WO2011149243A2 - 성형용 금형 및 이를 갖는 성형 시스템 - Google Patents
성형용 금형 및 이를 갖는 성형 시스템 Download PDFInfo
- Publication number
- WO2011149243A2 WO2011149243A2 PCT/KR2011/003791 KR2011003791W WO2011149243A2 WO 2011149243 A2 WO2011149243 A2 WO 2011149243A2 KR 2011003791 W KR2011003791 W KR 2011003791W WO 2011149243 A2 WO2011149243 A2 WO 2011149243A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molding
- porous member
- mold
- molding die
- supply
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
- B29C45/7312—Construction of heating or cooling fluid flow channels
Definitions
- the present invention relates to a mold for molding, and more particularly, to a mold for molding and a molding system having a rapid heating and rapid cooling using a heat transfer medium.
- the part of the molding die to be adjusted to the temperature required for molding is the cavity surface of the molding die. That is, the molding is completed by heating the temperature of the cavity surface to a predetermined temperature, supplying a molding material into the heated cavity, and cooling the surface temperature of the cavity to the predetermined temperature when the molding is completed.
- the molding time of the product can be shortened.
- the heating time and cooling time of the molding die occupy a large proportion of the overall molding time, so that the molding die is rapidly heated or cooled. This can greatly increase the productivity of the product.
- a method of heating a mold for molding in which a heat transfer heater is inserted into a mold plate so that heat generated from the heat transfer heater is directly transferred to the mold plate, and a heating path is provided. There is a method of heating the mold plate by supplying the same heating medium.
- a method of cooling a molding die a method is known in which a flow path is formed inside a die plate, and a cooling water flows through the flow path to cool the die plate.
- Japanese Patent Laid-Open Publication No. 2006-159643 discloses a technique for sharing a heat medium flow path and a cooling medium flow path provided in a molding die. That is, the molding die disclosed in Japanese Patent Laid-Open No. 2006-159643 alternately supplies steam and water through a flow path of the mold plate to heat or cool the mold plate.
- the present invention has been made in view of this point, and a mold for forming a new structure and a molding system having the same structure capable of shortening the molding cycle by heating and cooling the cavity surface more quickly without the problem of deterioration of the durability of the mold plate.
- the purpose is to provide.
- Mold for molding for molding according to an embodiment of the present invention for achieving the above object, a plurality of mold plates for forming a cavity for molding, a passage provided in at least one of the mold plate of the plurality of mold plates And a porous member having pores of an open cell structure to be inserted therein and allowing the fluid to pass therein, and an insert inserted into an insertion hole provided along the passage direction of the fluid in the porous member.
- the porous member may be formed in a hollow cylindrical shape, and the insert may be formed in a cylindrical shape.
- Connection caps for pipe connection may be coupled to both ends of the passage.
- the porous member may be made of a porous metal.
- Molding system for achieving the above object, a molding pipe, a supply pipe connected to one end of the passage of the molding die, a discharge pipe connected to the other end of the passage, the heating mold A heating medium feeder disposed between the supply pipe and the discharge pipe for supplying a medium, and a cooling medium feeder disposed between the supply pipe and the discharge pipe for supplying a cooling medium to the molding die.
- the molding die is inserted into the passage provided in the plurality of mold plates for forming a cavity for molding and at least one mold plate among the plurality of mold plates, and is opened to allow fluid to pass therein. It includes a porous member having pores of the cell structure, the insert is inserted into the insertion hole provided in the porous member along the passage direction of the fluid.
- the molding system according to an embodiment of the present invention may further include an air supplier disposed between the supply pipe and the discharge pipe to supply air to the molding die.
- the molding die according to the present invention has the following advantages over the conventional molding die for heating or cooling the mold plate by flowing a heating medium or a cooling medium directly through a passage of the mold plate.
- the heat transfer medium flows between the pores of the porous member into which the insert is inserted, the contact area between the heat transfer medium and the mold plate is widened, and the heat transfer medium flows in a turbulent state between the fine pores, thereby rapidly transferring heat between the heat transfer medium and the mold plate. This occurs, thereby improving heating efficiency and cooling efficiency.
- the porous member providing the flow path of the heat transfer medium not only has rigidity but also its strength is reinforced by the insert, even if the porous member is placed close to the cavity, the strength of the mold plate does not decrease, and the porous member is placed in the cavity. By placing them closer, the heating efficiency and cooling efficiency of the cavity surface can be further increased.
- the molding cycle can be further shortened, thereby increasing productivity.
- FIG. 1 shows a molding system according to an embodiment of the present invention.
- FIG. 2 and 3 are a side cross-sectional view and a planar cross-sectional view showing a second mold plate of the molding die shown in FIG.
- Figure 4 shows a test die produced to verify the heating and cooling effect of the molding die according to the present invention.
- FIG. 5 shows a comparison of flow rate distributions of a supply fluid passing through the test mold shown in FIG. 4 and the comparison mold for effect comparison.
- FIG. 6 is a graph illustrating heating test results for a test mold and a comparison mold shown in FIG. 5.
- FIG. 7 is a graph showing cooling test results for a test mold and a comparison mold shown in FIG. 5.
- the molding die according to the present invention includes all the various molds for molding, such as an injection molding die, an extrusion molding die, and a compression molding die.
- FIG. 1 shows a molding system according to an embodiment of the present invention.
- the molding system 100 includes a molding die 110, a supply pipe 130 and a discharge pipe 131 connected to the molding die 110. Include.
- the molding die 110 includes a pair of mold plates 112 and 113 forming the cavity 111.
- the first mold plate 112 may be a stationary mold plate
- the second mold plate 113 may be a movable mold plate that may move back and forth. These mold plates 112 and 113 are fixed to the support plates 114 and 115.
- the first mold plate 112 is provided with a recessed cavity surface 116
- the second mold plate 113 is provided with a protruding core surface 117.
- the cavity 111 is formed between the cavity surface 116 and the core surface 117 at the time of joining the first mold plate 112 and the second mold plate 113.
- the temperature sensor 118 is installed inside the second mold plate 113. The temperature sensor 118 detects the temperature of the cavity 111 and may be installed at various positions of the first mold plate 112 or the second mold plate 113.
- a plurality of passages 119 are disposed near the cavity surface 116 in the first mold plate 112, and a plurality of passages 120 are disposed near the core surface 117 in the second mold plate 113. do.
- the porous member 121 is inserted into each of the passages 119 and 120.
- the porous member 121 provides a flow path through which a heating medium, a cooling medium, and air supplied through the supply pipe 130 can flow, and for rapid heat transfer during heating or cooling of the mold plates 112 and 113. Used as a medium.
