed across the first epitaxial layer 11b and the second epitaxial layer 11c and the first epitaxial layer 11b and the second epitaxial layer 11c were formed so as not to straddle.
  • a plurality of photoelectric conversion regions 12 are arranged in a matrix (matrix) so that the photoelectric conversion regions 12 are alternately arranged in the row direction and the column direction.
  • the photoelectric conversion region 12 formed across the first epitaxial layer 11b and the second epitaxial layer 11c is a region that photoelectrically converts incident light, and is an n-type layer (first layer) of the same conductivity type. ) 41a, n-type layer (second layer) 41b, n-type layer 41c, p + -type hole accumulation layer 40, and p-type layer (p-well) 20.
  • the n-type layer 41b is formed on the second epitaxial layer 11c.
  • the n-type layer 41c and the hole accumulation layer 40 are formed.
  • the n-type layer 41a is formed on the first epitaxial layer 11b, and the n-type layer 41c is formed on the second epitaxial layer 11c.
  • the n-type layer 41b is formed across the first epitaxial layer 11b and the second epitaxial layer 11c, and overlaps the whole or a part of the n-type layer 41a.
  • the n-type layer 41a and the n-type layer 41b are electrically connected.
  • the photoelectric conversion region 12 includes a hole accumulation layer 40 in the upper layer and n-type layers 41 a, 41 b and 41 c and a p-type layer 20 in the lower layer.
  • the photoelectric conversion region 12 formed without straddling the first epitaxial layer 11b and the second epitaxial layer 11c is a region for photoelectrically converting incident light, and the first epitaxial layer 11b and the second epitaxial layer.
  • the n-type layer and the p-type layer 20 formed so as to straddle the layer 11c are not included, and the n-type layer 41a, the n-type layer 41c, the p-type layer (p-well) 20a, and the hole accumulation layer 40 are included.
  • the p-type layer 20 is formed on the first epitaxial layer 11b, while the p-type layer 20a is formed on the second epitaxial layer 11c.
  • the second epitaxial layer 11c is formed on the first epitaxial layer 11b on which the n-type layer 41a is formed, and then the n-type layer 41c and the hole accumulation layer 40 are formed on the second epitaxial layer 11c. And p-type layer 20a.
  • the n-type layer 41a and the n-type layer 41c are formed so as not to straddle the first epitaxial layer 11b and the second epitaxial layer 11c, respectively, and are electrically separated.
  • the photoelectric conversion region 12 includes a hole accumulation layer 40 in the upper layer, and includes n-type layers 41a and 41c and a p-type layer 20a in the lower layer.
  • the n-type layer 41b is formed so that the n-type layer 41a and the n-type layer 41b overlap each other when the second epitaxial layer 11c is viewed from the surface.
  • a process alignment mark used for determination is formed.
  • the film thickness of the second epitaxial layer 11c is 5 ⁇ m or less.
  • the first epitaxial layer 11b is formed with a film thickness of 3 to 5 ⁇ m, for example.
  • the second epitaxial layer 11c is formed with a film thickness of, for example, 1 to 3 ⁇ m.
  • the first epitaxial layer 11b and the second epitaxial layer 11c are formed so that their resistance values are, for example, 0.1 to 100 ⁇ ⁇ cm for an n-type layer.
  • a pixel separation region (pixel horizontal separation region) 18, that is, a readout gate 15, a transfer unit (vertical transfer unit) 16, and a p-type layer 18b are formed on the side of the photoelectric conversion region 12.
  • the transfer unit 16 includes an n-type layer 42 in the upper layer and p-type layers 18a and 18c in the lower layer.
  • p-type layers 20 and 20a that form a vertical overflow drain are formed under the photoelectric conversion region 12.
  • a p-type layer 18 b is formed adjacent to the transfer unit 16.
  • An antireflection film 32 that prevents reflection of incident light entering the substrate 11 is formed above the hole accumulation layer 40 in the upper layer of the photoelectric conversion region 12.
  • the refractive index of the antireflection film 32 is larger than the refractive index of the substrate and smaller than the refractive index of the interlayer insulating film on the antireflection film 32.
  • a gate insulating film 21 is formed on the surface of the substrate 11, and a gate electrode 22 serving as a charge readout electrode and a charge transfer electrode is formed on the gate insulating film 21.
  • the gate electrode 22 is formed with a one-layer structure, but may be formed with a two-layer structure, a three-layer structure, or a four-layer structure.
  • the gate electrode 22 is preferably formed immediately above the read gate 15 and the transfer unit 16 as shown in the figure.
  • An interlayer insulating film 31 covering the gate electrode 22 and the gate insulating film 21 is formed on the surface of the substrate 11. Further, a light shielding film 33 having an opening formed above the photoelectric conversion region 12 is formed between the interlayer insulating film 31 and the gate electrode 22 and the gate insulating film 21.
  • FIGS. 5B to 5I are cross-sectional views showing manufacturing steps in the method for manufacturing the solid-state imaging device 1.
  • FIG. 5B to 5I are cross-sectional views showing manufacturing steps in the method for manufacturing the solid-state imaging device 1.
  • a first conductivity type first epitaxial layer 11b is formed on a semiconductor substrate 11a by, for example, chemical vapor deposition (eg, CVD) at a high temperature of 1100 ° C. or higher.
  • a protective film 60 made of an oxide film or a nitride film is formed on the surface of the first epitaxial layer 11b with a film thickness of 5 to 50 nm, for example.
  • a resist film 50 in which the openings 51 are formed is formed by a lithography fluffy technique.
  • the resist film 50 has a thickness of 1 to 3 ⁇ m and an aspect ratio of 10 or less.
  • a plurality of n-type layers 41a serving as photoelectric conversion regions are formed in the first epitaxial layer 11b by an impurity doping technique (for example, ion implantation method).
  • the n-type layer 41a is formed of, for example, atoms having a large mass such as Sb that is difficult to outdope.
  • the n-type layer 41a is made to be the first epitaxial layer so that the n-type impurity concentration on the surface is less than 10 ⁇ 10 atoms / cm 3. Formed in layer 11b.
  • a resist film 50 in which the openings 51 are formed is formed on the surface of the first epitaxial layer 11b by lithography, and a plurality of resist films 50 are formed by impurity doping (for example, ion implantation).
  • a p-type layer 18a that electrically isolates the n-type layer 41a is formed on the side of the n-type layer 41a (between a plurality of n-type layers 41a).
  • a resist film 50 having an opening 51 formed above a part of the plurality of n-type layers 41a is formed on the surface of the first epitaxial layer 11b. Then, after forming the p-type layer 20 below a part of the n-type layer 41a by ion implantation, the protective film 60 is removed by an etching technique (for example, wet etching).
  • the second epitaxial layer 11c is formed on the surface of the first epitaxial layer 11b by, for example, chemical vapor deposition (CVD) at a high temperature of 1100 ° C. or higher.
  • CVD chemical vapor deposition
  • a protective film 61 made of an oxide film or a nitride film is formed on the surface of the second epitaxial layer 11c with a film thickness of 5 to 50 nm, for example.
  • a resist film 50 having an opening 51 is formed on the surface of the second epitaxial layer 11c, and n which becomes the photoelectric conversion region 12 in the second epitaxial layer 11c by an impurity doping technique (for example, ion implantation method).
  • a mold layer 41c is formed.
  • an opening 51 is formed above a part of the plurality of n-type layers 41c, and a resist mask having a form corresponding to the depth of ion implantation is formed on the surface of the second epitaxial layer 11c.
  • the n-type layer 41b is formed as a connection layer so that the n-type layer 41c and the n-type layer 41a below the opening 51 are electrically connected, and the solid-state imaging device 1 having the photoelectric conversion regions 12 having different depths.
  • alignment marks formed on the surface of the first epitaxial layer 11b are used so that a part or the whole of the n-type layer 41b overlaps both the n-type layers 41a and 41c with high accuracy.
  • the read gate 15 which is a p-type layer to be electrically separated and the p-type layers 18a, 18b and 18c are formed by lithography and impurity doping techniques, for example, by forming a resist mask each time.
  • a p-type layer 20a is formed below the n-type layer 41c where the n-type layer 41b is not formed below by an existing lithography technique and impurity doping technique.
  • region 12 differs, by forming the p-type layer 20a, it is a fixed position from the area
  • a p-type layer is set. Therefore, the vertical overflow drain is optimized for each pixel (for each photoelectric conversion region 12), and the voltage applied during the electronic shutter can be made the same.
  • a gate insulating film 21, a gate electrode 22, an antireflection film 32, and the like are formed on the surface of the second epitaxial layer 11c.
  • the solid-state image pickup device 1 formed by the above manufacturing method becomes a solid-state image pickup device that can obtain the effects as described in the first embodiment.
  • FIG. 6 is a diagram showing the impurity concentration distribution in the depth direction (normal direction of the substrate surface) of the n-type layer constituting the photoelectric conversion region in the substrate of the solid-state imaging device.
  • 6A shows an impurity concentration distribution in a general solid-state imaging device
  • FIG. 6B shows an impurity concentration distribution in the solid-state imaging device 1 of the present embodiment.
  • the solid line shows the concentration distribution of the n-type impurity in each n-type layer constituting the photoelectric conversion region
  • the broken line shows the concentration distribution when the concentration of the n-type impurity in each n-type layer is combined. Is shown.
  • the spread of the impurity concentration distribution is large at a deep position of the substrate (C portion in FIG. 6 (a)), but as shown in FIG. 6 (b).
  • the spread of the impurity concentration distribution is small at a deep position of the substrate (D portion in FIG. 6B).
  • the solid-state imaging device of the present invention has been described based on the embodiment.
  • the present invention is not limited to this embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
  • the n-type is exemplified as the first conductivity type
  • the p-type is exemplified as the second conductivity type opposite to the first conductivity type.
  • the first conductivity type is the p-type
  • the second conductivity type may be n-type.
  • the present invention is suitable for a solid-state imaging device and a method for manufacturing the same, and is suitable for application to, for example, an imaging device of various imaging apparatuses.

Abstract

Disclosed is a solid-state imaging element in which the deterioration in sensitivity associated with the reduction in pixel sizes can be avoided. The solid-state imaging element has a substrate (11) having, formed thereon, multiple photoelectric conversion regions (12) which can photoelectrically convert incident light, read-out gates (15) which can read out signal charges from the corresponding photoelectric conversion regions (12) and transfer units (16) which can transfer the signal charges that have been read out by the read-out gates (15), wherein the substrate (11) comprises a semiconductor substrate (11a), a first epitaxial layer (11b) of a first conductivity type formed on the semiconductor substrate (11a), and a second epitaxial layer (11c) of the first conductivity type formed on the first epitaxial layer (11b), and each of the photoelectric conversion regions (12) lies astride the first epitaxial layer (11b) and the second epitaxial layer (11c).

