WO2011155115A1 - Connecting structure and manufacturing method thereof - Google Patents

Connecting structure and manufacturing method thereof Download PDF

Info

Publication number
WO2011155115A1
WO2011155115A1 PCT/JP2011/002345 JP2011002345W WO2011155115A1 WO 2011155115 A1 WO2011155115 A1 WO 2011155115A1 JP 2011002345 W JP2011002345 W JP 2011002345W WO 2011155115 A1 WO2011155115 A1 WO 2011155115A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
connection
metal body
ultrasonic
connection structure
Prior art date
Application number
PCT/JP2011/002345
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 藤原
薫 内山
時人 諏訪
雅彦 浅野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2011155115A1 publication Critical patent/WO2011155115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0207Ultrasonic-, H.F.-, cold- or impact welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/57Fixed connections for rigid printed circuits or like structures characterised by the terminals surface mounting terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10265Metallic coils or springs, e.g. as part of a connection element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment

Definitions

  • This invention relates to the connection structure which connects the lead
  • One of the main electronic components is a coil, which is an essential component for high-frequency circuits and switching power supplies.
  • the coil is mainly made of a cylindrical metal wire, and the coil is connected to the wiring on the board by passing both ends of the coil through a through-hole formed in the board, and connecting the wiring on the board and the coil end. Often soldered.
  • FIG. 10 shows an example of the connection between the coil and the wiring on the substrate. 11 is a pad on the substrate, 12 is a substrate, 13 is solder, and 21 is a coil. In this soldering method, first, the end portion of the coil 21 is inserted and fixed in the through hole of the substrate 12 in which the pad 11 on the substrate is formed.
  • soldering is completed by taking it out from the soldering apparatus and cooling it.
  • soldering may be performed manually. As described above, soldering is performed by melting and connecting the solder while holding the coil so that it does not leave the through-hole. Therefore, soldering must be performed while holding the coil. The problem is that it needs to be formed. In this connection method, soldering may be performed by a thermal process, which is considered to have a large environmental load, and development of a soldering alternative technology is urgent.
  • connection by conductive resin can be made at a temperature lower than the soldering temperature.
  • the caulking contact connection is a mechanical contact connection, and thus can be realized at room temperature.
  • the conductive resin connection requires a heat load and a high connection resistance, and the contact connection has a high contact resistance and requires a caulking member.
  • the ultrasonic connection is a method in which a member to be connected is metal-connected at room temperature with energy by ultrasonic waves and pressure, and a low resistance room temperature connection can be realized.
  • Patent Document 1 As a method for connecting a wiring and a pad on a substrate using ultrasonic waves, in Patent Document 1, a plurality of bumps are formed on a conductive pattern in advance, wiring is placed so as to be sandwiched between the bumps, and then applied from above. There has been proposed a method of connecting a wiring and a conductive pattern by applying ultrasonic waves while pressing. In addition, as a method of connecting the printed circuit board electrode and the metal terminal, Patent Document 2 discloses that the printed circuit board electrode formed on the printed circuit board end is sandwiched from above and below by the metal terminal formed on the flexible substrate, and ultrasonic waves are applied to the sandwiched portion. There has been proposed a method of metal-connecting an electrode on a printed circuit board and a metal substrate by applying. These methods are examples in which metal connection at room temperature, which is a feature of ultrasonic connection, is proposed.
  • a metal on the ultrasonic tool side for example, a cylindrical metal wire, metal A
  • a metal on the anvil side for example, a pad on the substrate, metal B
  • the tip of the ultrasonic connection tool is provided with a protrusion for preventing slippage between the ultrasonic tool and the metal A during ultrasonic vibration. Since the protrusion is hard to get into the metal A, the metal A is held so as to follow the movement of the ultrasonic tool.
  • the curved surface is pressed by the protrusion at the tip of the ultrasonic tool, so that the contact position varies, and the position shift and the metal wire move. If misalignment occurs, there is a concern about the effect on connection reliability.
  • the area where the metal body contacts the ultrasonic tool at the start of ultrasonic connection It was larger than the contact area.
  • the ultrasonic tool contacts the metal body with a large area, the displacement and rotation of the metal column during pressurization can be suppressed, and the contact area between the metal body and the conductor layer is small.
  • the power tends to concentrate on the contact portion, and the connection can be made with less energy.
  • reed and electrode concerning one Example of this invention It is a schematic diagram of the Example of an ultrasonic connection to the coil concerning one Example of this invention. It is a schematic diagram of the Example of an ultrasonic connection to the coil concerning one Example of this invention. It is an enlarged view of the lead tip before ultrasonic connection concerning one example of the present invention. It is an enlarged view of the lead tip after ultrasonic connection concerning one example of the present invention.
  • FIG. 1 shows a connection form of a coil 21 and a substrate 12 according to an embodiment of the present invention.
  • the coil 21 is formed by winding a lead and has two leads 1 for electrical and mechanical connection to the substrate.
  • a plurality of electrode pads 11 made of a conductor layer are formed on the substrate 12, and the lead 1 is bent about 90 degrees, and the side surfaces thereof are connected to the electrode pads 11 by ultrasonic connection.
  • connection method between the coil and the substrate according to this embodiment will be described with reference to FIGS. 1 and 2A and 2B.
  • the coil 21 is placed on the substrate such that the side surface of the lead 1 faces the electrode pad 11.
  • an ultrasonic tool 20 is prepared.
  • the ultrasonic tool 20 is pressed from the lead 1 to the electrode pad 11 side while applying a force.
  • the lead 1 and the metal of the electrode pad 11 are rubbed together to remove the surface oxide film and the like on the contact surface, and the new metal surface comes into contact.
  • the coil 21 and the substrate 12 are connected.
  • FIG. 3A, FIG. 4A, and FIG. 5A are diagrams showing a state before connection.
  • Reference numeral 1 denotes a lead
  • 3 denotes a processed portion on the lead
  • 11 denotes an electrode pad
  • 20 denotes an ultrasonic tool.
  • the lead 1 is disposed on the electrode pad 11. At this time, the electrode pad 11 and the side surface of the cylindrical portion of the lead 1 are in contact.
  • Processing is performed on the side surface portion of the lead opposite to the contact portion to form a processed portion 3 on the lead.
  • the on-lead processed portion 3 is processed so that the vibration surface of the ultrasonic tool 20 has a larger area than the region in contact with the lead 1.
  • the processed surface shape of the R-soil processed portion 3 is a flat surface, it is not limited to a flat surface, and there are some irregularities on a substantially flat surface, or other portions (particularly a contact surface that contacts the electrode pad 11). It may be a curved surface with a smaller curvature.
  • press processing, cutting, blasting, or the like is performed from the lead 1 having a circular cross section, or the cross section is partially cut to have a circular shape so as to have the processed portion on the lead.
  • the lead 1 may be cast, but any method may be used as long as the above-mentioned processed portion 3 on the lead is formed.
  • the ultrasonic tool 20 is pressed against the processed area 3 on the lead, and the lead 1 and the electrode pad 11 are connected by applying ultrasonic waves.
  • the protrusion formed on the vibration surface of the ultrasonic tool 20 increases the restraining force of the lead 1 when applying ultrasonic waves, and concentrates the ultrasonic power on the connection surface.
  • FIG. 4B is a schematic cross-sectional view of the connecting portion when the lead 1 being connected is viewed from the tip direction of the lead, but as shown in FIG. 5B, on the lead where the ultrasonic tool 20 is in contact.
  • the processing point 3 is deformed following the shape of the tip protrusion of the ultrasonic tool 20 and suppresses slippage between the ultrasonic tool 20 and the lead 1 when an ultrasonic wave is applied. Further, the lead 1 is crushed in the thickness direction by pressurization.
  • the contact surface 30 is rubbed at the initial contact location, so that the surface oxide film and the like on the contact surface between the lead 1 and the substrate pad 11 are removed, and the metal newly connected surface comes into contact with the metal.
  • the connection surface 30 spreads from the initial connection surface toward the side surface of the lead 1 as the lead 1 is deformed as the ultrasonic wave is applied and pressurized.
  • 3 (b), 4 (c), and 5 (c) are external views of the lead 1 and the electrode 10 after connection.
  • a trace of the shape of the tip of the ultrasonic tool 20 remains in the pressurized part 2 on the lead pressed by the ultrasonic tool 20 in the processed part 3 on the lead.
  • Most of the upper machining location 3 remains the initial machining surface.
  • the lead 1 and the electrode 10 are connected by ultrasonic connection.
