WO2011154273A2 - Energieübertragungseinrichtung - Google Patents

Energieübertragungseinrichtung Download PDF

Info

Publication number
WO2011154273A2
WO2011154273A2 PCT/EP2011/058851 EP2011058851W WO2011154273A2 WO 2011154273 A2 WO2011154273 A2 WO 2011154273A2 EP 2011058851 W EP2011058851 W EP 2011058851W WO 2011154273 A2 WO2011154273 A2 WO 2011154273A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy
transmission device
coupling means
power
distribution network
Prior art date
Application number
PCT/EP2011/058851
Other languages
English (en)
French (fr)
Other versions
WO2011154273A3 (de
Inventor
Jürgen MOSER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2011154273A2 publication Critical patent/WO2011154273A2/de
Publication of WO2011154273A3 publication Critical patent/WO2011154273A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to an energy transmission device for transmitting energy of an energy distribution network to a service area, which energy transmission device has a ring main unit with a branch field, which branch field is connected to the coverage area via coupling means.
  • a so-called secondary distribution level for the Energyvertei ⁇ ment which may include, for example, several successively connected Ring Main Units.
  • a ring-main unit consists essentially of an input and an output panel, which are each provided with a load ⁇ switch, and a branching field, usually in the form of a transformer feeder field, which is also provided with a load switch and from the transmission line, branches to which the ring main unit is connected, distributed power and ver ⁇ divides via coupling means to a valve provided downstream of the ring main unit coverage area.
  • the branch field is used on the one hand to-described ⁇ NEN diversion of energy from the power transmission line and on the other hand, when a transformer is present, to transform to the required voltage level.
  • the problem with such an arrangement of the energy transmission device is that, for example, by decentralized Injections of wind turbines or solar collectors which are connected to the energy distribution network most often in the region of the coupling agent or in the Ver ⁇ supply area, a flow of energy in the other direction by the Ring Main Unit is generated and on the other hand, influenced by fluctuations in quality of the distributed power supply, the entire network quality is ,
  • the object of the present invention is to develop an energy transmission device of the type mentioned in the introduction which, for example, enables a decentralized energy supply while maintaining the quality of the energy supply. According to the invention, this is achieved at a Energybergertra ⁇ restriction device of the aforementioned type characterized in that the coupling means comprise an energy storage device.
  • Such an energy storage as a part of the coupling means is particularly advantageous because this energy storage in ⁇ game as an accumulator or a battery or the like, energy can record both from the power distribution network and from remote power supplies and these as needed to the supply area, or to the Energyvertei- distribution network.
  • the energy storage device further ensures an equalization of the current flows in the power transmitting device and the whole power distribution network, which in particular negative feedback ⁇ effects on the quality of the power distribution network at the central supply in the region of the coupling means of the energy transmission device can be prevented.
  • the energy storage in series between the branch field and the Supply area arranged.
  • the coupling means each have ei ⁇ NEN converter between junction box and energy storage, and between energy storage and supply area.
  • the energy store is arranged parallel to the junction of the branch field with the service area. Even with such an arrangement of the energy storage in parallel to Ver ⁇ connection of branch field and coverage area is in simp ⁇ cher way a decentralized feed into the Energyvertei ⁇ ment network allows and on the other hand allows a uniform and demand-dependent energy transfer to the coverage area from the energy storage.
  • the energy transmission device has means for load flow control.
  • Such means for load flow control are advanta- way, because a need for equitable distribution of handenen before ⁇ energy from the power distribution network and the distributed power supply in the service area on the one hand allows to them and on the other hand, shot at a Energyplatz- in the energy store or by the decentralized power feed a control and a balanced energy return into the secondary power distribution network is made possible.
  • the means for load flow control are to pre ⁇ see, to keep the energy storage in such a state of charge that he needs depends accommodate both energy can also give, so that, for example, during the day when the supply area by decentralized feed an energy supply, the energy storage is charged and only after complete charging energy to the power distribution network, or evening and at night the energy storage is first discharged to the energy needs of the coverage area to cover and only when emptied energy storage, the required energy is obtained from the power distribution network.
