WO2011148951A1 - 波長変換型太陽電池封止材、及び太陽電池モジュール - Google Patents

波長変換型太陽電池封止材、及び太陽電池モジュール Download PDF

Info

Publication number
WO2011148951A1
WO2011148951A1 PCT/JP2011/061903 JP2011061903W WO2011148951A1 WO 2011148951 A1 WO2011148951 A1 WO 2011148951A1 JP 2011061903 W JP2011061903 W JP 2011061903W WO 2011148951 A1 WO2011148951 A1 WO 2011148951A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
wavelength conversion
acrylate
type solar
meth
Prior art date
Application number
PCT/JP2011/061903
Other languages
English (en)
French (fr)
Inventor
琢 澤木
香 岡庭
山下 剛
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN2011800255912A priority Critical patent/CN102918654A/zh
Priority to JP2012517283A priority patent/JP5920215B2/ja
Priority to US13/699,631 priority patent/US20130125985A1/en
Priority to EP11786650.9A priority patent/EP2579329A1/en
Priority to KR1020127031153A priority patent/KR20130084978A/ko
Publication of WO2011148951A1 publication Critical patent/WO2011148951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes
    • C09K2200/062Polyethylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0622Polyvinylalcohols, polyvinylacetates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a wavelength conversion type solar cell encapsulant and a solar cell module using the same. More specifically, it is used in a solar cell module that can increase power generation efficiency by converting light in a wavelength region that does not contribute to power generation into a wavelength region light that contributes to power generation using a fluorescent material (also referred to as a light emitting material).
  • the present invention relates to a wavelength conversion type solar cell sealing material and a solar cell module.
  • a conventional silicon crystal solar cell module has the following configuration.
  • the protective glass on the surface also called cover glass
  • a sealing material usually also called a resin or filler mainly composed of ethylene-vinyl acetate copolymer
  • the one surface is provided with an uneven pattern by embossing.
  • the uneven pattern is formed on the inner side, and the surface of the solar cell module is smooth.
  • corrugated shape may be given also outside.
  • the sealing material and back film for protecting and sealing a photovoltaic cell and a tab wire are provided under the protective glass.
  • a fluorescent material by converting the wavelength of light in the ultraviolet region or infrared region that contributes little to power generation in the sunlight spectrum, a layer that emits light in the wavelength region that contributes greatly to power generation is placed on the solar cell light receiving surface side.
  • many methods have been proposed such as Japanese Patent Laid-Open No. 2000-328053.
  • Japanese Patent Laid-Open No. 2006-303033 proposes a method of incorporating a rare earth complex, which is a fluorescent substance, into a sealing material as a wavelength conversion material.
  • the wavelength conversion layer contains a fluorescent substance.
  • a fluorescent substance an organic fluorescent substance, an organometallic complex, an inorganic fluorescent substance or the like is used, which is expensive.
  • the film thickness of about 600 micrometers is required from a viewpoint of cell protection.
  • an object of the present invention is to provide an inexpensive wavelength conversion type solar cell sealing material while maintaining or improving power generation efficiency when applied to a solar cell module.
  • the present inventors have found that the ratio of the electric power generated relative to the incident sunlight (the power generation) in the wavelength conversion layer and the thick wavelength conversion layer having the same concentration and the thin fluorescent material.
  • the efficiency is compared, the result shows that the power generation efficiency is equal to or higher than that of the thick case even if the film thickness is small.
  • the sealing material layer on the light receiving side of the wavelength conversion type solar cell module is divided into two layers, a layer containing a fluorescent material and a layer containing no fluorescent material, the power generation efficiency is maintained or improved.
  • the present invention is as follows.
  • a wavelength conversion type solar cell encapsulant having a first encapsulating layer not containing a fluorescent substance and a second encapsulating layer containing a fluorescent substance.
  • ⁇ 2> The wavelength conversion solar cell sealing material according to ⁇ 1>, wherein the fluorescent substance is a europium complex.
  • ⁇ 3> The wavelength-converting solar cell encapsulating material according to ⁇ 1> or ⁇ 2>, wherein the fluorescent substance is encapsulated in resin particles having a vinyl compound as a monomer compound.
  • ⁇ 4> Solar cells, The wavelength-converting solar cell sealing material according to any one of ⁇ 1> to ⁇ 3>, provided on the light-receiving surface side of the solar cell, A solar cell module.
