WO2011152454A1 - Stator vane-type turbocharger - Google Patents

Stator vane-type turbocharger Download PDF

Info

Publication number
WO2011152454A1
WO2011152454A1 PCT/JP2011/062598 JP2011062598W WO2011152454A1 WO 2011152454 A1 WO2011152454 A1 WO 2011152454A1 JP 2011062598 W JP2011062598 W JP 2011062598W WO 2011152454 A1 WO2011152454 A1 WO 2011152454A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable member
front surface
fixed
wing
bearing housing
Prior art date
Application number
PCT/JP2011/062598
Other languages
French (fr)
Japanese (ja)
Inventor
石井 幹人
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2012518430A priority Critical patent/JPWO2011152454A1/en
Publication of WO2011152454A1 publication Critical patent/WO2011152454A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/045Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes

Definitions

  • the present invention relates to a fixed-wing turbocharger in which the rectification effect by a fixed blade is enhanced with a simple configuration.
  • a turbocharger includes a turbine scroll into which exhaust gas from an internal combustion engine is fed, a turbine impeller that rotates when exhaust (fluid) in the turbine scroll is supplied through a passage, and a compressor that rotates integrally with the turbine impeller.
  • An impeller and a compressor scroll as a diffuser to which air (fluid) from the compressor impeller is supplied through a passage, and forcibly supply pressurized air from the compressor scroll to the combustion chamber of the internal combustion engine .
  • the turbocharger may be provided with a blade body for rectifying the flow of fluid in one or both of the passage through which the exhaust on the turbine side flows and the passage through which the air on the compressor side flows.
  • the blade body provided in the turbine side passage will be described below.
  • the turbine scroll formed in the turbine housing increases the flow velocity and feeds the exhaust gas sent to the turbine impeller uniformly from the periphery of the turbine impeller by the blades to improve the efficiency of the turbine.
  • the blade body includes a fixed blade that fixes the blade body to one of the facing surfaces of the turbine housing and the bearing housing, and a shaft provided in each blade body between the facing surfaces of the turbine housing and the bearing housing.
  • variable wing bodies that are arranged so that the angles of the wing bodies can be changed simultaneously by rotating them simultaneously by a link mechanism or the like.
  • the fixed blade since the fixed blade has a fixed exhaust inflow angle, the flow velocity of the exhaust gas cannot be changed according to the rotational speed of the internal combustion engine. The flow rate of the exhaust can be changed by changing the inflow angle.
  • the fixed wing has a relatively simple configuration, whereas the variable wing body is movable, so that the configuration is complicated.
  • a gap called a blade side clearance is generated in the blade body provided between the opposed surfaces of the turbine housing and the bearing housing. That is, even if the clearance between the turbine housing or the bearing housing facing the blade body is designed with zero clearance, the turbine housing and the bearing housing having a complicated shape may be thermally deformed unevenly during operation, and the blade body and the blade Since the deformation due to the difference in thermal expansion due to the difference in material from the housing to which the body is fixed occurs, the actual clearance cannot be zero.
  • the temperature is lower than that of the turbine, but side clearance similarly occurs.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a fixed wing turbocharger in which the rectification effect by the fixed wing is enhanced by a simple configuration.
  • a passage between the bearing housing and the turbine housing and a passage between the bearing housing and the compressor are formed by the first member and the second member facing each other, and at least one of the passages includes a fixed blade.
  • the fixed wing is disposed between the front surfaces of the first member or the second member facing each other so as to be movable in the front-rear direction, and the wing body fixed to the front surface of the movable member.
  • a pressing means that presses the movable member so as to press the tip of the wing body against the front surface of the first member or the second member facing the movable member. It has.
  • the fixed wing is disposed so as to be movable in the front-rear direction between the front surfaces of the first member or the second member facing each other, and the first member or the second member.
  • a wing body fixed to the front surface of the movable member, and pressing the movable member against the front surface of the movable member so as to press the tip of the wing body against the front surface of the movable member.
  • the pressing means is a disc spring that seals leakage of fluid to the back side of the movable member.
  • the movable member is a heat shield plate provided on the front surface of the bearing housing so as to face the turbine housing.
  • the movable member provided to be movable in the front-rear direction with respect to the front surface of the first member or the second member forming the passage, and the blade fixed to the front surface of the movable member
  • a fixed wing is constituted by a body, or a wing body fixed to the front surface of the first member or the second member facing the movable member.
  • the pressing means provided on the back surface of the movable member is movable so that the tip of the wing body is pressed against the front surface of the first member or the second member facing the movable member or the front surface of the movable member. Press the member.
  • the side clearance of the fixed wing can be set to zero clearance. Therefore, one or both of the improvement of the turbine efficiency and the improvement of the diffuser function by the fixed wing can be achieved and the turbocharging efficiency of the turbocharger can be increased.
  • the pressing means is formed of a disc spring, it is possible to prevent the problem of exhaust leakage to the back side of the movable member at the same time.
  • the movable member also serves as a heat shield, heat transfer from the movable member to the bearing housing can be suppressed.
  • FIG. 4 is a cut side view showing another example of the fixed wing turbocharger shown in FIG. 1. It is detailed sectional drawing of the wave washer and seal ring with which FIG. 3A is equipped. It is a cutaway side view showing an example of the fixed wing type turbocharger of the present invention provided with fixed wings in the passage on the compressor side. It is a cutting side view showing an example of the fixed wing type turbocharger of the present invention.
  • FIG. 1 is a cut-away side view showing an example of a fixed-wing turbocharger according to the present invention provided with fixed blades in a passage on the turbine side.
  • This figure includes a fixed vane 15 on the bearing housing 1 (first member) side in a passage 9 formed between the opposed front surfaces of the bearing housing 1 (first member) and the turbine housing 4 (second member). Shows the case.
  • a turbine impeller 3 is fixed to one end of a rotating shaft 2 that is rotatably supported by a bearing housing 1. Further, the front surface of the bearing housing 1 facing the turbine housing 4 (the left side surface in FIG. 1; hereinafter, sometimes referred to as “opposite front surface”) is opposed to the bearing housing 1 of the turbine housing 4.
  • a positioning step 4a provided on the front surface (the right side surface in FIG. 1; hereinafter may be abbreviated as “opposing front surface”) is aligned with a positioning pin 5 provided on the opposing front surface of the bearing housing 1 in the circumferential direction (rotation direction).
  • the bearing housing 1 and the turbine housing 4 are assembled together by tightening the fastening ring 6 provided on the outer periphery with the fastening bolt 7.
  • a turbine scroll 8 is formed in the turbine housing 4, and exhaust (fluid) from the turbine scroll 8 is circumferentially outwardly passed to the turbine impeller 3 via a passage 9 between the bearing housing 1 and the opposed front surface of the turbine housing 4.
  • a compressor impeller 25 shown in FIG. 4 is provided at the other end of the rotary shaft 2, and a compressor housing 26 forming a compressor scroll 27 is provided on the outer periphery of the compressor impeller 25.
  • the bearing housing 1 and the compressor housing 26 is integrally assembled by forming a passage 28 between the opposed front surfaces.
  • An annular fitting groove 10 is formed on the front face of the bearing housing 1 (first member), and the fitting groove 10 has an annular protrusion 12 protruding from the rear surface of the outer periphery of the ring-shaped movable member 11.
  • the movable member 11 can be moved in the front-rear direction. Furthermore, the movement of the movable member 11 in the circumferential direction is restricted by matching the concave portion 13 formed in the annular protrusion 12 with the positioning pin 5.
  • the base end of the wing body 14 is fixed to the front surface of the movable member 11, and the tip end of the wing body 14 is opposed to the opposite front surface of the turbine housing 4.
  • the movable member 11 and the wing body 14 constitute a fixed wing 15.
  • the movable member 11 is attached so that the tip of the blade 14 of the movable member 11 is crimped to the opposed front surface of the turbine housing 4.
  • a pressing means 16 for pressing forward is provided. The pressing means 16 presses the movable member 11 and presses the tip of the blade body 14 against the opposed front surface of the turbine housing 4, so that the side clearance between the blade body 14 and the opposed front surface of the turbine housing 4 is made substantially zero. Can do.
  • FIGS. 1, 2 ⁇ / b> A, and 2 ⁇ / b> B show a case where a conical disc spring 17 with a head cut off is provided.
  • the disc spring 17 may have a ring shape as shown in FIG. 2A, or a part of the ring may be cut off as indicated by a virtual line.
  • one end of the disc spring 17 abuts on the back surface of the movable member 11 along the circumferential direction, and the other end of the disc spring 17 extends along the circumferential direction of the bearing housing 1. Abuts against the front face.
  • the gap between the movable member 11 and the bearing housing 1 is sealed with a disc spring 17 to prevent the problem that the exhaust (fluid) from the turbine scroll 8 leaks to the bearing housing 1 side through the back surface of the movable member 11. be able to.