  • FIG. 1 shows a schematic representation of a lung Energyvertei ⁇ network for power transmission with a power transmission device according to the invention
  • FIG. 2 shows a schematic representation of part of the energy transmission device according to the invention.
  • FIG. 3 shows a further schematic illustration of a part of a power transmission device according to the invention.
  • FIG. 1 shows schematically a power transmission network 1 with a high voltage line 2, to which a transformer / substation 3 is connected, which transforms the high voltage of the high voltage line 2 to a voltage common in a primary distribution network 4.
  • the primary Ver ⁇ distribution network 4 shown in the Figure 1 schematically shows a circuit breaker system 5, provides the energy provided to the secondary distribution system 6, wel ⁇ ches, as shown schematically in Figure 1, beispiels- is formed of a plurality of successively connected and forming a ring so-called ring Main Units, wherein in the figure 1, a first ring Main Unit 7 and a second ring Main Unit 8 are shown as examples.
  • the ring main units 7 and 8 have the same structure and will be described in more detail below with reference to the ring main unit 7.
  • the ring main unit 7 has an input switching field 9, a departure control panel 10 and a branching field 11, in the case of a transformer branching field .
  • the etcsschalt- frame 9 and the finish panel 10 are provided with disconnector ⁇ switches 12, 13 for switching or interrupting a guided over the Ring Main Unit in the secondary distribution network 6 current, the feeder panel 11 also has a load break switch 14 and a transformer, which transforms the extracted from the secondary distribution network 6 voltage to a voltage level which is required in a supply area Ver ⁇ 15th
  • the ring main unit 7 or its branch field 11 is connected via coupling means 16, which are explained in more detail with reference to Figures 2 and 3, with the supply area 15, in which supply area 15 consumes the power supplied via the branching field 11 available energy ⁇ becomes.
  • FIG. 2 shows a schematic representation of the coupling means 16 of FIG. 1, which are arranged between the branch field 11 and the supply area 15.
  • the coupling means 16 comprise an inverter 17 in the form of an AC / DC converter, a converter 18 in the form of a DC / AC converter and an energy store 19 arranged therebetween, which is provided for storing and receiving the energy taken from the branching field 11 and Transfer of this energy via the inverter 18 to the coverage area 15.
  • the service area 15 is via a further connecting line 20 and an optional converter
  • the Um ⁇ richter 21 is provided for converting and dissemination of the energy of the decentralized feed via the supply area 15 to the energy storage 19.
  • the energy storage device 19 may also be connected to the coupling means 16.
  • storage and demand-related transfer of the energy provided by the branching field 11 and the secondary distribution network 6 to the service area 15 is made possible and, on the other hand, also recording and demand-dependent transfer of the energy from the decentralized supply 22 energy made available over the supply area depending on the demand on the supply area 15 or for energy recovery in the secondary distribution network 6 allows.
  • Figure 3 shows another embodiment of the coupling ⁇ medium 16 from the Figure 1, which coupling means 16 having the inverter 17 and the inverter 18 as well as the energy storage device 19 in the schematic diagram of Figure 3 between the branch box 11 and the supply area 15, wherein the energy storage 19 in the embodiment of Figure 3 by means of an inverter in the form of a DC / DC converter 23 is connected in parallel to the corre sponding ⁇ voltage level parallel to the connecting line 24 between the inverter 17 and the inverter 18, and the coverage area 15 continues via the connec ⁇ line 20 and the inverter 21 is connected to the decentralized feed 22.
  • the decentralized feed 22 can also be connected to the coupling means 16 (FIG. lent not shown).
  • the coupling means 16 of the energy transmission device are provided with means for load flow control, which are not shown figuratively, which have the neces ⁇ ended measuring and control devices, such as current and voltage converter, as well as control and Steue ⁇ means to from the determined Measured values control and manipulated variables for the inverter 17, 18, 21 to determine and thus to control the load flow between the secondary ⁇ ren distribution network 6 and the supply area 15 and the decentralized feed 22 are formed to hold the energy storage in such a state of charge in that, depending on the requirements, it can both absorb and release energy, so that, for example, during the day when there is an energy supply from the supply area due to decentralized feed, the energy store is charged and only after full charging does it deliver energy to the energy distribution network, or