Description

固体撮像素子Solid-state image sensor
 本発明は、固体撮像素子に関し、詳しくは遮光膜を有するインターレース式およびCMOS(Complementary Metal Oxide Semiconductor)型の固体撮像素子に関するものである。 The present invention relates to a solid-state imaging device, and more particularly to an interlaced type CMOS (Complementary Metal Oxide Semiconductor) type solid-state imaging device having a light shielding film.
 近年、固体撮像素子は、多画素化が進められ、画素寸法の微細化も進む一方である。固体撮像素子には、従来からCCD(Charge Coupled Device)型の固体撮像素子が多く用いられている。このようなCCD型の固体撮像素子を開示する技術として、例えば特許文献1がある。特許文献1において、撮像領域は光電変換領域、電荷転送電極、電荷転送領域、電荷読み出し電極、電荷読み出し領域、および素子分離領域等で構成されている。 In recent years, the number of pixels of solid-state image sensors has been increased, and the pixel dimensions have been reduced. Conventionally, a CCD (Charge Coupled Device) type solid-state image sensor is often used as the solid-state image sensor. As a technique for disclosing such a CCD type solid-state imaging device, there is, for example, Patent Document 1. In Patent Document 1, the imaging region is composed of a photoelectric conversion region, a charge transfer electrode, a charge transfer region, a charge readout electrode, a charge readout region, an element isolation region, and the like.
特開2007-266036号公報JP 2007-266036 A
 図7Aは一般的な固体撮像素子101の平面レイアウト図であり、図7Bは同固体撮像素子101の概略構成を示す断面図(図7AにおけるA-A’線の断面図)である。 7A is a plan layout view of a general solid-state image sensor 101, and FIG. 7B is a cross-sectional view (cross-sectional view taken along line A-A ′ in FIG. 7A) showing a schematic configuration of the solid-state image sensor 101.
 この固体撮像素子101では、図7Aおよび図7Bに示すように、半導体基板111a上にエピタキシャル層111bおよび111cが形成されており、エピタキシャル層111c内に光電変換領域112が形成されている。 In this solid-state imaging device 101, as shown in FIGS. 7A and 7B, epitaxial layers 111b and 111c are formed on a semiconductor substrate 111a, and a photoelectric conversion region 112 is formed in the epitaxial layer 111c.
 この光電変換領域112は、上層に形成されたp+層からなるホールアキュムレーション層140と、その下層に形成されたn+型拡散層141およびpウェル120とからなる。この光電変換領域112のn+型拡散層141は、エピタキシャル層111c表面にホールアキュムレーション層140が形成されることを考慮してエピタキシャル層111cの深い位置まで形成される。ただし、n+型拡散層141は、エピタキシャル層111cの膜厚以上の深い位置までは、形成されない。 The photoelectric conversion region 112 is composed of a hole accumulation layer 140 made of a p + layer formed in an upper layer, and an n + type diffusion layer 141 and a p well 120 formed in the lower layer. The n + type diffusion layer 141 in the photoelectric conversion region 112 is formed up to a deep position of the epitaxial layer 111c in consideration of the formation of the hole accumulation layer 140 on the surface of the epitaxial layer 111c. However, the n + -type diffusion layer 141 is not formed up to a position deeper than the film thickness of the epitaxial layer 111c.
 光電変換領域112の一方側には、読み出しゲート(電荷読み出し領域)115を介して、電荷転送領域として垂直転送部(垂直レジスタ)116が形成されている。この垂直転送部116は、上層にn型層142を備え、その下層にp型層118aを備えている。さらに、この垂直転送部116に隣接して、画素領域(光電変換領域112)を他の画素領域から水平方向に電気的に分離する画素分離領域118を構成するp型層118bが形成されている。 On one side of the photoelectric conversion region 112, a vertical transfer unit (vertical register) 116 is formed as a charge transfer region via a read gate (charge read region) 115. The vertical transfer unit 116 includes an n-type layer 142 in the upper layer and a p-type layer 118a in the lower layer. Further, a p-type layer 118b constituting a pixel isolation region 118 that electrically isolates the pixel region (photoelectric conversion region 112) from other pixel regions in the horizontal direction is formed adjacent to the vertical transfer unit 116. .
 光電変換領域112の他方側には、p型層118bを介してこの光電変換領域112に隣接する別の光電変換領域112を含む画素(単位セル)の垂直転送部116が形成されている。垂直転送部116および読み出しゲート115上には、ゲート酸化膜となる絶縁膜121を介して、電荷読み出し電極および電荷転送電極となるゲート電極122が形成されている。さらに、層間絶縁膜を介して、光電変換領域112上に開口部134が設けられた遮光膜133が形成されている。そして、開口部134内には反射防止膜132が形成され、遮光膜133上には層間絶縁膜131が形成されている。 On the other side of the photoelectric conversion region 112, a vertical transfer unit 116 of a pixel (unit cell) including another photoelectric conversion region 112 adjacent to the photoelectric conversion region 112 is formed via a p-type layer 118b. On the vertical transfer unit 116 and the read gate 115, a gate electrode 122 serving as a charge read electrode and a charge transfer electrode is formed via an insulating film 121 serving as a gate oxide film. Further, a light shielding film 133 having an opening 134 provided on the photoelectric conversion region 112 is formed via an interlayer insulating film. An antireflection film 132 is formed in the opening 134, and an interlayer insulating film 131 is formed on the light shielding film 133.
 図7Cおよび図7Dは、図7Aおよび図7Bの構造を有する固体撮像素子101の形成方法を説明するための断面図である。 7C and 7D are cross-sectional views for explaining a method for forming the solid-state imaging device 101 having the structure of FIGS. 7A and 7B.
 まず、図7Cに示すように、半導体基板111aとエピタキシャル層111bおよび111cとから構成される基板111内にpウェル120を形成する。その後、エピタキシャル層111c表面上に保護膜160を形成し、リソグラフィ技術によってレジスト膜150を形成した後、レジスト膜150に開口部151を形成する。 First, as shown in FIG. 7C, a p-well 120 is formed in a substrate 111 composed of a semiconductor substrate 111a and epitaxial layers 111b and 111c. Thereafter, a protective film 160 is formed on the surface of the epitaxial layer 111c, a resist film 150 is formed by a lithography technique, and then an opening 151 is formed in the resist film 150.
 次いで、図7Cに示すように、レジスト膜150をマスクとした既存の不純物ドーピング技術(例えば、イオン注入法)によって、エピタキシャル層111c表面に、光電変換領域112の第一導電型(n型)の領域としての島状のn+型拡散層141を形成する。n+型拡散層141は、2~4μmの深さまで形成する。形成する深さは、どの範囲まで長波長側の光を光電変換させるかを考慮して決められる。たとえば、赤色(λ=550nm)の波長の光は、エピタキシャル層111c表面上から3μm以上の深さで光電変換される。n+型拡散層141を深く形成することで、画素の感度(ダイナミックレンジ)を増加させることができる。 Next, as shown in FIG. 7C, the first conductivity type (n-type) of the photoelectric conversion region 112 is formed on the surface of the epitaxial layer 111c by an existing impurity doping technique (for example, ion implantation method) using the resist film 150 as a mask. An island-like n + -type diffusion layer 141 as a region is formed. The n + -type diffusion layer 141 is formed to a depth of 2 to 4 μm. The depth to be formed is determined in consideration of up to which range the light on the long wavelength side is photoelectrically converted. For example, light having a wavelength of red (λ = 550 nm) is photoelectrically converted at a depth of 3 μm or more from the surface of the epitaxial layer 111c. By forming the n + -type diffusion layer 141 deeply, the sensitivity (dynamic range) of the pixel can be increased.
 次いで、図7Dに示すように、リソグラフィ技術および不純物ドーピング技術により、その都度レジストマスクを形成して、光電変換領域112(n+型拡散層141)の逆の導電型の読み出しゲート115、垂直転送部116のp型層118aおよび画素分離領域118のp型層118bを形成する。 Next, as shown in FIG. 7D, a resist mask is formed each time by lithography technique and impurity doping technique, and the readout gate 115 having the opposite conductivity type in the photoelectric conversion region 112 (n + type diffusion layer 141), vertical transfer A p-type layer 118 a of the part 116 and a p-type layer 118 b of the pixel isolation region 118 are formed.
 ところで、図7Aおよび図7Bの固体撮像素子101では、エピタキシャル層111c表面から2~4μmに光電変換領域112のn+型拡散層141を形成するには、たとえば、イオン注入法では、数千keVの加速エネルギーが必要である。従って、リソグラフィ技術では、イオン注入法による不純物ドーピングを阻止する高アスペクト化レジスト(たとえば、レジスト膜厚が6μm以上、アスペクト比が15以上のレジスト)が必要である。その結果、微細加工ばらつきが生じやすく、光電変換領域112を一定の形態で高精度に形成することが困難であるため、画素サイズのシュリンク(縮小)に対応することが困難である。 7A and 7B, in order to form the n + -type diffusion layer 141 of the photoelectric conversion region 112 from 2 to 4 μm from the surface of the epitaxial layer 111c, for example, in the ion implantation method, several thousand keV is used. Accelerating energy is required. Therefore, the lithography technique requires a high aspect ratio resist (for example, a resist film thickness of 6 μm or more and an aspect ratio of 15 or more) that prevents impurity doping by the ion implantation method. As a result, fine processing variations are likely to occur, and it is difficult to form the photoelectric conversion region 112 with a certain form with high accuracy.
 また、さらなる多画素化が進むに従って、画素サイズのさらなるシュリンクが必要になってきている。しかし画素特性の維持は必要なため、感度(ダイナミックレンジ)悪化を抑えつつ、これ以上の光電変換領域の面積拡大および面積維持が困難である。従って、固体撮像素子の多画素化の要求に応じて固体撮像素子を微細化するには、入射した光を光電変換する領域を深さ方向に増やすことが必要となる。特許文献1では、広ダイナミックレンジの画像生成を目的として、光電変換領域の深さが異なる2つの隣接する画素上に同一色のカラーフィルター群を有する構造が提案されている。すなわち、特許文献1は、低照度側(シャドウ)と高照度側(ハイライト)の入射エネルギー制御による高感度化を意図している。しかしながら、更なる高感度化の要求から光電変換領域の微細化かつ高い精度での深さ方向への拡大(深さ拡大)が必要である。 Also, as the number of pixels increases, further shrinking of pixel size is required. However, since it is necessary to maintain the pixel characteristics, it is difficult to further increase the area and maintain the area of the photoelectric conversion region while suppressing deterioration in sensitivity (dynamic range). Therefore, in order to miniaturize the solid-state image sensor in response to the demand for increasing the number of pixels of the solid-state image sensor, it is necessary to increase the area for photoelectric conversion of incident light in the depth direction. Patent Document 1 proposes a structure having color filter groups of the same color on two adjacent pixels having different photoelectric conversion region depths for the purpose of generating an image with a wide dynamic range. That is, Patent Document 1 intends to increase sensitivity by controlling incident energy on the low illuminance side (shadow) and high illuminance side (highlight). However, in order to further increase the sensitivity, it is necessary to make the photoelectric conversion region finer and expand in the depth direction (depth expansion) with high accuracy.
 本発明の目的は、画素サイズの縮小にともなう感度低下を抑制することができる固体撮像素子を提供することである。 An object of the present invention is to provide a solid-state imaging device capable of suppressing a decrease in sensitivity associated with a reduction in pixel size.
 本発明の一観点の固体撮像素子は、入射光を光電変換する複数の光電変換領域と、対応する前記光電変換領域から信号電荷を読み出すための読み出しゲートと、前記読み出しゲートによって読み出された前記信号電荷の転送を行うための転送部とが形成された基板を備え、前記基板は、半導体基板と、前記半導体基板上に形成された第1導電型の第1のエピタキシャル層と、前記第1のエピタキシャル層上に形成された第1導電型の第2のエピタキシャル層とを含み、前記光電変換領域が、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成されていることを特徴とする。 A solid-state imaging device according to an aspect of the present invention includes a plurality of photoelectric conversion regions that photoelectrically convert incident light, a read gate for reading signal charges from the corresponding photoelectric conversion region, and the read gate by the read gate. A substrate on which a transfer unit for transferring signal charges is formed, the substrate including a semiconductor substrate, a first conductivity type first epitaxial layer formed on the semiconductor substrate, and the first substrate A first conductivity type second epitaxial layer formed on the first epitaxial layer, and the photoelectric conversion region is formed across the first epitaxial layer and the second epitaxial layer. It is characterized by that.
 この構成により、半導体基板上に第1のエピタキシャル層を形成し、第1のエピタキシャル層に既存のリソグラフィ技術と不純物ドーピング技術とにより光電変換領域の一部を島状に形成し、第1のエピタキシャル層表面上に第2のエピタキシャル層を形成し、既存のリソグラフィ技術と不純物ドーピング技術とにより島状の光電変換領域の一部と重なるように光電変換領域の別の一部を島状に形成して島状の領域を電気的に接続することで、既存の技術で深い光電変換領域を形成することが可能になる。その結果、特に高波長側の光電変換率を増加させて高感度化が可能になるため、画素サイズの縮小にともなう感度低下を抑制できる。 With this configuration, the first epitaxial layer is formed on the semiconductor substrate, and a part of the photoelectric conversion region is formed in an island shape by the existing lithography technique and impurity doping technique in the first epitaxial layer. A second epitaxial layer is formed on the surface of the layer, and another part of the photoelectric conversion region is formed in an island shape so as to overlap with a part of the island-shaped photoelectric conversion region by the existing lithography technique and impurity doping technique. By connecting the island-shaped regions electrically, it is possible to form a deep photoelectric conversion region using existing technology. As a result, it is possible to increase the sensitivity by increasing the photoelectric conversion rate particularly on the high wavelength side, and therefore it is possible to suppress a decrease in sensitivity due to the reduction in pixel size.
