WO2011150773A1 - 配置双液位传感器的水泵 - Google Patents
配置双液位传感器的水泵 Download PDFInfo
- Publication number
- WO2011150773A1 WO2011150773A1 PCT/CN2011/074788 CN2011074788W WO2011150773A1 WO 2011150773 A1 WO2011150773 A1 WO 2011150773A1 CN 2011074788 W CN2011074788 W CN 2011074788W WO 2011150773 A1 WO2011150773 A1 WO 2011150773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid level
- water pump
- capacitive
- liquid
- level sensor
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/02—Stopping, starting, unloading or idling control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
Definitions
- the present invention relates to a pump for lifting fluid from a depth, and more particularly to a water pump that is automatically controlled by a level sensor. Background technique
- the prior art water pump mostly detects the liquid level by installing the liquid level sensor, and directly feeds the detected liquid level to the water pump to open or close the water pump, or feedback.
- Prior art level sensors include float level switches, electrode level switches, and electronic level switches.
- the water pump of the prior art configuration of the float type liquid level switch is limited by the structure, and the floating ball is easily caught by the impurities in the liquid and cannot rise and fall normally with the liquid level change, so that the water pump cannot work normally as expected;
- the water pump of the electrode type liquid level switch or the electronic liquid level switch is usually installed with a liquid level switch near the water inlet of the water pump.
- Both of the above liquid level switches have the characteristics of high sensitivity and can be turned on in time. Or shutting down the water pump; however, a small change in the liquid level in the liquid accommodation space that needs to control the liquid level will cause the water pump to frequently start or shut down, for example, when the liquid level is lower than the liquid level switch, the water pump Immediately shut down, then, a part of the liquid that is not discharged in time is left in the water pump, and the liquid will return to the liquid accommodating space after the water pump is turned off, causing the liquid level to rise again, thereby causing the water pump to be again Starting up, causing the pump to consume power unnecessarily;
- the electrode type liquid level switch is a liquid as a conductive medium, then the conductivity of the electrode type liquid level switch, that is, the sensitivity is greatly affected by the liquid body; meanwhile, the electrode type liquid level switch is often immersed in the liquid And made of metal material, it is easy to be rusted during long-term use, which further affects the sensitivity of the electrode type liquid level switch; therefore, the electrode type liquid level switch easily causes the water pump error of the liquid level switch Action
- the water pump configured with the liquid level sensor can only start the water pump body according to the liquid level height in the liquid accommodation space of the water pump body region. Or, it can be turned off, and the automatic pumping function can not be completed in the liquid storage space with complicated structure and the area where the liquid level needs to be controlled is not in the position where the water pump is set. Summary of the invention
- the technical problem to be solved by the present invention is to avoid the deficiencies of the prior art and propose a water pump configured with two capacitive liquid level sensors to accurately and reliably realize automatic opening and automatic closing of the water pump.
- a water pump configured with a dual water level sensor, including a water pump body, further comprising a control module, and a first capacitive liquid level sensor and a second capacitive liquid level sensor electrically connected to the control module; the two liquid levels
- the sensors are all placed in a liquid holding space where the liquid level needs to be controlled.
- the minimum horizontal plane in the liquid accommodating space for controlling the liquid level is used as a reference surface, and the distance between the first capacitive liquid level sensor and the reference surface is smaller than the distance between the second capacitive sensor and the reference surface.
- the control module detects the state of the two capacitive liquid level sensors and performs pumping control on the water pump body.
- the water pump body When the two capacitive liquid level sensors are all in contact with the liquid level, the water pump body is activated, when the two capacitors When the liquid level sensor does not touch the liquid level, the water pump body is closed.
- the distance difference between the two capacitive liquid level sensors may be a certain value, but in order to adapt to the pumping water requirements of different environments, the lowest horizontal plane in the liquid accommodating space for controlling the liquid level is used as a reference surface. The distance between each of the two capacitive liquid level sensors and the reference plane can be individually adjusted.
- a vertical chute is provided in the liquid accommodating space where the liquid level needs to be controlled or on the surface of the water pump body.
- Two sliders are disposed in the chute, and the two sliders can each be fixed at any position on the slide of the chute.
- the two capacitive liquid level sensors are respectively mounted on the two sliders.
- the control module includes a first liquid level detecting module and a second liquid level detecting module respectively electrically connecting the first and second capacitive liquid level sensors, and a controlled switch.
- the first liquid level detecting module detects whether the first capacitive liquid level sensor contacts the liquid level and outputs a status signal reflecting the first capacitive liquid level sensor to the controlled switch module; likewise, the second liquid level The detecting module detects whether the first capacitive liquid level sensor contacts the liquid level and outputs a status signal reflecting the second capacitive liquid level sensor to the controlled switch module.
- the controlled switch module outputs a control signal for turning on the driving motor or a control signal for turning off the driving motor to the driving motor of the water pump body according to the state signal from the two liquid level detecting module.
- the controlled switch module includes a fully-controlled bidirectional thyristor, a photocoupler, a first triode, a second triode, and a third triode.
- the state signal from the first liquid level detecting switch is input to the base of the third transistor through the third resistor, and the collector of the third transistor is electrically connected to the photocoupler through the fifth resistor and the sixth resistor
- the input signal from the second liquid level detecting switch is input to the base of the first triode through the first resistor, and is input to the collector of the second triode through the first resistor and the fourth resistor;
- the collector of the first transistor is electrically connected to the input end of the photocoupler through a sixth resistor;
- the base of the second transistor is electrically connected through the second resistor, the fifth resistor and the sixth resistor
- An input end of the photocoupler; the emitter of the first triode is electrically connected to the power source;
- the emitters of the second triode and the third triode are both grounded.
- An output end of the photocoupler is electrically connected to a gate of the fully controlled bidirectional thyristor.
- the fully-controlled bidirectional thyristor is connected in series in
- the water pump body is a vertical submersible pump, which is placed at the bottom of the liquid accommodating space where the liquid level needs to be controlled, and includes a water inlet; the water inlet is disposed at a bottom surface of the vertical submersible pump.