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Small-Scale Networks (AREA)

Abstract

Um eine Energieübertragungseinrichtung zur Übertragung von Energie eines Energieverteilungsnetzes an ein Versorgungsgebiet (15), welche Energieübertragungseinrichtung eine Ring Main Unit (7, 8) mit einem Abzweigfeld (11) aufweist, welches Abzweigfeld (11) über Kopplungsmittel (16) mit dem Versorgungsgebiet (15) verbunden ist, weiterzubilden, welche beispielsweise eine dezentrale Energieeinspeisung bei gleichbleibender Qualität der Energieversorgung ermöglicht, wird vorgeschlagen, dass die Kopplungsmittel (16) einen Energiespeicher (19) umfassen.

Description

Beschreibung
Energieübertragungseinrichtung Die Erfindung betrifft eine Energieübertragungseinrichtung zur Übertragung von Energie eines Energieverteilungsnetzes an ein Versorgungsgebiet, welche Energieübertragungseinrichtung eine Ring Main Unit mit einem Abzweigfeld aufweist, welches Abzweigfeld über Kopplungsmittel mit dem Versorgungsgebiet verbunden ist.
Derartige Energieübertragungseinrichtungen sind aus dem landläufigen Stand der Technik bekannt. Bei der Übertragung von Energie ist nach einer Abzweigung aus einer Hochspannungslei- tung mittels einer Transformator-/Umspannstation und einer
Verteilung in der so genannten primären Verteilungsebene eine so genannte sekundäre Verteilungsebene für die Energievertei¬ lung vorgesehen, welche beispielsweise mehrere hintereinander geschaltete Ring Main Units umfassen kann. Eine derartige Ring-Main Unit besteht im Wesentlichen aus einem Eingangsund einem Ausgangsschaltfeld, welche jeweils mit einem Last¬ schalter versehen sind, sowie einem Abzweigfeld, meistens in Form eines Transformatorabzweigfeldes, welches ebenfalls mit einem Lastschalter versehen ist und die aus der Übertragungs- leitung, an welcher die Ring Main Unit angeschlossen ist, verteilte Energie abzweigt und über Kopplungsmittel an ein hinter der Ring Main Unit vorgesehenes Versorgungsgebiet ver¬ teilt. Das Abzweigfeld dient dabei einerseits zur beschriebe¬ nen Abzweigung der Energie aus der Energieübertragungsleitung und andererseits, wenn ein Transformator vorhanden ist, zum Transformieren auf das nötige Spannungsniveau.
Problematisch bei einer derartigen Anordnung der Energieübertragungseinrichtung ist, dass beispielsweise durch dezentrale Einspeisungen von Windkraftanlagen oder Solarkollektoren, welche meistens im Bereich der Kopplungsmittel oder im Ver¬ sorgungsgebiet an das Energieverteilungsnetz angeschlossen sind, auch ein Energiefluss in die andere Richtung durch die Ring Main Unit erzeugbar ist und andererseits durch schwankende Qualität der dezentralen Energieeinspeisung die gesamte Netzqualität beeinflusst wird.
Aufgabe der vorliegenden Erfindung ist es, eine Energieüber- tragungseinrichtung der eingangs genannten Art weiterzubilden, welche beispielsweise eine dezentrale Energieeinspeisung bei gleichbleibender Qualität der Energieversorgung ermöglicht . Erfindungsgemäß gelöst wird dies bei einer Energieübertra¬ gungseinrichtung der eingangs genannten Art dadurch, dass die Kopplungsmittel einen Energiespeicher umfassen.