- the porous member 121 has pores of an open cell structure with a low flow resistance of the fluid so that the fluid can flow smoothly therein.
- a porous metal having excellent thermal conductivity and resisting corrosion may be used as the porous member 121.
- the porous metal may be manufactured by copper, stainless steel, aluminum, nickel, FeCrAl alloys, or the like by sinter molding, compression molding, gas injection, and the like.
- the porous member 121 is formed in a hollow cylindrical shape provided with the insertion hole 122 in the passage direction of the fluid.
- the insert 123 is inserted into the insertion hole 122.
- the insert 123 guides the fluid flowing into the passages 119 and 120 to flow through the edge of the porous member 121.
- the insert 123 may be made of a non-porous solid through which a fluid such as a metal or a non-metal such as ceramic cannot pass.
- the porous member 121 is not limited to a long cylindrical shape as long as shown, it can be changed to various shapes such as hollow polygonal pillar.
- the shapes of the passages 119 and 120 may also be changed to correspond to the shapes of the porous member 121.
- the shape of the insertion hole 122 or the insert 123 provided in the porous member 121 is not limited to a cylindrical shape, but fluid flowing into the porous member 121 such as a polygonal column is introduced through the edge of the porous member 121. It can be changed in various forms to guide the flow.
- the insertion position of the insert 123 is not necessarily limited to the center of the insertion hole 122.
- the role of the insert 123 is that the fluid flowing into the porous member 121 is relatively mold plate 112 (113) rather than the center of the porous member 121 is less heat exchange with the mold plates 112, 113.
- it may be arranged eccentrically in the center of the porous member 121.
- both ends of the passages 119 and 120 of the mold plates 112 and 113 into which the porous member 121 is inserted are connected to the supply cap 124 and the discharge cap. 126 are combined.
- the supply connection cap 124 seals the supply end of the passages 119 and 120, and the discharge connection cap 126 seals the discharge end of the passages 119 and 120.
- the supply cap 124 is connected to the supply manifold 128 connected to the supply pipe 130.
- the supply manifold 128 distributes the fluid supplied through the supply pipe 130 to the plurality of supply connection caps 124.
- the discharge connection cap 126 is connected to the discharge manifold 129 connected to the discharge pipe 131.
- the discharge manifold 129 collects the fluid discharged from the plurality of discharge connection caps 126 to guide the discharge pipe 131.
- the fluid flowing along the supply pipe 130 is distributed in the supply manifold 128 and passes through the passages 125 provided in the connection caps 124 for supplying each of the die plates 112 and 113. Flows to 120. Then, the fluid supplied to the passages 119 and 120 of the mold plates 112 and 113 passes through the porous member 121 and exits the passage 127 provided inside the discharge connection cap 126. Collected by the discharge manifold 129 and discharged to the discharge pipe (131).
- a heating medium supply 133 for supplying a heating medium
- a cooling medium supply 134 for supplying a cooling medium
- an air supply 135 for supplying air Is connected.
- Valves 136 and 137 are provided upstream and downstream of the heating medium supply 133 to regulate the flow of the heating medium, and valves for controlling the flow of the cooling medium upstream and downstream of the cooling medium supply 134.
- 138 and 139 are installed.
- Upstream and downstream of the air supply 135 are provided with valves 140 and 141 for controlling the flow of air.
- heating medium supplies 133, cooling medium supplies 134, air supplies 135 and valves 136, 137, 138, 139, 140, 141 are operated by the controller 143. This is controlled.
- the controller 143 detects the temperature of the cavity 111 through the temperature sensor 118 installed in the molding die 110, and a heating medium to adjust the temperature of the molding die 110 according to each molding step. Control the supply of cooling medium and air.
- the heating medium feeder 133 and the cooling medium feeder 134 are provided with a pressure feeding means such as a pump capable of forcibly flowing the heating medium or the cooling medium.
- the air supply 135 is provided with a pressure-feeding means capable of forcing the flow of air.
- Various fluids such as water, steam, and oil may be used as the heating medium, and various fluids such as water, oil, and refrigerant may be used as the cooling medium.
- the heating medium supply 133 and the cooling medium supply 134 may be combined into one heat transfer medium supply.
- the heat transfer medium supplyer may include a heater or a cooling device for heating or cooling the heat transfer medium such as water or oil.
- the cooling device may be omitted.
- the supply pipe 130 may be provided with a filter for filtering foreign substances contained in the heating medium, cooling medium, air in order to prevent the pores of the porous member 121 is blocked.
- a vacuum pump may be installed in the discharge pipe 131 to smoothly flow the fluid through the porous member 121. When the pressure of the discharge side of the passages 119 and 120 is reduced by using a vacuum pump, the heat transfer medium introduced into the passages 119 and 120 may flow more quickly toward the discharge portion.
- the heating medium supplier 133 is operated to supply the heating medium to the supply pipe 130.
- the heating medium supplied to the supply pipe 130 is distributed from the supply manifold 128 to the plurality of supply connection caps 124 and supplied to the passages 119 and 120 of the respective die plates 112 and 113. .
- the heating medium supplied to the passages 119 and 120 of the mold plates 112 and 113 flows along the porous member 121 inserted into the passages 119 and 120 to move the mold plates 112 and 113. Heat.
- the temperature of the mold boards 112 and 113 becomes more than a predetermined temperature
- the molding material is injected into the cavity 111.
- the supply of the heating medium may be stopped.
- the cooling medium supplier 134 is operated to supply the cooling medium to the supply pipe 130.
- the cooling medium flowing along the supply pipe 130 is supplied to the passages 119 and 120 of the mold plates 112 and 113 to flow along the porous member 121 to cool the mold plates 112 and 113. Let's do it.
- the supply of the cooling medium is stopped and the cavity 111 is opened to discharge the molded article.
- One method is to absorb the heat of the mold plates 112 and 113 when the cooling medium passes through the porous member 121 due to the temperature difference between the cooling medium and the mold plates 112 and 113.
- the supply pressure is adjusted so that the supplied cooling medium does not evaporate when passing through the pores of the porous member 121, and the cooling medium absorbing heat naturally diffuses through the pores of the porous member 121.
- Another method is to evaporate the cooling medium when passing through the porous member 121 to absorb the heat of evaporation from the mold plates 112 and 113.
- the liquid evaporates to a gas
- the heat is absorbed from the surroundings, so if the pressure of the cooling medium passing through the porous member 121 is sufficiently lowered, the cooling medium may absorb the heat of the mold plates 112 and 113 while evaporating. .
- air may be supplied to the mold plates 112 and 113 to perform a purge process. That is, when the molding material is supplied to the cavity 111 and the heating medium filled in the pores of the porous member 121 is purged with air and filled with air, the mold plates 112 and 113 are cooled down to delay the cooling rate. The temperature of the plates 112 and 113 can be maintained for a long time.