- the distance from the first capacitive liquid level sensor to the reference surface is slightly larger than the lowest pump water level of the vertical submersible pump, that is, only When the liquid level in the liquid accommodating space reaches the lowest pump water level of the vertical submersible pump, the first capacitive liquid level sensor just leaves the liquid level in the liquid accommodating space.
- the two capacitive liquid level sensors are mounted on the side wall of the vertical submersible pump.
- the capacitive liquid level sensor has high sensitivity and strong anti-interference ability; ⁇ two capacitive level sensors with height difference, when the liquid level is lower than the lower capacitive liquid level sensor
- the pump body is closed in time, and the liquid that is not pumped out in the pump body does not cause the liquid level to be higher than the higher capacitance level sensor, thereby solving the problem that the water pump body is closed, and the water pump is frequently switched due to liquid backflow.
- the height difference between the two capacitive liquid level sensors is adjustable, so that the water pump can adapt to different pumping water demands, and the flexibility of the automatic opening and closing function of the water pump is increased;
- the two-capacitive liquid sensor can be installed in the liquid accommodating space where the liquid level needs to be controlled, and the pump pump body can not be disposed near the liquid accommodating space where the liquid level is required to be controlled.
- the automatic opening and automatic closing of the water pump body according to the liquid level is realized, and the adaptability of the water pump to different working conditions is enhanced;
- the vertical submersible pump can substantially pump all the liquid in the liquid accommodating space, and the invention can make the vertical submersible pump close in time without appearing The liquid in the liquid accommodating space has been pumped out, and the vertical submersible pump is still working under no-load conditions, saving electric energy and enhancing the service life of the vertical submersible pump.
- FIG. 1 is a schematic view showing the working principle of a first embodiment of a "pump for configuring a two-level sensor" of the present invention
- FIG. 2 is a front elevational front view of a chute 50 in which two capacitive liquid level sensors 11, 12 are mounted in accordance with a second embodiment of the present invention
- FIG. 3 is a schematic block diagram of an electrical principle of a third embodiment of the present invention.
- FIG. 4 is a schematic diagram of an electrical principle of a fourth embodiment of the present invention.
- Figure 5 is a front elevational view showing a front projection of a fifth embodiment of the present invention.
- Figure 6 is a schematic front left side view of the fifth embodiment. detailed description
- the present invention provides a water pump configured with a two-level sensor, as shown in FIG. 1, including a water pump body 30, further comprising a control module 20, and a first capacitive liquid level sensor 11 and a second electrically connected to the control module 20.
- the two liquid level sensors 11, 12 are all disposed in the liquid accommodating space 90 where the liquid level needs to be controlled.
- the liquid accommodating space 90 refers to any space capable of accumulating liquid, including various commonly used liquid containers, such as cylinders, basins, etc., and also includes common water storage facilities, such as swimming pools, watering reservoirs, etc., and can also be capable of Water, room, building, roadway, etc.
- the liquid accommodating space 90 may be a simple cubic or cylindrical shape, or may be a complicated waterway shape or a multi-layered, tortuous water storage space.
- the minimum horizontal plane in the liquid accommodating space for controlling the liquid level is used as a reference surface, and the distance between the first capacitive liquid level sensor 11 and the reference surface is smaller than the distance between the second capacitive sensor 12 and the reference surface.
- the bottom surface of the liquid accommodating space 90 is used as a reference surface, and then the first capacitive liquid level sensor 11 and the reference surface G ref are The distance between the second capacitive liquid level sensor 12 and the reference surface G ref is H 2 , and the first capacitive liquid level sensor 11 is located below the second capacitive liquid level sensor 12, that is, ⁇ H 2 .
- the control module 20 detects the state of the two capacitive liquid level sensors 11, 12 and performs pumping control on the water pump body 30. As shown in FIG. 1, the water pump body 30 of the first embodiment is indicated by an arrow.
- the water pump body 30 is activated, when the two capacitive liquid level sensors 11, 12 are not in contact At the liquid level, the water pump body 30 is closed.
- the water pump of the invention can automatically work according to the liquid level condition in an unattended state.
- the two-capacitance liquid level sensors 11, 12 of the present invention are not necessarily mounted on the water pump body 30, and therefore, are not only applicable to submersible pumps operating in liquids, but also to ordinary water pumps.
- the water pump of the present invention can install the capacitive liquid level sensors 11, 12 only in the area where the water level needs to be controlled, and the water pump body 30 is disposed away from the area where the water level needs to be controlled, and the water pump body can be applied to any type of water pump, and the present invention is added.
- the scope of application of the invention of the water pump is added.
- two capacitive level sensors 11 and 12 with height difference are provided, and only two liquid level sensors are in contact with the liquid to turn on the water pump, and the liquid level in the liquid accommodation space is lower than the first capacitive liquid level sensor 11
- the water pump body 30 is closed, although it is not
- the liquid pumped by the water pump body 30 flows back into the liquid accommodating space, but is not enough to raise the liquid level of the liquid accommodating space to the height of the second capacitive liquid level sensor 12, so that the present invention prevents such a small water level.
- the change causes the pump to start frequently, which solves the problem of the unnecessary consumption of the prior art pump.
- the height difference between the two capacitive liquid level sensors is adjustable, that is, the lowest horizontal plane in the liquid accommodating space where the liquid level needs to be controlled is used as a reference surface.
- the distance between each of the two capacitive liquid level sensors 11, 12 and the reference plane can be individually adjusted. This makes the pump of the present invention suitable for use in unattended water storage facilities to control the level of the water storage facility within the demand range.
- a specific technical solution for adjusting the height difference between the two-capacitance liquid level sensors is proposed, and the vertical setting is set in the liquid accommodating space where the liquid level needs to be controlled.
- Straight chute 50 is proposed, and the vertical setting is set in the liquid accommodating space where the liquid level needs to be controlled.
- Two sliders are disposed in the chute 50, and the two sliders can each be fixed to any position on the slide of the chute 50.