Ein derartiger Energiespeicher als Teil der Kopplungsmittel ist besonders vorteilhaft, weil dieser Energiespeicher, bei¬ spielsweise ein Akkumulator oder eine Batterie oder ähnliches, Energie sowohl aus dem Energieverteilungsnetz als auch von dezentralen Einspeisungen aufnehmen kann und diese nach Bedarf an das Versorgungsgebiet oder an das Energievertei- lungsnetz weitergeben kann. Der Energiespeicher gewährleistet weiterhin eine Vergleichmäßigung der Stromflüsse innerhalb der Energieübertragungseinrichtung und des gesamten Energieverteilungsnetzes, wodurch insbesondere auch negative Rück¬ wirkungen auf die Qualität des Energieverteilungsnetzes bei der zentralen Einspeisung im Bereich der Kopplungsmittel der Energieübertragungseinrichtung verhindert werden.
In einer vorteilhaften Ausgestaltung der Erfindung ist der Energiespeicher in Reihe zwischen dem Abzweigfeld und dem Versorgungsgebiet angeordnet. In einer vorteilhaften Weiter¬ bildung der Erfindung weisen die Kopplungsmittel jeweils ei¬ nen Umrichter zwischen Abzweigfeld und Energiespeicher und zwischen Energiespeicher und Versorgungsgebiet auf. Bei einer derartigen Anordnung von Energiespeicher und Umrichtern ist eine störungsfreie Übertragung der Energie von dezentralen Einspeisungen einerseits in das Versorgungsgebiet und ande¬ rerseits in das Energieverteilungsnetz über die sekundäre Verteilungsebene bzw. die Ring Main Unit in einfacher Weise ermöglicht.
In einer anderen vorteilhaften Ausgestaltung der Erfindung ist der Energiespeicher parallel zur Verbindung des Abzweigfeldes mit dem Versorgungsgebiet angeordnet. Auch mit einer derartigen Anordnung des Energiespeichers parallel zur Ver¬ bindung von Abzweigfeld und Versorgungsgebiet ist in einfa¬ cher Weise eine dezentrale Einspeisung in das Energievertei¬ lungsnetz ermöglicht und andererseits eine gleichmäßige und bedarfsabhängige Energieweitergabe an das Versorgungsgebiet aus dem Energiespeicher ermöglicht.
In einer vorteilhaften Weiterbildung der Erfindung weist die Energieübertragungseinrichtung Mittel zur Lastflusssteuerung auf. Derartige Mittel zur Lastflusssteuerung sind vorteil- haft, weil mit ihnen eine bedarfsgerechte Verteilung der vor¬ handenen Energie aus dem Energieverteilungsnetz und der dezentralen Energieeinspeisung in das Versorgungsgebiet einerseits ermöglicht ist und andererseits bei einem Energieüber- schuss im Energiespeicher bzw. durch die dezentrale Energie- einspeisung eine Steuerung und ein vergleichmäßigter Energie- rückfluss in das sekundäre Energieverteilungsnetz ermöglicht ist. Die Mittel zur Lastflusssteuerung sind dabei dazu vorge¬ sehen, den Energiespeicher in einem solchen Ladzustand zu halten, dass er bedarfsabhängig sowohl Energie aufnehmen als auch abgeben kann, so dass beispielsweise tagsüber, wenn vom Versorgungsgebiet durch dezentrale Einspeisung ein Energieangebot besteht, der Energiespeicher geladen wird und erst nach vollständigem Aufladen Energie an das Energieverteilungsnetz abgibt, bzw. abends und nachts der Energiespeicher zunächst entladen wird, um den Energiebedarf des Versorgungsgebietes zu decken und erst bei entleertem Energiespeicher die benötigte Energie aus dem Energieverteilungsnetz bezogen wird.
Die Erfindung wird im Folgenden anhand der Zeichnung und eines Ausführungsbeispiels mit Bezug auf die beiliegenden Figu¬ ren näher erläutert. Es zeigen:
Figur 1: eine schematische Darstellung eines Energievertei¬ lungsnetzes zur Energieübertragung mit einer erfindungsgemäßen Energieübertragungseinrichtung;