 また、超高エネルギー注入装置を使用することなく、光電変換領域の深さを任意に設定することができ、また光電変換領域のパターニングも高アスペクト比の厚膜レジストを使用することなく行うことができる。従って、撮像エリア内の光電変換領域を微細かつ高精度に加工形成できる。 In addition, the depth of the photoelectric conversion region can be arbitrarily set without using an ultra-high energy injection device, and patterning of the photoelectric conversion region can be performed without using a thick film resist having a high aspect ratio. it can. Therefore, the photoelectric conversion region in the imaging area can be processed and formed with high precision.
 ここで、前記複数の光電変換領域の一部は、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がらないで前記第2のエピタキシャル層に形成されていてもよい。 Here, some of the plurality of photoelectric conversion regions may be formed in the second epitaxial layer without straddling the first epitaxial layer and the second epitaxial layer.
 この構成により、撮像エリア内で2つのエピタキシャル層に跨がって形成された光電変換領域と、2つのエピタキシャル層に跨がらない光電変換領域とを形成することができ、深さの異なる光電変換領域を形成することができる。従って、カラーフィルター毎つまり光電変換する色毎に最適な深さの光電変換領域を設けることが可能になり、隣接する画素からのウェルを通した光の進入(混色)の低減が可能となる。 With this configuration, it is possible to form a photoelectric conversion region formed across two epitaxial layers in the imaging area and a photoelectric conversion region that does not straddle two epitaxial layers. Regions can be formed. Therefore, it is possible to provide a photoelectric conversion region having an optimum depth for each color filter, that is, for each color to be subjected to photoelectric conversion, and it is possible to reduce the entry (color mixing) of light from adjacent pixels through a well.
 本発明によれば、画素サイズの縮小にともなう感度低下を抑制できるという効果が奏される。 According to the present invention, there is an effect that it is possible to suppress a decrease in sensitivity associated with a reduction in pixel size.
図1Aは、本発明の第1の実施の形態に係る固体撮像素子の平面レイアウト図である。FIG. 1A is a plan layout diagram of the solid-state imaging device according to the first embodiment of the present invention. 図1Bは、同実施の形態に係る固体撮像素子の概略構成を示す断面図(図1AにおけるA-A’線の断面図)である。FIG. 1B is a cross-sectional view (a cross-sectional view taken along line A-A ′ in FIG. 1A) showing a schematic configuration of the solid-state imaging device according to the embodiment. 図2Aは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 2A is a cross-sectional view showing a manufacturing process in the method for manufacturing the solid-state imaging device according to the embodiment. 図2Bは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 2B is a cross-sectional view showing a manufacturing process in the method for manufacturing the solid-state imaging element according to the embodiment. 図2Cは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 2C is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment. 図2Dは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 2D is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment. 図2Eは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 2E is a cross-sectional view showing the manufacturing process in the manufacturing method of the solid-state imaging element according to the embodiment. 図2Fは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 2F is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment. 図3Aは、同実施の形態に係る固体撮像素子の製造方法におけるアライメントマークの形成工程を示す断面図である。FIG. 3A is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging device according to the embodiment. 図3Bは、同実施の形態に係る固体撮像素子の製造方法におけるアライメントマークの形成工程を示す断面図である。FIG. 3B is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment. 図3Cは、同実施の形態に係る固体撮像素子の製造方法におけるアライメントマークの形成工程を示す断面図である。FIG. 3C is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment. 図3Dは、同実施の形態に係る固体撮像素子の製造方法におけるアライメントマークの形成工程を示す断面図である。FIG. 3D is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment. 図3Eは、同実施の形態に係る固体撮像素子の製造方法におけるアライメントマークの形成工程を示す断面図である。FIG. 3E is a cross-sectional view showing the alignment mark forming step in the method of manufacturing the solid-state imaging element according to the embodiment. 図4Aは、同実施の形態に係る固体撮像素子の変形例の概略構成を示す断面図である。FIG. 4A is a cross-sectional view illustrating a schematic configuration of a modified example of the solid-state imaging device according to the embodiment. 図4Bは、同実施の形態に係る固体撮像素子の変形例の概略構成を示す断面図である。FIG. 4B is a cross-sectional view illustrating a schematic configuration of a modified example of the solid-state imaging device according to the embodiment. 図5Aは、本発明の第2の実施の形態に係る固体撮像素子の概略構成を示す断面図である。FIG. 5A is a cross-sectional view showing a schematic configuration of a solid-state imaging element according to the second embodiment of the present invention. 図5Bは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5B is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment. 図5Cは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5C is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment. 図5Dは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5D is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment. 図5Eは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5E is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment. 図5Fは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5F is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment. 図5Gは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5G is a cross-sectional view showing a manufacturing step in the method for manufacturing the solid-state imaging element according to the embodiment. 図5Hは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5H is a cross-sectional view showing a manufacturing step in the manufacturing method of the solid-state imaging element according to the embodiment. 図5Iは、同実施の形態に係る固体撮像素子の製造方法における製造工程を示す断面図である。FIG. 5I is a cross-sectional view showing the manufacturing process in the method for manufacturing the solid-state imaging device according to the embodiment. 図6は、固体撮像素子の光電変換領域の不純物濃度分布を示す図である。FIG. 6 is a diagram illustrating an impurity concentration distribution in the photoelectric conversion region of the solid-state imaging device. 図7Aは、一般的な固体撮像素子の平面レイアウト図である。FIG. 7A is a plan layout diagram of a general solid-state imaging device. 図7Bは、一般的な固体撮像素子の概略構成を示す断面図(図7AにおけるA-A’線の断面図)である。FIG. 7B is a cross-sectional view (a cross-sectional view taken along the line A-A ′ in FIG. 7A) showing a schematic configuration of a general solid-state imaging device. 図7Cは、一般的な固体撮像素子の形成方法を説明するための断面図である。FIG. 7C is a cross-sectional view for explaining a general method for forming a solid-state imaging device. 図7Dは、一般的な固体撮像素子の形成方法を説明するための断面図である。FIG. 7D is a cross-sectional view for explaining a general method for forming a solid-state imaging element.
 以下、本発明の実施の形態における固体撮像素子について、図面を参照しながら説明する。 Hereinafter, a solid-state imaging device according to an embodiment of the present invention will be described with reference to the drawings.
 (第1の実施の形態)
 本実施の形態に係るCCD型の固体撮像素子1について図1Aおよび図1Bを用いて説明する。図1Aは同固体撮像素子1の平面レイアウト図であり、図1Bは同固体撮像素子1の概略構成を示す断面図(図1AにおけるA-A’線の断面図)である。
(First embodiment)
A CCD type solid-state imaging device 1 according to the present embodiment will be described with reference to FIGS. 1A and 1B. FIG. 1A is a plan layout view of the solid-state image sensor 1, and FIG. 1B is a cross-sectional view (cross-sectional view taken along line AA ′ in FIG. 1A) showing a schematic configuration of the solid-state image sensor 1.
 この固体撮像素子1では、図1Bに示すように、たとえばシリコン基板等の半導体基板11a表面上の第1導電型(n型)の第1のエピタキシャル層11bと第1導電型の第2のエピタキシャル層11cとに跨がって(第1のエピタキシャル層11bと第2のエピタキシャル層11cとの境界を横切る形で、第1のエピタキシャル層11bと第2のエピタキシャル層11cとにわたって連続して)光電変換領域12が形成されている。基板11は、半導体基板11aと、半導体基板11a上に形成された第1のエピタキシャル層11bと、第1のエピタキシャル層11b上に形成された第2のエピタキシャル層11cとを含み、光電変換領域12、読み出しゲート15および転送部16が内部に形成されている。 In the solid-state imaging device 1, as shown in FIG. 1B, a first conductivity type (n-type) first epitaxial layer 11b and a first conductivity type second epitaxial layer on the surface of a semiconductor substrate 11a such as a silicon substrate, for example. Over the layer 11c (continuously across the first epitaxial layer 11b and the second epitaxial layer 11c across the boundary between the first epitaxial layer 11b and the second epitaxial layer 11c) A conversion region 12 is formed. The substrate 11 includes a semiconductor substrate 11a, a first epitaxial layer 11b formed on the semiconductor substrate 11a, and a second epitaxial layer 11c formed on the first epitaxial layer 11b. A read gate 15 and a transfer unit 16 are formed inside.
 この固体撮像素子1では、複数の光電変換領域12のそれぞれは、第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成されている。複数の光電変換領域12は、マトリクス状(行列状)に配置されている。 In the solid-state imaging device 1, each of the plurality of photoelectric conversion regions 12 is formed across the first epitaxial layer 11b and the second epitaxial layer 11c. The plurality of photoelectric conversion regions 12 are arranged in a matrix (matrix).
 第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成された光電変換領域12は、入射光を光電変換する領域であり、同じ導電型のn型層(第1の層)41aおよびn型層(第2の層)41b、p+型のホールアキュムレーション層40並びにp型層(pウェル)20を含む。この光電変換領域12は、n型層41aおよびp型層20が形成された第1のエピタキシャル層11b上に第2のエピタキシャル層11cを形成した後、第2のエピタキシャル層11cにn型層41bおよびホールアキュムレーション層40を形成することにより形成される。n型層41aは第1のエピタキシャル層11bにのみ形成されているが、n型層41bは第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成されており、n型層41aの全体又は一部と重なっている。n型層41aとn型層41bとは、電気的に接続されている。光電変換領域12は、上層にホールアキュムレーション層40を備え、下層にn型層41aおよび41bならびにp型層20を備えている。 The photoelectric conversion region 12 formed across the first epitaxial layer 11b and the second epitaxial layer 11c is a region that photoelectrically converts incident light, and is an n-type layer (first layer) of the same conductivity type. ) 41a and n-type layer (second layer) 41b, p + -type hole accumulation layer 40 and p-type layer (p-well) 20. In the photoelectric conversion region 12, after the second epitaxial layer 11c is formed on the first epitaxial layer 11b on which the n-type layer 41a and the p-type layer 20 are formed, the n-type layer 41b is formed on the second epitaxial layer 11c. And the hole accumulation layer 40 is formed. The n-type layer 41a is formed only on the first epitaxial layer 11b, but the n-type layer 41b is formed across the first epitaxial layer 11b and the second epitaxial layer 11c, and the n-type layer 41b is formed. It overlaps with the whole or a part of the layer 41a. The n-type layer 41a and the n-type layer 41b are electrically connected. The photoelectric conversion region 12 includes a hole accumulation layer 40 in the upper layer, and includes n- type layers 41 a and 41 b and a p-type layer 20 in the lower layer.
 第1のエピタキシャル層11bの表面上には、n型層41aとn型層41bとが第2のエピタキシャル層11cを表面からみたとき重なる位置にあるようにn型層41bの形成でその位置を決定するために用いられる工程位置合わせマークが形成されている。第2のエピタキシャル層11cの膜厚は5μm以下である。膜厚を5μm以下とすることで、不純物を精度良く注入することができ、また、第1のエピタキシャル層11bとも確実に接続できる。 On the surface of the first epitaxial layer 11b, the n-type layer 41b is formed so that the n-type layer 41a and the n-type layer 41b overlap each other when the second epitaxial layer 11c is viewed from the surface. A process alignment mark used for determination is formed. The film thickness of the second epitaxial layer 11c is 5 μm or less. By setting the film thickness to 5 μm or less, impurities can be injected with high accuracy and can be reliably connected to the first epitaxial layer 11b.