  • the outer peripheral end of one end of the disc spring 17 abuts the back surface of the movable member 11 along the circumferential direction, and the inner peripheral side of the other end of the disc spring 17. Is in contact with the opposed front surface of the bearing housing 1 along its circumferential direction.
  • the portions (inner peripheral end portions) 17b that are in contact with the opposite front surface are chamfered and have an arc-shaped cross section.
  • a wave washer, a coil spring, or the like can be used as the pressing means.
  • a sealing material such as an O-ring or a C-ring is provided to prevent exhaust from leaking to the bearing housing 1 through the back surface of the movable member 11.
  • the pressing means 16 when a member having elasticity in the front-rear direction, such as a disc spring 17, is used as the pressing means 16, the force by which the pressing means 16 presses the movable member 11 can be arbitrarily set by adjusting the elasticity. it can. Further, since the pressing means 16 is not affected by the flow rate of the exhaust gas sent from the turbine scroll to the turbine impeller, the pressing means 16 presses the movable member 11 with a constant force regardless of the flow rate of the exhaust gas from the turbine scroll. can do.
  • the movable member 11 can also serve as a heat shield.
  • the annular protrusion 12 of the movable member 11 in a state in which the disc spring 17 is disposed on the back surface of the movable member 11 is fitted into the fitting groove 10 provided on the front surface of the bearing housing 1. Further, at this time, the movable member 11 is arranged so that the concave portion 13 formed in the annular protuberance 12 matches the positioning pin 5 and positioning in the circumferential direction (rotation direction) is performed.
  • the fastening ring 6 provided on the outer periphery is connected with the fastening bolt 7.
  • the movable member 11 is always pushed to the turbine housing 4 side by the disc spring 17, and as a result, the tip of the blade body 14 is always crimped to the opposed front surface of the turbine housing 4, so the side clearance of the blade body 14 is eliminated. Zero clearance can be achieved. As a result, the problem of exhaust (fluid) leakage from the side clearance can be prevented, and the turbine efficiency can be greatly increased.
  • the disc spring 17 contacts the movable member 11 and the bearing housing 1 along the circumferential direction thereof, and the movable member 11 and the bearing housing are arranged. 1 is sealed. As a result, the problem of exhaust leaking to the back side of the movable member 11 can be prevented at the same time. Moreover, since the movable member 11 also serves as a heat shield, heat transfer from the movable member 11 to the bearing housing 1 can be suppressed.
  • FIG. 3A is a cut side view showing another example of the fixed-wing turbocharger shown in FIG.
  • a fixed blade 15 is provided on the turbine housing 4 (second member) side in a passage 9 formed between opposed front surfaces of the bearing housing 1 (first member) and the turbine housing 4 (second member). Shows the case.
  • the opposed front surface of the turbine housing 4 (second member) corresponding to the turbine impeller 3 and the passage 9 is constituted by a movable member 19, and the movable member 19 is moved back and forth along an annular guide portion 20 provided in the turbine housing 4. It is arranged to be movable in the direction.
  • the base end of the wing body 21 is fixed to the front surface of the movable member 19, and the distal end of the wing body 21 is opposed to the opposite front surface of the bearing housing 1, and the fixed wing 15 is configured by the movable member 19 and the wing body 21. Has been.
  • a pressing means 16 for pressing backward (rightward in the figure) is provided.
  • the pressing means 16 in FIG. 3A shows a case where a wave washer 23 as shown in FIG. 3B is provided. Since the wave washer 23 has a low sealing capability, a piston ring-shaped seal ring 24 is provided between the outer periphery of the pressing means 16 and the annular guide portion 20.
  • the pressing means 16 may use a disc spring 17 as shown in FIGS. 2A and 2B or a combination of a coil spring and a seal ring 24.
  • the wave washer 23 disposed on the back surface of the movable member 19 is incorporated in a compressed and deformed state, and the movable member 19 is always pushed toward the bearing housing 1 by the wave washer 23.
  • the tip of the wing body 21 is always crimped to the opposed front surface of the bearing housing 1, so that the side clearance of the wing body 21 can be eliminated.
  • the problem of exhaust (fluid) leakage from the side clearance can be prevented, and the turbine efficiency can be greatly increased.
  • FIG. 4 is a cut-away side view showing an example of the fixed-wing turbocharger of the present invention provided with fixed blades in the passage on the compressor side.
  • 25 is a compressor impeller that is supported by the bearing housing 1 and rotates integrally with the turbine invera 3
  • 26 is a compressor housing formed so as to surround the turbine invera 25
  • 27 is a compressor scroll provided in the compressor housing 26. Show.
  • the fixed blades 29 are provided on the bearing housing 1 (first member) side. I have.
  • annular groove 30 is formed at a position corresponding to the passage 28 at the outlet of the compressor impeller 26 on the front surface facing the bearing housing 1 (first member), and the wing body 32 is provided in the groove 30 on the front surface on the passage 28 side.
  • the fixed wing 29 is configured by fitting the ring member 31 movably back and forth.
  • a pressing means 16 including a disc spring 17 and the like is disposed between the back surface of the ring member 31 (left side surface in FIG. 4) and the bottom surface of the groove portion 30.
  • the pressing means 16 presses the ring member 31 rearward (rightward in the drawing) to press the tip of the blade body 32 against the front surface of the compressor housing 26, so that the space between the blade body 32 and the front surface of the compressor housing 26 is Zero clearance can be achieved by eliminating side clearance. Therefore, the problem of air (fluid) leakage due to the side clearance can be prevented.
  • the pressing means 16 may be a wave washer 23 or a coil spring in addition to the disc spring 17. Moreover, you may use together the press means 16 and the seal ring 24 for sealing performance provision.
  • the fixed-wing turbocharger of the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
  • the base end of the wing body 14 is fixed to the front surface of the movable member 11 provided on the opposite front surface of the bearing housing 1 to form the fixed wing 15, and the tip end of the wing body 14 is the turbine housing. 4 is provided with a pressing means 16 for pressing the movable member 11 forward so as to be crimped to the front surface of the opposite side.
  • the blades 14 are fixed to the front surface of the movable member 11 provided on the front surface of the bearing housing 1 by the pressing means 16 that fixes the tip of the blade body 14 to the front surface of the turbine housing 4 and presses the movable member 11 forward.
  • the base end of the body 14 may be crimped.
  • the base end of the blade body 21 is fixed to the front surface of the movable member 19 provided on the front surface of the turbine housing 4 to form the fixed blade 15, and the tip of the blade body 21 is A pressing means 16 that presses the movable member 19 backward is provided so as to be crimped to the opposed front surface of the bearing housing 1.
  • the blades 14 are fixed to the front surface of the bearing housing 1 by the pressing means 16 that fixes the tip of the blade body 14 to the front surface of the bearing housing 1 and presses the movable member 19 backward.
  • the base end of the body 14 may be crimped.
  • the fixed wing 29 is configured by fixing the base end of the wing body 32 to the front surface of the movable member 31 provided on the opposed front surface of the bearing housing 1 (first member).
  • the movable member provided on the opposed front surface of the bearing housing 1 by the action of the pressing means 16 that fixes the tip of the blade body 32 to the opposed front surface of the compressor housing 26 (second member) and presses the movable member 31 rearward.
  • the proximal end of the wing body 32 may be crimped to the front surface of the blade 31.
  • the positioning member 5 is provided on the front surface of the bearing housing 1, and the positioning member 5 and the concave portion 13 provided in the annular protrusion 12 of the movable member 11 are made to coincide with each other. Is restricted from moving in the circumferential direction.
  • a concave portion (key groove) 40 is provided on the front face of the bearing housing 1, and the concave portion 40 and the convex portion (key) 41 provided on the movable member 11 are matched to each other to move the bearing housing 1.
  • the movement of the member 11 in the circumferential direction may be restricted.
  • the fitting groove 10 is provided radially outward from the space 18 of the bearing housing 1, but the fitting groove 10 is provided radially inward of the bearing housing 1 from the space 18. May be provided.
  • the side clearance of the fixed wing in the fixed wing turbocharger can be set to zero clearance. Therefore, one or both of the improvement of the turbine efficiency by the fixed blade and the improvement of the diffuser function can be achieved, and the supercharging efficiency of the turbocharger can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Provided is a stator vane-type turbocharger wherein a stator vane (15) is provided in a passage (9) between a bearing housing (1) as a first member and a turbine housing (4) as a second member. The stator vane is comprised of a movable member (11) which can move forward or backward against the front surface of a first member or a second member, opposite to the movable member, and a vane body (15) secured to the front surface of the movable member, or secured to the front surface of the first member or the second member, opposite to the movable member. Furthermore, a pushing means (16) provided on the back surface of the movable member pushes the movable member so that the tip of the vane body is pressure-bonded to the front surface of the first member or the second member, opposite to the movable member, or the front surface of the movable member, by. Thus, the side clearance of the stator vane in the stator vane-type turbocharger can be removed.