Figur 2: eine schematische Darstellung eines Teil der er¬ findungsgemäßen Energieübertragungseinrichtung; und
Figur 3: eine weitere schematische Darstellung eines Teils einer erfindungsgemäßen Energieübertragungseinrichtung .
Figur 1 zeigt schematisch ein Energieübertragungsnetz 1 mit einer Hochspannungsleitung 2, an welcher eine Transformator-/ Umspannstation 3 angeschlossen ist, welche die Hochspannung der Hochspannungsleitung 2 auf eine in einem primären Verteilungsnetz 4 übliche Spannung transformiert. Das primäre Ver¬ teilungsnetz 4, in der Figur 1 schematisch über eine Leistungsschalteranlage 5 dargestellt, liefert die zur Verfügung gestellte Energie an das sekundäre Verteilungsnetz 6, wel¬ ches, wie in der Figur 1 schematisch dargestellt, beispiels- weise aus mehreren hintereinander geschalteten und einen Ring ausbildenden so genannten Ring Main Units gebildet ist, wobei in der Figur 1 eine erste Ring Main Unit 7 und eine zweite Ring Main Unit 8 exemplarisch dargestellt sind. Die Ring Main Units 7 und 8 weisen dabei den gleichen Aufbau auf und werden im Folgenden mit Bezug auf die Ring Main Unit 7 näher beschrieben. Die Ring Main Unit 7 weist ein Eingangsschaltfeld 9, ein Abgangsschaltfeld 10 sowie ein Abzweigfeld 11, im Bei¬ spiel ein Transformatorabzweigfeld, auf. Das Eingangsschalt- feld 9 und das Abgangsschaltfeld 10 sind dabei mit Lasttrenn¬ schaltern 12, 13 zum Schalten bzw. Unterbrechen eines über die Ring Main Unit im sekundären Verteilungsnetz 6 geführten Stromes versehen, das Abzweigfeld 11 weist ebenfalls einen Lasttrennschalter 14 auf sowie einen Transformator, welcher die aus dem sekundären Verteilungsnetz 6 entnommene Spannung auf ein Spannungsniveau transformiert, welches in einem Ver¬ sorgungsgebiet 15 benötigt wird. Die Ring Main Unit 7 bzw. deren Abzweigfeld 11 ist über Kopplungsmittel 16, welche mit Bezug auf die Figuren 2 und 3 näher erläutert werden, mit dem Versorgungsgebiet 15 verbunden, in welchem Versorgungsgebiet 15 die über das Abzweigfeld 11 zur Verfügung gestellte Ener¬ gie verbraucht wird.
Figur 2 zeigt eine schematische Darstellung der Kopplungsmit- tel 16 der Figur 1, welche zwischen dem Abzweigfeld 11 und dem Versorgungsgebiet 15 angeordnet sind. Die Kopplungsmittel 16 umfassen einen Umrichter 17 in Form eines Wechselspan- nungs-/Gleichspannungsumrichters, einen Umrichter 18 in Form eines Gleichspannungs-/Wechselspannungsumrichters sowie einen dazwischen angeordneten Energiespeicher 19, welcher zum Speichern und Aufnehmen der aus dem Abzweigfeld 11 aufgenommenen Energie vorgesehen ist und zur Weitergabe dieser Energie über den Umrichter 18 an das Versorgungsgebiet 15. Im Ausführungsbeispiel ist das Versorgungsgebiet 15 über eine weitere Verbindungsleitung 20 und einen optionalen Umrichter
21 mit einer dezentralen Einspeisung 22, beispielsweise einer Windkraftanlage oder einer Solarkollektoreinspeisung auf ei- nem Haus im Versorgungsgebiet 15, gekoppelt, wobei der Um¬ richter 21 zur Umwandlung und Weitergabe der Energie der dezentralen Einspeisung über das Versorgungsgebiet 15 an den Energiespeicher 19 vorgesehen ist. Die dezentrale Einspeisung