 第1のエピタキシャル層11bは、例えば3~5μmの膜厚で形成されている。また第2のエピタキシャル層11cは、例えば1~3μmの膜厚で形成されている。第1のエピタキシャル層11bおよび第2のエピタキシャル層11cは、その抵抗値がたとえばn型層で0.1~100Ω・cmとなるように形成されている。 The first epitaxial layer 11b is formed with a film thickness of 3 to 5 μm, for example. The second epitaxial layer 11c is formed with a film thickness of, for example, 1 to 3 μm. The first epitaxial layer 11b and the second epitaxial layer 11c are formed so that their resistance values are, for example, 0.1 to 100 Ω · cm for an n-type layer.
 光電変換領域12の側方には、画素分離領域(画素水平分離領域)18、つまり読み出しゲート(電荷読み出し領域)15、電荷転送領域としての転送部(垂直転送部)16、およびp型層18bが形成されている。 Beside the photoelectric conversion region 12, a pixel separation region (pixel horizontal separation region) 18, that is, a readout gate (charge readout region) 15, a transfer unit (vertical transfer unit) 16 as a charge transfer region, and a p-type layer 18b. Is formed.
 読み出しゲート15は、複数の光電変換領域12のそれぞれに対応して設けられ、対応する光電変換領域12から信号電荷を読み出す。 Read gate 15 is provided corresponding to each of the plurality of photoelectric conversion regions 12, and reads signal charges from the corresponding photoelectric conversion regions 12.
 転送部16は、読み出しゲート15によって読み出された信号電荷の転送を行うための転送路であり、その上層にn型層42を備え、その下層にp型層18aを備えている。光電変換領域12の下部には、垂直オーバーフロードレインを形成するp型層20が形成されている。転送部16に隣接して、画素領域を他の画素領域から水平方向に電気的に分離するためのp型層18bが形成されている。 The transfer unit 16 is a transfer path for transferring the signal charges read by the read gate 15, and includes an n-type layer 42 in the upper layer and a p-type layer 18a in the lower layer. A p-type layer 20 that forms a vertical overflow drain is formed below the photoelectric conversion region 12. Adjacent to the transfer unit 16, a p-type layer 18b for electrically separating the pixel region from other pixel regions in the horizontal direction is formed.
 光電変換領域12の上層のホールアキュムレーション層40上方に、基板11に進入する入射光の反射を防ぐ反射防止膜32が形成されている。反射防止膜32の屈折率は、基板11の屈折率より大きく、反射防止膜32上の層間絶縁膜の屈折率より小さい。 An antireflection film 32 that prevents reflection of incident light entering the substrate 11 is formed above the hole accumulation layer 40 in the upper layer of the photoelectric conversion region 12. The refractive index of the antireflection film 32 is larger than the refractive index of the substrate 11 and smaller than the refractive index of the interlayer insulating film on the antireflection film 32.
 基板11表面上にはゲート絶縁膜21が形成され、ゲート絶縁膜21上には電荷読み出し電極および電荷転送電極となるゲート電極22が形成されている。ゲート電極22は、1層構造で形成されているが、2層構造、3層構造、または4層構造で形成されてもよい。このゲート電極22は、図示したように、読み出しゲート15および転送部16の直上に形成されることが好ましい。 A gate insulating film 21 is formed on the surface of the substrate 11, and a gate electrode 22 serving as a charge readout electrode and a charge transfer electrode is formed on the gate insulating film 21. The gate electrode 22 is formed with a one-layer structure, but may be formed with a two-layer structure, a three-layer structure, or a four-layer structure. The gate electrode 22 is preferably formed immediately above the read gate 15 and the transfer unit 16 as shown in the figure.
 ゲート電極22およびゲート絶縁膜21を被覆する層間絶縁膜31が基板11表面上に形成されている。さらに層間絶縁膜31とゲート電極22およびゲート絶縁膜21との間には、光電変換領域12上方に開口部が形成された遮光膜33が形成されている。 An interlayer insulating film 31 covering the gate electrode 22 and the gate insulating film 21 is formed on the surface of the substrate 11. Further, a light shielding film 33 having an opening formed above the photoelectric conversion region 12 is formed between the interlayer insulating film 31 and the gate electrode 22 and the gate insulating film 21.
 以下、本実施の形態に係る固体撮像素子1の製造方法(光電変換領域12の詳細な製造方法)を図2A~図2Fに示す。図2A~図2Fは、同固体撮像素子1の製造方法における製造工程を示す断面図である。 Hereinafter, a manufacturing method of the solid-state imaging device 1 according to the present embodiment (a detailed manufacturing method of the photoelectric conversion region 12) is shown in FIGS. 2A to 2F. 2A to 2F are cross-sectional views showing manufacturing steps in the method for manufacturing the solid-state imaging device 1. FIG.
 まず、図2Aに示すように、半導体基板11a上に第1導電型の第1のエピタキシャル層11bを例えば、1100℃以上の高温での化学気相成長法(たとえば、CVD:Chemical Vapor Deposition)によって形成する。その後、第1のエピタキシャル層11b表面上に酸化膜もしくは窒化膜からなる保護膜60を例えば、5~50nmの膜厚で形成する。 First, as shown in FIG. 2A, a first conductive type first epitaxial layer 11b is formed on a semiconductor substrate 11a by a chemical vapor deposition method (for example, CVD: Chemical Vapor Deposition) at a high temperature of 1100 ° C. or higher. Form. Thereafter, a protective film 60 made of an oxide film or a nitride film is formed on the surface of the first epitaxial layer 11b with a film thickness of 5 to 50 nm, for example.
 次いで、図2Aに示すように、リソグフラフィー技術によって、開口部51が形成されたレジスト膜50を形成する。レジスト膜50は、例えば膜厚が1~3μm、アスペクト比が10以下とされる。そして、不純物ドーピング技術(例えば、イオン注入法)によって、第1のエピタキシャル層11bに光電変換領域となるn型層41aを複数形成する。n型層41aは、例えば、アウトドーピングし難いSb等の質量が大きい原子で形成される。なお、n型層41aの形成にAs等の軽い原子を使用する場合は、例えば、表面のn型不純物濃度が10-10atoms/cm3未満となるようにn型層41aを第1のエピタキシャル層11b内に形成する。n型層41aを形成後、保護膜60をエッチング技術(たとえば、ウエットエッチング)によって除去する。 Next, as shown in FIG. 2A, a resist film 50 in which the openings 51 are formed is formed by a lithography fluffy technique. For example, the resist film 50 has a thickness of 1 to 3 μm and an aspect ratio of 10 or less. Then, a plurality of n-type layers 41a serving as photoelectric conversion regions are formed in the first epitaxial layer 11b by an impurity doping technique (for example, ion implantation method). The n-type layer 41a is formed of, for example, atoms having a large mass such as Sb that is difficult to outdope. When light atoms such as As are used to form the n-type layer 41a, for example, the n-type layer 41a is made to be the first epitaxial layer so that the n-type impurity concentration on the surface is less than 10 −10 atoms / cm 3. Formed in layer 11b. After forming the n-type layer 41a, the protective film 60 is removed by an etching technique (for example, wet etching).
 次いで、図2Bに示すように、第1のエピタキシャル層11b表面上に第2のエピタキシャル層11cを例えば、1100℃以上の高温での化学気相成長法(たとえば、CVD)によって形成する。 Next, as shown in FIG. 2B, a second epitaxial layer 11c is formed on the surface of the first epitaxial layer 11b by, for example, chemical vapor deposition (for example, CVD) at a high temperature of 1100 ° C. or higher.
 次いで、図2Cに示すように、第2のエピタキシャル層11c表面上に酸化膜もしくは窒化膜からなる保護膜61を例えば、5~50nmの膜厚で形成する。その後、光電変換領域12が2次元状に形成される撮像エリアにおいてのみ、光電変換領域12となるn型層41a下方にp型層(pウェル)20をレジストマスクとイオン注入法によって形成する。p型層20により、垂直オーバーフロードレインを形成し、電子シャッター電圧をp型層20で設定する。 Next, as shown in FIG. 2C, a protective film 61 made of an oxide film or a nitride film is formed on the surface of the second epitaxial layer 11c with a film thickness of, for example, 5 to 50 nm. Thereafter, only in the imaging area in which the photoelectric conversion region 12 is formed in a two-dimensional form, a p-type layer (p well) 20 is formed below the n-type layer 41a to be the photoelectric conversion region 12 by a resist mask and an ion implantation method. A vertical overflow drain is formed by the p-type layer 20, and an electronic shutter voltage is set by the p-type layer 20.
 次いで、図2Dに示すように、第2のエピタキシャル層11c表面上に開口部51が形成されたレジスト膜50を形成する。レジスト膜50は、例えば、膜厚が2~5μm、アスペクト比が10以下とされる。そして、不純物ドーピング技術(たとえばイオン注入法)によって、第2のエピタキシャル層11cに光電変換領域12となるn型層41bを形成する。n型層41bは、n型層41aに対応するように複数形成され、対応するn型層41aと電気的に接続される。このとき、n型層41aとn型層41bとが精度良く重なるように形成するため、第1のエピタキシャル層11b表面上に形成されたアライメントマークを使用する。 Next, as shown in FIG. 2D, a resist film 50 having an opening 51 formed on the surface of the second epitaxial layer 11c is formed. For example, the resist film 50 has a thickness of 2 to 5 μm and an aspect ratio of 10 or less. Then, an n-type layer 41b to be the photoelectric conversion region 12 is formed in the second epitaxial layer 11c by an impurity doping technique (for example, ion implantation method). A plurality of n-type layers 41b are formed so as to correspond to the n-type layer 41a, and are electrically connected to the corresponding n-type layer 41a. At this time, in order to form the n-type layer 41a and the n-type layer 41b so as to overlap with high accuracy, an alignment mark formed on the surface of the first epitaxial layer 11b is used.
 次いで、図2Eに示すように、複数のn型層41aおよび41bのペアの間つまり複数の光電変換領域12の間に、光電変換領域12と転送部16とを電気的に分離するp型層である読み出しゲート15、ならびにp型層18aおよび18bの形成をリソグラフィ技術および不純物ドーピング技術によって、例えば、その都度レジストマスクを形成して行う。 Next, as shown in FIG. 2E, a p-type layer that electrically separates the photoelectric conversion region 12 and the transfer unit 16 between a pair of the plurality of n- type layers 41 a and 41 b, that is, between the plurality of photoelectric conversion regions 12. The read gate 15 and the p- type layers 18a and 18b are formed by a lithography technique and an impurity doping technique, for example, by forming a resist mask each time.
 次いで、図2Fに示すように、レジスト膜50と保護膜60を除去後、第2のエピタキシャル層11c表面上にゲート絶縁膜21およびゲート電極22および反射防止膜32等を形成する。 Next, as shown in FIG. 2F, after removing the resist film 50 and the protective film 60, the gate insulating film 21, the gate electrode 22, the antireflection film 32, and the like are formed on the surface of the second epitaxial layer 11c.
 ここで、n型層41bの形成で使用したアライメントマークの詳細な形成方法を図3A~図3Eに示す。図3A~図3Eは、アライメントマークの形成工程を示す固体撮像素子1の断面図であり、アライメントマークは、固体撮像素子の周辺の領域や、半導体ウエハの周辺などの位置に形成されるものであり、各製造工程での位置合わせの目印となる。 Here, a detailed method of forming the alignment mark used in forming the n-type layer 41b is shown in FIGS. 3A to 3E. 3A to 3E are cross-sectional views of the solid-state imaging device 1 showing the process of forming the alignment mark. The alignment mark is formed in a region around the solid-state imaging device or a position around the semiconductor wafer. There is a mark for alignment in each manufacturing process.
 まず、図3Aに示すように、開口部51が形成されたレジスト膜50を形成し、これを用いてn型層41aを形成する。 First, as shown in FIG. 3A, a resist film 50 in which an opening 51 is formed is formed, and an n-type layer 41a is formed by using this.
 次いで、図3Bに示すように、レジスト膜50をマスクにして、開口部51内に位置して表面が露出した保護膜60の部分の保護膜60のみをエッチング技術(例えば、ウエットエッチング)によって除去する。 Next, as shown in FIG. 3B, using the resist film 50 as a mask, only the protective film 60 in the portion of the protective film 60 that is located in the opening 51 and whose surface is exposed is removed by an etching technique (for example, wet etching). To do.
 次いで、図3Cに示すように、アライメントマーク領域のみに開口部が形成されたレジスト膜(図外)を形成する。 Next, as shown in FIG. 3C, a resist film (not shown) having an opening formed only in the alignment mark region is formed.
 次いで、図3Dに示すように、n型層41aの上方の第1のエピタキシャル層11bおよび保護膜60表面をレジスト膜50で覆う。 Next, as shown in FIG. 3D, the surface of the first epitaxial layer 11 b and the protective film 60 above the n-type layer 41 a is covered with a resist film 50.
 次いで、図3Eに示すように、エッチング技術(たとえば、ドライエッチング)によって保護膜60をハードマスクとしてレジスト膜50をエッチングし、第1のエピタキシャル層11b表面にアライメントマークを転写する。アライメントマークの段差は、0.2μm以上とする。 Next, as shown in FIG. 3E, the resist film 50 is etched using the protective film 60 as a hard mask by an etching technique (for example, dry etching), and the alignment mark is transferred to the surface of the first epitaxial layer 11b. The step of the alignment mark is 0.2 μm or more.
 次いで、エッチング技術(例えば、ウエットエッチング)で保護膜60を除去することで第1のエピタキシャル層11b表面を露出させた後、第2のエピタキシャル層11cの形成を行う。 Next, the surface of the first epitaxial layer 11b is exposed by removing the protective film 60 by an etching technique (for example, wet etching), and then the second epitaxial layer 11c is formed.