Description

固定翼式ターボチャージャFixed-wing turbocharger
 本発明は、簡単な構成によって固定翼による整流効果が高められるようにした固定翼式ターボチャージャに関する。
 本願は、2010年6月1日に日本に出願された特願2010-126009号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fixed-wing turbocharger in which the rectification effect by a fixed blade is enhanced with a simple configuration.
This application claims priority based on Japanese Patent Application No. 2010-126009 filed in Japan on June 1, 2010, the contents of which are incorporated herein by reference.
 従来より、自動車用等の内燃機関においては、出力向上等を図るためにターボチャージャを備えたものが知られている。ターボチャージャは、内燃機関の排気が送り込まれるタ-ビンスクロールと、そのタービンスクロール内の排気(流体)が通路を介して供給されることにより回転するタービンインペラと、タービンインペラと一体に回転するコンプレッサインペラと、コンプレッサインペラからの空気(流体)が通路を介して供給されるディフューザとしてのコンプレッサスクロールとを有し、コンプレッサスクロールからの加圧された空気を内燃機関の燃焼室へ強制的に供給する。 2. Description of the Related Art Conventionally, internal combustion engines for automobiles or the like are known that have a turbocharger to improve output. A turbocharger includes a turbine scroll into which exhaust gas from an internal combustion engine is fed, a turbine impeller that rotates when exhaust (fluid) in the turbine scroll is supplied through a passage, and a compressor that rotates integrally with the turbine impeller. An impeller and a compressor scroll as a diffuser to which air (fluid) from the compressor impeller is supplied through a passage, and forcibly supply pressurized air from the compressor scroll to the combustion chamber of the internal combustion engine .
 ターボチャージャには、前記タービン側の排気が流動する通路及びコンプレッサ側の空気が流動する通路の一方或いは両方には流体の流動を整流するための翼体を備えている場合がある。 The turbocharger may be provided with a blade body for rectifying the flow of fluid in one or both of the passage through which the exhaust on the turbine side flows and the passage through which the air on the compressor side flows.
 タービン側の通路に備えられる翼体について以下に説明する。タービンハウジングに形成されたタービンスクロールにより流速が高められてタービンインペラに送り込まれる排気を、翼体によりタービンインペラの周囲から均一に流入してタービンの効率向上を図っている。この翼体には、翼体をタービンハウジングと軸受ハウジングとの対向面のいずれか一方に固定される固定翼と、タービンハウジングと軸受ハウジングとの対向面の間に、各翼体に備えた軸をリンク機構等により同時に回転させて翼体の角度を一斉に変えられるように配置される可変翼体が知られている。 The blade body provided in the turbine side passage will be described below. The turbine scroll formed in the turbine housing increases the flow velocity and feeds the exhaust gas sent to the turbine impeller uniformly from the periphery of the turbine impeller by the blades to improve the efficiency of the turbine. The blade body includes a fixed blade that fixes the blade body to one of the facing surfaces of the turbine housing and the bearing housing, and a shaft provided in each blade body between the facing surfaces of the turbine housing and the bearing housing. There are known variable wing bodies that are arranged so that the angles of the wing bodies can be changed simultaneously by rotating them simultaneously by a link mechanism or the like.
 ここで、固定翼は排気の流入角度が固定であるため内燃機関の回転数等に応じて排気の流速を変化させることはできないが、可変翼体では内燃機関の回転数等に応じて排気の流入角度を変えることにより排気の流速を変化させることができる。一方、固定翼は比較的簡単な構成であるのに対して、可変翼体は可動とするために構成が複雑となっている。 Here, since the fixed blade has a fixed exhaust inflow angle, the flow velocity of the exhaust gas cannot be changed according to the rotational speed of the internal combustion engine. The flow rate of the exhaust can be changed by changing the inflow angle. On the other hand, the fixed wing has a relatively simple configuration, whereas the variable wing body is movable, so that the configuration is complicated.
 更に、上記したように、タービンハウジングと軸受ハウジングの対向面の間に設けられる翼体には、翼サイドクリアランスと称される隙間が生じる問題がある。即ち、翼体と対向するタービンハウジング又は軸受ハウジングとの間をゼロクリアランスで設計しても、運転時に複雑な形状のタービンハウジングや軸受ハウジングが不均一に熱変形すること、及び、翼体と翼体が固定されるハウジングとの材料の違いによる熱膨張差による変形が発生することから、実際にゼロクリアランスとすることはできない。ここで、可変翼体においては可動とするために翼体の両側に一定のサイドクリアランスを設ける必要があり、固定翼では翼体の―方の側のみにサイドクリアランスが生じる。 Furthermore, as described above, there is a problem that a gap called a blade side clearance is generated in the blade body provided between the opposed surfaces of the turbine housing and the bearing housing. That is, even if the clearance between the turbine housing or the bearing housing facing the blade body is designed with zero clearance, the turbine housing and the bearing housing having a complicated shape may be thermally deformed unevenly during operation, and the blade body and the blade Since the deformation due to the difference in thermal expansion due to the difference in material from the housing to which the body is fixed occurs, the actual clearance cannot be zero. Here, in order to make the variable wing body movable, it is necessary to provide a constant side clearance on both sides of the wing body, and in the fixed wing, a side clearance is generated only on one side of the wing body.
 又、前記したコンプレッサ側の通路に備えられる翼体においても、前記タービンに比して温度は低いけれども同様にサイドクリアランスが生じる。 Also, in the blade body provided in the above-described compressor-side passage, the temperature is lower than that of the turbine, but side clearance similarly occurs.
 本発明と関連するこの種のターボチャージャの先行技術文献情報としては、例えば、固定翼と可変翼体の両方を備えた例がある(特許文献1等参照)。又、後部排気導入壁と前部排気導入壁との間に翼体が回動可能に挟持された可変翼体において、各翼体の軸と軸受ハウジングとの間に、各軸を後部排気導入壁側へ押圧して翼体を後部排気導入壁側に変位させる押圧手段を備えて、後部排気導入壁側と翼体との間のサイドクリアランスを小さくした例がある(特許文献2等参照)。 As prior art document information of this type of turbocharger related to the present invention, for example, there is an example provided with both a fixed wing and a variable wing (see Patent Document 1). Further, in the variable wing body in which the wing body is rotatably held between the rear exhaust introduction wall and the front exhaust introduction wall, the rear exhaust is introduced between the shaft of each wing body and the bearing housing. There is an example in which a pressing means for pressing the wall side to displace the wing body to the rear exhaust introduction wall side is provided to reduce the side clearance between the rear exhaust introduction wall side and the wing body (see Patent Document 2). .
特開2007-192124号公報JP 2007-192124 A 特開2009-144546号公報JP 2009-144546 A
 しかし、上記したようなターボチャージャにおいては、前記したタービン側の通路に備えられる翼体のサイドクリアランスがゼロクリアランスになるように翼体の軸方向の高さ寸法を高い精度で製作しても、組み立てた段階でサイドクリアランスをゼロクリアランスとすることはできない。そのために、タービン側の通路に備えられる翼体のサイドクリアランスを通してタービンスクロールからの排気が漏出する。この漏出する排気は翼体によって排気の流速を高める作用に寄与されないばかりか、タービンインペラに導かれる排気に乱れを生じさせることになって、タービン効率を大幅に低下させる。従って、タービン側の通路に備えられる翼体のサイドクリアランスをゼロクリアランスとすることができれば、タービン効率を大幅に高めることができて非常に有効である。 However, in the turbocharger as described above, even if the axial height dimension of the blade body is manufactured with high accuracy so that the side clearance of the blade body provided in the turbine-side passage becomes zero clearance, The side clearance cannot be set to zero clearance at the assembly stage. Therefore, the exhaust from the turbine scroll leaks through the side clearance of the blade provided in the passage on the turbine side. This leaking exhaust gas not only contributes to the action of increasing the exhaust gas flow rate by the blades, but also disturbs the exhaust gas led to the turbine impeller, thereby greatly reducing the turbine efficiency. Therefore, if the side clearance of the blade body provided in the passage on the turbine side can be set to zero clearance, the turbine efficiency can be greatly increased, which is very effective.
 又、前記したコンプレッサ側の通路に備えられる翼体においても、ゼロクリアランスになるように翼体の高さを高い寸法精度で製作しても、組み立てた段階でゼロクリアランスとすることはできない。そのために、コンプレッサインペラからの空気がサイドクリアランスを通して漏出する。この漏出する空気はディフューザによる昇圧効果に寄与されないばかりか、コンプレッサスクロールに導かれる空気に乱れを生じさせることになって、ディフューザ機能を低下させる。従って、コンプレッサ側の通路に備えられる翼体のサイドクリアランスをゼロクリアランスとすることができれば、ディフューザ機能を高めることができて非常に有効である。 Also, even in the blade body provided in the above-mentioned compressor side passage, even if the blade body is manufactured with high dimensional accuracy so as to achieve zero clearance, it cannot be made zero clearance at the stage of assembly. Therefore, air from the compressor impeller leaks through the side clearance. This leaking air not only contributes to the pressure boosting effect by the diffuser, but also causes turbulence in the air guided to the compressor scroll, thereby reducing the diffuser function. Therefore, if the side clearance of the blade body provided in the compressor-side passage can be set to zero clearance, the diffuser function can be enhanced, which is very effective.
 本発明は、斯かる実情に鑑みてなしたもので、簡単な構成によって固定翼による整流効果が高められる固定翼式ターボチャージャの提供を目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fixed wing turbocharger in which the rectification effect by the fixed wing is enhanced by a simple configuration.
 本発明は、軸受ハウジングとタービンハウジングとの間の通路及び軸受ハウジングとコンプレッサとの間の通路が対向した第1部材と第2部材によって形成されており、前記通路の少なくとも一方に固定翼を備えている固定翼式ターボチャージャに関する。
この固定翼式ターボチャージャでは、前記固定翼が、第1部材又は第2部材の互いに対向する前面間に前後方向に移動可能に配置された可動部材と、可動部材の前面に固定された翼体とにより構成され、前記可動部材の背面に配置され、前記第1部材又は第2部材の、前記可動部材と対向する前面に対して翼体の先端を圧着するように可動部材を押圧する押圧手段を備えている。
あるいは、この固定翼式ターボチャージャでは、前記固定翼が、第1部材又は第2部材の互いに対向する前面間に前後方向に移動可能に配置された可動部材と、前記第1部材又は第2部材の、前記可動部材と対向する前面に固定された翼体とにより構成され、前記可動部材の背面に、前記可動部材の前面に対して翼体の先端を圧着するように可動部材を押圧する押圧手段を備えている。
In the present invention, a passage between the bearing housing and the turbine housing and a passage between the bearing housing and the compressor are formed by the first member and the second member facing each other, and at least one of the passages includes a fixed blade. Related to fixed-wing turbochargers.