22 kann aber auch mit den Kopplungsmitteln 16 verbunden sein. Mit einer derartigen Anordnung des Energiespeichers 19 innerhalb der Kopplungsmittel 16 ist einerseits eine Speicherung und bedarfsabhängige Weitergabe der vom Abzweigfeld 11 und der vom sekundären Verteilungsnetz 6 zur Verfügung gestellten Energie an das Versorgungsgebiet 15 ermöglicht und anderer- seits auch eine Aufnahme und bedarfsabhängige Weitergabe der von der dezentralen Einspeisung 22 über das Versorgungsgebiet zur Verfügung gestellten Energie abhängig vom Bedarf an das Versorgungsgebiet 15 bzw. zur Energierückspeisung in das sekundäre Verteilungsnetz 6 ermöglicht.
Figur 3 zeigt ein anderes Ausführungsbeispiel der Kopplungs¬ mittel 16 aus der Figur 1, welche Kopplungsmittel 16 in der schematischen Darstellung der Figur 3 zwischen dem Abzweigfeld 11 und dem Versorgungsgebiet 15 den Umrichter 17 und den Umrichter 18 sowie den Energiespeicher 19 aufweisen, wobei der Energiespeicher 19 im Ausführungsbeispiel der Figur 3 mittels eines Umrichters in Form eines Gleichspannungs- /Gleichspannungsumrichters 23 zur Anpassung an das entspre¬ chende Spannungsniveau parallel an die Verbindungsleitung 24 zwischen dem Umrichter 17 und dem Umrichter 18 angeschlossen ist, und das Versorgungsgebiet 15 weiterhin über die Verbin¬ dungsleitung 20 und den Umrichter 21 mit der dezentralen Einspeisung 22 verbunden ist. Die dezentrale Einspeisung 22 kann aber auch mit den Kopplungsmitteln 16 verbunden sein (figür- lieh nicht dargestellt) . Auch bei einer derartigen parallelen Ankopplung des Energiespeichers 19 über den Umrichter 23 an die Verbindungsleitung 24 und damit die Verbindung zwischen Abzweigfeld 11 und Versorgungsgebiet 15 sind die bereits oben mit Bezug auf die Figur 2 beschriebenen Möglichkeiten und
Vorteile zur Energieweitergabe und Energieeinspeisung ermög¬ licht .
Die Kopplungsmittel 16 der Energieübertragungseinrichtung sind dabei mit Mitteln zur Lastflusssteuerung versehen, welche figürlich nicht dargestellt sind, welche über die notwen¬ digen Mess- und Steuerungsgeräte, wie beispielsweise Strom- und Spannungswandler verfügen, sowie Kontroll- und Steue¬ rungsmittel, um aus den ermittelten Messwerten Steuerungs- und Stellgrößen für die Umrichter 17, 18, 21 zu bestimmen und die somit zur Steuerung des Lastflusses zwischen dem sekundä¬ ren Verteilungsnetz 6 und dem Versorgungsgebiet 15 und der dezentralen Einspeisung 22 ausgebildet sind, um den Energiespeicher in einem solchen Ladzustand zu halten, dass er be- darfsabhängig sowohl Energie aufnehmen als auch abgeben kann, so dass beispielsweise tagsüber, wenn vom Versorgungsgebiet durch dezentrale Einspeisung ein Energieangebot besteht, der Energiespeicher geladen wird und erst nach vollständigem Aufladen Energie an das Energieverteilungsnetz abgibt, bzw.
abends und nachts der Energiespeicher zunächst entladen wird, um den Energiebedarf des Versorgungsgebietes zu decken und erst bei entleertem Energiespeicher die benötigte Energie aus dem Energieverteilungsnetz bezogen wird. Bezugs zeichenliste
1 Energieübertragungsnetz
2 Hochspannungsleitung
3 Transformator- /Umspannstation
4 primäre Verteilungsnetz
5 Leistungsschalteranläge
6 sekundäres Verteilungsnetz
7, 8 Ring Main Units
9 Eingangsschaltfeld
10 Abgangsschaltfeld
11 Abzweigfeld
12, 13, 14 Lasttrennschalter
15 Versorgungsgebiet
16 Kopplungsmittel
17, 18 Umrichter
19 Energiespeieher
20 Verbindungsleitung
21 Umrichter
22 dezentrale Einspeisung
23 Umrichter
24 Verbindungsleitung