 以上のように本実施の形態の固体撮像素子1によれば、画素サイズの縮小にともなう感度低下を抑制するという目的を、半導体基板11a上に成膜された第1のエピタキシャル層11bに第1の島状のn型層41aを形成し、第1のエピタキシャル層11b表面上に成膜された第2のエピタキシャル層11cに第2の島状のn型層41bをn型層41aの全体もしくは一部と重なるように形成し、第2のエピタキシャル層11c表面に転送部16および読み出しゲート15を形成することによって実現する。従って、光電変換領域12は各エピタキシャル層と同時に形成されるため、既存のリソグラフィ技術および不純物ドーピング技術(たとえば、イオン注入法)で、微細かつ深い光電変換領域を形成することが可能となる。従って、感度およびダイナミックレンジを良化することが可能である。 As described above, according to the solid-state imaging device 1 of the present embodiment, the first epitaxial layer 11b formed on the semiconductor substrate 11a has the first purpose of suppressing the decrease in sensitivity due to the reduction in pixel size. The island-shaped n-type layer 41a is formed, and the second island-shaped n-type layer 41b is formed on the entire surface of the n-type layer 41a or the second epitaxial layer 11c formed on the surface of the first epitaxial layer 11b. It is formed so as to overlap a part, and is realized by forming the transfer portion 16 and the read gate 15 on the surface of the second epitaxial layer 11c. Therefore, since the photoelectric conversion region 12 is formed at the same time as each epitaxial layer, it is possible to form a fine and deep photoelectric conversion region by the existing lithography technique and impurity doping technique (for example, ion implantation method). Therefore, it is possible to improve sensitivity and dynamic range.
 なお、本実施の形態の固体撮像素子1において、n型層41bの側方への大きさはn型層41aより小さく、図4Aに示すように、n型層41bの両側端はn型層41aの両側端より内側に位置してもよい。このようにすることで、n型層41aである光電変換領域が広くなり、感度を向上させることができる。また、n型層41bの側方への大きさはn型層41aより大きく、図4Bに示すように、n型層41bの両側端はn型層41aの両側端より外側に位置していても良い。このようにすることで、深い位置まで到達した光が隣接画素に漏れこむ混色を防止できる。更に、第1のエピタキシャル層11bは、光電変換領域12(n型層41b)と逆の導電型で形成されても良い。 In the solid-state imaging device 1 of the present embodiment, the lateral size of the n-type layer 41b is smaller than that of the n-type layer 41a, and as shown in FIG. 4A, both side ends of the n-type layer 41b are n-type layers. You may be located inside the both ends of 41a. By doing in this way, the photoelectric conversion area | region which is the n-type layer 41a becomes wide, and a sensitivity can be improved. Further, the lateral size of the n-type layer 41b is larger than that of the n-type layer 41a, and as shown in FIG. 4B, both side ends of the n-type layer 41b are positioned outside both side ends of the n-type layer 41a. Also good. By doing in this way, the color mixture which the light which reached | attained the deep position leaks into an adjacent pixel can be prevented. Furthermore, the first epitaxial layer 11b may be formed with a conductivity type opposite to that of the photoelectric conversion region 12 (n-type layer 41b).
 (第2の実施の形態)
 本実施の形態に係るCCD型の固体撮像素子1について図5Aを用いて説明する。図5Aは同固体撮像素子1の概略構成を示す断面図である。なお、本実施の形態に係る固体撮像素子1の平面レイアウト図は図1Aと同様であり、図5Aは図1Bと同様に図1AにおけるA-A’線の断面図を示している。
(Second Embodiment)
A CCD type solid-state imaging device 1 according to the present embodiment will be described with reference to FIG. 5A. FIG. 5A is a cross-sectional view showing a schematic configuration of the solid-state imaging device 1. Note that the planar layout of the solid-state imaging device 1 according to the present embodiment is the same as FIG. 1A, and FIG. 5A is a cross-sectional view taken along the line AA ′ in FIG.
 この固体撮像素子1では、図5Aに示すように、たとえばシリコン基板等の半導体基板11a表面上の第1導電型の第1のエピタキシャル層11bと第1導電型の第2のエピタキシャル層11cとに跨がって(第1のエピタキシャル層11bと第2のエピタキシャル層11cとの境界を横切る形で、第1のエピタキシャル層11bと第2のエピタキシャル層11cとにわたって連続して)光電変換領域12が形成されてなる第1画素と、第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がらないで(第1のエピタキシャル層11bと第2のエピタキシャル層11cとの境界を横切らない形で第1のエピタキシャル層11bおよび第2のエピタキシャル層11cのそれぞれに島状に独立に)光電変換領域12が形成されてなる第2画素とが隣接して配置されている。 In the solid-state imaging device 1, as shown in FIG. 5A, for example, a first conductivity type first epitaxial layer 11b and a first conductivity type second epitaxial layer 11c on the surface of a semiconductor substrate 11a such as a silicon substrate are formed. The photoelectric conversion region 12 is straddled (continuously across the first epitaxial layer 11b and the second epitaxial layer 11c across the boundary between the first epitaxial layer 11b and the second epitaxial layer 11c). Do not straddle the formed first pixel, the first epitaxial layer 11b, and the second epitaxial layer 11c (in a form that does not cross the boundary between the first epitaxial layer 11b and the second epitaxial layer 11c) A photoelectric conversion region 12 is formed in each of the first epitaxial layer 11b and the second epitaxial layer 11c independently in an island shape. A second pixel comprising are arranged adjacent.
 この固体撮像素子1では、複数の光電変換領域12の一部が第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成され、複数の光電変換領域12の他部が第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がらないで形成されている。第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成された光電変換領域12と、第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がらないで形成された光電変換領域12とが交互に行方向および列方向に並ぶように、複数の光電変換領域12がマトリクス状(行列状)に配置されている。 In the solid-state imaging device 1, a part of the plurality of photoelectric conversion regions 12 is formed across the first epitaxial layer 11b and the second epitaxial layer 11c, and the other part of the plurality of photoelectric conversion regions 12 is the first. The first epitaxial layer 11b and the second epitaxial layer 11c are formed so as not to straddle. The photoelectric conversion region 12 formed across the first epitaxial layer 11b and the second epitaxial layer 11c and the first epitaxial layer 11b and the second epitaxial layer 11c were formed so as not to straddle. A plurality of photoelectric conversion regions 12 are arranged in a matrix (matrix) so that the photoelectric conversion regions 12 are alternately arranged in the row direction and the column direction.
 第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成された光電変換領域12は、入射光を光電変換する領域であり、同じ導電型のn型層(第1の層)41a、n型層(第2の層)41bおよびn型層41c、p+型のホールアキュムレーション層40並びにp型層(pウェル)20から構成される。この光電変換領域12は、n型層41aおよびp型層20が形成された第1のエピタキシャル層11b上に第2のエピタキシャル層11cを形成した後、第2のエピタキシャル層11cにn型層41b、n型層41cおよびホールアキュムレーション層40を形成することにより形成される。n型層41aは第1のエピタキシャル層11bに形成され、n型層41cは第2のエピタキシャル層11cに形成されている。一方、n型層41bは、第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成され、n型層41aの全体又は一部と重なっている。n型層41aとn型層41bとは、電気的に接続されている。この光電変換領域12は、上層にホールアキュムレーション層40を備え、下層にn型層41a、41bおよび41cならびにp型層20を備えている。 The photoelectric conversion region 12 formed across the first epitaxial layer 11b and the second epitaxial layer 11c is a region that photoelectrically converts incident light, and is an n-type layer (first layer) of the same conductivity type. ) 41a, n-type layer (second layer) 41b, n-type layer 41c, p + -type hole accumulation layer 40, and p-type layer (p-well) 20. In the photoelectric conversion region 12, after the second epitaxial layer 11c is formed on the first epitaxial layer 11b on which the n-type layer 41a and the p-type layer 20 are formed, the n-type layer 41b is formed on the second epitaxial layer 11c. The n-type layer 41c and the hole accumulation layer 40 are formed. The n-type layer 41a is formed on the first epitaxial layer 11b, and the n-type layer 41c is formed on the second epitaxial layer 11c. On the other hand, the n-type layer 41b is formed across the first epitaxial layer 11b and the second epitaxial layer 11c, and overlaps the whole or a part of the n-type layer 41a. The n-type layer 41a and the n-type layer 41b are electrically connected. The photoelectric conversion region 12 includes a hole accumulation layer 40 in the upper layer and n- type layers 41 a, 41 b and 41 c and a p-type layer 20 in the lower layer.
 第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がらないで形成された光電変換領域12は、入射光を光電変換する領域であり、第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がって形成されたn型層およびp型層20を含まず、n型層41a、n型層41c、p型層(pウェル)20aおよびホールアキュムレーション層40から構成される。p型層20は第1のエピタキシャル層11bに形成されるが、p型層20aは第2のエピタキシャル層11cに形成される。この光電変換領域12は、n型層41aが形成された第1のエピタキシャル層11b上に第2のエピタキシャル層11cを形成した後、第2のエピタキシャル層11cにn型層41c、ホールアキュムレーション層40およびp型層20aを形成することにより形成される。n型層41aとn型層41cとは、それぞれ第1のエピタキシャル層11bと第2のエピタキシャル層11cとに跨がらないで離れて形成されており、電気的に分離されている。この光電変換領域12は、上層にホールアキュムレーション層40を備え、下層にn型層41aおよび41cならびにp型層20aを備えている。 The photoelectric conversion region 12 formed without straddling the first epitaxial layer 11b and the second epitaxial layer 11c is a region for photoelectrically converting incident light, and the first epitaxial layer 11b and the second epitaxial layer. The n-type layer and the p-type layer 20 formed so as to straddle the layer 11c are not included, and the n-type layer 41a, the n-type layer 41c, the p-type layer (p-well) 20a, and the hole accumulation layer 40 are included. The p-type layer 20 is formed on the first epitaxial layer 11b, while the p-type layer 20a is formed on the second epitaxial layer 11c. In the photoelectric conversion region 12, the second epitaxial layer 11c is formed on the first epitaxial layer 11b on which the n-type layer 41a is formed, and then the n-type layer 41c and the hole accumulation layer 40 are formed on the second epitaxial layer 11c. And p-type layer 20a. The n-type layer 41a and the n-type layer 41c are formed so as not to straddle the first epitaxial layer 11b and the second epitaxial layer 11c, respectively, and are electrically separated. The photoelectric conversion region 12 includes a hole accumulation layer 40 in the upper layer, and includes n- type layers 41a and 41c and a p-type layer 20a in the lower layer.
 第1のエピタキシャル層11bの表面上には、n型層41aとn型層41bとが第2のエピタキシャル層11cを表面からみたとき重なる位置にあるようにn型層41bの形成でその位置を決定するために用いられる工程位置合わせマークが形成されている。第2のエピタキシャル層11cの膜厚は5μm以下である。 On the surface of the first epitaxial layer 11b, the n-type layer 41b is formed so that the n-type layer 41a and the n-type layer 41b overlap each other when the second epitaxial layer 11c is viewed from the surface. A process alignment mark used for determination is formed. The film thickness of the second epitaxial layer 11c is 5 μm or less.
 第1のエピタキシャル層11bは、例えば3~5μmの膜厚で形成されている。また第2のエピタキシャル層11cは、例えば1~3μmの膜厚で形成されている。第1のエピタキシャル層11bおよび第2のエピタキシャル層11cは、その抵抗値がたとえばn型層で0.1~100Ω・cmとなるように形成されている。 The first epitaxial layer 11b is formed with a film thickness of 3 to 5 μm, for example. The second epitaxial layer 11c is formed with a film thickness of, for example, 1 to 3 μm. The first epitaxial layer 11b and the second epitaxial layer 11c are formed so that their resistance values are, for example, 0.1 to 100 Ω · cm for an n-type layer.
 光電変換領域12の側方には、画素分離領域(画素水平分離領域)18、つまり読み出しゲート15、転送部(垂直転送部)16、およびp型層18bが形成されている。転送部16は、その上層にn型層42を備え、その下層にp型層18aおよび18cを備えている。光電変換領域12の下部には、垂直オーバーフロードレインを形成するp型層20および20aが形成されている。転送部16に隣接して、p型層18bが形成されている。 On the side of the photoelectric conversion region 12, a pixel separation region (pixel horizontal separation region) 18, that is, a readout gate 15, a transfer unit (vertical transfer unit) 16, and a p-type layer 18b are formed. The transfer unit 16 includes an n-type layer 42 in the upper layer and p- type layers 18a and 18c in the lower layer. Under the photoelectric conversion region 12, p- type layers 20 and 20a that form a vertical overflow drain are formed. A p-type layer 18 b is formed adjacent to the transfer unit 16.
 光電変換領域12の上層のホールアキュムレーション層40上方に、基板11に進入する入射光の反射を防ぐ反射防止膜32が形成されている。反射防止膜32の屈折率は、基板の屈折率より大きく、反射防止膜32上の層間絶縁膜の屈折率より小さい。 An antireflection film 32 that prevents reflection of incident light entering the substrate 11 is formed above the hole accumulation layer 40 in the upper layer of the photoelectric conversion region 12. The refractive index of the antireflection film 32 is larger than the refractive index of the substrate and smaller than the refractive index of the interlayer insulating film on the antireflection film 32.
 基板11表面上にはゲート絶縁膜21が形成され、ゲート絶縁膜21上には電荷読み出し電極および電荷転送電極となるゲート電極22が形成されている。ゲート電極22は、1層構造で形成されているが、2層構造、3層構造、または4層構造で形成されてもよい。このゲート電極22は、図示したように、読み出しゲート15および転送部16の直上に形成されることが好ましい。 A gate insulating film 21 is formed on the surface of the substrate 11, and a gate electrode 22 serving as a charge readout electrode and a charge transfer electrode is formed on the gate insulating film 21. The gate electrode 22 is formed with a one-layer structure, but may be formed with a two-layer structure, a three-layer structure, or a four-layer structure. The gate electrode 22 is preferably formed immediately above the read gate 15 and the transfer unit 16 as shown in the figure.