  • FIG. 6 (a) and 6 (b) are diagrams for explaining conventional ultrasonic connection.
  • a lead 1a having a circular cross section or a square lead 1b has been used.
  • FIG. 6A is a diagram showing connection in the case of the lead 1a having a circular cross section.
  • the pressure contact surface of the ultrasonic tool 20 and the surface where the lead 1 is initially contacted are curved surfaces, so that the initial contact area between the ultrasonic tool 20 and the lead 1 is large. Get smaller. Therefore, when pressure is applied, stress is applied as shown by the arrows in the figure, and there is a high possibility that the lead 1 is displaced or rotated with respect to the electrode 11.
  • connection area between the lead 1 and the electrode 10 varies, so that the connection reliability is lowered, and when the other end of the lead is fixed, stress is generated at the connecting portion at the other end. There is concern about reducing reliability.
  • the lead 1b having a square cross section is used as shown in FIG. 6B, the lead is not easily displaced or rotated, but the contact area between the lead 1b and the electrode pad 11 is large at the start of ultrasonic application, The power applied to the connection location is dispersed, and a large power is required for the connection.
  • the on-lead processed portion 3 by forming the on-lead processed portion 3, variation in the initial contact area when the ultrasonic tool 20 contacts the lead 1 is suppressed, and the curved surface on the side surface of the circular lead is pressed. Compared to the case, the initial contact area between the ultrasonic tool 20 and the lead 1 can be increased. In addition, since a load can be applied uniformly from the initial state, the displacement and rotation of the lead 1 can be suppressed.
  • the area of the tip of the ultrasonic tool 20 and the lead 1 in the initial state of ultrasonic vibration can be made larger than the initial contact area of the lead 1 and the electrode 10, it is possible to connect with less input energy from the initial connection stage. Power can be concentrated on the surface. Further, when the curved surface is pressurized and vibrated without forming the processed portion 3 on the lead, the shape along the tip of the ultrasonic tool 20 from the curved surface is applied by pressing the surface where the ultrasonic tool 20 and the lead 1 are in contact with each other. However, energy required for deformation can be reduced by forming the on-lead processed portion 3.
  • the lead 1 may be made of any material, but is preferably a metal containing at least one of copper, aluminum, iron and nickel as a main component.
  • the surface of the lead 1 may be coated with a metal (including solder) whose main component is tin, gold, nickel, copper or the like.
  • the electrode 11 may be made of any material, but is preferably a metal containing at least one of copper, aluminum, iron, and nickel as a main component. Further, the surface of the electrode 11 may be coated with a metal (including solder) whose main component is tin, gold, nickel, copper or the like.
  • the cross-sectional shape of the lead may be an ellipse, a polygon such as a triangle, a quadrangle, or an octagon.
  • the direction in which the ultrasonic tool is vibrated when applying ultrasonic waves is preferably the longitudinal direction of the lead, but it may be the short direction, the licking direction, or the circumferential direction.
  • the area where the ultrasonic tool 20 is pressed when viewed from the side is processed on the lead.
  • the area where the ultrasonic tool 20 is pressed is the machining area on the lead in FIGS. 4 (a), (b), (c) and FIGS. 5 (a), (b), and (c). If the lead other than 3 is not pressed, it may be equal to or less than the total length of the processed portion 3 on the lead, and the same effect can be obtained by pressing the tip of the lead 1.
  • the length of the ultrasonic tool 20 in the horizontal direction in FIGS. 5A, 5B, and 5C is depicted as being approximately the same as the diameter of the lead 1, but FIG.
  • the lateral lengths in a), (b), and (c) may be longer or shorter than the diameter of the lead 1, and are not limited to those shown in FIGS. 5 (a), (b), and (c).
  • the lead 1 formed with the tip shape of the ultrasonic tool 20 and the substrate pad 11 are connected to the pressurizing portion. Shape.
  • the lead 1 and the substrate pad 11 are connected by ultrasonic connection.
  • FIG. 5C which is a cross section in the radial direction
  • the lead 1 is similarly crushed from the upper side and the lower side, so the upper side of the lead 1 than the connection area between the lead 1 and the electrode pad 11 The area of the substantially flat portion is large.
  • FIG. 7 is an enlarged view of the cross-sectional shape of the connecting portion when viewed from the tip end direction of the lead after being connected using the present embodiment.
  • Reference numeral 1 denotes a lead
  • 11 denotes a pad on the substrate
  • 12 denotes a substrate
  • 31 denotes an outer peripheral portion near the connection surface.
  • the contact area between the lead 1 and the substrate pad 11 is very small at the initial stage of connection, and the contact location is near the center of the substrate pad 11.
  • the contact surfaces of the lead 1 and the pad 11 on the substrate are rubbed to expose each new metal surface, and the connection proceeds by metal bonding.
  • the surface film such as an oxide film on the connection surface is pushed out of the connection portion, and is easily deposited near the outer peripheral portion 31 in the vicinity of the connection surface.
  • the outer peripheral portion 31 near the connection surface also moves outward compared to the initial connection surface, and when the connection is completed, it becomes the location of the outer peripheral portion 31 near the connection surface shown in FIG.
  • surface films such as oxide films tend to deposit.
  • FIG. 8 is a schematic view of the fracture surface of the pad on the substrate after the shear test of this embodiment of the present invention.
  • 11 is a pad on a substrate
  • 12 is a substrate
  • 30 is a connection surface
  • 31 is an outer peripheral portion near the connection surface
  • 32 is a shear test mark.
  • FIG. 8 shows an example in which the shear test mark 32 is formed in the vertical direction.
  • the shear test mark 32 tends to be formed in the same direction as the ultrasonic wave application direction, the direction of the shear test mark 32 is any direction. It does not matter if it is in the direction.
  • a surface film such as an oxide film is likely to be deposited on the outer peripheral portion 31 in the vicinity of the connection surface after connection, when the shear test of the test piece of FIG. It is estimated that
  • FIG. 9 is a cross-sectional view of the state before connection when the present invention is applied to the connection of the coil according to the second embodiment of the present invention, as viewed from the leading end side of the lead 1.
  • Reference numeral 1 is a lead
  • 3 is a processing location on the lead
  • 4 is a lead initial contact location
  • 11 is a pad on the substrate
  • 12 is a substrate
  • 20 is an ultrasonic tool
  • 30 is a connection surface.
  • the rotation and displacement of the lead 1 when the ultrasonic tool 20 and the lead 1 are in contact can be suppressed.
  • the initial contact area between the lead 1 and the pad 11 on the substrate is smaller than the area of the lead processing portion 3 where the ultrasonic tool 20 pressurizes, the power applied to the connection portion tends to concentrate. Therefore, initial connection is possible with less energy, and fine powder generated at the time of connection can be suppressed.
  • the unevenness 4 is formed in the lead initial contact portion 4 where the pad 11 on the substrate and the lead 1 are in contact.
  • the unevenness is formed by forming a groove along the longitudinal direction of the lead 1.
  • a line connecting the tips of the irregularities 4 is formed so as to be substantially parallel to the processed portion 3 on the lead, and a plurality of the tips of the irregularities 4 are in contact with the electrode pads 11 in the initial stage of ultrasonic application.
  • the concavo-convex shape may be any shape as long as two or more fulcrums can be formed. However, the concavo-convex shape is in a region immediately below the processed portion 3 on the concavo-convex tip lead, and the center of gravity of the cross section of the lead 1 is surrounded by a plurality of concavo-convex tips. It is desirable to lie on a designated area. Concavities and convexities may be formed at the time of manufacture, applied to a press or mold, applied by physical processing such as laser processing or blasting, or processed by chemical processing such as etching. But it ’s okay.
  • the cross-sectional view after the start of connection is the same as in Example 1, and is as shown in FIG. 5B during connection and as shown in FIG. 5C after connection.
  • the same is true for the on-lead processed portion 3, the material of the lead 1, and the connection process of ultrasonic connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Decreased connection reliability due to rotation of a lead when vibration is applied, and variability in the connection surface area, are problematic when ultrasonically connecting a lead and a conductive layer disposed on a substrate. This problem is addressed by the disclosed connection structure. When ultrasound processing is started, the contact surface area of the lead and the ultrasound tool is increased to a level greater than the contact surface area of the lead and the conductive layer. For example, one side surface of a lead having a circular cross-section is planarized and the ultrasound tool is pressed against said side surface to form the ultrasonic connection. Because the contact surface between the lead and the ultrasonic tool is greater, rotation of the lead is suppressed, and by having a smaller contact surface between the lead and the conductive layer, stress is concentrated at the connection area and the connection is formed more easily.