- the two capacitive liquid level sensors 11, 12 are respectively mounted on the two sliders. It is easily conceivable that such a chute 50 can also be mounted on the surface of the water pump body 30.
- the control module 20 includes a first corresponding to the first and second capacitive liquid level sensors 11, 12 respectively.
- the first liquid level detecting module 21 detects whether the first capacitive liquid level sensor 11 contacts the liquid surface and outputs a status signal reflecting the first capacitive liquid level sensor 11 to the controlled switch module 40;
- the second liquid level detecting module 22 detects whether the first capacitive liquid level sensor 12 contacts the liquid level and outputs a status signal reflecting the second capacitive liquid level sensor 12 to the controlled switch module 40.
- the controlled switch module 40 outputs a control signal for turning on the drive motor M or a control signal for turning off the drive motor M to the drive motor M of the water pump body 30 according to the status signals from the two liquid level detecting modules 21, 22.
- Said controlled switch module 40 includes a two-way full-controlled thyristor (2, photocoupler U, the first transistor a second transistor T 2 and the third transistor T ⁇ 3.
- the first level from the state signal switch 21 detects input of the third transistor T 3 group R 3 via a third resistor electrode b, the collector of the third transistor T c 3 through 6 are electrically fifth resistor and the sixth resistor R 5 R Connecting the input end of the photocoupler U;
- the state signal from the second liquid level detecting switch 22 is input to the base b of the first transistor 1 through the first resistor, and passes through the first resistor and the fourth resistor R4 is input to the collector c of the second transistor T 2 ;
- the collector c of the first transistor 1 is electrically connected to the input end of the photocoupler U through a sixth resistor R 6 ;
- the base b of the tube T 2 is electrically connected to the input end of the photocoupler U through a second resistor R 2 , a fifth resistor R 5 and a sixth resistor R 6 ;
- the emitter of the first transistor ⁇ is electrically Connecting the power source V cc .
- the second transistor T 2 and the emitter e of the third transistor ⁇ 3 are both grounded.
- the output end of the photocoupler U is electrically connected to the full control The gate g of the type bidirectional thyristor Q.
- the full control type triac Q is connected in series in the power supply circuit of the drive motor M of the water pump body 30.
- the DC power supply Vcc is supplied to the liquid level detecting modules 21, 22 and the controlled switching module 40 via the AC/DC converting module.
- the module ⁇ is a DC voltage regulator module.
- the two liquid level detecting modules 21, 22 all use the HL2205 ultrasonic atomizer special chip of Suzhou Lianxinke Microelectronics Co., Ltd., which has a liquid level detecting function.
- the chip includes eight pins, pin 1 is used for point connection detection capacitance, that is, capacitive liquid level sensor; pin 2 is used for input integral anti-interference capacitance; pin 3 is used for output level signal, that is, output reflection Whether the capacitive liquid level sensor is in contact with the level signal of the liquid; pin 4 and pin 6 are empty pins; pin 5 is used to electrically connect the negative pole of the power supply; pin 7 is used to electrically connect the reference capacitor; pin 8 Used to electrically connect the positive pole of the power supply.
- the first liquid level detecting module 21 When the liquid level in the liquid accommodating space reaches the first capacitive liquid level sensor 11, the first liquid level detecting module 21 outputs a high level to turn on the third transistor T 3 , thereby making the photoelectric
- the coupler U outputs a high level, but since the second liquid level detecting module 22 electrically connected to the second capacitive liquid level sensor 12 outputs a low level, the gate g current of the fully controlled type triac Q does not reach the threshold, The controlled triac Q remains off.
- the second liquid level detecting module 22 When the liquid level in the liquid accommodating space reaches the second capacitive liquid level sensor 12, the second liquid level detecting module 22 outputs a high level to conduct the second triode T 2 to make the full control type bidirectional
- the gate g of the thyristor Q obtains a current greater than a threshold, the fully-controlled triac Q is turned on, and the drive motor M of the water pump body 30 is activated.
- the second liquid level detecting module 22 When the liquid level in the liquid accommodating space is lower than the second capacitive liquid level sensor 12, the second liquid level detecting module 22 outputs a low level to turn off the first triode, but at this time, the third three The pole tube T 3 is still turned on, the gate g of the fully controlled type thyristor Q has a current, and the fully controlled type thyristor Q remains conductive.
- the first liquid level detecting module 21 When the liquid level in the liquid accommodating space is lower than the first capacitive liquid level sensor 11, the first liquid level detecting module 21 outputs a low level to turn off the third transistor T 3 , the photoelectric coupling The U output low level, the gate g of the full control type triac Q loses current, the full control type triac Q remains turned off, and the drive motor M of the water pump body 30 is turned off.
- the water pump body 30 is a vertical submersible pump 31, which is placed at the bottom of the liquid accommodating space where the liquid level needs to be controlled, and includes a water inlet 311.
- the water inlet 311 is provided on the bottom surface of the vertical submersible pump 31. Since the prior art vertical submersible pump can substantially completely pump out the liquid in the liquid accommodating space, if the capacitive liquid level sensor is not installed, the vertical submersible pump will continue to work at this time. The submersible pump runs at no load. The above problem can be completely solved by providing a capacitive liquid level sensor. As shown in FIG. 5 and FIG.
- the lowest level of the liquid accommodating space for controlling the liquid level is used as a reference surface, and the first capacitive type is used.
- the distance from the level sensor 11 to the reference surface G ref is slightly larger than the lowest pump water level P MIN of the vertical submersible pump 31.
- the degree of greater than 1 ⁇ cannot be determined as a fixed value, but the distance from the first capacitive liquid level sensor 11 to the reference surface G ref should be set.
- the first capacitive liquid level sensor 11 just leaves the said liquid level when the liquid level in the liquid accommodating space reaches the lowest pump water level P MIN of the vertical submersible pump 31.
- the liquid accommodates the liquid level in the space and outputs to the control module 20
- the information that the first capacitive liquid level sensor 11 does not contact the liquid surface is reflected.