- the molding system 100 allows the heating medium or the cooling medium to flow through the pores of the porous member 121 provided in the passages 119 and 120 of the mold plates 112 and 113.
- the heating and cooling effects are excellent as compared with the conventional molding system in which the heat transfer medium passes directly through the passages 119 and 120 of the mold plates 112 and 113.
- the heating medium or the cooling medium passes through the porous member 121, vortices are formed in the fine pores of the porous member 121 to increase the heat transfer effect, and the area where the heat transfer medium contacts the mold plates 112 and 113 is increased. Because it increases.
- the porous member 121 is provided with rigidity, so that the strength of the mold plates 112 and 113 does not drop even when placed close to the cavity 111 of the molding die 110. Accordingly, the heating and cooling effects on the surface of the cavity 111 may be improved by arranging the porous member 121 providing the flow path of the heat transfer medium close to the cavity 111.
- Figure 4 shows a test mold produced for verifying the heating and cooling effect of the molding die according to the present invention
- Figure 5 is a test die shown in Figure 4 and the supply passing through the comparison mold for the effect comparison
- 6 and 7 are graphs showing heating and cooling test results for the test mold and the comparative mold shown in FIG. 5.
- the test mold 150 shown in FIG. 4 has a plurality of passages 151 arranged in two rows.
- the diameter (a) of the passage 151 of the mold 150 is 10 mm
- the diameter (b) of the insert 123 is 5 mm
- the distance (c) from the passage 151 to the surface 152 is 7 mm
- adjacent The center distance d of the two passages 151 is 20 mm
- the distance e between the two adjacent passages 151 is 8 mm.
- the porous member 121 is made of a metal foam having pores of an open cell structure.
- the heating experiment is performed by inserting the porous member 153 into which the insert 154 is inserted into the passage 151 and supplying heated water through the porous member 153, and the porous member 153 without the insert 154.
- the cooling experiment is performed by inserting the porous member 153 into which the insert 154 is inserted into the passage 151 and supplying the cooled water through the porous member 153, and the porous member 153 without the insert 154. In the case of supplying the cooled water through the comparison of how the temperature change appears on the surface 152 of the mold 150.
- the flow rate distribution of the fluid passing through the porous member 153 is different. That is, as shown in FIG. 5A, when the insert 154 is present, the fluid is concentrated toward the edge of the porous member 153 close to the inner surface of the mold 150 to actively exchange heat with the mold 150. However, without the insert 154 the fluid is concentrated in the center of the insert 154, resulting in relatively less heat exchange with the mold 150 '.
- the molding die 110 supplies the heating plate or the cooling medium through the porous member 121 inserted into the mold plates 112 and 113 to form the mold plate 112 ( 113) can be heated or cooled more quickly.
- the heating and cooling efficiency of the insert 123 inserted into the porous member 121 is concentrated on the contact surface side of the mold plates 112 and 113 with the heating medium or the cooling medium flowing into the porous member 121. It can be raised further.
- the molding cycle can be shortened.
- the porous member 121 is not only provided with rigidity, but also its strength is further reinforced by the insert 123, so that the strength of the mold plates 112 and 113 does not decrease even when placed close to the cavity 111. . Therefore, the heating medium or the cooling medium can be supplied closer to the cavity 111, so that the heating efficiency and the cooling efficiency for the surface of the cavity 111 can be further increased.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
본 발명에 의한 성형용 금형은, 성형을 위한 캐비티를 형성하기 위한 복수의 금형판, 복수의 금형판 중 적어도 하나의 금형판의 내부에 마련되는 통로에 삽입되고 그 내부로 유체가 통과할 수 있도록 오픈 셀 구조의 기공을 갖는 다공질 부재, 다공질 부재에 유체의 통과 방향을 따라 마련되는 삽입구멍에 삽입되는 인서트를 포함한다. 본 발명에 의한 성형용 금형은 인서트가 다공질 부재로 유입되는 전열매체를 상대적으로 금형판과의 열교환이 활발하게 이루어지는 다공질 부재와 금형판의 접촉면 쪽으로 집중시킴으로써, 전열매체와 금형판 사이에 급속한 열전달이 발생하게 되고, 이로 인해 가열 효율 및 냉각 효율이 향상된다.
Description
본 발명은 성형용 금형에 관한 것으로, 더욱 상세하게는 전열매체를 이용한 급속 가열 및 급속 냉각이 가능한 성형용 금형 및 이를 갖는 성형 시스템에 관한 것이다.
성형용 금형을 이용한 성형 공정에서 성형용 금형의 온도 제어는 제품의 생산성 및 품질과 직결되므로 매우 중요하다. 성형용 금형 중에서 성형에 필요한 온도로 조절되어야 하는 부분은 성형용 금형의 캐비티 표면이다. 즉, 캐비티 표면의 온도를 정해진 온도로 가열하고, 가열된 캐비티 내에 성형 재료를 공급하고, 성형이 완료되면 캐비티의 표면 온도를 정해진 온도로 냉각시켜서 성형을 완성하게 된다.
성형용 금형을 급속히 가열하거나 냉각시킬 수 있으면, 제품의 성형 시간을 단축할 수 있다. 특히, TV의 프레임이나 자동차의 데시 보드와 같이 크기가 큰 제품을 사출 성형할 경우, 성형용 금형의 가열 시간 및 냉각 시간이 전체 성형 시간 중에서 큰 비중을 차지하므로, 성형용 금형을 급속히 가열하거나 냉각시키면 제품의 생산성을 크게 높일 수 있다.
성형용 금형을 가열하는 방법으로, 금형판의 내부에 전열히터를 삽입하여 전열히터에서 발생하는 열이 금형판에 직접 전달되도록 하여 가열하는 방법과, 금형판 내부에 유로를 마련하고 유로에 증기와 같은 가열매체를 공급하여 금형판을 가열하는 방법이 있다. 그리고 성형용 금형을 냉각시키는 방법으로, 금형판의 내부에 유로를 형성하고, 유로로 냉각수를 흐르게 하여 금형판을 냉각시키는 방법이 알려져 있다.
전열매체를 이용하는 기술로 일본공개특허 제2006-159643호에는 성형용 금형에 마련되는 가열매체용 유로와 냉각매체용 유로를 공유하는 기술이 개시되어 있다. 즉, 일본공개특허 제2006-159643호에 개시된 성형용 금형은 금형판의 유로를 통해 증기와 물을 교대로 공급하여 금형판을 가열하거나 냉각하게 된다.