Claims

Patentansprüche
1. Energieübertragungseinrichtung zur Übertragung von Energie eines Energieverteilungsnetzes an ein Versorgungsgebiet (15), welche Energieübertragungseinrichtung eine Ring Main Unit (7, 8) mit einem Abzweigfeld (11) aufweist, welches Abzweigfeld (11) über Kopplungsmittel (16) mit dem Versorgungsgebiet (15) verbunden ist,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Kopplungsmittel (16) einen Energiespeicher (19) umfassen.
2. Energieübertragungseinrichtung nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t, d a s s der Energiespeicher (19) in Reihe zwischen dem Abzweigfeld (11) und dem Versorgungsgebiet (15) angeordnet ist.
3. Energieübertragungseinrichtung nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Kopplungsmittel (16) jeweils einen Umrichter (17) zwi- sehen Abzweigfeld (11) und Energiespeicher (19) und zwischen Energiespeicher (19) und Versorgungsgebiet (15) aufweisen.
4. Energieübertragungseinrichtung nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t, d a s s der Energiespeicher (19) parallel an einer Verbindungsleitung (24) des Abzweigfeldes (11) mit dem Versorgungsgebiet (15) angeordnet ist.
5. Energieübertragungseinrichtung nach Anspruch 4,
d a d u r c h g e k e n n z e i c h n e t, d a s s der Energiespeicher (19) an die Verbindungsleitung (24) mittels eines weiteren Umrichters (23) angeschlossen ist.
6. Energieübertragungseinrichtung nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t, d a s s die Kopplungsmittel (16) jeweils einen Umrichter (17) zwi¬ schen Abzweigfeld (11) und Verbindungsleitung (24) und zwi- sehen Verbindungsleitung (24) und Versorgungsgebiet (15) auf¬ weisen .
7. Energieübertragungseinrichtung nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Energieübertragungseinrichtung Mittel zur Lastflusssteuerung aufweist.
PCT/EP2011/058851 2010-06-07 2011-05-30 Energieübertragungseinrichtung WO2011154273A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010023112.6 2010-06-07
DE102010023112A DE102010023112A1 (de) 2010-06-07 2010-06-07 Energieübertragungseinrichtung

Publications (2)

Publication Number Publication Date
WO2011154273A2 true WO2011154273A2 (de) 2011-12-15
WO2011154273A3 WO2011154273A3 (de) 2012-03-15

Family

ID=44626799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/058851 WO2011154273A2 (de) 2010-06-07 2011-05-30 Energieübertragungseinrichtung

Country Status (2)