- the two capacitive liquid level sensors 11, I 2 of the present invention can be installed either in the liquid accommodating space or on the side wall of the vertical submersible pump 31.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
配置双液位传感器的水泵
技术领域
本发明涉及用于从深处提升流体的泵,特别是涉及通过液位传感器实现自动控制的水泵。 背景技术
为了达到使水泵根据液位变化自动启动或者关闭的技术效果, 现有技术水泵大都通过安 装液位传感器检测液位, 并将检测到的液位直接反馈给水泵以实现开启或者关闭水泵, 或者 反馈给水泵的控制模块, 借助所述控制模块实现开启或者关闭水泵。 现有技术液位传感器包 括浮球式液位开关、 电极式液位开关和电子式液位开关。 上述配置液位传感器的水泵还存在 以下的缺陷和不足之处:
1. 现有技术配置浮球式液位开关的水泵受结构限制, 浮球很容易被液体内杂质卡住而不 能随着液位变化正常起伏, 导致所述水泵不能按预想方式正常工作;
2. 现有技术配置电极式液位开关或者电子式液位开关的水泵, 通常在水泵进水口附近安 装一个所述液位开关, 上述两种液位开关都具有灵敏度高的特点, 能够及时开启或者关闭所 述水泵; 但是, 需要控制液位的液体容置空间内的液位的微小变化都会导致水泵频繁地启动 或者关闭, 例如, 当液位低于所述液位开关时, 所述水泵立刻关闭, 那么, 在所述水泵内还 留存有一部分没有被及时排出的液体, 这部分液体在水泵关闭后将会回流到液体容置空间中 造成液位又升高, 从而令所述水泵再次启动, 导致所述水泵无谓消耗电能;
3. 所述电极式液位开关是以液体为导电介质, 那么该电极式液位开关的导电性, 即灵敏 度受液体体质影响很大; 同时, 所述电极式液位开关经常浸泡在液体内, 并且用金属材料制 成, 很容易在长期使用过程中被锈蚀, 从而更进一步影响电极式液位开关的灵敏度; 因此, 所述电极式液位开关很容易导致配置该液位开关的水泵误动作;
4. 现有技术大都将液位传感器安装在水泵本体上, 受此结构限制, 所述配置液位传感器 的水泵只能根据水泵本体所在区域的液体容置空间内的液位高度控制水泵本体启动或者关 闭, 而不能在结构较为复杂的液体容置空间内且需要控制液位的区域不在所述水泵设置位置 的情况下完成自动泵水功能。
发明内容
本发明要解决的技术问题在于避免现有技术的不足之处而提出一种配置两个电容式液位 传感器的水泵, 以灵敏、 可靠地实现水泵自动开启和自动关闭。
本发明解决所述技术问题可以通过釆用以下技术方案来实现:
设计、 制造一种配置双水位传感器的水泵, 包括水泵本体, 还包括控制模块, 以及与该 控制模块电连接的第一电容式液位传感器和第二电容式液位传感器; 所述两液位传感器都设 置于需要控制液位的液体容置空间内。 以所述需要控制液位的液体容置空间内的最低水平面 为基准面, 所述第一电容式液位传感器与该基准面的距离小于第二电容式传感器与该基准面 的距离。所述控制模块检测所述两电容式液位传感器的状态并对所述水泵本体实施抽水控制, 当该两电容式液位传感器都接触到液面时, 启动所述水泵本体, 当该两电容式液位传感器都 没有接触到液面时, 关闭所述水泵本体。 所述两电容式液位传感器之间距离差可以是一确定值,但为了适应不同环境的泵水要求, 以所述需要控制液位的液体容置空间内的最低水平面为基准面, 所述两电容式液位传感器各 自与该基准面的距离分别可以单独调整。 具体地, 在所述需要控制液位的液体容置空间内或 者在水泵本体表面, 设置竖直方向的滑槽。 该滑槽内设置有两滑块, 并且所述两滑块各自可 以固定于所述滑槽的滑道上的任一位置。所述两电容式液位传感器分别安装于所述两滑块上。
为了实现控制模块的功能, 具体地, 所述控制模块包括分别对应电连接所述第一、 第二 电容式液位传感器的第一液位检测模块和第二液位检测模块, 以及受控开关模块。 所述第一 液位检测模块检测第一电容式液位传感器是否接触液面并将反映第一电容式液位传感器的状 态信号输出至所述受控开关模块; 同样, 所述第二液位检测模块检测第一电容式液位传感器是 否接触液面并将反映第二电容式液位传感器的状态信号输出至所述受控开关模块。所述受控开 关模块根据所述来自两液位检测模块的状态信号向水泵本体的驱动电机输出开启驱动电机的 控制信号或者关闭驱动电机的控制信号。进一步地,所述受控开关模块包括全控型双向晶闸管、 光电耦合器、 第一三极管、 第二三极管和第三三极管。 所述来自第一液位检测开关的状态信 号通过第三电阻输入第三三极管的基极, 该第三三极管的集电极通过第五电阻和第六电阻电连 接所述光电耦合器的输入端;所述来自第二液位检测开关的状态信号通过第一电阻输入第一三 极管的基极, 并通过第一电阻和第四电阻输入第二三极管的集电极; 所述第一三极管的集电 极通过第六电阻电连接所述光电耦合器的输入端; 所述第二三极管的基极通过第二电阻、 第 五电阻和第六电阻电连接所述光电耦合器的输入端; 所述第一三极管的发射极电连接电源;
所述所述第二三极管和所述第三三极管的发射极都接地。 所述光电耦合器的输出端电连接所 述全控型双向晶闸管的门极。 所述全控型双向晶闸管串联在所述水泵本体的驱动电机的供电 回路中。
作为一种具体应用, 所述水泵本体是立式潜水泵, 放置在所述需要控制液位的液体容置 空间的底部, 包括进水口; 该进水口设置在所述立式潜水泵底面。 以所述需要控制液位的液 体容置空间的最低水平面为基准面, 所述第一电容式液位传感器至该基准面的距离略大于所 述立式潜水泵的最低泵水水位, 即只有出现所述液体容置空间内的液位达到所述立式潜水泵 的最低泵水水位的情况时,所述第一电容式液位传感器刚好脱离所述液体容置空间内的液面。 具体地, 所述两电容式液位传感器都安装在立式潜水泵的侧壁上。 同现有技术相比较, 本发明 "配置双液位传感器的水泵" 的技术效果在于:
1. 所述电容式液位传感器灵敏度高, 且抗干扰能力强; 釆用两个有高度差的电容式液位 传感器, 在液位低于所述较低的电容式液位传感器时, 所述水泵泵体及时关闭, 该水泵本体 内没有被泵出的液体回流不至于造成液位高于所述较高的电容式液位传感器, 从而解决了水 泵本体关闭, 因液体回流造成水泵频繁开关机的问题;