그런데 금형판에 마련된 유로를 통해 증기와 물을 교대로 공급하여 금형판을 가열하거나 냉각할 경우, 금형판의 유로 내에서 증기와 물이 교체될 때 유로 내의 급격한 압력 변화로 햄머링(Hammering)이 발생할 수 있다. 햄머링은 소음 발생으로 인한 작업 환경을 악화시키고, 금형판의 내구성을 떨어뜨릴 수 있다. 햄머링을 방지하기 위해 증기와 물의 교체 시 압축 공기를 유로에 공급하여 금형판을 퍼지(Purge)하는 방법이 있으나, 퍼지 공정 추가로 인해 전체 성형 사이클이 길어지는 문제가 있다.
한편, 단위 시간당 동일한 양의 가열매체나 냉각매체를 금형판의 유로로 공급할 경우, 유로를 캐비티 표면에 가까이 배치할수록 캐비티 표면에 대한 가열 시간과 냉각 시간을 단축할 수 있다. 그런데 유로를 캐비티 표면에 근접하도록 배치할 경우, 유로 전방의 캐비티 표면의 강도가 약해져서 고압으로 성형을 할 경우 캐비티 표면이 변형될 염려가 있으며, 금형판의 내구성이 나빠지는 문제점이 있다.
본 발명은 이러한 점을 감안하여 안출된 것으로, 금형판의 내구성이 저하되는 문제가 없이 캐비티 표면을 더욱 신속하게 가열 및 냉각하여 성형 사이클을 단축할 수 있는 새로운 구조의 성형용 금형 및 이를 갖는 성형 시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 일실시예에 의한 성형용 금형은, 성형을 위한 캐비티를 형성하기 위한 복수의 금형판, 상기 복수의 금형판 중 적어도 하나의 금형판의 내부에 마련되는 통로에 삽입되고 그 내부로 유체가 통과할 수 있도록 오픈 셀 구조의 기공을 갖는 다공질 부재, 상기 다공질 부재에 유체의 통과 방향을 따라 마련되는 삽입구멍에 삽입되는 인서트를 포함한다.
상기 다공질 부재는 중공의 원통 형상으로 이루어지고, 상기 인서트는 원통 형상으로 이루어질 수 있다.
상기 통로의 양쪽 끝단에는 배관 연결을 위한 연결용 캡이 결합될 수 있다.
상기 다공질 부재는 다공질 금속으로 이루어질 수 있다.
상기 목적을 달성하기 위한 본 발명의 일실시예에 의한 성형 시스템은, 성형용 금형, 성형용 금형의 통로 일단에 연결되는 공급 배관, 상기 통로의 타단에 연결되는 배출 배관, 상기 성형용 금형에 가열매체를 공급하기 위해 상기 공급 배관과 상기 배출 배관의 사이에 배치되는 가열매체 공급기, 상기 성형용 금형에 냉각매체를 공급하기 위해 상기 공급 배관과 상기 배출 배관의 사이에 배치되는 냉각매체 공급기를 포함한다. 상기 성형용 금형은, 성형을 위한 캐비티를 형성하기 위한 복수의 금형판, 상기 복수의 금형판 중 적어도 하나의 금형판의 내부에 마련되는 상기 통로에 삽입되고 그 내부로 유체가 통과할 수 있도록 오픈 셀 구조의 기공을 갖는 다공질 부재, 상기 다공질 부재에 유체의 통과 방향을 따라 마련되는 삽입구멍에 삽입되는 인서트를 포함한다.
본 발명의 일실시예에 의한 성형 시스템은 상기 성형용 금형에 공기를 공급하기 위해 상기 공급 배관과 상기 배출 배관의 사이에 배치되는 공기 공급기를 더 포함할 수 있다.
본 발명에 의한 성형용 금형은, 금형판의 통로를 통해 직접 가열매체나 냉각매체를 유동시켜 금형판을 가열하거나 냉각하는 종래의 성형용 금형에 비하여 다음과 같은 장점을 갖는다.
첫째, 전열매체가 인서트가 삽입된 다공질 부재의 기공 사이로 유동하므로 전열매체와 금형판 사이의 접촉 면적이 넓어지고 전열매체가 미세한 기공 사이에서 난류 상태로 흐르게 되므로, 전열매체와 금형판 사이에 급속한 열전달이 발생하게 되고, 이로 인해 가열 효율 및 냉각 효율이 향상된다. 더욱이, 전열매체의 유로를 제공하는 다공질 부재는 강성을 구비할 뿐만 아니라 인서트에 의해 그 강도가 보강되므로, 다공질 부재를 캐비티에 가까이 배치하여도 금형판의 강도가 저하되지 않으며, 다공질 부재를 캐비티에 가까이 배치함으로써 캐비티 표면에 대한 가열 효율 및 냉각 효율을 더욱 높일 수 있다.
둘째, 가열매체나 냉각매체가 다공성 부재를 통해 유동하면, 가열매체와 냉각매체가 교체될 때 종래와 같이 유로 내의 급격한 압력 변화로 인한 햄머링을 방지할 수 있다. 따라서, 햄머링에 의한 소음 발생이나 금형판의 내구성이 저하되는 문제가 발생하지 않는다.
셋째, 종래와 같이 햄머링을 방지하기 위해 가열 공정과 냉각 공정 사이에 공기를 공급하여 금형판을 퍼지할 필요가 없기 때문에, 성형 사이클을 더욱 단축할 수 있고, 이를 통해 생산성을 높일 수 있다.
도 1은 본 발명의 일실시예에 의한 성형 시스템을 나타낸 것이다.
도 2 및 도 3은 도 1에 도시된 성형용 금형의 제 2 금형판을 나타낸 측단면도 및 평단면도이다.
도 4는 본 발명에 의한 성형용 금형의 가열 및 냉각 효과를 검증하기 위해 제작한 시험용 금형을 나타낸 것이다.
도 5는 도 4에 도시된 시험용 금형과 효과 비교를 위한 비교용 금형을 각각 통과하는 공급 유체의 유량 분포를 비교하여 나타낸 것이다.
도 6은 도 5에 도시된 시험용 금형과 비교용 금형에 대한 가열 실험 결과를 나타낸 그래프이다.
도 7은 도 5에 도시된 시험용 금형과 비교용 금형에 대한 냉각 실험 결과를 나타낸 그래프이다.
이하에서는 첨부된 도면을 참조하여, 본 발명의 일실시예에 의한 성형용 금형 및 이를 갖는 성형 시스템에 대하여 상세히 설명한다. 본 발명에 의한 성형용 금형은 사출 성형용 금형, 압출 성형용 금형, 압축 성형용 금형 등 성형을 위한 다양한 금형을 모두 포함한다.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어 나타날 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
도 1은 본 발명의 일실시예에 의한 성형 시스템을 나타낸 것이다.