 ゲート電極22およびゲート絶縁膜21を被覆する層間絶縁膜31が基板11表面上に形成されている。さらに層間絶縁膜31とゲート電極22およびゲート絶縁膜21との間には、光電変換領域12上方に開口部が形成された遮光膜33が形成されている。 An interlayer insulating film 31 covering the gate electrode 22 and the gate insulating film 21 is formed on the surface of the substrate 11. Further, a light shielding film 33 having an opening formed above the photoelectric conversion region 12 is formed between the interlayer insulating film 31 and the gate electrode 22 and the gate insulating film 21.
 以下、本実施の形態に係る固体撮像素子1の製造方法(光電変換領域12の詳細な製造方法)を図5B~図5Iに示す。図5B~図5Iは、同固体撮像素子1の製造方法における製造工程を示す断面図である。 Hereinafter, a method for manufacturing the solid-state imaging device 1 according to the present embodiment (a detailed method for manufacturing the photoelectric conversion region 12) is shown in FIGS. 5B to 5I. 5B to 5I are cross-sectional views showing manufacturing steps in the method for manufacturing the solid-state imaging device 1. FIG.
 まず、図5Bに示すように、半導体基板11a上に第1導電型の第1のエピタキシャル層11bを例えば、1100℃以上の高温での化学気相成長法(たとえば、CVD)によって形成する。その後、第1のエピタキシャル層11b表面上に酸化膜もしくは窒化膜からなる保護膜60を例えば、5~50nmの膜厚で形成する。 First, as shown in FIG. 5B, a first conductivity type first epitaxial layer 11b is formed on a semiconductor substrate 11a by, for example, chemical vapor deposition (eg, CVD) at a high temperature of 1100 ° C. or higher. Thereafter, a protective film 60 made of an oxide film or a nitride film is formed on the surface of the first epitaxial layer 11b with a film thickness of 5 to 50 nm, for example.
 次いで、図5Bに示すように、リソグフラフィー技術によって、開口部51が形成されたレジスト膜50を形成する。レジスト膜50は、例えば膜厚が1~3μm、アスペクト比が10以下とされる。そして、不純物ドーピング技術(例えば、イオン注入法)によって、第1のエピタキシャル層11bに光電変換領域となるn型層41aを複数形成する。n型層41aは、例えば、アウトドーピングし難いSb等の質量が大きい原子で形成される。なお、n型層41aの形成にAs等の軽い原子を使用する場合は、例えば、表面のn型不純物濃度が10-10atoms/cm3未満となるようにn型層41aを第1のエピタキシャル層11b内に形成する。 Next, as shown in FIG. 5B, a resist film 50 in which the openings 51 are formed is formed by a lithography fluffy technique. For example, the resist film 50 has a thickness of 1 to 3 μm and an aspect ratio of 10 or less. Then, a plurality of n-type layers 41a serving as photoelectric conversion regions are formed in the first epitaxial layer 11b by an impurity doping technique (for example, ion implantation method). The n-type layer 41a is formed of, for example, atoms having a large mass such as Sb that is difficult to outdope. When light atoms such as As are used to form the n-type layer 41a, for example, the n-type layer 41a is made to be the first epitaxial layer so that the n-type impurity concentration on the surface is less than 10 −10 atoms / cm 3. Formed in layer 11b.
 次いで、図5Cに示すように、リソグラフィ技術によって、開口部51が形成されたレジスト膜50を第1のエピタキシャル層11b表面上に形成し、不純物ドーピング技術(たとえば、イオン注入法)によって、複数のn型層41aを電気的に分離するp型層18aをn型層41aの側方(複数のn型層41aの間)に形成する。 Next, as shown in FIG. 5C, a resist film 50 in which the openings 51 are formed is formed on the surface of the first epitaxial layer 11b by lithography, and a plurality of resist films 50 are formed by impurity doping (for example, ion implantation). A p-type layer 18a that electrically isolates the n-type layer 41a is formed on the side of the n-type layer 41a (between a plurality of n-type layers 41a).
 次いで、図5Dに示すように、複数のn型層41aの一部の上方に開口部51が形成されたレジスト膜50を第1のエピタキシャル層11b表面上に形成する。そして、イオン注入法によってn型層41aの一部の下方にp型層20を形成した後、保護膜60をエッチング技術(たとえば、ウエットエッチング)によって除去する。 Next, as shown in FIG. 5D, a resist film 50 having an opening 51 formed above a part of the plurality of n-type layers 41a is formed on the surface of the first epitaxial layer 11b. Then, after forming the p-type layer 20 below a part of the n-type layer 41a by ion implantation, the protective film 60 is removed by an etching technique (for example, wet etching).
 次いで、図5Eに示すように、第1のエピタキシャル層11bの表面上に第2のエピタキシャル層11cを例えば、1100℃以上の高温での化学気相成長法(CVD)によって形成する。その後、第2のエピタキシャル層11c表面上に酸化膜もしくは窒化膜からなる保護膜61を例えば、5~50nmの膜厚で形成する。そして、開口部51が形成されたレジスト膜50を第2のエピタキシャル層11c表面上に形成し、不純物ドーピング技術(たとえばイオン注入法)により、第2のエピタキシャル層11cに光電変換領域12となるn型層41cを形成する。 Next, as shown in FIG. 5E, the second epitaxial layer 11c is formed on the surface of the first epitaxial layer 11b by, for example, chemical vapor deposition (CVD) at a high temperature of 1100 ° C. or higher. Thereafter, a protective film 61 made of an oxide film or a nitride film is formed on the surface of the second epitaxial layer 11c with a film thickness of 5 to 50 nm, for example. Then, a resist film 50 having an opening 51 is formed on the surface of the second epitaxial layer 11c, and n which becomes the photoelectric conversion region 12 in the second epitaxial layer 11c by an impurity doping technique (for example, ion implantation method). A mold layer 41c is formed.
 次いで、図5Fに示すように、複数のn型層41cの一部の上方に開口部51が形成され、イオン注入の深さに応じた形態を持つレジストマスクを第2のエピタキシャル層11c表面上に形成する。その後、開口部51下方のn型層41cとn型層41aとが電気的に接続するように接続層としてn型層41bを形成し、深さの異なる光電変換領域12を有する固体撮像素子1を形成する。このとき、n型層41bの一部又は全体がn型層41aおよび41cの両方と精度良く重なるように、第1のエピタキシャル層11b表面上に形成されたアライメントマークを使用する。 Next, as shown in FIG. 5F, an opening 51 is formed above a part of the plurality of n-type layers 41c, and a resist mask having a form corresponding to the depth of ion implantation is formed on the surface of the second epitaxial layer 11c. To form. Thereafter, the n-type layer 41b is formed as a connection layer so that the n-type layer 41c and the n-type layer 41a below the opening 51 are electrically connected, and the solid-state imaging device 1 having the photoelectric conversion regions 12 having different depths. Form. At this time, alignment marks formed on the surface of the first epitaxial layer 11b are used so that a part or the whole of the n-type layer 41b overlaps both the n- type layers 41a and 41c with high accuracy.
 次いで、図5Gに示すように、n型層41aおよび41cのペアとn型層41a、41bおよび41cのペアとの間つまり光電変換領域12の間に、光電変換領域12と転送部16とを電気的に分離するp型層である読み出しゲート15、ならびにp型層18a、18bおよび18cの形成をリソグラフィ技術および不純物ドーピング技術によって、例えば、その都度レジストマスクを形成して行う。 Next, as shown in FIG. 5G, between the pair of n- type layers 41a and 41c and the pair of n- type layers 41a, 41b and 41c, that is, between the photoelectric conversion regions 12, the photoelectric conversion region 12 and the transfer unit 16 are connected. The read gate 15 which is a p-type layer to be electrically separated and the p- type layers 18a, 18b and 18c are formed by lithography and impurity doping techniques, for example, by forming a resist mask each time.
 次いで、図5Hに示すように、その下方にn型層41bが形成されていないn型層41cの下方に、既存のリソグラフィ技術と不純物ドーピング技術により、p型層20aを形成する。隣り合う光電変換領域12で光電変換を行う領域の深さが異なるが、p型層20aを形成することで、光電変換領域12の深さに関わらず、光電変換を行う領域から一定の位置にp型層が設定される。従って、垂直オーバーフロードレインが画素毎(光電変換領域12毎)に最適化され、電子シャッター時に印加する電圧を同じにすることが可能となる。 Next, as shown in FIG. 5H, a p-type layer 20a is formed below the n-type layer 41c where the n-type layer 41b is not formed below by an existing lithography technique and impurity doping technique. Although the depth of the area | region which performs photoelectric conversion in the adjacent photoelectric conversion area | region 12 differs, by forming the p-type layer 20a, it is a fixed position from the area | region which performs photoelectric conversion irrespective of the depth of the photoelectric conversion area | region 12. A p-type layer is set. Therefore, the vertical overflow drain is optimized for each pixel (for each photoelectric conversion region 12), and the voltage applied during the electronic shutter can be made the same.
 次いで、図5Iに示すように、レジスト膜50と保護膜60を除去後、第2のエピタキシャル層11c表面上にゲート絶縁膜21、ゲート電極22および反射防止膜32等を形成する。 Next, as shown in FIG. 5I, after removing the resist film 50 and the protective film 60, a gate insulating film 21, a gate electrode 22, an antireflection film 32, and the like are formed on the surface of the second epitaxial layer 11c.
 上記製造方法で形成された固体撮像素子1は、第1の実施の形態で説明したような作用効果が得られる固体撮像素子となる。 The solid-state image pickup device 1 formed by the above manufacturing method becomes a solid-state image pickup device that can obtain the effects as described in the first embodiment.
 図6は、固体撮像素子の基板内の光電変換領域を構成するn型層の深さ方向(基板表面の法線方向)での不純物濃度分布を示す図である。なお、図6(a)は一般的な固体撮像素子における不純物濃度分布を示し、図6(b)は本実施の形態の固体撮像素子1における不純物濃度分布を示している。また、図6において実線は光電変換領域を構成する各n型層のn型不純物の濃度分布をそれぞれ示しており、破線はその各n型層のn型不純物の濃度を合わせたときの濃度分布を示している。 FIG. 6 is a diagram showing the impurity concentration distribution in the depth direction (normal direction of the substrate surface) of the n-type layer constituting the photoelectric conversion region in the substrate of the solid-state imaging device. 6A shows an impurity concentration distribution in a general solid-state imaging device, and FIG. 6B shows an impurity concentration distribution in the solid-state imaging device 1 of the present embodiment. In FIG. 6, the solid line shows the concentration distribution of the n-type impurity in each n-type layer constituting the photoelectric conversion region, and the broken line shows the concentration distribution when the concentration of the n-type impurity in each n-type layer is combined. Is shown.
 図6(a)に示すように、一般的な固体撮像素子では基板の深い位置(図6(a)のC部分)で不純物濃度分布の広がりが大きいが、図6(b)に示すように、本実施の形態の固体撮像素子1では、基板の深い位置(図6(b)のD部分)で不純物濃度分布の広がりが小さい。 As shown in FIG. 6 (a), in a general solid-state imaging device, the spread of the impurity concentration distribution is large at a deep position of the substrate (C portion in FIG. 6 (a)), but as shown in FIG. 6 (b). In the solid-state imaging device 1 of the present embodiment, the spread of the impurity concentration distribution is small at a deep position of the substrate (D portion in FIG. 6B).
 以上、本発明の固体撮像素子について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。 As described above, the solid-state imaging device of the present invention has been described based on the embodiment. However, the present invention is not limited to this embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 例えば、上記実施の形態において、第1導電型としてn型を例示し、第1導電型と逆導電型の第2導電型としてp型を例示したが、第1導電型がp型であり、第2導電型がn型であってもよい。 For example, in the above embodiment, the n-type is exemplified as the first conductivity type, and the p-type is exemplified as the second conductivity type opposite to the first conductivity type. However, the first conductivity type is the p-type, The second conductivity type may be n-type.
 本発明は、固体撮像素子およびその製造方法に好適であり、例えば各種撮像装置の撮像素子という用途に適用するのに好適である。 The present invention is suitable for a solid-state imaging device and a method for manufacturing the same, and is suitable for application to, for example, an imaging device of various imaging apparatuses.
  1、101  固体撮像素子
  11、111  基板
  11a、111a  半導体基板
  11b  第1のエピタキシャル層
  11c  第2のエピタキシャル層
  12、112  光電変換領域
  15、115  読み出しゲート
  16  転送部
  18、118  画素分離領域
  18a、18b、18c、20、20a、118a、118b  p型層
  21  ゲート絶縁膜
  22、122  ゲート電極
  31、131  層間絶縁膜
  32、132  反射防止膜
  33、133  遮光膜
  40、140  ホールアキュムレーション層
  41a、41b、41c、42、142  n型層
  50、150  レジスト膜
  51、134、151  開口部
  60、61、160  保護膜
  111b、111c  エピタキシャル層
  116  垂直転送部
  120  pウェル
  121  絶縁膜
  141  n+型拡散層
DESCRIPTION OF SYMBOLS 1,101 Solid- state image sensor 11, 111 Substrate 11a, 111a Semiconductor substrate 11b 1st epitaxial layer 11c 2nd epitaxial layer 12, 112 Photoelectric conversion area | region 15,115 Read-out gate 16 Transfer part 18,118 Pixel isolation area 18a, 18b , 18c, 20, 20a, 118a, 118b p-type layer 21 gate insulating film 22, 122 gate electrode 31, 131 interlayer insulating film 32, 132 antireflection film 33, 133 light shielding film 40, 140 hole accumulation layer 41a, 41b, 41c , 42, 142 n- type layer 50, 150 resist film 51, 134, 151 opening 60, 61, 160 protective film 111b, 111c epitaxial layer 116 vertical transfer portion 120 p well 121 insulating film 141 + -Type diffusion layer