2. 所述两电容式液位传感器之间的高度差可调, 令所述水泵可以适应不同的泵水需求, 增加了水泵自动开闭功能应用的灵活性;
3. 所述两电容式液体传感器可以脱离水泵本体安装在需要控制液位的液体容置空间内, 对于水泵泵体不能设置在所述需要控制液位的液体容置空间附近的情况, 仍然可以实现根据 液位自动开启和自动关闭水泵本体, 增强了所述水泵对不同工况的适应性;
4. 当所述水泵本体是立式潜水泵时, 所述立式潜水泵可以令液体容置空间内的液体基本 全部被泵出, 本发明可以令立式潜水泵及时关闭, 而不至于出现液体容置空间内液体已经被 泵出, 所述立式潜水泵还在空载状态下工作的情况, 节省电能, 增强了立式潜水泵的使用寿 命。 附图说明
图 1是本发明 "配置双液位传感器的水泵" 第一实施例工作原理示意图;
图 2是本发明第二实施例安装有两电容式液位传感器 11、 12的滑槽 50的正投影主视示 意图;
图 3是本发明第三实施例电原理示意框图;
图 4是本发明第四实施例电原理示意图;
图 5是本发明第五实施例的正投影主视示意图;
图 6是所述第五实施例的正投影左视示意图。 具体实施方式
以下结合附图所示实施例作进一步详述。
本发明提出一种配置双液位传感器的水泵, 如图 1所示, 包括水泵本体 30, 还包括控制 模块 20, 以及与该控制模块 20电连接的第一电容式液位传感器 11和第二电容式液位传感器 12。 所述两液位传感器 11、 12都设置于需要控制液位的液体容置空间 90内。 所述液体容置 空间 90指任何能够蓄积液体的空间, 包括各种常用盛放液体器皿, 例如缸、 盆等, 还包括常 见蓄水设施, 例如泳池、 浇灌蓄水池等, 还可以是能够积水的房间、 建筑、 巷道等。 所述液 体容置空间 90可以是简单的立方体或者柱体状, 还可以是复杂的水道状或者多层次、 曲折的 积水空间。 以所述需要控制液位的液体容置空间内的最低水平面为基准面, 所述第一电容式 液位传感器 11与该基准面的距离小于第二电容式传感器 12与该基准面的距离。 以本发明第 一实施例为例, 如图 1所示, 以所述液体容置空间 90的底面为基准面0^, 那么, 所述第一 电容式液位传感器 11与基准面 Gref的距离就是 , 所述第二电容式液位传感器 12与基准面 Gref的距离就是 H2, 所述第一电容式液位传感器 11位于第二电容式液位传感器 12的下方, 即 < H2。 所述控制模块 20检测所述两电容式液位传感器 11、 12的状态并对所述水泵本体 30实施抽水控制, 如图 1所示, 所述第一实施例的水泵本体 30沿箭头指示方向从液体容置 空间 90中泵水, 当该两电容式液位传感器 11、 12都接触到液面时, 启动所述水泵本体 30, 当该两电容式液位传感器 11、 12都没有接触到液面时, 关闭所述水泵本体 30。 本发明所述 水泵能够在无人值守状态下根据液位情况自动工作。 本发明两电容式液位传感器 11、 12不一 定安装在水泵泵体 30上, 因此, 不仅适用于在液体中工作的潜水泵, 还适用于普通水泵。 现 有技术大都将液位开关安装在水泵本体上, 一者受水泵自身高度限制, 其液位控制范围小, 只能在最大液位差不超过水泵本体的环境中使用, 二者, 受泵水环境限制, 根本不能使用潜 水泵泵水, 限制了配置液位传感器水泵的适用范围, 例如, 需要控制水位的区域位置深远, 无法将水泵带入或者在需要控制水位的区域无法为水泵供电。 而本发明水泵可以仅在需要控 制水位的区域安装所述电容式液位传感器 11、 12, 而水泵本体 30设置在远离需要控制水位 的区域, 而且水泵本体可以适用任何类型的水泵, 增加了本发明水泵的适用范围。 另外, 设 置两个有高度差的电容式液位传感器 11、 12,只有两个液位传感器都接触液体才会开启水泵, 当液体容置空间内液位低于第一电容式液位传感器 11而令水泵本体 30关闭时, 虽然没有被
水泵本体 30泵出的液体回流至液体容置空间内,但并不足以使液体容置空间的液位升高达到 第二电容式液位传感器 12的高度,从而本发明防止了这种微小水位变化导致水泵频繁启动的 问题, 解决了现有技术水泵无谓消耗的问题。
为了适应不同环境的泵水要求, 所述两电容式液位传感器之间的高度差是可调的, 即以 所述需要控制液位的液体容置空间内的最低水平面为基准面, 所述两电容式液位传感器 11、 12各自与该基准面的距离分别可以单独调整。 这使本发明水泵适用于无人值守的蓄水设施, 以使蓄水设施的液位控制在需求范围内。 本发明第二实施例, 如图 2所示, 提出一种两电容 式液位传感器之间的高度差可调的具体技术方案, 在所述需要控制液位的液体容置空间内, 设置竖直方向的滑槽 50。 该滑槽 50 内设置有两滑块, 并且所述两滑块各自可以固定于所述 滑槽 50的滑道上的任一位置。 所述两电容式液位传感器 11、 12分别安装于所述两滑块上。 容易想到, 这种滑槽 50还可以安装在水泵本体 30表面。
本发明第三实施例, 如图 3所示, 提出一种控制模块 20的实现方案, 所述控制模块 20 包括分别对应电连接所述第一、 第二电容式液位传感器 11、 12的第一液位检测模块 21和第 二液位检测模块 22, 以及受控开关模块 40。所述第一液位检测模块 21检测第一电容式液位传 感器 11是否接触液面并将反映第一电容式液位传感器 11的状态信号输出至所述受控开关模块 40; 同样, 所述第二液位检测模块 22检测第一电容式液位传感器 12是否接触液面并将反映第 二电容式液位传感器 12的状态信号输出至所述受控开关模块 40。所述受控开关模块 40根据所 述来自两液位检测模块 21、 22的状态信号向水泵本体 30的驱动电机 M输出开启驱动电机 M 的控制信号或者关闭驱动电机 M的控制信号。
本发明第四实施例, 如图 4所示, 在所述第三实施例基础上提出进一步具体的实施方案。 所述受控开关模块 40包括全控型双向晶闸管(2、 光电耦合器 U、 第一三极管 T 第二三极管 T2和第三三极管 Τ3。 所述来自第一液位检测开关 21的状态信号通过第三电阻 R3输入第三三 极管 T3的基极 b,该第三三极管 T3的集电极 c通过第五电阻 R5和第六电阻 R6电连接所述光电 耦合器 U的输入端; 所述来自第二液位检测开关 22的状态信号通过第一电阻 输入第一三 极管 1 的基极 b, 并通过第一电阻^和第四电阻 R4输入第二三极管 T2的集电极 c; 所述第 一三极管 1 的集电极 c通过第六电阻 R6电连接所述光电耦合器 U的输入端; 所述第二三极 管 T2的基极 b通过第二电阻 R2、 第五电阻 R5和第六电阻 R6电连接所述光电耦合器 U的输 入端; 所述第一三极管 ^的发射极 e电连接电源 Vcc。所述所述第二三极管 T2和所述第三三 极管 Τ3的发射极 e都接地。 所述光电耦合器 U的输出端电连接所述全控型双向晶闸管 Q的 门极 g。 所述全控型双向晶闸管 Q串联在所述水泵本体 30的驱动电机 M的供电回路中。
