WO2011154515A1 - Procédé permettant de produire un acier martensitique trempé à haute résistance - Google Patents

Procédé permettant de produire un acier martensitique trempé à haute résistance Download PDF

Info

Publication number
WO2011154515A1
WO2011154515A1 PCT/EP2011/059657 EP2011059657W WO2011154515A1 WO 2011154515 A1 WO2011154515 A1 WO 2011154515A1 EP 2011059657 W EP2011059657 W EP 2011059657W WO 2011154515 A1 WO2011154515 A1 WO 2011154515A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
temperature
tempering
precipitates
quenching
Prior art date
Application number
PCT/EP2011/059657
Other languages
English (en)
Inventor
Urszula Alicja Sachadel
Peter Francis Morris
Philip Clarke
Cheng Liu
Original Assignee
Tata Steel Nederland Technology Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Steel Nederland Technology Bv filed Critical Tata Steel Nederland Technology Bv
Priority to JP2013513703A priority Critical patent/JP2013533921A/ja
Priority to US13/701,017 priority patent/US20130160905A1/en
Priority to EP11725918.4A priority patent/EP2580357A1/fr
Priority to CA2801637A priority patent/CA2801637A1/fr
Publication of WO2011154515A1 publication Critical patent/WO2011154515A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • It is an object of th is i nvention to provide a method for prod uci ng a tempered martensitic heat resistant steel for high temperature applications at an application temperature of up to 650°C.
  • a fu rther object is to provide a tempered martensitic heat resistant steel for high temperature applications at an application temperature of up to 650°C.
  • Tempered martensitic heat resistant steel derive their creep strength from four principal sources:
  • the solution treatment temperature should be high enough to dissolve completely the BN, M(2)(C,N) and M 23 (C,N) 6 particles.
  • the temperatures of complete dissolution of BN are usually higher than the transformation temperature to ⁇ -ferrite.
  • M 2 3(C,N) 6 particles dissolve at lower austenitization temperatures and are normally completely dissolved.
  • the most important types with regard to high temperature creep properties are M 23 (C,B) 6 wherein M is mainly Fe, Cr, W or Mo (and mixtures thereof), and carbo-nitrides of the type M(C,N) and/or M 2 (C, N) wherein M is mainly Nb, V, Ta or Cr (and m ixtures thereof).
  • the C: N ratio (as expressed in wt.%) must be below 1.3.
  • the C: N is below 1.2.
  • the tempering treatment is performed at a temperature in the range of 10 to 50°C above the intended application temperature.
  • the tempering treatment would be performed at a temperature of between 660 and 700°C.
  • intended application temperature the operating temperature is meant at which the heat resistant steel is used.
  • the solution treating is performed between 1150°C and 1250°C. These temperatures allow for a complete dissolution of the M 2 3(C,B) 6 , and the dissolution of the majority of the M (2 )(C,N) particles.
  • the quenching after solution treatment should be as fast as possible to ensure that the dissolved elements remain in solid solution and to ensure formation of a fully martensitic microstructure.
  • the quenching is preferably performed in oil.
  • the oil is at ambient temperatures.
  • the quenching could also be performed by other means such as forced air, (hot) mist or even (hot) water, as long as the martensitic microstructure is obtained, the dissolved elements remain in solid solution, and the stresses as a result of the quenching do not exceed critical levels so that no warping or cracking occurs.
  • the tempering treatment is performed in at least two tempering treatments, and more preferably wherein the at least two separate heat treatments are performed at substantially the same tempering tem perature for substantially the same period of time.
  • the period of time at the tempering temperature is between 1 and 5 hours, preferably between 2 and 4 hours.
  • a method wherein the first of the at least two separate heat treatments is at the temperature range from 500°C up to 10°C higher than the application temperature and second is or the following are at the temperature range from 10 to 50°C higher than the application temperature. This will result in even finer dispersion of precipitates.
  • the latter higher temperature temper is particularly relevant where a stress relieving treatment after welding is required. As an example for an application temperature of 650°C the tempering can be done in the first step at 500-660°C and the second step at 660-700°C.
  • a tempered martensitic heat resistant steel for high temperature applications having a chemical composition as described hereinabove and produced in accordance with the method as described hereinabove wherein the microstructure of the steel after tem pering comprises intragranular preci pitates having a size of at most 70 nm of the M (C,N) and/or M 2 (C,N) type wherein M is one or more of Nb, V, Ta or Cr and wherein the microstructure of the steel after tempering comprises M 2 3(C,B) 6 precipitates wherein M is mainly composed of Cr and Fe on the lath, block, packets and/or prior austenite grain boundaries.
  • the M(C,N) and/or M 2 (C,N) precipitates have a size of at least 1 nm and at most 70 nm, preferably at most 50 nm and more preferably at most 30 nm. In an embodiment the M(C,N) and/or M 2 (C,N) preci pitates have a size of between 10 a nd 70 n m, more preferably between 10 and 50 nm, even more preferably between 10 and 30 nm.
  • both Ta and V are present as an alloying element.
  • the steel accord ing to the i nvention is used in the production of components for high temperature applications such as turbine blades or casings, bolting and boiler tubes, heat exchangers or other elements in power generation systems, for use at an application temperature of up to 650°C.
  • the C: N ratio of the steel is below 1.2.
  • Cr level should be selected accordi ng to the application tem perature for steam oxidation and corrosion resistance.