  • an inexpensive wavelength conversion type solar cell sealing material when applied to a solar cell module, can be provided while maintaining or improving the power generation efficiency.
  • the solar cell module of the present invention includes at least a solar cell and a wavelength conversion type solar cell sealing material (wavelength conversion type solar cell sealing) provided as one of the light transmissive layers on the light receiving surface side of the solar cell. Sheet).
  • the wavelength conversion type solar cell encapsulant (hereinafter sometimes simply referred to as “encapsulant”) includes a first encapsulating layer not containing a fluorescent material and a second encapsulating material containing a fluorescent material. A layer is laminated.
  • the first sealing layer that does not include the fluorescent material may be formed of one layer or two or more layers, but includes a fluorescent material from the viewpoint of cost and simplification of the manufacturing process.
  • the second sealing layer is preferably composed of one layer.
  • the wavelength conversion type solar cell encapsulant is composed of a first encapsulating layer that does not contain a fluorescent material and a second encapsulating layer that contains a fluorescent material, so that the content of the fluorescent material can be reduced.
  • the manufacturing cost is lower than that of the conventional one.
  • the wavelength conversion type solar cell encapsulant having such a two-layer structure is used, the power generation efficiency is maintained or improved in spite of the reduction in the content of the fluorescent material. The reason for this is not clear, but is presumed as follows.
  • the fluorescent material contained in the sealing material provided on the light receiving surface side absorbs the light.
  • the light absorption of the fluorescent material attenuates as it deepens in the film thickness direction of the sealing material. Therefore, it is considered that even if the thickness of the sealing material is increased, the fluorescent substance existing in a deep portion in the thickness direction has little contribution to wavelength conversion.
  • the results show that the power generation efficiency is equal to or higher than that when the film thickness is small. It was.
  • the reduction of the fluorescent substance content suppresses light scattering by the fluorescent substance and increases the visible light transmittance. Accordingly, the amount of light reaching the solar battery cell is increased, the light use efficiency of the solar battery module is increased, and the power generation efficiency can be improved.
  • the total thickness of the first encapsulating layer and the second encapsulating layer is preferably 10 ⁇ m to 1000 ⁇ m from the viewpoint of the sealing effect, and is 200 ⁇ m to 800 ⁇ m. More preferably. Further, the thickness of the second sealing layer containing the fluorescent material is preferably 1 ⁇ m to 800 ⁇ m, more preferably 10 ⁇ m to 600 ⁇ m, from the viewpoint of wavelength conversion efficiency.
  • the ratio of the thickness of the second sealing layer containing the fluorescent material to the total thickness of the first sealing layer and the second sealing layer is preferably 0.1% to 80%, More preferably, it is 1% to 50%.
  • the concentration of the fluorescent material in the second sealing layer containing the fluorescent material is appropriately adjusted depending on the type of the fluorescent material.
  • the content of the fluorescent substance in the second sealing layer is preferably 0.00001 to 30 parts by mass, and preferably 0.0001 to 10 parts by mass with respect to 100 parts by mass of the dispersion medium resin. More preferred. By setting it as 0.0001 mass part or more, wavelength conversion efficiency becomes more sufficient, and the fall of the light quantity which reaches
  • FIG. 1 is a schematic cross-sectional view of the solar cell module of the present invention.
  • a protective glass also referred to as a cover glass
  • the protective glass 20 is not particularly limited, but tempered glass is preferably used in consideration of impact resistance.
  • tempered glass is preferably used in consideration of impact resistance.
  • the surface by the side of the sealing material of the protective glass 20 is given the uneven
  • the light-receiving side surface of the protective glass 20 may be smooth, or may have an uneven shape in order to increase the efficiency of introducing sunlight.
  • a sealing material 30 is provided between the protective glass 20 and the solar battery cell 10.
  • the sealing material 30 in FIG. 1 is composed of two layers, the first sealing layer 32 on the light incident side is a layer that does not contain a fluorescent material, and the second sealing layer 34 on the solar cell 10 side is a fluorescent material. It is a layer containing. Details of the material constituting the sealing material 30 will be described later.
  • a back film 40 is provided on the back side of the solar battery cell 10. Between the back film 40 and the solar battery cell 10, a back surface sealing material 36 for protecting and sealing the solar battery cell from an impact from the back surface of the module or the like is provided.