도 1에 도시된 것과 같이, 본 발명의 일실시예에 의한 성형 시스템(100)은 성형용 금형(110), 성형용 금형(110)에 연결되는 공급 배관(130) 및 배출 배관(131)을 포함한다. 성형용 금형(110)은 캐비티(111)를 형성하는 한 쌍의 금형판(112)(113)을 포함한다. 여기에서, 제 1 금형판(112)은 고정형 금형판일 수 있고, 제 2 금형판(113)은 전후로 이동할 수 있는 가동형 금형판일 수 있다. 이들 금형판(112)(113)은 지지판(114)(115)에 고정된다.
제 1 금형판(112)에는 함몰된 캐비티면(116)이 마련되고, 제 2 금형판(113)에는 돌출된 코어면(117)이 마련된다. 캐비티(111)는 제 1 금형판(112) 및 제 2 금형판(113)의 형합 시에 캐비티면(116)과 코어면(117) 사이에 형성된다. 제 2 금형판(113)의 내부에는 온도 센서(118)가 설치된다. 온도 센서(118)는 캐비티(111)의 온도를 검출하기 위한 것으로, 제 1 금형판(112) 또는 제 2 금형판(113)의 다양한 위치에 설치될 수 있다.
제 1 금형판(112)에는 복수의 통로(119)가 캐비티면(116)에 근접하게 배치되고, 제 2 금형판(113)에는 복수의 통로(120)가 코어면(117)에 근접하게 배치된다. 각 통로(119)(120)에는 다공질 부재(121)가 삽입된다. 다공질 부재(121)는 공급 배관(130)을 통해 공급되는 가열매체, 냉각매체 및 공기가 유동할 수 있는 유로를 제공하는 것으로, 금형판(112)(113)의 가열 또는 냉각 시 급속한 열전달을 위한 매개체로 사용된다.
다공질 부재(121)는 그 내부로 유체가 원활하게 유동할 수 있도록 유체의 유동 저항이 작은 오픈 셀(Open cell) 구조의 기공(Pore)을 갖는다. 다공질 부재(121)로는 열전도가 우수하고 부식에 강한 다공질 금속이 이용될 수 있다. 잘 알려진 것과 같이, 다공질 금속은 구리, 스테인레스 스틸, 알루미늄, 니켈, FeCrAl 합금 등을 이용하여 소결 성형(SINTERING), 압축 성형, 가스 주입(GAS INJECTION) 등의 방법으로 제조할 수 있다.
도 2 및 도 3에 도시된 것과 같이, 다공질 부재(121)는 유체의 통과 방향을 따라 삽입구멍(122)이 마련된 중공의 원통 형상으로 이루어진다. 삽입구멍(122)에는 인서트(123)가 삽입된다. 인서트(123)는 통로(119)(120)로 유입되는 유체를 다공질 부재(121)의 가장자리를 통해 유동하도록 안내한다. 인서트(123)로는 금속이나 세라믹 등의 비금속 등 유체가 통과할 수 없는 비다공성의 고체로 이루어질 수 있다.
본 발명에 있어서, 다공질 부재(121)는 도시된 것과 같이 길이가 긴 중공의 원통 형상으로 한정되는 것은 아니며, 중공의 다각 기둥 등 다양한 형상으로 변경될 수 있다. 이 경우 통로(119)(120)의 형상도 다공질 부재(121)의 형상에 대응하도록 변경될 수 있다. 그리고 다공질 부재(121)에 마련되는 삽입구멍(122)이나 인서트(123)의 형상도 원통 형상으로 한정되지 않고 다각 기둥 등 다공질 부재(121)로 유입되는 유체를 다공질 부재(121)의 가장자리를 통해 유동하도록 안내할 수 있는 다양한 형태로 변경될 수 있다.
또한, 인서트(123)의 삽입 위치는 삽입구멍(122)에 정중앙으로 한정될 필요는 없다. 인서트(123)의 역할은 다공질 부재(121)로 유입되는 유체를 상대적으로 금형판(112)(113)과의 열교환이 덜 이루어지는 다공질 부재(121)의 중앙보다는 상대적으로 금형판(112)(113)과의 열교환이 활발하게 이루어지는 다공질 부재(121)와 금형판(112)(113)의 접촉면 쪽으로 집중시키는 것이므로, 다공질 부재(121)의 중앙에서 편심되게 배치될 수도 있다.
도 1 및 도 2에 도시된 것과 같이, 다공질 부재(121)가 삽입된 금형판(112)(113)의 통로(119)(120) 양쪽 끝단에는 공급용 연결캡(124)과 배출용 연결캡(126)이 결합된다. 공급용 연결캡(124)은 통로(119)(120)의 공급부 쪽 끝단을 밀폐하고, 배출용 연결캡(126)은 통로(119)(120)의 배출부 쪽 끝단을 밀폐한다. 공급용 연결캡(124)은 공급 배관(130)과 연결된 공급 매니폴드(128)와 연결된다. 공급 매니폴드(128)는 공급 배관(130)을 통해 공급되는 유체를 복수의 공급용 연결캡(124)으로 분배한다. 배출용 연결캡(126)은 배출 배관(131)과 연결된 배출 매니폴드(129)와 연결된다. 배출 매니폴드(129)는 복수의 배출용 연결캡(126)에서 배출되는 유체를 모아 배출 배관(131)으로 안내한다.
공급 배관(130)을 따라 유동하는 유체는 공급 매니폴드(128)에서 분배되어 각 공급용 연결캡(124) 내부에 마련되는 통로(125)를 통해 금형판(112)(113)의 통로(119)(120)로 유동한다. 그리고 금형판(112)(113)의 통로(119)(120)로 공급되는 유체는 다공질 부재(121)를 통과한 후 배출용 연결캡(126)의 내부에 마련되는 통로(127)를 빠져나와 배출 매니폴드(129)로 모아져 배출 배관(131)으로 배출된다.
공급 배관(130)과 배출 배관(131)의 사이에는 가열매체를 공급하기 위한 가열매체 공급기(133), 냉각매체를 공급하기 위한 냉각매체 공급기(134) 및 공기를 공급하기 위한 공기 공급기(135)가 연결된다. 가열매체 공급기(133)의 상류 및 하류에는 가열매체의 유동을 단속하기 위한 밸브(136)(137)가 설치되고, 냉각매체 공급기(134)의 상류 및 하류에는 냉각매체의 유동을 단속하기 위한 밸브(138)(139)가 설치된다. 공기 공급기(135)의 상류 및 하류에는 공기의 유동을 단속하기 위한 밸브(140)(141)가 설치된다.