本发明第四实施例, 巿电经过交直流转换模块输出供液位检测模块 21、 22和受控开关模 块 40的直流工作电源 Vcc。 其中模块^是直流稳压模块。 在所述第四实施例中, 所述两液 位检测模块 21、 22都使用苏州联芯科微电子有限公司的 HL2205超声雾化器专用芯片, 该芯 片具有液位检测功能。 所述芯片包括八个引脚, 引脚 1用于点连接检测电容, 即电容式液位 传感器; 引脚 2用于输入积分抗干扰电容; 引脚 3用于输出液位信号, 即输出反映电容式液 位传感器是否接触到液体的电平信号; 引脚 4和引脚 6都是空引脚; 引脚 5用于电连接电源 负极; 引脚 7用于电连接参考电容; 引脚 8用于电连接电源正极。 当液体容置空间内的液位 升高达到第一电容式液位传感器 11时, 所述第一液位检测模块 21输出高电平导通第三三极 管 T3, 进而令所述光电耦合器 U输出高电平, 但由于与第二电容式液位传感器 12电连接的 第二液位检测模块 22输出低电平, 全控型双向晶闸管 Q的门极 g电流没有达到阈值, 全控 型双向晶闸管 Q保持关断。 当液体容置空间内的液位升高达到第二电容式液位传感器 12时, 所述第二液位检测模块 22输出高电平导通第二三极管 T2, 令全控型双向晶闸管 Q的门极 g 得到大于阈值的电流, 全控型双向晶闸管 Q导通, 水泵本体 30的驱动电机 M启动。 当液体 容置空间内的液位降低并低于第二电容式液位传感器 12时, 所述第二液位检测模块 22输出 低电平关断第一三极管 , 但此时第三三极管 T3仍然导通, 全控型双向晶闸管 Q的门极 g 还有电流存在, 全控型双向晶闸管 Q保持导通。 当液体容置空间内的液位降低并低于第一电 容式液位传感器 11时, 所述第一液位检测模块 21输出低电平关断第三三极管 T3, 所述光电 耦合器 U输出低电平, 全控型双向晶闸管 Q的门极 g失去电流, 全控型双向晶闸管 Q保持 被关断, 水泵本体 30的驱动电机 M关闭。
本发明第五实施例, 如图 5和图 6所示, 所述水泵本体 30是立式潜水泵 31 , 放置在所 述需要控制液位的液体容置空间的底部, 包括进水口 311。 该进水口 311设置在所述立式潜 水泵 31底面。 由于现有技术立式潜水泵可以令液体容置空间内的液体基本完全泵出, 如果没 有安装所述电容式液位传感器, 此时, 所述立式潜水泵仍然会继续工作, 造成立式潜水泵空 载运行。 通过设置电容式液位传感器就可以完全解决上述问题, 如图 5和图 6所示, 也就是 以所述需要控制液位的液体容置空间的最低水平面为基准面, 所述第一电容式液位传感器 11 至该基准面 Gref的距离 略大于所述立式潜水泵 31的最低泵水水位 PMIN。 对于不同液体体 质, 以及不同电容式液位传感器的灵敏度, 所述 大于 1 ^的程度不能确定为一固定值, 但是, 设置第一电容式液位传感器 11至该基准面 Gref的距离 的应当达到如下技术效果: 只有出现所述液体容置空间内的液位达到所述立式潜水泵 31的最低泵水水位 PMIN的情况时, 所述第一电容式液位传感器 11刚好脱离所述液体容置空间内的液面, 而向控制模块 20输出
反映该第一电容式液位传感器 11没有接触液面的信息。
对于所述第五实施例, 本发明所述两电容式液位传感器 11、 I2既可以安装液体容置空间 内, 也可以都安装在立式潜水泵 31的侧壁上。
Claims
1. 一种配置双液位传感器的水泵, 包括水泵本体(30), 其特征在于:
还包括控制模块(20), 以及与该控制模块(20)电连接的第一电容式液位传感器(11) 和第二电容式液位传感器(12); 所述两液位传感器(11、 12)都设置于需要控制液位的 液体容置空间内; 以所述需要控制液位的液体容置空间内的最低水平面为基准面, 所述第 一电容式液位传感器(11)与该基准面的距离小于第二电容式传感器(12)与该基准面的 距离;
所述控制模块(20)检测所述两电容式液位传感器(11、 12) 的状态并对所述水泵 本体(30)实施抽水控制, 当该两电容式液位传感器(11、 12)都接触到液面时, 启动所 述水泵本体(30), 当该两电容式液位传感器(11、 12)都没有接触到液面时, 关闭所述 水泵本体( 30 )。
2. 根据权利要求 1所述的配置双液位传感器的水泵, 其特征在于:
以所述需要控制液位的液体容置空间内的最低水平面为基准面, 所述两电容式液位 传感器(11、 12)各自与该基准面的距离分别可以单独调整。
3. 根据权利要求 2所述的配置双液位传感器的水泵, 其特征在于:
在所述需要控制液位的液体容置空间内或者在水泵本体(30)表面, 设置竖直方向 的滑槽 (50); 该滑槽 (50) 内设置有两滑块, 并且所述两滑块各自可以固定于所述滑槽 (50)的滑道上的任一位置; 所述两电容式液位传感器(11、 12)分别安装于所述两滑块 上。
4. 根据权利要求 1所述的配置双液位传感器的水泵, 其特征在于:
所述控制模块(20)包括分别对应电连接所述第一、 第二电容式液位传感器(11、 12) 的第一液位检测模块(21)和第二液位检测模块(22), 以及受控开关模块(40); 所述第一液位检测模块(21)检测第一电容式液位传感器(11)是否接触液面并将反 映第一电容式液位传感器(11) 的状态信号输出至所述受控开关模块(40); 同样, 所述第 二液位检测模块(22)检测第一电容式液位传感器(12)是否接触液面并将反映第二电容 式液位传感器(12) 的状态信号输出至所述受控开关模块(40); 所述受控开关模块(40) 根据所述来自两液位检测模块(21、 22) 的状态信号向水泵本体(30) 的驱动电机(M) 输出开启驱动电机(M) 的控制信号或者关闭驱动电机(M) 的控制信号。
5. 根据权利要求 4所述的配置双液位传感器的水泵, 其特征在于:
所述受控开关模块(40)包括全控型双向晶闸管 (Q)、 光电耦合器(U)、 第一三极 管 (TJ、 第二三极管 (T2)和第三三极管 (T3);