Description

接続構造およびその製造方法Connection structure and manufacturing method thereof
 本発明は、家電用や民生機器用、産業・自動車用に用いられるリードを他の部品に接続する接続構造に関する。 This invention relates to the connection structure which connects the lead | read | reed used for household appliances, consumer electronics, industry, and automobiles to other components.
 民生用製品から産業用製品まで、今日では数多くの製品に電子機器が使用されている。それらの電子機器の内部には、金属配線を有した絶縁板上に電子部品を搭載したプリント配線板が含まれているが、その電子部品は基板上配線と電気的導通を得ることで各々の部品の役割を果たしている。 Today, electronic products are used in many products, from consumer products to industrial products. Inside these electronic devices, a printed wiring board in which electronic components are mounted on an insulating plate having metal wiring is included, and each electronic component obtains electrical continuity with wiring on the board. Plays the role of parts.
 主要な電子部品のひとつにコイルがあり、高周波回路やスイッチング電源には必須の部品となっている。コイルは主に円筒の金属線を巻線状にして作られており、このコイルと基板上の配線の接続は基板に形成した貫通口にコイルの両端を通し、基板上配線とコイル端部をはんだ付けすることが多い。図10はコイルと基板上配線の接続の一例を示しており、11が基板上パッド、12が基板、13がはんだ、21がコイルである。このはんだ付け方法は、まず基板上パッド11を形成した基板12の貫通口にコイル21の端部を挿入・固定する。次に、コイル21が貫通口から脱離しないように保持し、コイル21の反対側からフローはんだ装置にてはんだを吹き付ける。そののちに、はんだづけ装置から取り出し冷却することではんだ付けを完了させる。基板サイズが小さい場合や、部品点数が少ない場合などでは手作業にてはんだ付けを行うこともある。上記のようにはんだ付けは、貫通口から離脱しないようにコイルを保持した状態ではんだを溶融させて接続するため、コイルを保持しつつはんだ付けを行わなければならず、また基板に貫通口を形成する必要があることが課題である。この接続方法では環境負荷が大きいとされる熱プロセスによるはんだ付けを行うこともあり、はんだ付け代替の技術の開発は急務である。 One of the main electronic components is a coil, which is an essential component for high-frequency circuits and switching power supplies. The coil is mainly made of a cylindrical metal wire, and the coil is connected to the wiring on the board by passing both ends of the coil through a through-hole formed in the board, and connecting the wiring on the board and the coil end. Often soldered. FIG. 10 shows an example of the connection between the coil and the wiring on the substrate. 11 is a pad on the substrate, 12 is a substrate, 13 is solder, and 21 is a coil. In this soldering method, first, the end portion of the coil 21 is inserted and fixed in the through hole of the substrate 12 in which the pad 11 on the substrate is formed. Next, the coil 21 is held so as not to be detached from the through hole, and solder is sprayed from the opposite side of the coil 21 with a flow soldering apparatus. After that, the soldering is completed by taking it out from the soldering apparatus and cooling it. When the board size is small or the number of parts is small, soldering may be performed manually. As described above, soldering is performed by melting and connecting the solder while holding the coil so that it does not leave the through-hole. Therefore, soldering must be performed while holding the coil. The problem is that it needs to be formed. In this connection method, soldering may be performed by a thermal process, which is considered to have a large environmental load, and development of a soldering alternative technology is urgent.
 はんだを用いない接続方式としては、導電性樹脂による接続やかしめなどによる接触接続、超音波接続などが考えられる。導電性樹脂による接続ははんだ付け温度より低温で接続することができる。またかしめ接触接続は機械的に接触させる接続であるので室温で実現可能な方法である。しかし、導電性樹脂接続では熱負荷が必要であることや接続抵抗が高いことが課題であり、接触接続では接触抵抗が高いこととかしめ用部材が必要なことがデメリットとなる。一方、超音波接続は被接続部材を超音波と加圧によるエネルギーで室温で金属接続する方式であり、低抵抗な室温接続を実現できる方式である。 As connection methods that do not use solder, connection by conductive resin, contact connection by caulking, ultrasonic connection, etc. are conceivable. Connection by conductive resin can be made at a temperature lower than the soldering temperature. In addition, the caulking contact connection is a mechanical contact connection, and thus can be realized at room temperature. However, the conductive resin connection requires a heat load and a high connection resistance, and the contact connection has a high contact resistance and requires a caulking member. On the other hand, the ultrasonic connection is a method in which a member to be connected is metal-connected at room temperature with energy by ultrasonic waves and pressure, and a low resistance room temperature connection can be realized.
 超音波を用いた配線と基板上パッドの接続方法として、特許文献1には導電パターンの上にあらかじめ複数のバンプを形成し、そのバンプにはさまれるように配線を設置したのち、上方から加圧しながら超音波を印加することによって配線と導電パターンを接続する方法が提案されている。またプリント基板上電極と金属端子の接続方法としては特許文献2に、プリント基板端部に形成したプリント基板上電極を、フレキシブル基板上に形成した金属端子で上下から挟み込み、挟み込んだ箇所に超音波を印加することによりプリント基板上電極と金属基板を金属接続する方法が提案されている。これらの方式はいずれも超音波接続の特徴である室温における金属接続を提案した例である。 As a method for connecting a wiring and a pad on a substrate using ultrasonic waves, in Patent Document 1, a plurality of bumps are formed on a conductive pattern in advance, wiring is placed so as to be sandwiched between the bumps, and then applied from above. There has been proposed a method of connecting a wiring and a conductive pattern by applying ultrasonic waves while pressing. In addition, as a method of connecting the printed circuit board electrode and the metal terminal, Patent Document 2 discloses that the printed circuit board electrode formed on the printed circuit board end is sandwiched from above and below by the metal terminal formed on the flexible substrate, and ultrasonic waves are applied to the sandwiched portion. There has been proposed a method of metal-connecting an electrode on a printed circuit board and a metal substrate by applying. These methods are examples in which metal connection at room temperature, which is a feature of ultrasonic connection, is proposed.
特開平11-288961号公報Japanese Patent Laid-Open No. 11-288961 特許第3853566号公報Japanese Patent No. 3856656
 上記の通り、円筒金属線を基板電極上へはんだを用いずに接続することは、非常にメリットが大きい技術である。しかし上記特許文献1に記載されている方法では、バンプを形成しなくてはならないため製造工数が増えることやコストが上昇すること、銅やアルミニウムの円筒金属線を接続する場合はバンプ強度を向上させる必要があることが懸念される。また、特許文献2では接続部が基板外周に限られることから設計自由度が低下すること、フレキシブル基板を用いるため材料コストの上昇が懸念されることが課題として挙げられる。 As described above, connecting a cylindrical metal wire onto a substrate electrode without using solder is a technology having a great merit. However, in the method described in Patent Document 1, bumps must be formed, which increases manufacturing man-hours and costs, and improves bump strength when connecting copper or aluminum cylindrical metal wires. There is concern about the need to Moreover, in patent document 2, since a connection part is restricted to a board | substrate outer periphery, the freedom degree of design falls, and since a flexible board | substrate is used, there is a possibility that material cost will raise.
 この他の課題として接続時の位置ずれが挙げられる。超音波ツール側の金属(例えば円筒金属線、金属A)、アンビル側の金属(例えば基板上パッド、金属B)を超音波にて接続する場合を例に挙げる。超音波接続ツール先端には、超音波加振時に超音波ツールと金属Aの間のすべりを防止する突起が設けられている。その突起が金属Aにくい込むことにより、金属Aが超音波ツールの動きに追従するように保持している。しかし、円筒金属線を接続する際には曲面を超音波ツール先端の突起で加圧することになるので接触位置にばらつきが生じ、位置ずれや金属線の移動が起こる。位置ずれなどが発生すると接続信頼性への影響が懸念される。 Another problem is misalignment during connection. An example will be given in which a metal on the ultrasonic tool side (for example, a cylindrical metal wire, metal A) and a metal on the anvil side (for example, a pad on the substrate, metal B) are connected by ultrasonic waves. The tip of the ultrasonic connection tool is provided with a protrusion for preventing slippage between the ultrasonic tool and the metal A during ultrasonic vibration. Since the protrusion is hard to get into the metal A, the metal A is held so as to follow the movement of the ultrasonic tool. However, when connecting the cylindrical metal wire, the curved surface is pressed by the protrusion at the tip of the ultrasonic tool, so that the contact position varies, and the position shift and the metal wire move. If misalignment occurs, there is a concern about the effect on connection reliability.
 本発明では、上記課題を解決するために、金属体を基板上の導体層に超音波接続するにあたって、超音波接続開始時に金属体が超音波ツールに接触する面積を、金属体が導体層に接触する面積よりも大きくした。 In the present invention, in order to solve the above-mentioned problem, when ultrasonically connecting a metal body to a conductor layer on a substrate, the area where the metal body contacts the ultrasonic tool at the start of ultrasonic connection, It was larger than the contact area.
 本発明によれば、超音波ツールが大きな面積で金属体に接触するため、加圧時の金属柱の位置ずれや回転を抑制することができるとともに、金属体と導体層の接触面積が小さいため、初期加圧時に接触部にパワーが集中しやすく、より少ないエネルギで接続することができる。 According to the present invention, since the ultrasonic tool contacts the metal body with a large area, the displacement and rotation of the metal column during pressurization can be suppressed, and the contact area between the metal body and the conductor layer is small. In the initial pressurization, the power tends to concentrate on the contact portion, and the connection can be made with less energy.