이들 가열매체 공급기(133), 냉각매체 공급기(134), 공기 공급기(135) 및 밸브들(136)(137)(138)(139)(140)(141)은 제어기(143)에 의해 그 동작이 제어된다. 제어기(143)는 성형용 금형(110)에 설치된 온도 센서(118)를 통해 캐비티(111)의 온도를 검출하고, 성형용 금형(110)의 온도를 각 성형 단계에 맞춰 조절할 수 있도록 가열매체, 냉각매체, 공기의 공급을 제어한다.
여기에서, 가열매체 공급기(133)와 냉각매체 공급기(134)는 가열매체 또는 냉각매체를 강제로 유동시킬 수 있는 펌프 등의 압송수단을 갖춘 것이다. 그리고 공기 공급기(135)는 공기를 강제로 유동시킬 수 있는 압송수단을 갖춘 것이다. 가열매체로는 물, 증기, 오일 등 다양한 유체가 이용될 수 있고, 냉각매체로는 물, 오일, 냉매 등 다양한 유체가 이용될 수 있다.
가열매체 공급기(133)와 냉각매체 공급기(134)는 하나의 전열매체 공급기로 합쳐질 수 있다. 이 경우, 전열매체 공급기는 물이나 오일 등의 전열매체를 가열 또는 냉각하기 위한 히터나 냉각장치를 포함할 수 있다. 상온의 전열매체를 냉각매체로 사용할 경우 냉각장치는 생략될 수 있다.
도면에 나타나지는 않았으나 공급 배관(130)에는 다공질 부재(121)의 기공이 막히는 것을 방지하기 위해 가열매체, 냉각매체, 공기 중에 함유된 이물질을 걸러내기 위한 필터가 설치될 수 있다. 그리고 배출 배관(131)에는 다공질 부재(121)를 통한 유체의 유동을 더욱 원활하게 하기 위한 진공펌프가 설치될 수 있다. 진공펌프를 이용하여 통로(119)(120)의 배출부 쪽 압력을 낮추면 통로(119)(120)로 유입된 전열매체가 배출부 쪽으로 더욱 신속하게 유동할 수 있다.
이하에서는 본 발명의 일실시예에 의한 성형 시스템(100)의 작용에 대하여 설명한다.
먼저, 가열매체 공급기(133)를 작동시켜 가열매체를 공급 배관(130)으로 공급한다. 공급 배관(130)으로 공급되는 가열매체는 공급 매니폴드(128)에서 복수의 공급용 연결캡(124)으로 분배되어 각 금형판(112)(113)의 통로(119)(120)로 공급된다. 금형판(112)(113)의 통로(119)(120)로 공급되는 가열매체는 통로(119)(120)에 삽입된 다공질 부재(121)를 따라 유동하면서 금형판(112)(113)을 가열한다. 금형판(112)(113)의 온도가 정해진 온도 이상이 되면, 캐비티(111)에 성형 재료를 주입한다. 금형판(112)(113)의 온도가 정해진 온도가 되면 가열매체의 공급이 중단될 수 있다.
다음으로, 캐비티(111)에서 성형이 완료되면 냉각매체 공급기(134)를 작동시켜 냉각매체를 공급 배관(130)에 공급한다. 공급 배관(130)을 따라 유동하는 냉각매체는 금형판(112)(113)의 통로(119)(120)로 공급되어 다공질 부재(121)를 따라 유동하면서 금형판(112)(113)을 냉각시킨다. 금형판(112)(113)의 온도가 정해진 온도 이하로 떨어지면, 냉각매체의 공급을 중단하고 캐비티(111)를 개방하여 성형 완료된 성형물을 배출한다.
냉각매체를 이용한 금형판(112)(113)의 냉각 방법은 두 가지가 있다. 한가지 방법은 냉각매체와 금형판(112)(113)의 온도 차이로 냉각매체가 다공질 부재(121)를 통과할 때 금형판(112)(113)의 열을 흡수하도록 하는 방법이다. 이 경우, 공급된 냉각매체가 다공질 부재(121)의 기공을 통과할 때 증발되지 않도록 공급 압력이 조절되며, 열을 흡수한 냉각매체는 다공질 부재(121)의 기공 사이로 자연스럽게 확산되어 통과한다.
다른 한가지 방법은 냉각매체를 다공질 부재(121)를 통과할 때 증발시켜서 금형판(112)(113)으로부터 증발열을 흡수하도록 하는 방법이다. 액체가 기체로 증발할 경우에 주위로부터 증발열을 흡수하므로, 다공질 부재(121)를 통과하는 냉각매체의 압력을 충분히 낮추면 냉각매체가 증발하면서 금형판(112)(113)의 열을 흡수할 수 있다.
본 발명에 의한 성형 시스템(100)을 이용하여 열경화성 수지나 발포성 수지와 같은 재료를 사출성형할 경우, 금형판(112)(113)에 공기를 공급하여 퍼지 공정을 수행할 수 있다. 즉, 캐비티(111)에 성형 재료를 공급하고 다공질 부재(121)의 기공에 충전되어 있는 가열매체를 공기로 퍼지하고 공기를 채우면, 금형판(112)(113)이 냉각되는 속도를 지연시켜서 금형판(112)(113)의 온도를 오래 유지할 수 있게 된다.
상술한 것과 같이, 본 발명에 의한 성형 시스템(100)은 가열매체나 냉각매체를 금형판(112)(113)의 통로(119)(120)에 설치된 다공질 부재(121)의 기공을 통과하여 흐르게 함으로써, 금형판(112)(113)의 통로(119)(120)로 직접 전열매체를 통과시키는 종래의 성형 시스템에 비해 가열 및 냉각 효과가 우수하다. 가열매체나 냉각매체가 다공질 부재(121)를 통과할 때 다공질 부재(121)의 미세한 기공에서 와류가 형성되어 열전달 효과가 증대되고, 금형판(112)(113)에 전열매체가 접촉하는 면적이 증가하기 때문이다. 또한, 다공질 부재(121)는 강성을 구비하고 있어서 성형용 금형(110)의 캐비티(111)에 가까이에 배치하여도 금형판(112)(113)의 강도가 떨이지지 않는다. 따라서, 전열매체의 유로를 제공하는 다공질 부재(121)를 캐비티(111)에 가까이 배치함으로써 캐비티(111) 표면에 대한 가열 및 냉각 효과를 향상시킬 수 있다.
도 4는 본 발명에 의한 성형용 금형의 가열 및 냉각 효과를 검증하기 위해 제작한 시험용 금형을 나타낸 것이고, 도 5는 도 4에 도시된 시험용 금형과 효과 비교를 위한 비교용 금형을 각각 통과하는 공급 유체의 유량 분포를 비교하여 나타낸 것이고, 도 6 및 도 7은 도 5에 도시된 시험용 금형과 비교용 금형에 대한 가열 및 냉각 실험 결과를 나타낸 그래프이다.