所述来自第一液位检测开关(21)的状态信号通过第三电阻(R3)输入第三三极管(T3) 的基极(b), 该第三三极管 (T3) 的集电极(c)通过第五电阻(R5)和第六电阻(R6) 电 连接所述光电耦合器(U)的输入端; 所述来自第二液位检测开关(22)的状态信号通过第 一电阻(RJ输入第一三极管(TJ的基极(b), 并通过第一电阻(RJ和第四电阻(R4) 输入第二三极管 (T2) 的集电极(c); 所述第一三极管 (TJ 的集电极 (c) 通过第六电 阻(R6) 电连接所述光电耦合器 (U) 的输入端; 所述第二三极管 (T2) 的基极(b)通 过第二电阻(R2)、 第五电阻(R5)和第六电阻(R6) 电连接所述光电耦合器 (U) 的输 入端; 所述第一三极管( )的发射极(e)电连接电源(Vcc); 所述所述第二三极管(T2) 和所述第三三极管 (Τ3)的发射极(e)都接地; 所述光电耦合器(U)的输出端电连接所 述全控型双向晶闸管 (Q) 的门极(g); 所述全控型双向晶闸管 (Q) 串联在所述水泵本 体(30) 的驱动电机(M) 的供电回路中。
6. 根据权利要求 1所述的配置双液位传感器的水泵, 其特征在于:
所述水泵本体(30)是立式潜水泵(31), 放置在所述需要控制液位的液体容置空间 的底部, 包括进水口 (311); 该进水口 (311)设置在所述立式潜水泵 (31) 底面; 以所 述需要控制液位的液体容置空间的最低水平面为基准面,所述第一电容式液位传感器( 11 ) 至该基准面的距离略大于所述立式潜水泵(31)的最低泵水水位, 即只有出现所述液体容 置空间内的液位达到所述立式潜水泵(31)的最低泵水水位的情况时, 所述第一电容式液 位传感器(11) 刚好脱离所述液体容置空间内的液面。
7. 根据权利要求 6所述的配置双液位传感器的水泵, 其特征在于:
所述两电容式液位传感器(11、 12)都安装在立式潜水泵(31) 的侧壁上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201020218444X | 2010-06-04 | ||
CN 201020218444 CN201714645U (zh) | 2010-06-04 | 2010-06-04 | 配置双液位传感器的水泵 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011150773A1 true WO2011150773A1 (zh) | 2011-12-08 |
Family
ID=43460641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/074788 WO2011150773A1 (zh) | 2010-06-04 | 2011-05-27 | 配置双液位传感器的水泵 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN201714645U (zh) |
WO (1) | WO2011150773A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103147967A (zh) * | 2013-03-18 | 2013-06-12 | 陈武 | Gsm远程无线智能控制自动抽水系统 |
CN104088781A (zh) * | 2014-07-08 | 2014-10-08 | 中国石油集团川庆钻探工程有限公司工程技术研究院 | 一种油田用的水源井变频节能监控系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201714645U (zh) * | 2010-06-04 | 2011-01-19 | 深圳市兴日生实业有限公司 | 配置双液位传感器的水泵 |
CN103752441A (zh) * | 2013-12-28 | 2014-04-30 | 北京昊华能源股份有限公司 | 喷雾泵自动加水装置 |
CN104296795B (zh) * | 2014-10-31 | 2017-02-01 | 湖南农业大学 | 一种传感器自动检测控制装置及方法 |
CN104612980B (zh) * | 2015-01-28 | 2017-01-18 | 深圳市钜泰泵业有限公司 | 水位自动控制水泵 |
CN108021151A (zh) * | 2017-12-28 | 2018-05-11 | 广州奥拓夫节能科技有限公司 | 一种水泵电机的智能控制装置 |
CN108843585B (zh) * | 2018-08-13 | 2024-05-28 | 北京芯金源测控技术有限公司 | 一种集成液位识别功能的自动化电排水泵 |
CN110206721A (zh) * | 2019-06-28 | 2019-09-06 | 苏州优德通力科技有限公司 | 一种洗手池泵 |
US20210041137A1 (en) * | 2019-08-09 | 2021-02-11 | Joseph G. Collins | Method and system for detecting blockages in condensate lines and notifying interested parties |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4276454A (en) * | 1979-03-19 | 1981-06-30 | Zathan William J | Water level sensor |
FR2584459A1 (fr) * | 1985-07-03 | 1987-01-09 | Julien Mege | Dispositif de commande d'une electropompe, submersible et immergee dans une cuve ou similaire contenant un liquide, en fonction du niveau du liquide dans cette cuve et electropompe equipee de ce dispositif |
JPH03107588A (ja) * | 1989-09-20 | 1991-05-07 | Kubota Corp | 屋内排水システム |