  • Recommended Cr level is 9.0-11.0%.
  • Co is optionally added only to avoid the formation of delta-ferrite on high solution treatment temperatures and is not necessary if there is no risk of formation of this phase at the tem peratu res that al low the dissolution of preci pitates.
  • a suitable maximum content is 2%.
  • Cu is optionally added to influence the morphology of the Laves phase and to avoid formatio n of delta-ferrite in a similar way as Co.
  • the recommended amount of Cu is 1.5%, for 9.0% Cr this addition can be lower.
  • M n a nd Ni are added to hel p to avoid formation of delta-ferrite similar to Co.
  • Recommended levels are below 0.5% Mn and up to 0.6% Ni.
  • Ni and M n a minim um amount of 0.1% for one or both elements is preferable.
  • a suitable minimum Si level is 0.1%, preferably at least 0.15%.
  • W and Mo are added for solid solution strengthening.
  • Tungsten additionally stabilizes M 2 3(C,B) 6 .
  • recommended combination is 1.5% W and 0.5% Mo.
  • a suitable minimum W-content is 0.5%.
  • N ratio should be low in order to favour the formation of M(C,N) or M 2 (C,N) particles rich in nitrogen and reduce M 23 (C,B) 6 fraction.
  • Examples of favourable C and N contents are: 0.073% C and 0.065% N, 0.02% C and 0.06% N.
  • V and Nb or V and Ta (or combination of V, Nb, Ta) is important for the nano-scale particles.
  • the examples of favourable V and Nb or Ta contents are 0.18 to 0.25% V and 0.04 to 0.07% Nb or 0.07 to 0.12% Ta.
  • the tempering should be done in one or more, preferably one or two, steps at the same or different temperatu res, up to 50°C higher than the application temperature.
  • Recommended temperatures are especially those in the range of 10 to 50°C higher than application temperature as they are regarded as especially favourable for fine distribution of nano-scale MX(C,N) or M 2 (C,N) particles. It is also believed that low temperature tempering favours formation of M 2 (C,N) over M(C,N).
  • Step A A 50kg air induction melt of Steel 92 material was produced (Steel A).
  • a second 60kg cast with h ig her n itrogen and lower carbon contents was prod uced by vacuum induction melting (Steel B).
  • Two additional casts (Steels C and D) of 50 kg each were also produced by vacuum induction melting.
  • Cast C and D have the lowest C: N ratio to favour formation of M(C,N) and/or M 2 (C,N) particles.
  • the chemical analyses are shown in Table 1. The ingots were forged to 50mm square bar then rolled to 19mm diameter round bar for the production of test specimens.
  • Samples from Steel A were given a standard heat treatment or a treatment involving a higher solution treatment temperature at 1150°C and lower tempering temperature of 660°C as outl ined in Table 2.
  • a sim u lated PWHT of 1 hour at 740°C followed by air cooling.
  • steel B samples were prepared with the low tem peratu re tem peri ng treatment and two sol ution treatments at 1 150°C a nd 1200°C.
  • Steel C and D are given the treatment as it is shown in Table 3.
  • Table 2 Heat Treatment Schedule for Steel A and B.
  • the stress rupture data for the high nitrogen Steel B at 600 and 650°C are shown in Table 6 for material given the low temperature temper and at two solution treatment temperatures of 1150 and 1200°C. The performance is compared with the conventional composition given the low temperature temper and the standard treatment.
  • the high nitrogen-low carbon Steel B is outperforming the conventional composition of Steel 92 (Steel A).
  • the best properties were obtained using the higher solution treatment temperature of 1200°C.
  • At 650°C and 92 MPa Steel A with the inventive heat treatment failed after 12,089 hours for a 10,000 hour aim.
  • the high nitrogen Steel B given a 1200°C solution treatment failed after 27,908 hours, meaning that Steel B outperforms Steel A by a factor 2.
  • microstructure of the samples in as tempered condition has been characterised and the results thereof are presented in the figures 1 to 4.
  • Figure 1 and 2 show examples of the microstructure comprising very fine M 2 (C,N) and M(C,N) precipitates formed i n Steel C A4-T2 sample (solutionised at 1200°C, quenched in oil and tempered at 660°C/3h AC + 660°C/3h AC).
  • Figure la TEM Bright Field (BF) micrograph of Steel C A4-T2 sample foil showing martensite lath interior precipitates.
  • Figure lb TEM Dark Field (DF) micrograph of Steel C A4-T2 with M2X precipitates taken in diffraction spot "dfl" of Figure lc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Cette invention se rapporte à un procédé permettant de produire un acier martensitique trempé à haute résistance pour des applications haute température à une température d'application allant jusqu'à 650 °C et à un acier produit par ledit procédé ainsi qu'à l'utilisation dudit acier dans la fabrication de composants pour des applications haute température telles que des pales ou des boîtiers de turbine, des tubes de boulonnage et de chaudière, des échangeurs de chaleur ou d'autres éléments dans des systèmes de production d'énergie.
PCT/EP2011/059657 2010-06-10 2011-06-10 Procédé permettant de produire un acier martensitique trempé à haute résistance WO2011154515A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013513703A JP2013533921A (ja) 2010-06-10 2011-06-10 高温用途向けの焼きもどしマルテンサイト系耐熱鋼の製造方法
US13/701,017 US20130160905A1 (en) 2010-06-10 2011-06-10 Method for producing a tempered martensitic heat resistant steel for high temperature application
EP11725918.4A EP2580357A1 (fr) 2010-06-10 2011-06-10 Procédé permettant de produire un acier martensitique trempé à haute résistance
CA2801637A CA2801637A1 (fr) 2010-06-10 2011-06-10 Procede permettant de produire un acier martensitique trempe a haute resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10165598.3 2010-06-10
EP10165598 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011154515A1 true WO2011154515A1 (fr) 2011-12-15