도 4에 도시된 시험용 금형(150)은 2열로 배치된 복수의 통로(151)를 갖는 것이다. 여기에서, 금형(150)의 통로(151) 직경(a)은 10mm, 인서트(123)의 직경(b)은 5mm, 통로(151)에서 표면(152) 까지의 거리(c)는 7mm, 인접하는 두 통로(151)의 중심 거리(d)는 20mm, 인접하는 두 통로(151) 사이의 거리(e)는 8mm이다. 다공질 부재(121)는 오픈 셀 구조의 기공을 갖는 메탈 폼(Metal foam)으로 이루어진 것이다.
가열 실험은 통로(151)에 인서트(154)가 삽입된 다공질 부재(153)를 삽입하고 다공질 부재(153)를 통해 가열된 물을 공급하는 경우와, 인서트(154)가 없는 다공질 부재(153)를 통해 가열된 물을 공급하는 경우에 금형(150)의 표면(152)에서 온도 변화가 어떻게 나타나는지 비교한 것이다. 냉각 실험은 통로(151)에 인서트(154)가 삽입된 다공질 부재(153)를 삽입하고 다공질 부재(153)를 통해 냉각된 물을 공급하는 경우와, 인서트(154)가 없는 다공질 부재(153)를 통해 냉각된 물을 공급하는 경우에 금형(150)의 표면(152)에서 온도 변화가 어떻게 나타나는지 비교한 것이다.
도 5에 도시된 것과 같이, 동일한 유량(Q)을 시험용 금형(150)과 비교용 금형(150')에 공급할 경우, 다공질 부재(153)를 통과하는 유체의 유량 분포는 차이가 나타난다. 즉, 도 5의 (a)에 나타낸 것과 같이, 인서트(154)가 있을 경우 유체는 금형(150)의 내면과 가까운 다공질 부재(153)의 가장자리 쪽으로 집중되어 금형(150)과의 열교환이 활발하게 일어날 수 있지만, 인서트(154)가 없으면 유체는 인서트(154)의 중앙으로 집중되어 금형(150')과의 열교환이 상대적으로 덜 일어나게 된다.
실험 결과, 도 6에 도시된 결과 그래프와 같이, 금형의 가열 시 인서트(154)가 삽입된 다공질 부재(153)를 통해 가열된 물을 공급하는 것(F+I+WATER로 표시)이 인서트(154) 없는 다공질 부재(153)를 통해 가열된 물을 공급하는 것(F+WATER로 표시)보다 금형의 온도를 더욱 신속하게 상승시킬 수 있는 것으로 나타났다.
또한, 도 7에 도시된 결과 그래프와 같이, 금형(150)의 냉각 시 인서트(154)가 삽입된 다공질 부재(153)를 통해 냉각된 물을 공급하는 것(F+I+WATER로 표시)이 인서트(154) 없는 다공질 부재(153)를 통해 냉각된 물을 공급하는 것(F+WATER로 표시)보다 금형의 온도를 더욱 신속하게 하강시킬 수 있는 것으로 나타났다.
이와 같이, 본 발명의 일실시예에 의한 성형용 금형(110)은 금형판(112)(113)에 삽입된 다공질 부재(121)를 통해 가열매체나 냉각매체를 공급함으로써 금형판(112)(113)을 더욱 신속하게 가열하거나 냉각할 수 있다. 더욱이, 다공질 부재(121)에 삽입된 인서트(123)가 다공질 부재(121)로 유입되는 가열매체나 냉각매체를 금형판(112)(113)과의 접촉면 쪽에 집중되도록 함으로써 가열 효율 및 냉각 효율을 더욱 높일 수 있다.
또한, 가열매체나 냉각매체가 다공질 부재(151)를 통해 유동하면, 가열매체와 냉각매체가 교체될 때 종래와 같이 유로 내의 급격한 압력 변화로 인한 햄머링이 발생하지 않는다. 따라서, 햄머링에 의한 소음 발생이나 금형판의 내구성 저하 문제가 발생하지 않는다.
또한, 종래와 같이 햄머링을 방지하기 위해 가열 공정과 냉각 공정 사이에 공기를 공급하여 금형판(112)(113)을 퍼지할 필요가 없기 때문에, 성형 사이클을 단축할 수 있다.
또한, 다공질 부재(121)는 강성을 구비할 뿐만 아니라 인서트(123)에 의해 그 강도가 더욱 보강되므로 캐비티(111)에 가까이에 배치하여도 금형판(112)(113)의 강도가 저하되지 않는다. 따라서, 가열매체나 냉각매체를 캐비티(111)에 더욱 가까이 공급할 수 있어 캐비티(111) 표면에 대한 가열 효율 및 냉각 효율을 더욱 높일 수 있다.
앞에서 설명되고, 도면에 도시된 본 발명의 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 해당 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
Claims (6)
- 성형을 위한 캐비티를 형성하기 위한 복수의 금형판;상기 복수의 금형판 중 적어도 하나의 금형판의 내부에 마련되는 통로에 삽입되고, 그 내부로 유체가 통과할 수 있도록 오픈 셀 구조의 기공을 갖는 다공질 부재; 및상기 다공질 부재에 유체의 통과 방향을 따라 마련되는 삽입구멍에 삽입되는 인서트;를 포함하는 것을 특징으로 하는 성형용 금형.
- 제 1 항에 있어서,상기 다공질 부재는 중공의 원통 형상으로 이루어지고, 상기 인서트는 원통 형상으로 이루어지는 것을 특징으로 하는 성형용 금형.
- 제 1 항에 있어서,상기 통로의 양쪽 끝단에는 배관 연결을 위한 연결용 캡이 결합되는 것을 특징으로 하는 성형용 금형.
- 제 1 항에 있어서,상기 다공질 부재는 다공질 금속으로 이루어지는 것을 특징으로 하는 성형용 금형.
- 성형을 위한 캐비티를 형성하기 위한 복수의 금형판, 상기 복수의 금형판 중 적어도 하나의 금형판의 내부에 마련되는 통로에 삽입되고 그 내부로 유체가 통과할 수 있도록 오픈 셀 구조의 기공을 갖는 다공질 부재 및 상기 다공질 부재에 유체의 통과 방향을 따라 마련되는 삽입구멍에 삽입되는 인서트를 포함하는 성형용 금형;상기 통로의 일단에 연결되는 공급 배관;상기 통로의 타단에 연결되는 배출 배관;상기 성형용 금형에 가열매체를 공급하기 위해 상기 공급 배관과 상기 배출 배관의 사이에 배치되는 가열매체 공급기; 및상기 성형용 금형에 냉각매체를 공급하기 위해 상기 공급 배관과 상기 배출 배관의 사이에 배치되는 냉각매체 공급기;를 포함하는 것을 특징으로 하는 성형 시스템.