  • the back surface sealing material 36 is not particularly limited as long as it can protect and seal the solar battery cell.
  • the same material as the first sealing layer 32 not containing a fluorescent material can be applied. .
  • the solar cell module of the present invention may further include a member that is normally provided in the solar cell module, such as an antireflection film.
  • Suitable fluorescent materials used in the present invention include rare earth metal organic complexes. Of these, a europium complex or a samarium complex is preferable, and a europium complex is more preferable.
  • a solar cell module having high power generation efficiency can be realized.
  • the europium complex converts light in the ultraviolet region into light in the red wavelength region with high wavelength conversion efficiency, and the converted light contributes to power generation in the solar battery cell.
  • the europium complex needs a molecule to be a ligand in addition to the central element europium (Eu), but in the present invention, the type of the ligand is not limited, so long as it is a molecule that forms a complex with europium. Either may be sufficient.
  • a rare earth complex such as Eu (TTA) 3 phen
  • TTA rare earth complex
  • the production method of Eu (TTA) 3 Phen for example, the method disclosed in Masaya Mitsuishi, Shinji Kikuchi, Tokuji Miyashita, Yutaka Amano, J. Mater. Chem. 2003, 13, 2875-2879 can be referred to.
  • the ligand of the complex is not limited, but as the neutral ligand, carboxylic acid, nitrogen-containing organic compound, nitrogen-containing aromatic heterocyclic compound, ⁇ -diketone, or phosphine oxide can be used. preferable.
  • R 1 COCHR 2 COR 3 (wherein, R 1 represents an aryl group, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aralkyl group, or substituted versions thereof, R 2 is , A hydrogen atom, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aralkyl group or an aryl group, and R 3 represents an aryl group, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aralkyl group or a substituent thereof.
  • ⁇ -diketones represented by the formula (1) may be contained.
  • ⁇ -diketones include acetylacetone, perfluoroacetylacetone, benzoyl-2-furanoylmethane, 1,3-bis (3-pyridyl) -1,3-propanedione, benzoyltrifluoroacetone, benzoylacetone 5-chlorosulfonyl-2-thenoyltrifluoroacetone, di (4-bromo) benzoylmethane, dibenzoylmethane, d, d-dicamphorylmethane, 1,3-dicyano-1,3-propanedione, p- Bis (4,4,5,5,6,6,6-heptafluoro-1,3-hexanedinoyl) benzene, 4,4'-dimethoxydibenzoylmethane, 2,6-dimethyl-3,5-heptane Dione, dinaphthoylmethane, dipivaloylmethan
  • Nitrogen-containing organic compounds, nitrogen-containing aromatic heterocyclic compounds, and phosphine oxides of neutral ligands of rare earth complexes include, for example, 1,10-phenanthroline, 2-2'-bipyridyl, 2-2'-6, 2 "-terpyridyl, 4,7-diphenyl-1,10-phenanthroline, 2- (2-pyridyl) benzimidazole, triphenylphosphine oxide, tri-n-butylphosphine oxide, tri-n-octylphosphine oxide, tri- Examples include n-butyl phosphate.
  • the fluorescent substance is encapsulated in resin particles (also referred to as a spherical phosphor).
  • resin particles also referred to as a spherical phosphor.
  • a monomer compound which comprises the said resin particle From a viewpoint of scattering suppression of light, it is preferable that it is a vinyl compound.
  • a method of encapsulating the fluorescent substance in the resin particles a commonly used method can be used without any particular limitation. For example, it can be prepared by preparing a mixture of monomer compounds constituting the fluorescent substance and resin particles and polymerizing the mixture.
  • the wavelength of the resin particles (spherical phosphor) containing the fluorescent substance is converted.
  • Fluorescent material can be configured.
  • the wavelength converting fluorescent material refers to a material obtained by polymerizing a vinyl compound containing a fluorescent substance.
  • the average particle size of the fluorescent material for wavelength conversion is preferably 0.001 ⁇ m to 600 ⁇ m, more preferably 0.005 ⁇ m to 300 ⁇ m, and more preferably 0.01 ⁇ m to 250 ⁇ m from the viewpoint of improving light utilization efficiency. Is more preferable.