Claims (10)

  1.  入射光を光電変換する複数の光電変換領域と、対応する前記光電変換領域から信号電荷を読み出すための読み出しゲートと、前記読み出しゲートによって読み出された前記信号電荷の転送を行うための転送部とが形成された基板を備え、
     前記基板は、半導体基板と、前記半導体基板上に形成された第1導電型の第1のエピタキシャル層と、前記第1のエピタキシャル層上に形成された第1導電型の第2のエピタキシャル層とを含み、
     前記光電変換領域が、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成されている
     固体撮像素子。
    A plurality of photoelectric conversion regions for photoelectrically converting incident light, a read gate for reading signal charges from the corresponding photoelectric conversion region, and a transfer unit for transferring the signal charges read by the read gate; Comprising a substrate formed with
    The substrate includes: a semiconductor substrate; a first conductivity type first epitaxial layer formed on the semiconductor substrate; a first conductivity type second epitaxial layer formed on the first epitaxial layer; Including
    The solid-state imaging device, wherein the photoelectric conversion region is formed across the first epitaxial layer and the second epitaxial layer.
  2.  前記複数の光電変換領域の一部は、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がらないで前記第2のエピタキシャル層に形成されている
     請求項1に記載の固体撮像素子。
    2. The solid-state imaging device according to claim 1, wherein some of the plurality of photoelectric conversion regions are formed in the second epitaxial layer without straddling the first epitaxial layer and the second epitaxial layer.
  3.  前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成された光電変換領域は、同じ導電型の第1の層および第2の層を含み、前記第1の層が形成された前記第1のエピタキシャル層上に前記第2のエピタキシャル層を形成した後、前記第2のエピタキシャル層に前記第2の層を形成することにより形成される
     請求項1又は2に記載の固体撮像素子。
    The photoelectric conversion region formed across the first epitaxial layer and the second epitaxial layer includes a first layer and a second layer having the same conductivity type, and the first layer is formed. 3. The solid-state imaging according to claim 1, wherein the second epitaxial layer is formed on the first epitaxial layer, and then the second layer is formed on the second epitaxial layer. 4. element.
  4.  前記第1のエピタキシャル層の表面上には、工程位置合わせマークが形成されている
     請求項1又は2に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein a process alignment mark is formed on the surface of the first epitaxial layer.
  5.  前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成された光電変換領域は、前記第1のエピタキシャル層に形成された第1の層と、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成され、前記第1の層と一部が重なる、前記第1の層と同じ導電型の第2の層とを含む
     請求項1又は2に記載の固体撮像素子。
    The photoelectric conversion region formed across the first epitaxial layer and the second epitaxial layer includes a first layer formed in the first epitaxial layer, a first epitaxial layer, and a first epitaxial layer. 3. The solid according to claim 1, further comprising: a second layer of the same conductivity type as the first layer, which is formed to straddle the two epitaxial layers and partially overlaps the first layer. Image sensor.
  6.  前記第2のエピタキシャル層の膜厚が、5μm以下である
     請求項1又は2に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein a film thickness of the second epitaxial layer is 5 μm or less.
  7.  前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成された光電変換領域は、前記第1のエピタキシャル層に形成された第1導電型と逆導電型の第2導電型のウェルを含む
     請求項1又は2に記載の固体撮像素子。
    The photoelectric conversion region formed across the first epitaxial layer and the second epitaxial layer has a second conductivity type opposite to the first conductivity type formed in the first epitaxial layer. The solid-state imaging device according to claim 1, comprising a well.
  8.  前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成された光電変換領域は、前記第1のエピタキシャル層に形成された第1導電型と逆導電型の第2導電型のウェルを含み、
     前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がらないで形成された光電変換領域は、前記ウェルを含まない
     請求項2に記載の固体撮像素子。
    The photoelectric conversion region formed across the first epitaxial layer and the second epitaxial layer has a second conductivity type opposite to the first conductivity type formed in the first epitaxial layer. Including wells,
    The solid-state imaging device according to claim 2, wherein a photoelectric conversion region formed without straddling the first epitaxial layer and the second epitaxial layer does not include the well.
  9.  前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成された光電変換領域は、前記第1のエピタキシャル層に形成された第1の層と、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成され、前記第1の層と一部が重なる、前記第1の層と同じ導電型の第2の層とを含み、 前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がらないで形成された光電変換領域は、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成された層を含まない
     請求項2に記載の固体撮像素子。
    The photoelectric conversion region formed across the first epitaxial layer and the second epitaxial layer includes a first layer formed in the first epitaxial layer, a first epitaxial layer, and a first epitaxial layer. A second layer of the same conductivity type as the first layer, which is formed across the two epitaxial layers and partially overlaps the first layer, The photoelectric conversion region formed without straddling the two epitaxial layers does not include a layer formed straddling the first epitaxial layer and the second epitaxial layer. Image sensor.
  10.  前記複数の光電変換領域のそれぞれは、前記第1のエピタキシャル層と第2のエピタキシャル層とに跨がって形成されている
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein each of the plurality of photoelectric conversion regions is formed so as to straddle the first epitaxial layer and the second epitaxial layer.
PCT/JP2011/003202 2010-06-11 2011-06-07 Solid-state imaging element WO2011155182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-134550 2010-06-11
JP2010134550A JP2011258903A (en) 2010-06-11 2010-06-11 Solid state image sensor