本発明の一実施例にかかるリードと電極の接続概略図である。It is the connection schematic of the lead | read | reed and electrode concerning one Example of this invention. 本発明の一実施例にかかるコイルへの超音波接続実施例の模式図である。It is a schematic diagram of the Example of an ultrasonic connection to the coil concerning one Example of this invention. 本発明の一実施例にかかるコイルへの超音波接続実施例の模式図である。It is a schematic diagram of the Example of an ultrasonic connection to the coil concerning one Example of this invention. 本発明の一実施例にかかる超音波接続実施前のリード先端の拡大図である。It is an enlarged view of the lead tip before ultrasonic connection concerning one example of the present invention. 本発明の一実施例にかかる超音波接続後のリード先端の拡大図である。It is an enlarged view of the lead tip after ultrasonic connection concerning one example of the present invention. は、本発明の一実施例にかかる超音波接続前のリード長さ方向の断面図である。These are sectional drawings of the lead length direction before the ultrasonic connection concerning one Example of this invention. 本発明の一実施例にかかる超音波接続中のリード長さ方向の断面図である。It is sectional drawing of the lead length direction in the ultrasonic connection concerning one Example of this invention. 本発明の一実施例にかかる超音波接続後のリード長さ方向の断面図である。It is sectional drawing of the lead length direction after the ultrasonic connection concerning one Example of this invention. 本発明の一実施例にかかる超音波接続前のリード径方向の断面図である。It is sectional drawing of the lead radial direction before the ultrasonic connection concerning one Example of this invention. 本発明の一実施例にかかる超音波接続中のリード径方向の断面図である。It is sectional drawing of the lead radial direction in the ultrasonic connection concerning one Example of this invention. 本発明の一実施例にかかる超音波接続後のリード径方向の断面図である。It is sectional drawing of the lead radial direction after the ultrasonic connection concerning one Example of this invention. 従来技術にかかる断面が円形のリードの接続を説明する断面図である。It is sectional drawing explaining the connection of a lead with a circular cross section concerning a prior art. 従来技術にかかる断面が方形のリードの接続を説明する断面図である。It is sectional drawing explaining the connection of a square cross-section concerning a prior art. 本発明の一実施例にかかる接続部の接続後の断面図である。It is sectional drawing after the connection of the connection part concerning one Example of this invention. 本発明の一実施例にかかるせん断試験後の基板上パッドの破面の模式図である。It is a schematic diagram of the fracture surface of the pad on a board | substrate after the shear test concerning one Example of this invention. 本発明の他の実施例にかかる超音波接続前のリード径方向の断面図である。It is sectional drawing of the lead radial direction before the ultrasonic connection concerning the other Example of this invention. 従来のリードと電極の接続概略図である。It is the connection schematic of the conventional lead | read | reed and electrode.
 以下、本発明実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、本発明の実施例にかかる、コイル21と基板12の接続形態である。コイル21はリードが巻回されたものであり、基板へ電気的及び機械的に接続するための二本ののリード1を有している。基板12上には、導体層による電極パッド11が複数形成されており、リード1は、約90度折り曲げられ、その側面を電極パッド11に超音波接続により接続されている。 FIG. 1 shows a connection form of a coil 21 and a substrate 12 according to an embodiment of the present invention. The coil 21 is formed by winding a lead and has two leads 1 for electrical and mechanical connection to the substrate. A plurality of electrode pads 11 made of a conductor layer are formed on the substrate 12, and the lead 1 is bent about 90 degrees, and the side surfaces thereof are connected to the electrode pads 11 by ultrasonic connection.
 図1及び図2(a)(b)を用いて、本実施例にかかるコイルと基板との接続方法を説明する。まず、図2(a)に示すように、コイル21を、そのリード1の側面が電極パッド11の方向を向くようにして、基板上に載置する。そして、超音波ツール20を用意する。 The connection method between the coil and the substrate according to this embodiment will be described with reference to FIGS. 1 and 2A and 2B. First, as shown in FIG. 2A, the coil 21 is placed on the substrate such that the side surface of the lead 1 faces the electrode pad 11. Then, an ultrasonic tool 20 is prepared.
 次に、図2(b)に示すように、超音波ツール20をリード1上から電極パッド11側に力を加えながら押し当てる。そして、この状態で、超音波ツール20に超音波を印加することにより、リード1と電極パッド11の金属とが擦りあわされて接触面の表面酸化膜などが除去され、金属新生面が接触することにより金属接続され、コイル21と基板12とが接続される。 Next, as shown in FIG. 2B, the ultrasonic tool 20 is pressed from the lead 1 to the electrode pad 11 side while applying a force. In this state, by applying ultrasonic waves to the ultrasonic tool 20, the lead 1 and the metal of the electrode pad 11 are rubbed together to remove the surface oxide film and the like on the contact surface, and the new metal surface comes into contact. Thus, the coil 21 and the substrate 12 are connected.
 図3(a)(b)は本実施例の接続前後状態の斜視による模式図であり、図4(a)(b)(c)はリード1の軸方向に沿った断面図であり、図5(a)(b)(c)はリード1の径方向に沿った断面図である。図3(a)、図4(a)、図5(a)は、接続前の状態を表す図である。1はリード、3はリード上加工箇所、11は電極パッド、20は超音波ツールである。図面に示すように、電極パッド11上にリード1を配置する。この時、電極パッド11とリード1の円筒部側面が接触している。この接触部と反対側のリード側面部に加工を施し、リード上加工箇所3を形成する。リード上加工箇所3は超音波ツール20の加振面がリード1に接触する領域よりも大きい面積になるように加工してある。R-土壌加工箇所3の加工面形状は平面であることが望ましいが、平面に限定されず、略平面上に多少の凹凸がついていたり、他の箇所(特に電極パッド11に接触する接触面)よりも曲率の小さい曲面でもよい。このリード上加工箇所3の形成方法として、断面が円形のリード1からプレス加工や切削、ブラスト処理などを行ったり、リード上加工箇所を有するように断面が一部が欠けた円形になるようにリード1を鋳造することが挙げられるが、上記リード上加工箇所3が形成される方法であればどのような方法でもかまわない。 3 (a) and 3 (b) are schematic perspective views of the present embodiment before and after connection, and FIGS. 4 (a), 4 (b), and 4 (c) are cross-sectional views along the axial direction of the lead 1. FIG. 5 (a), (b) and (c) are cross-sectional views along the radial direction of the lead 1. FIG. 3A, FIG. 4A, and FIG. 5A are diagrams showing a state before connection. Reference numeral 1 denotes a lead, 3 denotes a processed portion on the lead, 11 denotes an electrode pad, and 20 denotes an ultrasonic tool. As shown in the drawing, the lead 1 is disposed on the electrode pad 11. At this time, the electrode pad 11 and the side surface of the cylindrical portion of the lead 1 are in contact. Processing is performed on the side surface portion of the lead opposite to the contact portion to form a processed portion 3 on the lead. The on-lead processed portion 3 is processed so that the vibration surface of the ultrasonic tool 20 has a larger area than the region in contact with the lead 1. Although it is desirable that the processed surface shape of the R-soil processed portion 3 is a flat surface, it is not limited to a flat surface, and there are some irregularities on a substantially flat surface, or other portions (particularly a contact surface that contacts the electrode pad 11). It may be a curved surface with a smaller curvature. As a method of forming the on-lead processed portion 3, press processing, cutting, blasting, or the like is performed from the lead 1 having a circular cross section, or the cross section is partially cut to have a circular shape so as to have the processed portion on the lead. The lead 1 may be cast, but any method may be used as long as the above-mentioned processed portion 3 on the lead is formed.
 図4(b)、図5(b)に示すように、リード上加工箇所3に超音波ツール20を押し当て、超音波を印加することによりリード1と電極パッド11を接続させる。超音波ツール20の加振面に形成された突起により、超音波印加時にリード1の拘束力を高め、超音波パワーを接続面に集中させる。 As shown in FIGS. 4B and 5B, the ultrasonic tool 20 is pressed against the processed area 3 on the lead, and the lead 1 and the electrode pad 11 are connected by applying ultrasonic waves. The protrusion formed on the vibration surface of the ultrasonic tool 20 increases the restraining force of the lead 1 when applying ultrasonic waves, and concentrates the ultrasonic power on the connection surface.
 図4(b)は接続中のリード1をリード先端方向から見た接続部断面模式図であるが、図5(b)に示すように、超音波ツール20が接触している箇所のリード上加工箇所3は、超音波ツール20の先端突起形状にならって変形しており、超音波印加時の超音波ツール20とリード1間のすべりを抑制している。また加圧によりリード1は厚さ方向につぶされていく。一方、接続面30では初期接触箇所が擦りあわされることにより、リード1と基板上パッド11の接触面の表面酸化膜などが除去され、金属新生面が接触することにより金属接続されていく。この接続面30は、超音波印加と加圧に伴いリード1が変形するにつれて、初期接続面からリード1の側面に向かって広がっていく。 FIG. 4B is a schematic cross-sectional view of the connecting portion when the lead 1 being connected is viewed from the tip direction of the lead, but as shown in FIG. 5B, on the lead where the ultrasonic tool 20 is in contact. The processing point 3 is deformed following the shape of the tip protrusion of the ultrasonic tool 20 and suppresses slippage between the ultrasonic tool 20 and the lead 1 when an ultrasonic wave is applied. Further, the lead 1 is crushed in the thickness direction by pressurization. On the other hand, the contact surface 30 is rubbed at the initial contact location, so that the surface oxide film and the like on the contact surface between the lead 1 and the substrate pad 11 are removed, and the metal newly connected surface comes into contact with the metal. The connection surface 30 spreads from the initial connection surface toward the side surface of the lead 1 as the lead 1 is deformed as the ultrasonic wave is applied and pressurized.