- 제 5 항에 있어서,상기 성형용 금형에 공기를 공급하기 위해 상기 공급 배관과 상기 배출 배관의 사이에 배치되는 공기 공급기를 더 포함하는 것을 특징으로 하는 성형 시스템.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100048130A KR101157511B1 (ko) | 2010-05-24 | 2010-05-24 | 성형용 금형 및 이를 갖는 성형 시스템 |
KR10-2010-0048130 | 2010-05-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011149243A2 true WO2011149243A2 (ko) | 2011-12-01 |
WO2011149243A3 WO2011149243A3 (ko) | 2012-04-19 |
Family
ID=45004542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/003791 WO2011149243A2 (ko) | 2010-05-24 | 2011-05-24 | 성형용 금형 및 이를 갖는 성형 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101157511B1 (ko) |
WO (1) | WO2011149243A2 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108858970A (zh) * | 2018-09-14 | 2018-11-23 | 无锡市科虹标牌有限公司 | 一种模内注塑反包边装置及其制造工艺 |
CN111263691A (zh) * | 2017-09-08 | 2020-06-09 | 日精Asb机械株式会社 | 模具 |
CN113146986A (zh) * | 2020-01-22 | 2021-07-23 | 精工爱普生株式会社 | 注射成型装置的检查方法、试验用模具以及检查系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990046383A (ko) * | 1999-03-04 | 1999-07-05 | 강명호 | 금형표면순간가열기술및이를이용한성형공법 |
JP2004195859A (ja) * | 2002-12-19 | 2004-07-15 | Nippon Zeon Co Ltd | 射出成形用金型、それを用いる成形体の製造方法及び導光板 |
KR20090072901A (ko) * | 2007-12-28 | 2009-07-02 | 허남욱 | 사출금형의 급속 가열/냉각 장치 및 그 금형온도 제어방법 |
KR20090072646A (ko) * | 2007-12-28 | 2009-07-02 | 창성정밀(주) | 웰드레스 방식의 사출금형 |
JP2010094884A (ja) * | 2008-10-15 | 2010-04-30 | Fuji Seiko:Kk | 射出成形装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100794506B1 (ko) | 2006-07-25 | 2008-01-16 | 티제이테크 주식회사 | 이중벽 종이상자의 사방 내벽체 접지용 금형구조 |
KR20100052654A (ko) * | 2008-11-11 | 2010-05-20 | 한국생산기술연구원 | 급속가열 및 급속냉각 금형구조 |
-
2010
- 2010-05-24 KR KR1020100048130A patent/KR101157511B1/ko active IP Right Grant
-
2011
- 2011-05-24 WO PCT/KR2011/003791 patent/WO2011149243A2/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990046383A (ko) * | 1999-03-04 | 1999-07-05 | 강명호 | 금형표면순간가열기술및이를이용한성형공법 |
JP2004195859A (ja) * | 2002-12-19 | 2004-07-15 | Nippon Zeon Co Ltd | 射出成形用金型、それを用いる成形体の製造方法及び導光板 |
KR20090072901A (ko) * | 2007-12-28 | 2009-07-02 | 허남욱 | 사출금형의 급속 가열/냉각 장치 및 그 금형온도 제어방법 |
KR20090072646A (ko) * | 2007-12-28 | 2009-07-02 | 창성정밀(주) | 웰드레스 방식의 사출금형 |
JP2010094884A (ja) * | 2008-10-15 | 2010-04-30 | Fuji Seiko:Kk | 射出成形装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111263691A (zh) * | 2017-09-08 | 2020-06-09 | 日精Asb机械株式会社 | 模具 |
CN111263691B (zh) * | 2017-09-08 | 2022-04-01 | 日精Asb机械株式会社 | 模具 |
CN108858970A (zh) * | 2018-09-14 | 2018-11-23 | 无锡市科虹标牌有限公司 | 一种模内注塑反包边装置及其制造工艺 |
CN113146986A (zh) * | 2020-01-22 | 2021-07-23 | 精工爱普生株式会社 | 注射成型装置的检查方法、试验用模具以及检查系统 |
CN113146986B (zh) * | 2020-01-22 | 2023-04-07 | 精工爱普生株式会社 | 注射成型装置的检查方法以及检查系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2011149243A3 (ko) | 2012-04-19 |
KR20110128601A (ko) | 2011-11-30 |
KR101157511B1 (ko) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4454638B2 (ja) | ブロー成形用金型装置 | |
WO2011149243A2 (ko) | 성형용 금형 및 이를 갖는 성형 시스템 | |
JPH07335275A (ja) | 高温バッテリ | |
CN102057523A (zh) | 具有冷却歧管的电池模块和用于冷却电池模块的方法 | |
CN101288890A (zh) | 超高强度钢板热冲压成形模具的冷却系统 | |
CN202692763U (zh) | 一种多壳程管壳式换热器 | |
JP2017522677A (ja) | 堅牢で冗長可能な耐漏洩性冷却筐体壁 | |
KR101826186B1 (ko) | 연료 전지용 유동 장 플레이트 | |
EP3968441A1 (en) | Liquid filled heat exchanger for cylindrical battery cells | |
JP6478563B2 (ja) | 燃料電池ユニットおよび構成部品を備える装置、そのような装置で使用するための構成部品ユニットおよびスタック構成部品 | |
CN216941673U (zh) | 仿生透气装置及注塑模具 | |
JP2005329555A (ja) | 成形用金型 | |
CN111086185A (zh) | 一种电缆挤出装置 | |
CN110450368B (zh) | 一种高散热注塑模具 | |
CN114434751B (zh) | 仿生透气装置及注塑模具 | |
KR101743944B1 (ko) | 금형 냉각 장치 | |
CN115032046A (zh) | 一种生物组织石蜡包埋装置 | |
KR101204460B1 (ko) | 전열히터와 함께 배치된 다공질 부재를 구비한 성형용 금형 및 그 성형용 금형의 급속 가열/냉각 방법 및 장치 | |
CN115735286A (zh) | 双极板,燃料电池系统和用于制造双极板的方法 | |
CN215266462U (zh) | 电池冷却器及车辆 | |
CN211054500U (zh) | 一种具有冷却功能的热压板 | |
CN220681483U (zh) | 一种橡胶冷流道系统 | |
CN109579570A (zh) | 微通道换热器 | |
CN221581961U (zh) | 一种熔模铸造模具 | |
CN219575696U (zh) | 燃料电池堆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786875 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11786875 Country of ref document: EP Kind code of ref document: A2 |