  • the average particle diameter of the wavelength converting fluorescent material can be measured using a laser diffraction / scattering particle size distribution analyzer (for example, LS13320, manufactured by Beckman Coulter, Inc.).
  • the vinyl compound is not particularly limited as long as it is a compound having at least one ethylenically unsaturated bond, and an acrylic monomer, a methacrylic monomer, which can be converted into a vinyl resin, particularly an acrylic resin or a methacrylic resin when polymerized.
  • An acrylic oligomer, a methacryl oligomer, etc. can be used without a restriction
  • an acrylic monomer, a methacryl monomer, and the like are preferable.
  • acrylic monomer and the methacrylic monomer examples include acrylic acid, methacrylic acid, and alkyl esters thereof, and other vinyl compounds that can be copolymerized with these may be used in combination. A combination of the above can also be used.
  • alkyl acrylate ester and the alkyl methacrylate ester include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate.
  • examples of other vinyl compounds that can be copolymerized with acrylic acid, methacrylic acid, alkyl acrylate or alkyl methacrylate include acrylamide, acrylonitrile, diacetone acrylamide, styrene, vinyl toluene, and the like. These vinyl monomers can be used alone or in combination of two or more.
  • At least one selected from alkyl acrylates and alkyl methacrylates is preferably used, and at least one selected from methyl acrylate, methyl methacrylate, ethyl acrylate, and ethyl methacrylate. More preferably using seeds
  • a radical polymerization initiator in order to polymerize the vinyl compound.
  • a commonly used radical polymerization initiator can be used without particular limitation.
  • a peroxide etc. are mentioned preferably.
  • an organic peroxide that generates free radicals by heat is preferable.
  • the organic oxide include isobutyl peroxide, ⁇ , ⁇ ′bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, and di-s-butyl.
  • Peroxydicarbonate 1,1,3,3-tetramethylbutyl neodecanoate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, Di-2-ethoxyethyl peroxydicarbonate, bis (ethylhexylperoxy) dicarbonate, t-hexyl neodecanoate, dimethoxybutyl peroxydicarbonate, bis (3-methyl-3-methoxybutylperoxy) dicarbonate , T-Butylperoxyneo Canoate, t-hexylperoxypivalate, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2 -Ethylhexan
  • the amount of the radical polymerization initiator used can be appropriately selected according to the type of the vinyl compound, the refractive index of the resin particles to be formed, and the like, and is used in a commonly used amount. Specifically, for example, it can be used in an amount of 0.1 to 15 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the vinyl compound.
  • the fluorescent material for wavelength conversion in the present invention is a mixture of the above-described fluorescent substance and vinyl compound, and radical polymerization initiators such as peroxide as required, and the fluorescent substance is dissolved or dispersed in the vinyl compound. Is obtained by polymerizing.
  • the preferred content of the fluorescent material is preferably 0.001 to 30 parts by mass, more preferably 0.01 to 20 parts by mass, and 0.01 to 10 parts by mass with respect to 100 parts by mass of the vinyl compound. More preferably it is.
  • the wavelength conversion type solar cell sealing material of the present invention contains a dispersion medium resin that disperses the fluorescent substance or the wavelength conversion fluorescent material.
  • a dispersion medium resin that disperses the fluorescent substance or the wavelength conversion fluorescent material.
  • the dispersion medium resin include acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin, polyvinyl chloride resin, polyether sulfone resin, polyarylate resin, polyvinyl acetal resin, epoxy resin, silicone resin, Examples thereof include fluororesins and copolymers thereof.
  • the said dispersion medium resin may be used individually by 1 type or in combination of 2 or more types.
  • acrylic resin examples include (meth) acrylic acid ester resins.
  • polyolefin resin examples include polyethylene and polypropylene.
  • polyvinyl acetal resin examples include polyvinyl formal, polyvinyl butyral (PVB resin), and modified PVB.
  • (meth) acrylic acid ester resin means what has a structural unit derived from acrylic acid ester or methacrylic acid ester.
  • acrylic acid alkyl ester or methacrylic acid alkyl ester for example, acrylic acid unsubstituted alkyl Examples include esters or methacrylic acid unsubstituted alkyl esters, and acrylic acid-substituted alkyl esters and methacrylic acid-substituted alkyl esters in which a hydroxyl group, an epoxy group, a halogen group, or the like is substituted on these alkyl groups.