Country Link
DE (1) DE102010023112A1 (de)
WO (1) WO2011154273A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066671A (zh) * 2018-09-26 2018-12-21 云南电网有限责任公司电力科学研究院 一种合环调电控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2641645T3 (es) * 2012-05-30 2017-11-10 Siemens Aktiengesellschaft Instalación de conmutación
CN110601238A (zh) * 2019-08-09 2019-12-20 南京因泰莱电器股份有限公司 储能系统智能微网调峰控制器
CN110768324B (zh) * 2019-09-30 2021-08-03 广州文冲船厂有限责任公司 一种分布式船舶用供电系统、控制方法和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2542434B2 (de) * 1975-09-23 1979-06-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ringkabelfeld zum Schalten eines Hochspannungs-Versorgungsringes und eines Abzweigs
EP1638184A3 (de) * 1998-04-02 2009-03-25 Capstone Turbine Corporation Energiesteuerung
GB2361591B (en) * 2000-04-18 2003-10-08 Alstom Improvements in or relating to ring main units
CA2469768C (en) * 2004-06-22 2009-03-24 Brian R. Parisien A methodology for time-shifting electrical grid energy consumption to optimize cost rate and grid load level
DE102005056700A1 (de) * 2005-11-28 2007-06-06 Siemens Ag Verfahren zum Versorgen von elektrischen Schiffs-Bordnetzen mit Fremdenergie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066671A (zh) * 2018-09-26 2018-12-21 云南电网有限责任公司电力科学研究院 一种合环调电控制方法

Also Published As

Publication number Publication date
DE102010023112A1 (de) 2011-12-08
WO2011154273A3 (de) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2178186B1 (de) Verfahren zum Betrieb eines Produktionssystems und/oder einer lokalen Anlage im Inselbetrieb
DE102017107355B4 (de) Stromrichteranordnung zur Speisung von Fahrzeugen und Anlage hiermit
DE102010056458A1 (de) Windpark und Verfahren zum Betreiben eines Windparks
DE102012204220A1 (de) Verfahren zum Steuern einer Anordnung zum Einspeisen elektrischen Stroms in ein Versorgungsnetz
EP3336998B1 (de) Netzersatzanlage, umrichter für eine netzersatzanlage sowie verfahren zum betreiben einer netzersatzanlage
EP2713477B1 (de) Verfahren zum Betreiben einer elektrischen Schaltung für einen Windpark
WO2019144166A1 (de) Stromversorgungsanlage
EP3602768A1 (de) Windpark mit mehreren windenergieanlagen
DE112020006179T5 (de) Ladesystem für mehrere fahrzeuge
DE102018116013B4 (de) Energieerzeugungsanlage, Wechselrichter und Verfahren zur Vorladung von Gleichspannungs-Zwischenkreisen von Wechselrichtern
DE102008046606A1 (de) Photovoltaikanlage
WO2011154273A2 (de) Energieübertragungseinrichtung
WO2020099055A1 (de) Umspannanlage eines energieversorgungsnetzes sowie ein verfahren zum betreiben einer umspannanlage
WO2015004034A2 (de) Elektrische anordnung mit einem wechselrichter und zwischenschaltgerät für die elektrische anordnung
DE102012101928A1 (de) Leistungsmanagement zur dezentralen Stabilisierung eines Stromnetzes
DE102020206672A1 (de) Niederspannungsverteilnetz, Stromnetz, Verfahren zum Betreiben eines Niederspannungsverteilnetzes
DE102020113907A1 (de) Modulare Ladesäule zum elektrischen Gleichstromladen einer Batterie eines Elektrofahrzeugs
DE102014100256B4 (de) Modularer Stromrichter
WO2022268689A1 (de) Verfahren zum betrieb eines energieversorgungssystems, vorrichtung zum austausch elektrischer leistung in einem energieversorgungssystem und energieversorgungssystem
DE102017131042A1 (de) Umrichter mit mindestens einem wandlermodul mit drei brückenzweigen, verfahren zum betreiben und verwendung eines solchen umrichters
DE102011122581B4 (de) Verfahren zum Betreiben eines elektrischen Versorgungsnetzes
EP2521240A2 (de) Elektrische Schaltung für einen Windpark
EP3422522A1 (de) Bereitstellung von elektrischer leistung an ein energieversorgungsnetz mittels einer bereitstellungseinrichtung mit erhöhter dynamik
DE202012013242U1 (de) Batteriewechselrichter und Vorrichtung zur Versorgung eines Hauses mit elektrischer Energie
DE102011056454A1 (de) Energieversorgungssystem

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11723922

Country of ref document: EP

Kind code of ref document: A2