Family

ID=42557517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/059657 WO2011154515A1 (fr) 2010-06-10 2011-06-10 Procédé permettant de produire un acier martensitique trempé à haute résistance

Country Status (5)

Country Link
US (1) US20130160905A1 (fr)
EP (1) EP2580357A1 (fr)
JP (1) JP2013533921A (fr)
CA (1) CA2801637A1 (fr)
WO (1) WO2011154515A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851610A (zh) * 2012-07-27 2013-01-02 中国科学院合肥物质科学研究院 一种改进型结构材料马氏体耐热钢及其制备方法
CN103667967A (zh) * 2013-12-28 2014-03-26 无锡透平叶片有限公司 一种超超临界汽轮机转子用耐热钢
RU2558738C1 (ru) * 2014-06-03 2015-08-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочная сталь мартенситного класса
RU2598725C2 (ru) * 2014-11-28 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочная сталь мартенситного класса и способ ее получения
RU2655496C1 (ru) * 2017-05-18 2018-05-28 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочная сталь мартенситного класса

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101758497B1 (ko) * 2015-12-22 2017-07-27 주식회사 포스코 Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
CN105695678B (zh) * 2016-04-18 2017-11-03 东北大学 一种控制超超临界耐热钢中bn相形态的热处理方法
CN109477190B (zh) * 2016-07-28 2022-06-07 博格华纳公司 用于涡轮增压器的铁素体钢
KR20180104513A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
CN107058702B (zh) * 2017-04-20 2019-07-30 华能国际电力股份有限公司 一种提高奥氏体耐热钢时效后室温冲击韧性的热处理方法
CN113388791B (zh) * 2020-03-13 2022-05-13 钢铁研究总院 一种高强韧性回火马氏体辙叉钢及其热处理方法
CN114317900B (zh) * 2021-12-27 2024-01-30 内蒙古北方重工业集团有限公司 一种用于消除锻件偏析线的热处理工艺方法
CN115074607A (zh) * 2022-06-14 2022-09-20 山西太钢不锈钢股份有限公司 一种含钨耐热钢的大圆坯连铸方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210122A1 (fr) * 1985-07-09 1987-01-28 Mitsubishi Jukogyo Kabushiki Kaisha Rotor de turbine à vapeur pour températures élevées et son procédé de fabrication
EP0691416A1 (fr) * 1994-06-13 1996-01-10 The Japan Steel Works, Ltd. Aciers résistant aux températures élevées
EP0778356A1 (fr) * 1994-07-06 1997-06-11 Morinaga, Masahiko Procede de production d'un alliage a base de fer ferritique et acier thermoresistant ferritique
EP1329531A2 (fr) * 1997-09-22 2003-07-23 National Research Institute For Metals Acier ferritique réfractaire et procédé de fabrication
EP1988182A1 (fr) * 2006-02-06 2008-11-05 Babcock-Hitachi Kabushiki Kaisha Acier refractaire a base de ferrite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723182B1 (en) * 2002-11-14 2004-04-20 Arthur J. Bahmiller Martensitic alloy steels having intermetallic compounds and precipitates as a substitute for cobalt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210122A1 (fr) * 1985-07-09 1987-01-28 Mitsubishi Jukogyo Kabushiki Kaisha Rotor de turbine à vapeur pour températures élevées et son procédé de fabrication
EP0691416A1 (fr) * 1994-06-13 1996-01-10 The Japan Steel Works, Ltd. Aciers résistant aux températures élevées
EP0778356A1 (fr) * 1994-07-06 1997-06-11 Morinaga, Masahiko Procede de production d'un alliage a base de fer ferritique et acier thermoresistant ferritique