  • the acrylic acid ester or methacrylic acid ester is preferably an alkyl ester having 1 to 10 carbon atoms of acrylic acid or methacrylic acid, and more preferably an alkyl ester having 2 to 8 carbon atoms.
  • Specific examples of the acrylic ester or methacrylic ester include ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, methyl acrylate, Examples include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, and the like.
  • the (meth) acrylic ester resin may be a copolymer using an unsaturated monomer copolymerizable with an acrylic ester or methacrylic ester.
  • unsaturated monomer examples include unsaturated acids such as methacrylic acid and acrylic acid; styrene, ⁇ -methylstyrene, acrylamide, diacetone acrylamide, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexylmaleimide, and the like. And two or more of them can be used as necessary. These unsaturated monomers can be used alone or in combination of two or more.
  • (meth) acrylic acid ester resins include methyl acrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, and n-butyl methacrylate.
  • What has the structural unit derived from is preferable, and what has the structural unit derived from methyl methacrylate from a durable or versatile viewpoint is more preferable.
  • copolymer resin examples include (meth) acrylate-styrene copolymer, ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA), and the like.
  • EVA is preferable in terms of moisture resistance, cost, and versatility
  • (meth) acrylic ester resin is preferable in terms of durability and surface hardness. Furthermore, the combined use of EVA and (meth) acrylic ester resin is more preferable from the viewpoint of combining the advantages of both.
  • the content of vinyl acetate units is preferably 1 to 50% by mass, and preferably 3 to 35% by mass from the viewpoint of uniform dispersibility of the fluorescent material in the sealing material. From the viewpoint of sheet molding, the content of vinyl acetate units in EVA is preferably 10 to 50% by mass, and more preferably 20 to 35% by mass.
  • EVA commercially available products can be applied. Examples of commercially available products include Ultrasen manufactured by Tosoh Corporation, Everflex manufactured by Mitsui DuPont Polychemical Co., Ltd., Suntech EVA manufactured by Asahi Kasei Chemicals Corporation, and Ube Maruzen Polyethylene. UBE EVA copolymer manufactured by Sumitomo Chemical Co., Ltd., Evaate manufactured by Sumitomo Chemical Co., Ltd., Novatec EVA manufactured by Nippon Polyethylene Co., Ltd. and the like.
  • the content of EVA is preferably 50 parts by mass or more and more preferably 70 parts by mass or more with respect to 100 parts by mass of the total amount of EVA and methyl methacrylate. preferable.
  • the dispersion medium resin may be a resin having a crosslinked structure by adding a crosslinkable monomer.
  • the crosslinkable monomer include compounds obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid (for example, polyethylene glycol di (meth) acrylate (having 2 to 14 ethylene groups), Trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, trimethylolpropane propoxytri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane Tetra (meth) acrylate, polypropylene glycol di (meth) acrylate (having 2 to 14 propylene groups), dipentaerythritol penta (meth) acrylate, dipentaerythritol
  • crosslinking monomers include trimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and bisphenol A polyoxyethylene dimethacrylate.
  • the said crosslinkable monomer is used individually by 1 type or in combination of 2 or more types.
  • the dispersion medium resin can be polymerized by adding a radical polymerization initiator to the monomer and heated or irradiated with light, or can have a crosslinked structure.
  • a radical polymerization initiator a commonly used radical polymerization initiator can be used without any particular limitation.
  • the above-mentioned peroxides can be mentioned.
  • the weight average molecular weight of the dispersion medium resin is preferably 10,000 to 100,000, more preferably 10,000 to 50,000 from the viewpoint of fluidity.
  • UV absorber In addition to the above, the wavelength conversion type solar cell encapsulant of the present invention, if necessary, UV absorber, coupling agent, plasticizer, flame retardant, antioxidant, light stabilizer, rust inhibitor, processing An auxiliary agent or the like may be contained.
  • the wavelength conversion type solar cell encapsulant of the present invention can be manufactured using a known technique. For example, a method in which at least the fluorescent material or the wavelength converting fluorescent material (spherical phosphor) and a dispersion medium resin, and further, if necessary, a composition obtained by melt-kneading other additives are formed into a sheet, or the dispersion medium After the resin is varnished and the fluorescent substance or the wavelength converting fluorescent material (spherical phosphor) is added, a method of molding into a sheet and removing the solvent can be used.