 図3(b)、図4(c)、図5(c)は接続後のリード1および電極10の外観図を示している。この図に示すようにリード上加工箇所3中の超音波ツール20が加圧したリード上加圧箇所2には超音波ツール20の先端部形状の痕跡が残っており、加圧されなかったリード上加工箇所3の大半は初期の加工面のままである。以上のプロセスでリード1と電極10は超音波接続にて接続が行われる。 3 (b), 4 (c), and 5 (c) are external views of the lead 1 and the electrode 10 after connection. As shown in this figure, a trace of the shape of the tip of the ultrasonic tool 20 remains in the pressurized part 2 on the lead pressed by the ultrasonic tool 20 in the processed part 3 on the lead. Most of the upper machining location 3 remains the initial machining surface. In the above process, the lead 1 and the electrode 10 are connected by ultrasonic connection.
 本実施例の作用効果を説明する。図6(a)(b)は、従来の超音波接続を説明する図である。従来は、断面が円形のリード1aまたは方形のリード1bを用いていた。図6(a)は断面が円形のリード1aの場合に接続を表す図である。リードにリード上加工箇所3を形成していない場合、超音波ツール20の加圧面とリード1が初期に接触する面が曲面となるため、初期的な超音波ツール20とリード1の接触面積が小さくなる。そのため加圧を行うと、図の矢印のように応力がかかり、電極11に対するリード1の位置ずれや回転が発生する可能性が高い。この位置ずれや回転が発生すると、リード1と電極10の接続面積がばらつくため接続信頼性を低下させることや、リードの他端が固定されている場合は他端の接続部に応力が発生し信頼性を低下させることなどが懸念される。 The operational effects of this embodiment will be described. 6 (a) and 6 (b) are diagrams for explaining conventional ultrasonic connection. Conventionally, a lead 1a having a circular cross section or a square lead 1b has been used. FIG. 6A is a diagram showing connection in the case of the lead 1a having a circular cross section. When the on-lead processed portion 3 is not formed on the lead, the pressure contact surface of the ultrasonic tool 20 and the surface where the lead 1 is initially contacted are curved surfaces, so that the initial contact area between the ultrasonic tool 20 and the lead 1 is large. Get smaller. Therefore, when pressure is applied, stress is applied as shown by the arrows in the figure, and there is a high possibility that the lead 1 is displaced or rotated with respect to the electrode 11. When this misalignment or rotation occurs, the connection area between the lead 1 and the electrode 10 varies, so that the connection reliability is lowered, and when the other end of the lead is fixed, stress is generated at the connecting portion at the other end. There is concern about reducing reliability.
 また、図6(b)に示すように断面が方形のリード1bを用いれば、リードの位置ずれや回転は生じにくいが、超音波印加開始時にリード1bと電極パッド11との接触面積が大きく、接続箇所に印加するパワーが分散してしまい、接続に大きなパワーを要する。 In addition, if the lead 1b having a square cross section is used as shown in FIG. 6B, the lead is not easily displaced or rotated, but the contact area between the lead 1b and the electrode pad 11 is large at the start of ultrasonic application, The power applied to the connection location is dispersed, and a large power is required for the connection.
 これに対し、本実施例では、リード上加工箇所3を形成することにより、超音波ツール20がリード1に接触する際の初期接触面積のばらつきを抑え、かつ円形リードの側面の曲面を加圧する場合に比べ超音波ツール20とリード1の初期接触面積を増大させることができる。また初期状態から均一に荷重をかけることができるので、リード1の位置ずれや回転を抑制できる。 On the other hand, in this embodiment, by forming the on-lead processed portion 3, variation in the initial contact area when the ultrasonic tool 20 contacts the lead 1 is suppressed, and the curved surface on the side surface of the circular lead is pressed. Compared to the case, the initial contact area between the ultrasonic tool 20 and the lead 1 can be increased. In addition, since a load can be applied uniformly from the initial state, the displacement and rotation of the lead 1 can be suppressed.
 さらに、超音波加振初期状態の超音波ツール20の先端部とリード1の面積がリード1と電極10の初期接触面積に比べて大きくすることができるので、接続初期からより小さな入力エネルギーで接続面にパワーを集中させることができる。また、リード上加工箇所3を形成せずに曲面を加圧・加振する場合は、超音波ツール20とリード1が接触する面を加圧によって曲面から超音波ツール20先端部に沿った形状に変形させるためにエネルギーが要されるが、リード上加工箇所3を形成することによって変形に要するエネルギーを低減することができる。また、リード1と電極パッド11との初期の接触面積が小さいため、接続のための超音波や加圧が小面積の接触部に集中して接続が行いやすくなる。よって、接続時の荷重の低減や加振時間の短縮、振幅の低減などによる短時間低エネルギー接続が実現できる。 Furthermore, since the area of the tip of the ultrasonic tool 20 and the lead 1 in the initial state of ultrasonic vibration can be made larger than the initial contact area of the lead 1 and the electrode 10, it is possible to connect with less input energy from the initial connection stage. Power can be concentrated on the surface. Further, when the curved surface is pressurized and vibrated without forming the processed portion 3 on the lead, the shape along the tip of the ultrasonic tool 20 from the curved surface is applied by pressing the surface where the ultrasonic tool 20 and the lead 1 are in contact with each other. However, energy required for deformation can be reduced by forming the on-lead processed portion 3. In addition, since the initial contact area between the lead 1 and the electrode pad 11 is small, ultrasonic waves and pressure for connection are concentrated on the contact area having a small area, and the connection is facilitated. Therefore, it is possible to realize low-energy connection for a short time by reducing the load at the time of connection, shortening the excitation time, and reducing the amplitude.
 リード1の材質はどのような材料でもよいが、銅、アルミニウム、鉄、ニッケルの少なくともひとつを主成分とする金属であることが望ましい。また、リード1表面は錫、金、ニッケル、銅などを主成分とする金属(はんだを含む)で表面コートされていてもかまわない。電極11の材質はどのような材料でもよいが、銅、アルミニウム、鉄、ニッケルの少なくともひとつを主成分とする金属であることが望ましい。また、電極11表面は錫、金、ニッケル、銅などを主成分とする金属(はんだを含む)で表面コートされていてもかまわない。また、本実施例ではリード加工前のリード断面形状が円形の例を記しているが、リードの断面形状は楕円形や三角形、四角形、八角形などの多角形でもよい。 The lead 1 may be made of any material, but is preferably a metal containing at least one of copper, aluminum, iron and nickel as a main component. The surface of the lead 1 may be coated with a metal (including solder) whose main component is tin, gold, nickel, copper or the like. The electrode 11 may be made of any material, but is preferably a metal containing at least one of copper, aluminum, iron, and nickel as a main component. Further, the surface of the electrode 11 may be coated with a metal (including solder) whose main component is tin, gold, nickel, copper or the like. Further, in this embodiment, an example in which the lead cross-sectional shape before lead processing is circular is described, but the cross-sectional shape of the lead may be an ellipse, a polygon such as a triangle, a quadrangle, or an octagon.
 さらに超音波を印加するときの超音波ツールを振動させる方向はリードの長手方向であることが望ましいが、短手方向やななめ方向、円周方向でもかまわない。 Furthermore, the direction in which the ultrasonic tool is vibrated when applying ultrasonic waves is preferably the longitudinal direction of the lead, but it may be the short direction, the licking direction, or the circumferential direction.
 本実施例では、図4(a)(b)(c)および図5(a)(b)(c)に示すように側面から見た場合の超音波ツール20が加圧するエリアをリード上加工箇所3の一部として描写しているが、この超音波ツール20が加圧するエリアは図4(a)(b)(c)および図5(a)(b)(c)におけるリード上加工箇所3以外のリードを加圧しなければリード上加工箇所3の全長以下であればよく、リード1先端を加圧する形態でも同様な効果が得られる。 In this embodiment, as shown in FIGS. 4 (a), (b), (c) and FIGS. 5 (a), (b), and (c), the area where the ultrasonic tool 20 is pressed when viewed from the side is processed on the lead. Although depicted as a part of the location 3, the area where the ultrasonic tool 20 is pressed is the machining area on the lead in FIGS. 4 (a), (b), (c) and FIGS. 5 (a), (b), and (c). If the lead other than 3 is not pressed, it may be equal to or less than the total length of the processed portion 3 on the lead, and the same effect can be obtained by pressing the tip of the lead 1.
 本実施例では超音波ツール20の図5(a)(b)(c)における横方向の長さをリード1の直径と同程度として描写しているが、この超音波ツール20の図5(a)(b)(c)における横方向の長さはリード1の直径よりも長くても短くても良く、図5(a)(b)(c)に示す限りではない。 In this embodiment, the length of the ultrasonic tool 20 in the horizontal direction in FIGS. 5A, 5B, and 5C is depicted as being approximately the same as the diameter of the lead 1, but FIG. The lateral lengths in a), (b), and (c) may be longer or shorter than the diameter of the lead 1, and are not limited to those shown in FIGS. 5 (a), (b), and (c).