EP1329531A2 (fr) * 1997-09-22 2003-07-23 National Research Institute For Metals Acier ferritique réfractaire et procédé de fabrication
EP1988182A1 (fr) * 2006-02-06 2008-11-05 Babcock-Hitachi Kabushiki Kaisha Acier refractaire a base de ferrite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851610A (zh) * 2012-07-27 2013-01-02 中国科学院合肥物质科学研究院 一种改进型结构材料马氏体耐热钢及其制备方法
CN102851610B (zh) * 2012-07-27 2015-10-14 中国科学院合肥物质科学研究院 一种改进型结构材料马氏体耐热钢及其制备方法
CN103667967A (zh) * 2013-12-28 2014-03-26 无锡透平叶片有限公司 一种超超临界汽轮机转子用耐热钢
CN103667967B (zh) * 2013-12-28 2016-03-30 无锡透平叶片有限公司 一种超超临界汽轮机转子用耐热钢
RU2558738C1 (ru) * 2014-06-03 2015-08-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочная сталь мартенситного класса
RU2598725C2 (ru) * 2014-11-28 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочная сталь мартенситного класса и способ ее получения
RU2655496C1 (ru) * 2017-05-18 2018-05-28 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Жаропрочная сталь мартенситного класса

Also Published As

Publication number Publication date
JP2013533921A (ja) 2013-08-29
CA2801637A1 (fr) 2011-12-15
US20130160905A1 (en) 2013-06-27
EP2580357A1 (fr) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2011154515A1 (fr) Procédé permettant de produire un acier martensitique trempé à haute résistance
US20150203944A1 (en) Austenitic steel alloy having excellent creep strength and resistance to oxidation and corrosion at elevated use temeratures
JP5131794B2 (ja) 高圧水素ガス用高強度オーステナイトステンレス鋼
JP5562825B2 (ja) 耐熱鋳鋼、耐熱鋳鋼の製造方法、蒸気タービンの鋳造部品および蒸気タービンの鋳造部品の製造方法
JP6562476B2 (ja) フェライト系耐熱鋼とその製造方法
JP4995111B2 (ja) 溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材及び耐熱構造体
CA3053741A1 (fr) Alliage resistant a la chaleur a base de ni et son procede de fabrication
CA2982247A1 (fr) Acier inoxydable austenitique a haute teneur en chrome
JP6045256B2 (ja) 高強度高靭性高耐食マルテンサイト系ステンレス鋼
EP1873270A1 (fr) Acier faiblement allié
JP4995131B2 (ja) 溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材及び耐熱構造体
CN114086077B (zh) 铸造铁基奥氏体抗蠕变钢及其制备方法、应用
JP4995130B2 (ja) 溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材及び耐熱構造体
EP1930460A1 (fr) Acier faiblement allié
CN114622142B (zh) 一种630℃以上超超临界汽轮机锻件用耐热钢及其制备方法
US20100089501A1 (en) Martensitic Creep Resistant Steel Strengthened by Z-Phase
JP2002146484A (ja) 高強度フェライト系耐熱鋼
JP5265325B2 (ja) クリープ強度に優れる耐熱鋼およびその製造方法
JP4266194B2 (ja) 耐熱鋼、耐熱鋼の熱処理方法および高温用蒸気タービンロータ
KR101639889B1 (ko) 티타늄 함유 고온 구조용 강 및 그의 제조방법
CN101743336A (zh) 抗蠕变钢
KR20220010184A (ko) 내수소취성이 개선된 고질소 오스테나이트계 스테인리스강
JP2006241482A (ja) 焼戻しマルテンサイト組織を有するフェライト耐熱鋼とその製造方法
KR20140052094A (ko) 타워플랜지용 강재 및 이를 이용한 타워플랜지 제조 방법
JP4355787B2 (ja) フェライト鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11725918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011725918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2801637

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013513703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701017

Country of ref document: US