  • melt-kneaded composition is applied to a gap formed between the two release sheets, and hot pressed from both sides.
  • a wavelength conversion type solar cell encapsulant is obtained by sandwiching this between release sheets and hot pressing from both sides.
  • the solar cell module includes an antireflection film (not shown), a protective glass 20, the wavelength conversion type solar cell sealing material 30, the solar cell 10, the back surface sealing material 36, and the back film 40 described above. , Cell electrodes (not shown), and tab members (not shown).
  • those existing on the light incident side from the solar battery cell 10 are an antireflection film (not shown), protective glass 20, and the wavelength conversion type solar battery sealing material 30 of the present invention. They are provided in this order.
  • the refractive index of the wavelength conversion type solar cell encapsulant 30 is the wavelength conversion type.
  • the light transmitting layer disposed on the light incident side from the solar cell encapsulant 30, that is, the refractive index of the antireflection film, the protective glass 20, etc. is higher than the wavelength conversion type solar cell encapsulant 30. It is preferable to make it lower than the refractive index of the solar cell 10 made of a light transmissive layer arranged on the side, that is, a cell antireflection film (not shown) and Si or the like.
  • the solar cell 10 and the layer provided on the light incident side from the solar cell 10 for example, the protective glass 20 and the antireflection film provided on the light incident side from the protective glass 20
  • the refractive index of the layer provided on the side close to the solar battery cell 10 is preferably equal to or higher than the refractive index of the layer provided on the light incident side adjacent thereto.
  • the solar cell 10 and the layer provided on the light incident side from the solar cell 10 are composed of m layers (m is 2 or more), and the refractive indexes of the m layers are determined from the light incident side.
  • the wavelength conversion type solar cell sealing material 30 of this invention is comprised by two or more layers of sealing layers, it is desirable that the refractive index of two layers of sealing layers also satisfy
  • the refractive index of the light-transmitting layer arranged on the light incident side from the wavelength conversion type solar cell encapsulant 30, that is, the antireflection film is 1.25 to 1.45
  • the refractive index of the protective glass 20 The rate is usually about 1.45 to 1.55.
  • the refractive index of the light transmissive layer disposed on the light incident side of the wavelength conversion type solar cell encapsulant, that is, the cell antireflection film of the solar cell is usually about 1.9 to 2.1
  • the refractive index of the Si layer or the like constituting the cell is usually about 3.3 to 3.4.
  • the preferable refractive index of the other layer of a light transmissive layer is as showing below.
  • the refractive indexes na, nb, and nc of the respective layers satisfy or satisfy the following formula (1). It is preferable.
  • nb (na ⁇ nc) 0.5
  • the flask was stirred and kept at 60 ° C., 0.03 parts by mass of potassium persulfate as a radical polymerization initiator was added, emulsion polymerization was carried out for 4 hours, and finally the temperature was raised to 90 ° C. Was completed.
  • the fluorescent material for wavelength conversion obtained here is in the form of particles having a primary particle diameter of about 100 nm, and is appropriately post-treated with isopropyl alcohol, etc., filtered, dried, sieved appropriately, A fluorescent material for wavelength conversion (spherical phosphor) was obtained.
  • EVA ethylene-vinyl acetate resin
  • a resin composition was prepared in the same manner except that the wavelength conversion fluorescent material (spherical phosphor) was not added. About 6 g of this resin composition was sandwiched between release sheets, and a first encapsulating sheet having a thickness of about 328 ⁇ m and containing no fluorescent substance was prepared by a press machine using a stainless steel spacer and a hot plate adjusted to 90 ° C. .
  • ⁇ Production of wavelength conversion type solar cell sealing material> Two-layer wavelength conversion type solar cell sealing using a press machine in which the first sealing sheet and the second sealing sheet are sandwiched between release sheets, and a hot plate is adjusted to 90 ° C. using a stainless steel spacer. The material was obtained. The thickness of the obtained wavelength conversion type solar cell encapsulant was 600 ⁇ m.
  • a solar cell encapsulating sheet for back surface was produced in the same manner except that the composition was the same as that of the first encapsulating sheet and the thickness was adjusted to 600 ⁇ m.
  • tempered glass manufactured by Asahi Glass Co., Ltd.