CN2151278Y (zh) * | 1992-12-31 | 1993-12-29 | 周德玉 | 油田抽油机控制器 |
US5856783A (en) * | 1990-01-02 | 1999-01-05 | Raptor, Inc. | Pump control system |
US20050076711A1 (en) * | 2003-10-10 | 2005-04-14 | Urquidi Carlos A. | Resonant network fluid level sensor assembly |
CN201714645U (zh) * | 2010-06-04 | 2011-01-19 | 深圳市兴日生实业有限公司 | 配置双液位传感器的水泵 |
-
2010
- 2010-06-04 CN CN 201020218444 patent/CN201714645U/zh not_active Expired - Lifetime
-
2011
- 2011-05-27 WO PCT/CN2011/074788 patent/WO2011150773A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4276454A (en) * | 1979-03-19 | 1981-06-30 | Zathan William J | Water level sensor |
FR2584459A1 (fr) * | 1985-07-03 | 1987-01-09 | Julien Mege | Dispositif de commande d'une electropompe, submersible et immergee dans une cuve ou similaire contenant un liquide, en fonction du niveau du liquide dans cette cuve et electropompe equipee de ce dispositif |
JPH03107588A (ja) * | 1989-09-20 | 1991-05-07 | Kubota Corp | 屋内排水システム |
US5856783A (en) * | 1990-01-02 | 1999-01-05 | Raptor, Inc. | Pump control system |
CN2151278Y (zh) * | 1992-12-31 | 1993-12-29 | 周德玉 | 油田抽油机控制器 |
US20050076711A1 (en) * | 2003-10-10 | 2005-04-14 | Urquidi Carlos A. | Resonant network fluid level sensor assembly |
CN201714645U (zh) * | 2010-06-04 | 2011-01-19 | 深圳市兴日生实业有限公司 | 配置双液位传感器的水泵 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103147967A (zh) * | 2013-03-18 | 2013-06-12 | 陈武 | Gsm远程无线智能控制自动抽水系统 |
CN104088781A (zh) * | 2014-07-08 | 2014-10-08 | 中国石油集团川庆钻探工程有限公司工程技术研究院 | 一种油田用的水源井变频节能监控系统 |
Also Published As
Publication number | Publication date |
---|---|
CN201714645U (zh) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011150773A1 (zh) | 配置双液位传感器的水泵 | |
CN1248077C (zh) | 固态液位传感器和泵控制器 | |
CN103006073B (zh) | 带水位检测控制的自动加水装置及其控制方法 | |
CN203878695U (zh) | 一种马桶自动冲洗控制装置 | |
CN208720427U (zh) | 一种下水稳定的加湿器 | |
CN201433913Y (zh) | 内置电容式水位控制器的潜水泵及其电容式水位控制器 | |
CN208848094U (zh) | 一种污水自动排放控制箱 | |
CN201065549Y (zh) | 一种自动抽水控制装置 | |
CN2837402Y (zh) | 家用废水冲厕装置 | |
CN108052130A (zh) | 一种定量补水自动控制器 | |
WO2010111937A1 (zh) | 内置电容式水位控制器的潜水泵以及用于潜水泵的电容式水位控制器 | |
CN206721977U (zh) | 智能补水式节能型冲厕系统 | |
CN203023590U (zh) | 电容感应式自动给水陶瓷水龙头 | |
CN210428205U (zh) | 一种水箱液位检测装置和进水机构 | |
CN117281436A (zh) | 家居设备及其换水控制方法、智能清洁机及其系统 | |
CN2426139Y (zh) | 感应式液位控制装置 | |
CN205938078U (zh) | 一种触摸水龙头单元及具有该单元的供水系统 | |
CN105042163B (zh) | 一种感应洁具脉冲电磁阀的控制电路及其控制方法 | |
CN203613606U (zh) | 自动供水器 | |
CN211004071U (zh) | 一种电梯空调冷凝水自动排放系统 | |
CN220773273U (zh) | 一种用于检测水箱有无水的装置 | |
CN207457853U (zh) | 一种电子式水位控制系统 | |
CN107012912A (zh) | 家庭洗涤用水循环利用装置 | |
CN204044789U (zh) | 一种触摸式给水控制装置 | |
CN206721976U (zh) | 家庭洗涤用水循环利用装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789152 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11789152 Country of ref document: EP Kind code of ref document: A1 |