 接続終了時には図3(b)、図4(c)、図5(c)に示すように、加圧部に超音波ツール20の先端形状を形成されたリード1と基板上パッド11が接続された形状となる。以上のプロセスでリード1と基板上パッド11は超音波接続にて接続が行われる。接続後においては、径方向の断面である図5(c)では、リード1が上側と下側とから同様に押しつぶされているため、リード1と電極パッド11との接続面積よりもリード1上側の略平坦部の面積が大きい。 At the end of connection, as shown in FIGS. 3B, 4C, and 5C, the lead 1 formed with the tip shape of the ultrasonic tool 20 and the substrate pad 11 are connected to the pressurizing portion. Shape. In the above process, the lead 1 and the substrate pad 11 are connected by ultrasonic connection. After the connection, in FIG. 5C, which is a cross section in the radial direction, the lead 1 is similarly crushed from the upper side and the lower side, so the upper side of the lead 1 than the connection area between the lead 1 and the electrode pad 11 The area of the substantially flat portion is large.
 図7は本実施例を用いて接続した後のリード先端方向から見た際の接続部断面形状の拡大図である。1はリード、11は基板上パッド、12は基板、31は接続面近傍外周部である。図5および図6に示すように、接続初期ではリード1と基板上パッド11の接触面積は非常に小さく、また接触箇所は基板上パッド11の中央付近である。超音波と荷重を印加することにより、リード1と基板上パッド11の接触面が擦りあわされることにより各々の金属新生面が露出し、金属結合することにより接続が進行していく。この接続の進行に伴い、接続面にあった酸化膜などの表面皮膜は接続部の外側に押し出されていき、接続面近傍外周部31付近に堆積しやすくなる。接続過程が進行し接続面積が増加するにつれ、接続面近傍外周部31も初期接続面に比べて外側に移動し、接続が完了すると図7に示す接続面近傍外周部31の箇所となり、この付近に酸化膜などの表面皮膜は堆積する傾向が強い。 FIG. 7 is an enlarged view of the cross-sectional shape of the connecting portion when viewed from the tip end direction of the lead after being connected using the present embodiment. Reference numeral 1 denotes a lead, 11 denotes a pad on the substrate, 12 denotes a substrate, and 31 denotes an outer peripheral portion near the connection surface. As shown in FIGS. 5 and 6, the contact area between the lead 1 and the substrate pad 11 is very small at the initial stage of connection, and the contact location is near the center of the substrate pad 11. By applying ultrasonic waves and a load, the contact surfaces of the lead 1 and the pad 11 on the substrate are rubbed to expose each new metal surface, and the connection proceeds by metal bonding. As the connection progresses, the surface film such as an oxide film on the connection surface is pushed out of the connection portion, and is easily deposited near the outer peripheral portion 31 in the vicinity of the connection surface. As the connection process progresses and the connection area increases, the outer peripheral portion 31 near the connection surface also moves outward compared to the initial connection surface, and when the connection is completed, it becomes the location of the outer peripheral portion 31 near the connection surface shown in FIG. In addition, surface films such as oxide films tend to deposit.
 図8は本発明の本実施例のせん断試験後の基板上パッドの破面の模式図である。11は基板上パッド、12は基板、30は接続面、31は接続面近傍外周部、32はせん断試験痕である。図8ではせん断試験痕32は上下方向に形成された例を示したが、せん断試験痕32は超音波印加方向と同一方向に形成される傾向が強いため、せん断試験痕32の方向はいずれの方向であってもかまわない。図7で示したように、接続後には接続面近傍外周部31に酸化膜などの表面皮膜が堆積しやすいため、図7の試験片のシェア試験を実施した場合は図8のような破断面になると推定される。 FIG. 8 is a schematic view of the fracture surface of the pad on the substrate after the shear test of this embodiment of the present invention. 11 is a pad on a substrate, 12 is a substrate, 30 is a connection surface, 31 is an outer peripheral portion near the connection surface, and 32 is a shear test mark. FIG. 8 shows an example in which the shear test mark 32 is formed in the vertical direction. However, since the shear test mark 32 tends to be formed in the same direction as the ultrasonic wave application direction, the direction of the shear test mark 32 is any direction. It does not matter if it is in the direction. As shown in FIG. 7, since a surface film such as an oxide film is likely to be deposited on the outer peripheral portion 31 in the vicinity of the connection surface after connection, when the shear test of the test piece of FIG. It is estimated that
 図9は本発明第二の実施例であるコイルの接続に本発明を適用した場合の接続前の状態をリード1先端側からみた断面図である。1はリード、3はリード上加工箇所、4はリード初期接触箇所、11は基板上パッド、12は基板、20は超音波ツール、30は接続面である。接続前の状態では、図9のようにリード1にリード上加工箇所3が形成されているため、超音波ツール20先端の突起がリード上加工箇所3に均等に接触する。そのため、超音波ツール20とリード1が接触した際のリード1の回転や位置ずれを抑制することができる。またリード1と基板上パッド11の初期接触面積が、超音波ツール20が加圧するリード加工箇所3の面積に比べて小さいため、接続箇所に印加するパワーが集中しやすくなる。そのため少ないエネルギで初期接続が可能となり、接続時に発生する微細粉の抑制も可能となる。 FIG. 9 is a cross-sectional view of the state before connection when the present invention is applied to the connection of the coil according to the second embodiment of the present invention, as viewed from the leading end side of the lead 1. Reference numeral 1 is a lead, 3 is a processing location on the lead, 4 is a lead initial contact location, 11 is a pad on the substrate, 12 is a substrate, 20 is an ultrasonic tool, and 30 is a connection surface. In the state before the connection, since the lead on-machined portion 3 is formed on the lead 1 as shown in FIG. 9, the protrusion at the tip of the ultrasonic tool 20 contacts the lead on-machined portion 3 evenly. Therefore, the rotation and displacement of the lead 1 when the ultrasonic tool 20 and the lead 1 are in contact can be suppressed. In addition, since the initial contact area between the lead 1 and the pad 11 on the substrate is smaller than the area of the lead processing portion 3 where the ultrasonic tool 20 pressurizes, the power applied to the connection portion tends to concentrate. Therefore, initial connection is possible with less energy, and fine powder generated at the time of connection can be suppressed.
 第一の実施例と異なる点は、基板上パッド11とリード1が接触するリード初期接触箇所4に凹凸4を形成していることである。凹凸は、リード1の長方向に沿って溝を形成することにより形成している。凹凸4の先端を結んだ線は、リード上加工箇所3と略並行になるように形成されており、超音波印加の初期において、凹凸4の先端の複数が電極パッド11に接触している。凹凸を形成することで、リード1下面が円形ではなくなり、リード1が転がりにくくなり、超音波接続時のリードの位置ずれを抑制することができる。リード1下面を、上面と同様に平坦化することによっても転がりは防止できるが、本実施例では超音波接続開始時に凹凸の先端の間に隙間があることで接触面積が小さくなり、加重が凹凸先端に集中して接続がしやすくなっている。また、コイルが安定し、自立することができるので、接続前の部品支持工程を省略することができる。この凹凸形状は支点が2点以上形成できる形状であればどのような形状でも良いが、凹凸先端リード上加工箇所3の真下の領域にあり、リード1断面の重心が、複数の凹凸先端によって囲まれた領域の上にあることが望ましい。凹凸の形成は、製造時に形成しておいても良いし、プレスや金型に押し当て、レーザ加工やブラスト処理などの物理的処理による追加工でも良いし、エッチングなどの化学的処理による追加工でも良い。 The difference from the first embodiment is that the unevenness 4 is formed in the lead initial contact portion 4 where the pad 11 on the substrate and the lead 1 are in contact. The unevenness is formed by forming a groove along the longitudinal direction of the lead 1. A line connecting the tips of the irregularities 4 is formed so as to be substantially parallel to the processed portion 3 on the lead, and a plurality of the tips of the irregularities 4 are in contact with the electrode pads 11 in the initial stage of ultrasonic application. By forming the irregularities, the lower surface of the lead 1 is not circular, and the lead 1 becomes difficult to roll, and the positional deviation of the lead during ultrasonic connection can be suppressed. Rolling can also be prevented by flattening the lower surface of the lead 1 in the same manner as the upper surface. However, in this embodiment, there is a gap between the tips of the concave and convex portions at the start of ultrasonic connection, so that the contact area becomes small and the load is uneven. It is easy to connect by concentrating on the tip. In addition, since the coil is stable and can stand on its own, the component support step before connection can be omitted. The concavo-convex shape may be any shape as long as two or more fulcrums can be formed. However, the concavo-convex shape is in a region immediately below the processed portion 3 on the concavo-convex tip lead, and the center of gravity of the cross section of the lead 1 is surrounded by a plurality of concavo-convex tips. It is desirable to lie on a designated area. Concavities and convexities may be formed at the time of manufacture, applied to a press or mold, applied by physical processing such as laser processing or blasting, or processed by chemical processing such as etching. But it ’s okay.
 接続開始後の断面図は、実施例1と同様であり、接続中は図5(b)、接続後は図5(c)のようになる。リード上加工箇所3、リード1の材料、超音波接続の接続プロセスも同様であり、詳細な説明は割愛する。 The cross-sectional view after the start of connection is the same as in Example 1, and is as shown in FIG. 5B during connection and as shown in FIG. 5C after connection. The same is true for the on-lead processed portion 3, the material of the lead 1, and the connection process of ultrasonic connection.
1・・・リード、2・・・リード上加圧箇所、3・・・リード上初期加工箇所、4・・・リード初期接触箇所、10・・・電極、11・・・基板上パッド、12・・・基板、13・・・はんだ、20・・・超音波ツール、21・・・コイル、30・・・接続面、31・・・接続面近傍外周部、32・・・せん断試験痕。 DESCRIPTION OF SYMBOLS 1 ... Lead, 2 ... Pressing location on lead, 3 ... Initial processing location on lead, 4 ... Initial contact location on lead, 10 ... Electrode, 11 ... Pad on substrate, 12 ...... Substrate, 13 ... solder, 20 ... ultrasonic tool, 21 ... coil, 30 ... connection surface, 31 ... outer periphery near connection surface, 32 ... shear test trace.