In this fixed wing type turbocharger, the fixed wing is disposed between the front surfaces of the first member or the second member facing each other so as to be movable in the front-rear direction, and the wing body fixed to the front surface of the movable member. And a pressing means that presses the movable member so as to press the tip of the wing body against the front surface of the first member or the second member facing the movable member. It has.
Alternatively, in this fixed wing type turbocharger, the fixed wing is disposed so as to be movable in the front-rear direction between the front surfaces of the first member or the second member facing each other, and the first member or the second member. A wing body fixed to the front surface of the movable member, and pressing the movable member against the front surface of the movable member so as to press the tip of the wing body against the front surface of the movable member. Means.
 上記固定翼式ターボチャージャにおいて、前記押圧手段が、可動部材の背面側への流体の漏洩をシールする皿ばねであることが好ましい。 In the above fixed wing type turbocharger, it is preferable that the pressing means is a disc spring that seals leakage of fluid to the back side of the movable member.
 又、上記固定翼式ターボチャージャにおいて、前記可動部材が、前記タービンハウジングに対向して前記軸受ハウジングの前面に備えた遮熱板であることが好ましい。 In the fixed wing turbocharger, it is preferable that the movable member is a heat shield plate provided on the front surface of the bearing housing so as to face the turbine housing.
 本発明の固定翼式ターボチャージャによれば、通路を形成する第1部材又は第2部材の対向する前面に対して前後方向に移動可能に設けた可動部材と、可動部材の前面に固定した翼体、または前記第1部材又は第2部材の、前記可動部材と対向する前面に固定された翼体、とにより固定翼が構成されている。そして、前記可動部材の背面に備えた押圧手段により、第1部材又は第2部材の、前記可動部材と対向する前面、または可動部材の前面に対して翼体の先端が圧着されるように可動部材を押圧する。その結果、固定翼のサイドクリアランスをゼロクリアランスとすることができ、よって、固定翼によるタービン効率の向上とディフューザ機能の向上の一方又は両方を達成してターボチャージャの過給効率が高められる。 According to the fixed-wing turbocharger of the present invention, the movable member provided to be movable in the front-rear direction with respect to the front surface of the first member or the second member forming the passage, and the blade fixed to the front surface of the movable member A fixed wing is constituted by a body, or a wing body fixed to the front surface of the first member or the second member facing the movable member. Then, the pressing means provided on the back surface of the movable member is movable so that the tip of the wing body is pressed against the front surface of the first member or the second member facing the movable member or the front surface of the movable member. Press the member. As a result, the side clearance of the fixed wing can be set to zero clearance. Therefore, one or both of the improvement of the turbine efficiency and the improvement of the diffuser function by the fixed wing can be achieved and the turbocharging efficiency of the turbocharger can be increased.
 又、ターボチャージャ運転による熱間時においてハウジングの熱変形やハウジングと固定翼の熱膨張差が生じてノズルサイドクリアランスが変化しようとしても、固定翼が前後方向に追随して移動することによりゼロクリアランスを常に保持できる効果がある。従って、従来ではゼロクリアランスを確保するために固定翼の高さの寸法精度を高めていたのに対し、本発明では、固定翼の高さの寸法精度に気を使うことなくゼロクリアランスを容易に達成できる。 Also, even if the nozzle side clearance changes due to thermal deformation of the housing or thermal expansion difference between the housing and the stationary blade during hot operation due to turbocharger operation, zero clearance is achieved by the movement of the stationary blade following in the longitudinal direction. Has the effect of always holding. Therefore, in the past, the dimensional accuracy of the height of the fixed wing was increased in order to ensure the zero clearance, but in the present invention, the zero clearance was easily achieved without paying attention to the dimensional accuracy of the height of the fixed wing. Can be achieved.
 押圧手段を皿ばねで形成すると、可動部材の背面側へ排気が漏洩する問題を同時に防止できる。 If the pressing means is formed of a disc spring, it is possible to prevent the problem of exhaust leakage to the back side of the movable member at the same time.
 可動部材が遮熱板を兼ねることにより、可動部材から軸受ハウジングヘの熱の伝達を抑制できる。 Since the movable member also serves as a heat shield, heat transfer from the movable member to the bearing housing can be suppressed.
タービン側の通路に固定翼を備えた本発明の固定翼式ターボチャージャの一例を示す切断側面図である。It is a cutaway side view showing an example of the fixed wing type turbocharger of the present invention provided with fixed wings in the passage on the turbine side. 押圧手段である皿ばねの一例を示す正面図である。It is a front view which shows an example of the disk spring which is a press means. 図2AのA-A方向矢視図である。It is an AA direction arrow line view of FIG. 2A. 押圧手段である皿ばね及びその設置状況の一例を示す断面図である。It is sectional drawing which shows an example of the disk spring which is a press means, and its installation condition. 図1に示す固定翼式ターボチャージャの他の例を示す切断側面図である。FIG. 4 is a cut side view showing another example of the fixed wing turbocharger shown in FIG. 1. 図3Aに備えられるウェーブワッシャとシールリングの詳細断面図である。It is detailed sectional drawing of the wave washer and seal ring with which FIG. 3A is equipped. コンプレッサ側の通路に固定翼を備えた本発明の固定翼式ターボチャージャの一例を示す切断側面図である。It is a cutaway side view showing an example of the fixed wing type turbocharger of the present invention provided with fixed wings in the passage on the compressor side. 本発明の固定翼式ターボチャージャの一例を示す切断側面図である。It is a cutting side view showing an example of the fixed wing type turbocharger of the present invention.
 以下、本発明の実施の形態を図示例と共に説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1はタービン側の通路に固定翼を備えた本発明の固定翼式ターボチャージャの一例を示す切断側面図である。この図は、軸受ハウジング1(第1部材)とタービンハウジング4(第2部材)の対向する前面間に形成されている通路9において、軸受ハウジング1(第1部材)側に固定翼15を備えた場合を示している。 FIG. 1 is a cut-away side view showing an example of a fixed-wing turbocharger according to the present invention provided with fixed blades in a passage on the turbine side. This figure includes a fixed vane 15 on the bearing housing 1 (first member) side in a passage 9 formed between the opposed front surfaces of the bearing housing 1 (first member) and the turbine housing 4 (second member). Shows the case.
 図1の固定翼式ターボチャージャでは、軸受ハウジング1に回転可能に支持される回転軸2の一端にタービンインペラ3が固定されている。また、軸受ハウジング1の、タービンハウジング4と対向する前面(図1の左側面。以下、「対向前面」と略称する場合がある。)に対して、タービンハウジング4の、軸受ハウジング1と対向する前面(図1の右側面。以下、「対向前面」と略称する場合がある。)に設けた位置決め段部4aを軸受ハウジング1の対向前面に設けた位置決めピン5に合わせて周方向(回転方向)の位置決めをした状態でセットした後、外周に備えた締結リング6を締結ボルト7で締め付けることで軸受ハウジング1とタービンハウジング4が一体に組み立てられる。 1, a turbine impeller 3 is fixed to one end of a rotating shaft 2 that is rotatably supported by a bearing housing 1. Further, the front surface of the bearing housing 1 facing the turbine housing 4 (the left side surface in FIG. 1; hereinafter, sometimes referred to as “opposite front surface”) is opposed to the bearing housing 1 of the turbine housing 4. A positioning step 4a provided on the front surface (the right side surface in FIG. 1; hereinafter may be abbreviated as “opposing front surface”) is aligned with a positioning pin 5 provided on the opposing front surface of the bearing housing 1 in the circumferential direction (rotation direction). The bearing housing 1 and the turbine housing 4 are assembled together by tightening the fastening ring 6 provided on the outer periphery with the fastening bolt 7.
 前記タービンハウジング4にはタービンスクロール8が形成されており、タービンスクロール8からの排気(流体)は軸受ハウジング1とタービンハウジング4の対向前面間の通路9を介してタービンインペラ3に周方向外方から導かれる。尚、前記回転軸2の他端には図4に示すコンプレッサインペラ25が備えられており、コンプレッサインペラ25の外周にはコンプレッサスクロール27を形成するコンプレッサハウジング26が設けられ、軸受ハウジング1とコンプレッサハウジング26は対向前面間に通路28を形成して一体に組み立てられている。 A turbine scroll 8 is formed in the turbine housing 4, and exhaust (fluid) from the turbine scroll 8 is circumferentially outwardly passed to the turbine impeller 3 via a passage 9 between the bearing housing 1 and the opposed front surface of the turbine housing 4. Derived from. A compressor impeller 25 shown in FIG. 4 is provided at the other end of the rotary shaft 2, and a compressor housing 26 forming a compressor scroll 27 is provided on the outer periphery of the compressor impeller 25. The bearing housing 1 and the compressor housing 26 is integrally assembled by forming a passage 28 between the opposed front surfaces.
 軸受ハウジング1(第1部材)の対向前面には環状の嵌合溝10が形成してあり、嵌合溝10にはリング状をなす可動部材11の外周部背面に突出した環状突部12が嵌合しており、これにより、可動部材11は前後方向に移動できるようになっている。更に、環状突部12に形成した凹部13を前記位置決めピン5に合致させることによって、可動部材11の周方向への移動が規制されている。 An annular fitting groove 10 is formed on the front face of the bearing housing 1 (first member), and the fitting groove 10 has an annular protrusion 12 protruding from the rear surface of the outer periphery of the ring-shaped movable member 11. Thus, the movable member 11 can be moved in the front-rear direction. Furthermore, the movement of the movable member 11 in the circumferential direction is restricted by matching the concave portion 13 formed in the annular protrusion 12 with the positioning pin 5.
 可動部材11の前面には翼体14の基端が固定され、翼体14の先端がタービンハウジング4の対向前面に対峙している。そして、上記可動部材11と翼体14によって固定翼15が構成されている。 The base end of the wing body 14 is fixed to the front surface of the movable member 11, and the tip end of the wing body 14 is opposed to the opposite front surface of the turbine housing 4. The movable member 11 and the wing body 14 constitute a fixed wing 15.
 可動部材11の背面(図1の右側面)と軸受ハウジング1の対向前面との間には、可動部材11の翼体14の先端をタービンハウジング4の対向前面に圧着するように可動部材11を前方(図中左方)に押圧する押圧手段16が設けられている。押圧手段16は可動部材11を押圧して翼体14の先端をタービンハウジング4の対向前面に圧着するので、翼体14とタービンハウジング4の対向前面との間のサイドクリアランスをほぼ零にすることができる。 Between the back surface of the movable member 11 (the right side surface in FIG. 1) and the opposed front surface of the bearing housing 1, the movable member 11 is attached so that the tip of the blade 14 of the movable member 11 is crimped to the opposed front surface of the turbine housing 4. A pressing means 16 for pressing forward (leftward in the figure) is provided. The pressing means 16 presses the movable member 11 and presses the tip of the blade body 14 against the opposed front surface of the turbine housing 4, so that the side clearance between the blade body 14 and the opposed front surface of the turbine housing 4 is made substantially zero. Can do.