Publications (1)

Publication Number Publication Date
WO2011155182A1 true WO2011155182A1 (en) 2011-12-15

Family

ID=45097798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003202 WO2011155182A1 (en) 2010-06-11 2011-06-07 Solid-state imaging element

Country Status (2)

Country Link
JP (1) JP2011258903A (en)
WO (1) WO2011155182A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966546B2 (en) * 2017-07-04 2021-11-17 富士フイルム株式会社 Device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291858A (en) * 2000-04-04 2001-10-19 Sony Corp Solid-state image pickup element and method for manufacturing the same
JP2003204057A (en) * 2002-01-10 2003-07-18 Nikon Corp Back radiation type imaging equipment, apparatus for measuring aberration, apparatus for measuring position, projection exposure unit, method for manufacturing back radiation type imaging equipment and method for manufacturing device thereof
JP2007036034A (en) * 2005-07-28 2007-02-08 Fujifilm Corp Solid state image sensor and method for manufacturing the same
JP2007201267A (en) * 2006-01-27 2007-08-09 Fujifilm Corp Solid state imaging element and its fabrication process
JP2008546176A (en) * 2005-05-16 2008-12-18 マイクロン テクノロジー, インク. Color pixel with anti-blooming isolation and formation method
JP2009088286A (en) * 2007-09-28 2009-04-23 Sony Corp Solid-state imaging device, method of manufacturing the same, and camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291858A (en) * 2000-04-04 2001-10-19 Sony Corp Solid-state image pickup element and method for manufacturing the same
JP2003204057A (en) * 2002-01-10 2003-07-18 Nikon Corp Back radiation type imaging equipment, apparatus for measuring aberration, apparatus for measuring position, projection exposure unit, method for manufacturing back radiation type imaging equipment and method for manufacturing device thereof
JP2008546176A (en) * 2005-05-16 2008-12-18 マイクロン テクノロジー, インク. Color pixel with anti-blooming isolation and formation method
JP2007036034A (en) * 2005-07-28 2007-02-08 Fujifilm Corp Solid state image sensor and method for manufacturing the same
JP2007201267A (en) * 2006-01-27 2007-08-09 Fujifilm Corp Solid state imaging element and its fabrication process
JP2009088286A (en) * 2007-09-28 2009-04-23 Sony Corp Solid-state imaging device, method of manufacturing the same, and camera

Also Published As

Publication number Publication date
JP2011258903A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US9466629B2 (en) Image sensor and method of fabricating the same
JP5814626B2 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP6215246B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
KR101688249B1 (en) Back-illuminated solid-state image pickup device
US8614113B2 (en) Image sensor and method of fabricating the same
JP5343124B2 (en) Solid-state imaging device and manufacturing method thereof
JP4746639B2 (en) Semiconductor device
KR102581170B1 (en) Backside illuminated image sensor and method of manufacturing the same
TWI556423B (en) Image sensor device and semiconductor structure
JP2006049834A (en) Solid-state image pickup device and manufacturing method of the same
US9029182B2 (en) Method of manufacturing solid-state image sensor
JPWO2017056345A1 (en) Solid-state imaging device and manufacturing method thereof
WO2011155182A1 (en) Solid-state imaging element
JP2006351759A (en) Solid-state imaging device and manufacturing method thereof
JP2014086514A (en) Solid state imaging device, method for manufacturing the same, and camera
JP4768889B1 (en) Image pickup device and manufacturing method thereof
JP2010251628A (en) Solid-state imaging device and method of manufacturing the same
JP4815769B2 (en) Solid-state imaging device and manufacturing method thereof
JP2012253224A (en) Solid-state image pickup device and method of manufacturing the same
KR102645312B1 (en) Backside illumination image sensor and method of manufacturing the same
TWI830988B (en) Image sensor and method of forming same and method of fabricating a transistor for an image sensor
JP5035452B2 (en) Solid-state imaging device
JP2009302103A (en) Solid-state imaging device and method of manufacturing the same, and imaging device
JP2006344656A (en) Solid state imaging element and its manufacturing method
JP2007012677A (en) Solid state image sensor and its fabrication process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792141

Country of ref document: EP

Kind code of ref document: A1