Claims (11)

  1.  基板と、
     前記基板上に設けられた電極パッドと、
     前記電極パッドに超音波接続にて接続された金属体とを備えた接続構造において、
     前記金属体の前記電極パッドと接続された面とは反対面に、略平面部を有し、
     当該略平面部の面積は、前記金属体が前記電極パッドと接続されている面積よりも大きいことを特徴とする接続構造。
    A substrate,
    An electrode pad provided on the substrate;
    In a connection structure comprising a metal body connected to the electrode pad by ultrasonic connection,
    On the surface opposite to the surface connected to the electrode pad of the metal body, has a substantially flat portion,
    The connection structure characterized in that an area of the substantially planar portion is larger than an area where the metal body is connected to the electrode pad.
  2.  請求項1において、
     前記金属体はリードであり、
     前記リードの前記電極パッドに接続されない部分の断面は、略円形または略楕円形であることを特徴とする接続構造。
    In claim 1,
    The metal body is a lead;
    A connection structure characterized in that a cross section of a portion of the lead that is not connected to the electrode pad is substantially circular or elliptical.
  3.  請求項2において、
     前記リードがコイルを形成していることを特徴とする接続構造。
    In claim 2,
    The connection structure, wherein the lead forms a coil.
  4.  請求項1乃至3のいずれかにおいて、前記金属体と前記電極パッドの表面の材質が銅、ニッケル、アルミニウム、錫の少なくともひとつを主成分としていることを特徴とする接続構造。 4. The connection structure according to claim 1, wherein a material of the surface of the metal body and the electrode pad contains at least one of copper, nickel, aluminum, and tin as a main component.
  5.  第1の金属体を、第2の金属体上に配置する工程と、
     前記第2の金属体とは反対側を向いた前記第1の金属体の側面を、超音波ツールにより超音波を印加しながら押圧して、前記第1の金属体と前記第2の金属体とを超音波接続する工程と、
     を含む接続構造の製造方法において、
     超音波印加開始時において、前記第1の金属体は、前記超音波ツールとの接触面積が、前記第2の金属体との接触面積よりも大きいことを特徴とする接続構造の製造方法。
    Disposing the first metal body on the second metal body;
    The side surfaces of the first metal body facing away from the second metal body are pressed while applying ultrasonic waves with an ultrasonic tool, and the first metal body and the second metal body are pressed. And a step of ultrasonically connecting
    In a manufacturing method of a connection structure including:
    The method for manufacturing a connection structure, wherein the first metal body has a contact area with the ultrasonic tool larger than a contact area with the second metal body at the start of application of ultrasonic waves.
  6.  請求項5において、
     前記第1金属体はリードであり、前記第2の金属体は基板上に設けられた電極パッドまたは配線であることを特徴とする接続構造の製造方法。
    In claim 5,
    The method of manufacturing a connection structure, wherein the first metal body is a lead, and the second metal body is an electrode pad or a wiring provided on a substrate.
  7.  請求項6において、
     前記リードは、前記超音波接続されない部分の断面積が、略円形または略楕円形であることを特徴とする接続構造の製造方法。
    In claim 6,
    The method of manufacturing a connection structure, wherein the lead has a substantially circular or elliptical cross-sectional area at a portion where the ultrasonic connection is not performed.
  8.  請求項6または請求項7において、
     前記リードは、その側面を平坦化加工または曲率を小さくする加工を行ったものであり、
     前記超音波ツールは、前記加工を行った領域に接触して超音波印加を行うことを特徴とする接続構造の製造方法。
    In claim 6 or claim 7,
    The lead has undergone a process of flattening the side surface or reducing the curvature,
    The method of manufacturing a connection structure, wherein the ultrasonic tool performs ultrasonic application while being in contact with the processed region.
  9.  請求項5乃至8のいずれかにおいて、
     前記超音波印加開始時において、前記第1の金属体と前記第2の金属体とは、超音波が印加される領域で、複数の箇所で接触していることを特徴とする接続構造の製造方法。
    In any of claims 5 to 8,
    At the start of the application of ultrasonic waves, the first metal body and the second metal body are in a region where ultrasonic waves are applied, and are in contact with each other at a plurality of locations. Method.
  10.  請求項9において、
     前記第1の金属体は、前記第2の金属体と接続される面に凹凸を有し、
     前記超音波印加開始時に、前記凹凸の複数の先端が前記第2の金属体に接触していることを特徴とする接続構造の製造方法。
    In claim 9,
    The first metal body has irregularities on a surface connected to the second metal body,
    A method for manufacturing a connection structure, wherein at the start of application of ultrasonic waves, the plurality of tips of the irregularities are in contact with the second metal body.
  11.  請求項5乃至10のいずれかにおいて、
     前記第1の金属体は、コイルを構成するリードであることを特徴とする接続構造の製造方法。
    In any of claims 5 to 10,
    The method of manufacturing a connection structure, wherein the first metal body is a lead constituting a coil.
PCT/JP2011/002345 2010-06-09 2011-04-22 Connecting structure and manufacturing method thereof WO2011155115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010131596A JP5577161B2 (en) 2010-06-09 2010-06-09 Connection structure and manufacturing method thereof
JP2010-131596 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011155115A1 true WO2011155115A1 (en) 2011-12-15