 押圧手段16として、図1、図2A及び図2Bでは、頭部が切り取られた円錐形状の皿ばね17を備えた場合を示している。この皿ばね17は図2Aに示すようにリング状を有していても、或いは仮想線で示すようにリングの一部が切り離されていてもよい。このような皿ばね17を用いることにより、皿ばね17の一端が、その周方向に沿って可動部材11の背面に当接し、皿ばね17の他端が、その周方向に沿って軸受ハウジング1の対向前面に当接する。その結果、可動部材11と軸受ハウジング1との間を皿ばね17でシールし、タービンスクロール8からの排気(流体)が可動部材11の背面を通って軸受ハウジング1側に漏洩する問題を防止することができる。 As the pressing means 16, FIGS. 1, 2 </ b> A, and 2 </ b> B show a case where a conical disc spring 17 with a head cut off is provided. The disc spring 17 may have a ring shape as shown in FIG. 2A, or a part of the ring may be cut off as indicated by a virtual line. By using such a disc spring 17, one end of the disc spring 17 abuts on the back surface of the movable member 11 along the circumferential direction, and the other end of the disc spring 17 extends along the circumferential direction of the bearing housing 1. Abuts against the front face. As a result, the gap between the movable member 11 and the bearing housing 1 is sealed with a disc spring 17 to prevent the problem that the exhaust (fluid) from the turbine scroll 8 leaks to the bearing housing 1 side through the back surface of the movable member 11. be able to.
 より詳細に説明すると、図1の例では、皿ばね17の一端の外周側の端部が、その周方向に沿って可動部材11の背面に当接し、皿ばね17の他端の内周側の端部が、その周方向に沿って軸受ハウジング1の対向前面に当接する。
この場合、例えば図2Cに示すように、皿ばね17の一端のうち、可動部材11の背面に当接する部位(外周側の端部)17a、並びに皿ばね17の他端のうち、軸受ハウジング1の対向前面に当接する部位(内周側の端部)17bが、それぞれ面取りされ、円弧状の断面を有していることが望ましい。これらの部位17a,17bを面取りすることにより、図2Cに示すように部位17a,17bを可動部材11及び軸受ハウジング1の対向前面に当接させた際に、部位17aと可動部材11及び部位17bと軸受ハウジング1との接触面積が増大する。その結果、皿ばね17と可動部材11及び軸受ハウジング1とを、周方向に沿って確実に線接触させることができ、皿ばね17のシール性が向上する。
More specifically, in the example of FIG. 1, the outer peripheral end of one end of the disc spring 17 abuts the back surface of the movable member 11 along the circumferential direction, and the inner peripheral side of the other end of the disc spring 17. Is in contact with the opposed front surface of the bearing housing 1 along its circumferential direction.
In this case, for example, as shown in FIG. 2C, the bearing housing 1 among the one end of the disc spring 17, the portion (a peripheral end) 17 a that contacts the back surface of the movable member 11, and the other end of the disc spring 17. It is desirable that the portions (inner peripheral end portions) 17b that are in contact with the opposite front surface are chamfered and have an arc-shaped cross section. By chamfering these portions 17a and 17b, when the portions 17a and 17b are brought into contact with the opposed front surfaces of the movable member 11 and the bearing housing 1 as shown in FIG. The contact area between the bearing housing 1 and the bearing housing 1 increases. As a result, the disc spring 17, the movable member 11, and the bearing housing 1 can be reliably brought into line contact along the circumferential direction, and the sealing performance of the disc spring 17 is improved.
尚、前記押圧手段としては、前記皿ばね17以外に、ウェーブワッシャ、コイルバネ等を用いることができる。ウェーブワッシャやコイルバネ等を用いた場合には、排気が可動部材11の背面を通って軸受ハウジング1側に漏洩するのを防止するためのOリング等やCリング等のシール材を設ける。 As the pressing means, in addition to the disc spring 17, a wave washer, a coil spring, or the like can be used. When a wave washer, a coil spring, or the like is used, a sealing material such as an O-ring or a C-ring is provided to prevent exhaust from leaking to the bearing housing 1 through the back surface of the movable member 11.
 また、押圧手段16として、皿ばね17等の前後方向に弾性を有する部材を用いた場合、この弾性を調節することにより、押圧手段16が可動部材11を押圧する力を任意に設定することができる。更に、押圧手段16が、タービンスクロールからタービンインペラに送り込まれる排気の流速等の影響を受けないため、タービンスクロールからの排気の流速に係らず、一定の力で押圧手段16が可動部材11を押圧することができる。 Further, when a member having elasticity in the front-rear direction, such as a disc spring 17, is used as the pressing means 16, the force by which the pressing means 16 presses the movable member 11 can be arbitrarily set by adjusting the elasticity. it can. Further, since the pressing means 16 is not affected by the flow rate of the exhaust gas sent from the turbine scroll to the turbine impeller, the pressing means 16 presses the movable member 11 with a constant force regardless of the flow rate of the exhaust gas from the turbine scroll. can do.
 更に、可動部材11の背面には押圧手段16を配置するための空間18が形成されているため、可動部材11は遮熱板としての作用を兼ねることができる。 Furthermore, since a space 18 for arranging the pressing means 16 is formed on the back surface of the movable member 11, the movable member 11 can also serve as a heat shield.
 次に、上記実施例の動作を説明する。
 図1の固定翼式ターボチャージャでは、軸受ハウジング1の対向前面に備えた嵌合溝10に、可動部材11の背面に皿ばね17を配置した状態の可動部材11の環状突部12を嵌合させ、更にこのとき、環伏突部12に形成した凹部13が位置決めピン5に合致するように可動部材11を配置して周方向(回転方向)の位置決めを行う。更に、タービンハウジング4の対向前面の位置決め段部4aが位置決めピン5に合致するようにタービンハウジング4を配置して周方向の位置決めを行った後、外周に設けた締結リング6を締結ボルト7で締め付けることにより軸受ハウジング1とタービンハウジング4を一体に組み立てる。
Next, the operation of the above embodiment will be described.
In the fixed wing turbocharger of FIG. 1, the annular protrusion 12 of the movable member 11 in a state in which the disc spring 17 is disposed on the back surface of the movable member 11 is fitted into the fitting groove 10 provided on the front surface of the bearing housing 1. Further, at this time, the movable member 11 is arranged so that the concave portion 13 formed in the annular protuberance 12 matches the positioning pin 5 and positioning in the circumferential direction (rotation direction) is performed. Further, after the turbine housing 4 is arranged and positioned in the circumferential direction so that the positioning step portion 4 a on the front surface of the turbine housing 4 matches the positioning pin 5, the fastening ring 6 provided on the outer periphery is connected with the fastening bolt 7. By tightening, the bearing housing 1 and the turbine housing 4 are assembled together.
 この組立によって、可動部材11の背面に配置した皿ばね17は圧縮変形され、これにより、固定翼15は軸受ハウジング1とタービンハウジング4の間に挟持される。 By this assembly, the disc spring 17 disposed on the back surface of the movable member 11 is compressed and deformed, whereby the fixed blade 15 is sandwiched between the bearing housing 1 and the turbine housing 4.
 このとき、可動部材11は常に皿ばね17によってタービンハウジング4側に押され、その結果、翼体14の先端は常にタービンハウジング4の対向前面に圧着されるので、翼体14のサイドクリアランスは無くなりゼロクリアランスとすることができる。これによって、サイドクリアランスから排気(流体)が漏洩する問題を防止することができ、タービン効率を大幅に高めることができる。 At this time, the movable member 11 is always pushed to the turbine housing 4 side by the disc spring 17, and as a result, the tip of the blade body 14 is always crimped to the opposed front surface of the turbine housing 4, so the side clearance of the blade body 14 is eliminated. Zero clearance can be achieved. As a result, the problem of exhaust (fluid) leakage from the side clearance can be prevented, and the turbine efficiency can be greatly increased.
 又、前記したように、押圧手段16を皿ばね17で形成した場合には、皿ばね17が、その周方向に沿って可動部材11及び軸受ハウジング1に当設し、可動部材11と軸受ハウジング1との間をシールする。その結果、可動部材11の背面側へ排気が漏洩する問題を同時に防止できる。又、可動部材11が遮熱板を兼ねることにより、可動部材11から軸受ハウジング1への熱の伝達を抑制することができる。 Further, as described above, when the pressing means 16 is formed by the disc spring 17, the disc spring 17 contacts the movable member 11 and the bearing housing 1 along the circumferential direction thereof, and the movable member 11 and the bearing housing are arranged. 1 is sealed. As a result, the problem of exhaust leaking to the back side of the movable member 11 can be prevented at the same time. Moreover, since the movable member 11 also serves as a heat shield, heat transfer from the movable member 11 to the bearing housing 1 can be suppressed.
 図3Aは、図1に示す固定翼式ターボチャージャの他の例を示す切断側面図である。この例は、軸受ハウジング1(第1部材)とタービンハウジング4(第2部材)との対向前面間に形成される通路9において、タービンハウジング4(第2部材)側に固定翼15を備えた場合を示している。 FIG. 3A is a cut side view showing another example of the fixed-wing turbocharger shown in FIG. In this example, a fixed blade 15 is provided on the turbine housing 4 (second member) side in a passage 9 formed between opposed front surfaces of the bearing housing 1 (first member) and the turbine housing 4 (second member). Shows the case.
 即ち、前記タービンハウジング4(第2部材)のタービンインペラ3及び通路9に対応する対向前面が可動部材19によって構成され、可動部材19はタービンハウジング4に設けた環状の案内部20に沿って前後方向に移動可能に配置されている。 That is, the opposed front surface of the turbine housing 4 (second member) corresponding to the turbine impeller 3 and the passage 9 is constituted by a movable member 19, and the movable member 19 is moved back and forth along an annular guide portion 20 provided in the turbine housing 4. It is arranged to be movable in the direction.
 前記可動部材19の前面には翼体21の基端が固定されて翼体21の先端が軸受ハウジング1の対向前面に対峙しており、上記可動部材19と翼体21によって固定翼15が構成されている。 The base end of the wing body 21 is fixed to the front surface of the movable member 19, and the distal end of the wing body 21 is opposed to the opposite front surface of the bearing housing 1, and the fixed wing 15 is configured by the movable member 19 and the wing body 21. Has been.
 更に、前記可動部材19の背面と、タービンハウジング4に形成した段部22との間には、可動部材19の翼体21の先端を軸受ハウジング1の対向前面に圧着するように可動部材19を後方(図中右方)に押圧する押圧手段16を備えている。図3Aの押圧手段16は、図3Bに示すようなウェーブワッシャ23を備えた場合を示している。このウェーブワッシャ23はシール能力が低いため、前記押圧手段16の外周と前記環状の案内部20との間には、ピストンリング状のシールリング24を備えている。尚、押圧手段16には、上記ウェーブワッシャ23の他に、図2A,Bに示すような皿ばね17を用いたり、或いはコイルバネとシールリング24を組み合わせて備えてもよい。 Further, the movable member 19 is placed between the rear surface of the movable member 19 and the step portion 22 formed in the turbine housing 4 so that the tip of the blade body 21 of the movable member 19 is pressure-bonded to the opposed front surface of the bearing housing 1. A pressing means 16 for pressing backward (rightward in the figure) is provided. The pressing means 16 in FIG. 3A shows a case where a wave washer 23 as shown in FIG. 3B is provided. Since the wave washer 23 has a low sealing capability, a piston ring-shaped seal ring 24 is provided between the outer periphery of the pressing means 16 and the annular guide portion 20. In addition to the wave washer 23, the pressing means 16 may use a disc spring 17 as shown in FIGS. 2A and 2B or a combination of a coil spring and a seal ring 24.
 図3A,Bの実施例によれば、可動部材19の背面に配置したウェーブワッシャ23が圧縮変形された状態に組み込まれ、可動部材19は常にウェーブワッシャ23によって軸受ハウジング1側に押されることになる。そのため、翼体21の先端は常に軸受ハウジング1の対向前面に圧着されるので、翼体21のサイドクリアランスを無くすことができる。これによって、サイドクリアランスから排気(流体)が漏洩する問題を防止することができ、タービン効率を大幅に高めることができる。 3A and 3B, the wave washer 23 disposed on the back surface of the movable member 19 is incorporated in a compressed and deformed state, and the movable member 19 is always pushed toward the bearing housing 1 by the wave washer 23. Become. For this reason, the tip of the wing body 21 is always crimped to the opposed front surface of the bearing housing 1, so that the side clearance of the wing body 21 can be eliminated. As a result, the problem of exhaust (fluid) leakage from the side clearance can be prevented, and the turbine efficiency can be greatly increased.
 図4は、コンプレッサ側の通路に固定翼を備えた本発明の固定翼式ターボチャージャの一例を示す切断側面図である。図中25は軸受ハウジング1に支持されてタービンインベラ3と一体に回転するコンプレッサインペラ、26はタービンインベラ25を取り巻くよう形成されたコンプレッサハウジング、27はコンプレッサハウジング26に備えられたコンプレッサスクロールを示している。そして、この例では、軸受ハウジング1(第1部材)とコンプレッサハウジング26(第2部材)との対向前面間に形成される通路28において、軸受ハウジング1(第1部材)側に固定翼29を備えている。 FIG. 4 is a cut-away side view showing an example of the fixed-wing turbocharger of the present invention provided with fixed blades in the passage on the compressor side. In the figure, 25 is a compressor impeller that is supported by the bearing housing 1 and rotates integrally with the turbine invera 3, 26 is a compressor housing formed so as to surround the turbine invera 25, and 27 is a compressor scroll provided in the compressor housing 26. Show. In this example, in the passage 28 formed between the opposed front surfaces of the bearing housing 1 (first member) and the compressor housing 26 (second member), the fixed blades 29 are provided on the bearing housing 1 (first member) side. I have.
 即ち、軸受ハウジング1(第1部材)の対向前面におけるコンプレッサインペラ26出口の通路28に対応する位置に環状の溝部30を形成し、溝部30に、通路28側の前面に翼体32を備えたリング部材31を前後に移動可能に嵌合して固定翼29を構成する。更に、リング部材31の背面(図4の左側面)と溝部30の底面との間には皿ばね17等からなる押圧手段16を配置している。押圧手段16はリング部材31を後方(図中右方)に押圧して翼体32の先端をコンプレッサハウジング26の対向前面に圧着するので、翼体32とコンプレッサハウジング26の対向前面との間のサイドクリアランスを無くしてゼロクリアランスとすることができる。よってサイドクリアランスによって空気(流体)が漏洩する問題を防止することができる。ここで、押圧手段16は、皿ばね17の他、ウェーブワッシャ23やコイルバネであってもよい。また、シール性付与のため、押圧手段16とシールリング24とを併用してもよい。 That is, an annular groove 30 is formed at a position corresponding to the passage 28 at the outlet of the compressor impeller 26 on the front surface facing the bearing housing 1 (first member), and the wing body 32 is provided in the groove 30 on the front surface on the passage 28 side. The fixed wing 29 is configured by fitting the ring member 31 movably back and forth. Further, a pressing means 16 including a disc spring 17 and the like is disposed between the back surface of the ring member 31 (left side surface in FIG. 4) and the bottom surface of the groove portion 30. The pressing means 16 presses the ring member 31 rearward (rightward in the drawing) to press the tip of the blade body 32 against the front surface of the compressor housing 26, so that the space between the blade body 32 and the front surface of the compressor housing 26 is Zero clearance can be achieved by eliminating side clearance. Therefore, the problem of air (fluid) leakage due to the side clearance can be prevented. Here, the pressing means 16 may be a wave washer 23 or a coil spring in addition to the disc spring 17. Moreover, you may use together the press means 16 and the seal ring 24 for sealing performance provision.
 尚、本発明の固定翼式ターボチャージャは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、図1の実施例では、軸受ハウジング1の対向前面に設けられた可動部材11の前面に翼体14の基端を固定して固定翼15を構成し、翼体14の先端がタービンハウジング4の対向前面に圧着するように可動部材11を前方に押圧する押圧手段16を設けている。しかしながら、タービンハウジング4の対向前面に翼体14の先端を固定し、可動部材11を前方に押圧する押圧手段16の作用により、軸受ハウジング1の対向前面に設けられた可動部材11の前面に翼体14の基端を圧着させてもよい。
Note that the fixed-wing turbocharger of the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
For example, in the embodiment of FIG. 1, the base end of the wing body 14 is fixed to the front surface of the movable member 11 provided on the opposite front surface of the bearing housing 1 to form the fixed wing 15, and the tip end of the wing body 14 is the turbine housing. 4 is provided with a pressing means 16 for pressing the movable member 11 forward so as to be crimped to the front surface of the opposite side. However, the blades 14 are fixed to the front surface of the movable member 11 provided on the front surface of the bearing housing 1 by the pressing means 16 that fixes the tip of the blade body 14 to the front surface of the turbine housing 4 and presses the movable member 11 forward. The base end of the body 14 may be crimped.
また、図3A,Bの実施例では、タービンハウジング4の対向前面に設けられた可動部材19の前面に翼体21の基端を固定して固定翼15を構成し、翼体21の先端が軸受ハウジング1の対向前面に圧着するように可動部材19を後方に押圧する押圧手段16を設けている。しかしながら、軸受ハウジング1の対向前面に翼体14の先端を固定し、可動部材19を後方に押圧する押圧手段16の作用により、タービンハウジング4の対向前面に設けられた可動部材19の前面に翼体14の基端を圧着させてもよい。 3A and 3B, the base end of the blade body 21 is fixed to the front surface of the movable member 19 provided on the front surface of the turbine housing 4 to form the fixed blade 15, and the tip of the blade body 21 is A pressing means 16 that presses the movable member 19 backward is provided so as to be crimped to the opposed front surface of the bearing housing 1. However, the blades 14 are fixed to the front surface of the bearing housing 1 by the pressing means 16 that fixes the tip of the blade body 14 to the front surface of the bearing housing 1 and presses the movable member 19 backward. The base end of the body 14 may be crimped.
また、図4の実施例では、軸受ハウジング1(第1部材)の対向前面に設けられた可動部材31の前面に翼体32の基端を固定して固定翼29を構成している。しかしながら、コンプレッサハウジング26(第2部材)の対向前面に翼体32の先端を固定し、可動部材31を後方に押圧する押圧手段16の作用により、軸受ハウジング1の対向前面に設けられた可動部材31の前面に翼体32の基端を圧着させてもよい。 In the embodiment of FIG. 4, the fixed wing 29 is configured by fixing the base end of the wing body 32 to the front surface of the movable member 31 provided on the opposed front surface of the bearing housing 1 (first member). However, the movable member provided on the opposed front surface of the bearing housing 1 by the action of the pressing means 16 that fixes the tip of the blade body 32 to the opposed front surface of the compressor housing 26 (second member) and presses the movable member 31 rearward. The proximal end of the wing body 32 may be crimped to the front surface of the blade 31.
また、図1の実施例では、軸受ハウジング1の対向前面に位置決めピン5を設け、この位置決めピン5と可動部材11の環状突部12に設けた凹部13とを合致させることにより、可動部材11の周方向への移動を規制している。
しかしながら、例えば図5に示すように、軸受ハウジング1の対向前面に凹部(キー溝)40を設け、この凹部40と可動部材11に設けた凸部(キー)41とを合致させることにより、可動部材11の周方向への移動を規制してもよい。
Further, in the embodiment of FIG. 1, the positioning member 5 is provided on the front surface of the bearing housing 1, and the positioning member 5 and the concave portion 13 provided in the annular protrusion 12 of the movable member 11 are made to coincide with each other. Is restricted from moving in the circumferential direction.
However, for example, as shown in FIG. 5, a concave portion (key groove) 40 is provided on the front face of the bearing housing 1, and the concave portion 40 and the convex portion (key) 41 provided on the movable member 11 are matched to each other to move the bearing housing 1. The movement of the member 11 in the circumferential direction may be restricted.
 また、図1の実施例では、軸受ハウジング1の、空間18より径方向外方側に嵌合溝10を設けたが、軸受ハウジング1の、空間18より径方向内方側に嵌合溝10を設けてもよい。 In the embodiment of FIG. 1, the fitting groove 10 is provided radially outward from the space 18 of the bearing housing 1, but the fitting groove 10 is provided radially inward of the bearing housing 1 from the space 18. May be provided.
 本発明によれば、固定翼式ターボチャージャにおける固定翼のサイドクリアランスをゼロクリアランスとすることができる。よって、固定翼によるタービン効率の向上とディフューザ機能の向上の一方又は両方を達成し、ターボチャージャの過給効率が高められる。 According to the present invention, the side clearance of the fixed wing in the fixed wing turbocharger can be set to zero clearance. Therefore, one or both of the improvement of the turbine efficiency by the fixed blade and the improvement of the diffuser function can be achieved, and the supercharging efficiency of the turbocharger can be increased.
1 軸受ハウジング(第1部材)、4 タービンハウジング(第2部材)、9 通路、11 可動部材、14 翼体、15 固定翼、16 押圧手段、17 皿ばね(押圧手段)、19 可動部材、21 翼体、26 コンプレッサハウジング(第2部材)、28 通路、29 固定翼 DESCRIPTION OF SYMBOLS 1 Bearing housing (1st member) 4, Turbine housing (2nd member), 9 channel | path, 11 movable member, 14 wing body, 15 fixed wing | blade, 16 pressing means, 17 disc spring (pressing means), 19 movable member, 21 Wing body, 26 compressor housing (second member), 28 passages, 29 fixed wings