Family

ID=45097737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002345 WO2011155115A1 (en) 2010-06-09 2011-04-22 Connecting structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5577161B2 (en)
WO (1) WO2011155115A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357656B2 (en) 2013-05-22 2016-05-31 Robert Bosch Gmbh Method for solderless electrical press-fit contacting of electrically conductive press-fit pins in circuit boards
GB2559146A (en) * 2017-01-26 2018-08-01 Sensata Technologies Inc Integrated circuit wire formed for welding
JP2019145263A (en) * 2018-02-19 2019-08-29 矢崎総業株式会社 Electric wire with terminal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5755601B2 (en) * 2012-06-07 2015-07-29 株式会社日立製作所 Power module and manufacturing method thereof
KR101584765B1 (en) * 2013-01-16 2016-01-22 주식회사 잉크테크 Manufacturing method of printed circuit board and printed circuit board
JP6087214B2 (en) * 2013-05-29 2017-03-01 矢崎総業株式会社 Electric wire terminal joining structure and terminal joining method
JP2014241680A (en) * 2013-06-11 2014-12-25 矢崎総業株式会社 Terminal junction structure of electric wire and electrode for resistance welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636852A (en) * 1992-07-15 1994-02-10 Matsushita Electric Works Ltd Method for connecting terminal to printed wiring board
JPH097856A (en) * 1995-06-19 1997-01-10 Taiyo Yuden Co Ltd Circuit component
WO2003085787A1 (en) * 2002-04-04 2003-10-16 Fujikura Ltd. Cable, cable connection method, and cable welder
JP2007144449A (en) * 2005-11-25 2007-06-14 Tokyo Electron Ltd Joining device and joining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636852A (en) * 1992-07-15 1994-02-10 Matsushita Electric Works Ltd Method for connecting terminal to printed wiring board
JPH097856A (en) * 1995-06-19 1997-01-10 Taiyo Yuden Co Ltd Circuit component
WO2003085787A1 (en) * 2002-04-04 2003-10-16 Fujikura Ltd. Cable, cable connection method, and cable welder
JP2007144449A (en) * 2005-11-25 2007-06-14 Tokyo Electron Ltd Joining device and joining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357656B2 (en) 2013-05-22 2016-05-31 Robert Bosch Gmbh Method for solderless electrical press-fit contacting of electrically conductive press-fit pins in circuit boards
GB2559146A (en) * 2017-01-26 2018-08-01 Sensata Technologies Inc Integrated circuit wire formed for welding
JP2019145263A (en) * 2018-02-19 2019-08-29 矢崎総業株式会社 Electric wire with terminal
US10673150B2 (en) 2018-02-19 2020-06-02 Yazaki Corporation Terminal-bonded cable

Also Published As

Publication number Publication date
JP2011258732A (en) 2011-12-22
JP5577161B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5577161B2 (en) Connection structure and manufacturing method thereof
CN107615464B (en) Method for manufacturing power semiconductor device and power semiconductor device
JP5366674B2 (en) Mounting structure and mounting method
KR101377108B1 (en) Power module and method of manufacturing the same
JP4832479B2 (en) Connector and electronic component provided with the connector
JP2014211953A (en) Connection method, connection device of wire
JP2013077781A (en) Electronic apparatus
JP5433526B2 (en) Electronic device and manufacturing method thereof
JP5884752B2 (en) Ultrasonic bonding apparatus and semiconductor device manufacturing method
JP4612550B2 (en) Bonding ribbon for power device and bonding method using the same
JP6444493B2 (en) Method to make conductive press-fit pin to solder press-free electrical press-contact to printed circuit board
JP3515479B2 (en) Conductive member and method of manufacturing the same
JP2011096695A (en) Semiconductor device
JP4374040B2 (en) Semiconductor manufacturing equipment
JP5755601B2 (en) Power module and manufacturing method thereof
JP2007324413A (en) Thermocompression bonding head and mounting device using the same
JP6133664B2 (en) Manufacturing method of electronic equipment
JP6328284B2 (en) Electronics
JP2012222316A (en) Thermal compression bonding heater chip, and thermal compression bonding method
JP5451655B2 (en) Terminal connection structure and semiconductor device having the terminal connection structure
JP2020191390A (en) Coil component and manufacturing method thereof
JP6496100B2 (en) Manufacturing method of semiconductor device
JP2005019948A (en) Lead frame and electronic component using it
JP2012015263A (en) Wire bonding apparatus
JP2008016690A (en) Connection structure for connecting electrode of substrate and connection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792078

Country of ref document: EP

Kind code of ref document: A1