Claims (5)

  1.  軸受ハウジングとタービンハウジングとの間の通路及び軸受ハウジングとコンプレッサとの間の通路が対向した第1部材と第2部材によって形成されており、前記通路の少なくとも一方に固定翼を備えている固定翼式ターボチャージャであって、
    前記固定翼が、前記第1部材又は第2部材の互いに対向する前面間に前後方向に移動可能に配置された可動部材と、可動部材の前面に固定された翼体とにより構成され、前記可動部材の背面に、前記第1部材又は第2部材の、前記可動部材と対向する前面に対して翼体の先端を圧着するように可動部材を押圧する押圧手段を備える固定翼式タ-ボチャージャ。
    A fixed blade having a passage between the bearing housing and the turbine housing and a passage between the bearing housing and the compressor formed by the first member and the second member facing each other, and having a fixed blade in at least one of the passages A turbocharger,
    The fixed wing is composed of a movable member arranged to be movable in the front-rear direction between the front surfaces of the first member or the second member facing each other, and a wing body fixed to the front surface of the movable member. A fixed wing type turbocharger comprising, on the back surface of the member, pressing means for pressing the movable member so as to press the tip of the wing body against the front surface of the first member or the second member facing the movable member.
  2.  軸受ハウジングとタービンハウジングとの間の通路及び軸受ハウジングとコンプレッサとの間の通路が対向した第1部材と第2部材によって形成されており、前記通路の少なくとも一方に固定翼を備えている固定翼式ターボチャージャであって、
    前記固定翼が、第1部材又は第2部材の互いに対向する前面間に前後方向に移動可能に配置された可動部材と、前記第1部材又は第2部材の、前記可動部材と対向する前面に固定された翼体とにより構成され、前記可動部材の背面に、前記可動部材の前面に対して翼体の先端を圧着するように可動部材を押圧する押圧手段を備えている固定翼式タ-ボチャージャ。
    A fixed blade having a passage between the bearing housing and the turbine housing and a passage between the bearing housing and the compressor formed by the first member and the second member facing each other, and having a fixed blade in at least one of the passages A turbocharger,
    The fixed wing is disposed between a front surface of the first member or the second member facing each other so as to be movable in the front-rear direction, and the front surface of the first member or the second member facing the movable member. A fixed wing tart comprising a fixed wing body, and provided with pressing means for pressing the movable member on the back surface of the movable member so as to press the tip of the wing body against the front surface of the movable member. Bochaja.
  3.  前記押圧手段が、可動部材の背面側への流体の漏洩をシールする皿ばねである請求項1記載の固定翼式ターボチャージャ。 The fixed-wing turbocharger according to claim 1, wherein the pressing means is a disc spring that seals leakage of fluid to the back side of the movable member.
  4. 前記押圧手段が、可動部材の背面側への流体の漏洩をシールする皿ばねである請求項2記載の固定翼式ターボチャージャ。 3. The fixed wing turbocharger according to claim 2, wherein the pressing means is a disc spring that seals leakage of fluid to the back side of the movable member.
  5.  前記タービンハウジングに対向して前記軸受ハウジングの対向前面に備えた可動部材は遮熱板である請求項1、2、3又は4に記載の固定翼式ターボチャージャ。 The fixed-wing turbocharger according to claim 1, 2, 3, or 4, wherein the movable member provided on the front surface of the bearing housing facing the turbine housing is a heat shield.
PCT/JP2011/062598 2010-06-01 2011-06-01 Stator vane-type turbocharger WO2011152454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518430A JPWO2011152454A1 (en) 2010-06-01 2011-06-01 Fixed-wing turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010126009 2010-06-01
JP2010-126009 2010-06-01

Publications (1)

Publication Number Publication Date
WO2011152454A1 true WO2011152454A1 (en) 2011-12-08

Family

ID=45066812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062598 WO2011152454A1 (en) 2010-06-01 2011-06-01 Stator vane-type turbocharger

Country Status (2)

Country Link
JP (1) JPWO2011152454A1 (en)
WO (1) WO2011152454A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129039A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Supercharger
EP2617960A4 (en) * 2010-09-13 2016-11-16 Ihi Corp Fixed vane-type turbo charger
WO2017126038A1 (en) * 2016-01-20 2017-07-27 三菱重工業株式会社 Stationary stator vane-type rotary machine and method for assembling stationary stator vane-type rotary machine
WO2017149747A1 (en) * 2016-03-04 2017-09-08 三菱重工業株式会社 Turbocharger
JPWO2017168634A1 (en) * 2016-03-30 2018-10-04 三菱重工エンジン&ターボチャージャ株式会社 Rotating machine
DE102017114397A1 (en) * 2017-06-28 2019-01-03 2G Energy AG Method for adapting a turbocharger and a stationary engine system as well as turbocharger and stationary engine system
EP3611346A1 (en) * 2018-08-17 2020-02-19 Rolls-Royce Corporation Diffuser having platform vanes
WO2023228467A1 (en) * 2022-05-25 2023-11-30 株式会社Ihi Turbine and supercharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048755A1 (en) * 2002-11-25 2004-06-10 Malcolm George Leavesley Variable turbocharger apparatus with bypass
JP2005042588A (en) * 2003-07-25 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd Gas seal structure of variable displacement supercharger
JP2005163783A (en) * 2003-11-28 2005-06-23 Borgwarner Inc Fluid flow engine and support ring for it
JP2009524773A (en) * 2006-01-27 2009-07-02 ボーグワーナー・インコーポレーテッド VTG mechanism assembly using wave spring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048755A1 (en) * 2002-11-25 2004-06-10 Malcolm George Leavesley Variable turbocharger apparatus with bypass
JP2005042588A (en) * 2003-07-25 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd Gas seal structure of variable displacement supercharger
JP2005163783A (en) * 2003-11-28 2005-06-23 Borgwarner Inc Fluid flow engine and support ring for it
JP2009524773A (en) * 2006-01-27 2009-07-02 ボーグワーナー・インコーポレーテッド VTG mechanism assembly using wave spring

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617960A4 (en) * 2010-09-13 2016-11-16 Ihi Corp Fixed vane-type turbo charger
US9988939B2 (en) 2010-09-13 2018-06-05 Ihi Corporation Fixed vane-type turbocharger
WO2016129039A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Supercharger
US10844902B2 (en) 2015-02-09 2020-11-24 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger
WO2017126038A1 (en) * 2016-01-20 2017-07-27 三菱重工業株式会社 Stationary stator vane-type rotary machine and method for assembling stationary stator vane-type rotary machine
JPWO2017126038A1 (en) * 2016-01-20 2018-09-27 三菱重工エンジン&ターボチャージャ株式会社 FIXED STANDARD VANE Rotating Machine
EP3404231A4 (en) * 2016-03-04 2018-12-12 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger
JPWO2017149747A1 (en) * 2016-03-04 2018-12-06 三菱重工エンジン&ターボチャージャ株式会社 Turbocharger
US10738652B2 (en) 2016-03-04 2020-08-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger
WO2017149747A1 (en) * 2016-03-04 2017-09-08 三菱重工業株式会社 Turbocharger
JPWO2017168634A1 (en) * 2016-03-30 2018-10-04 三菱重工エンジン&ターボチャージャ株式会社 Rotating machine
CN109219693A (en) * 2016-03-30 2019-01-15 三菱重工发动机和增压器株式会社 Rotating machinery
EP3418530A4 (en) * 2016-03-30 2019-08-21 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotary machine
CN109219693B (en) * 2016-03-30 2021-01-15 三菱重工发动机和增压器株式会社 Rotary machine
US10934887B2 (en) 2016-03-30 2021-03-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotary machine
DE102017114397A1 (en) * 2017-06-28 2019-01-03 2G Energy AG Method for adapting a turbocharger and a stationary engine system as well as turbocharger and stationary engine system
EP3611346A1 (en) * 2018-08-17 2020-02-19 Rolls-Royce Corporation Diffuser having platform vanes
US10731660B2 (en) 2018-08-17 2020-08-04 Rolls-Royce Corporation Diffuser having platform vanes
WO2023228467A1 (en) * 2022-05-25 2023-11-30 株式会社Ihi Turbine and supercharger

Also Published As

Publication number Publication date
JPWO2011152454A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2011152454A1 (en) Stator vane-type turbocharger
JP5561368B2 (en) Fixed-wing turbocharger
JP3004616B2 (en) Turbocharger exhaust gas turbine
JP5710452B2 (en) Turbocharger
US9982557B2 (en) VTG mechanism assembly using wave spring
JP6331736B2 (en) Variable nozzle unit and variable capacity turbocharger
US10302012B2 (en) Variable nozzle unit and variable geometry system turbocharger
JP6542246B2 (en) Variable displacement turbocharger
WO2011074039A1 (en) Turbocharger
WO2013180049A1 (en) Variable nozzle unit and variable capacity supercharger
WO2015114965A1 (en) Variable displacement supercharger
JP5206307B2 (en) Turbocharger
CN107780978B (en) Gas turbine
JP6752979B2 (en) Turbine housing and turbocharger equipped with it
JP5494248B2 (en) Fixed-wing turbocharger
WO2014132727A1 (en) Variable nozzle unit and variable capacity type supercharger
JP5440390B2 (en) Seal structure and variable capacity turbocharger
JP6152049B2 (en) Variable nozzle unit and variable capacity turbocharger
JP2013253521A (en) Variable nozzle unit and variable capacity type supercharger
JP2013253519A (en) Variable nozzle unit and variable capacity type supercharger
JP5861287B2 (en) Turbocharger
JP2013130136A (en) Fastening part structure of turbocharger
JP6089791B2 (en) Variable nozzle unit and variable capacity turbocharger
JP6782671B2 (en) Turbomachinery
JP2015059525A (en) Exhaust turbine supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518430

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789856

Country of ref document: EP

Kind code of ref document: A1