  • the above-mentioned wavelength conversion type solar cell so that the first sealing sheet not containing the wavelength converting fluorescent material (spherical phosphor) is in contact with the tempered glass.
  • a sealing material is placed on the solar cell so that the electromotive force can be taken out to the outside, and a back surface solar battery sealing sheet and a back film are PET films (manufactured by Toyobo Co., Ltd., trade name: A-4300), and using a vacuum pressurizing laminator for solar cells (Nenu PC Co., Ltd., LM-50x50-S) under the conditions of a hot plate at 150 ° C., a vacuum of 10 minutes, and a pressurization of 15 minutes. Lamination was performed to produce the solar cell module of Example 1.
  • the photovoltaic cell from which the electromotive force can be taken out is a conductive film for solar cell manufactured by Hitachi Chemical Co., Ltd., CF-105, and a tab wire (thickness 0.14 mm, Connect 2 front and 2 back sides (2 mm wide, galvanized), and use a horizontal tab wire (Hitachi Cable Co., Ltd., A-TPS 0.23x6.0) for each of the front and back sides. It is a solar battery cell.
  • a solar cell IV characteristic was obtained using an IV curve tracer, MP-160. Jsc (short-circuit current density) was measured according to JIS-C-8914, and Jsc (cell) was obtained.
  • Example 2 ⁇ Production of wavelength conversion type solar cell encapsulant with two-layer structure> A wavelength conversion type solar cell encapsulant of Example 2 was produced in the same manner except that the thickness was changed to Table 1 in the production of the first and second encapsulating sheets in Example 1.
  • a wavelength conversion type solar cell module of Example 2 was produced in the same manner as Example 1, except that the wavelength conversion type solar cell encapsulant of Example 2 was used.
  • a battery cell is placed, and a back surface solar cell encapsulating sheet and a PET film (trade name: A-4300, manufactured by Toyobo Co., Ltd.) are placed as a back film, and a solar cell vacuum press laminator (Nenu Corp.)
  • a solar cell module of Comparative Example 1 and Comparative Example 2 was prepared by laminating using a PC, LM-50 ⁇ 50-S) under conditions of a hot plate at 150 ° C., a vacuum of 10 minutes, and a pressure of 15 minutes.
  • the film thickness of the sheet containing the fluorescent material is 300 ⁇ m or less.
  • the wavelength conversion type solar cell encapsulant is composed of one layer containing a fluorescent substance and has a wavelength conversion effect as compared with a sheet having a film thickness of 590 ⁇ m. That is, it has been clarified that the amount of the fluorescent substance used is suppressed to less than half and the conversion efficiency is improved.
  • Example 3 ⁇ Preparation of fluorescent material for wavelength conversion (spherical phosphor) 2> 0.05 g of the fluorescent substance Eu (TTA) 3 Phen obtained above, 95 g of methyl methacrylate, 5 g of ethylene glycol dimethacrylate, 2,2′-azobis (2,4-dimethylvalero) as a thermal radical initiator 0.5 g of nitrile) was weighed out and placed in a 200 ml screw tube, and stirred and mixed using an ultrasonic cleaner and a mix rotor.
  • TTA fluorescent substance Eu
  • EVA ethylene-vinyl acetate resin
  • a wavelength conversion type solar cell module of Example 3 was produced in the same manner as Example 1, except that the wavelength conversion type solar cell encapsulant of Example 3 was used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Nonlinear Science (AREA)
  • Laminated Bodies (AREA)
  • Optics & Photonics (AREA)

Abstract

 本発明の波長変換型太陽電池封止材は、蛍光物質を含有しない第一の封止層と蛍光物質を含有する第二の封止層と、を有する。この波長変換型太陽電池封止材は、太陽電池モジュールの光透過性層の一つとして用いられ、太陽電池セルの受光面側に設けられる。

Description

波長変換型太陽電池封止材、及び太陽電池モジュール
 本発明は、波長変換型太陽電池封止材、及びこれを用いた太陽電池モジュールに関するものである。さらに詳しくは、発電に寄与しない波長域の光を、蛍光物質(発光材料ともいう)を用い、発電に寄与する波長域の光に波長変換することにより発電効率を高くし得る太陽電池モジュールに用いる波長変換型太陽電池封止材及び太陽電池モジュールに関するものである。
 従来のシリコン結晶系の太陽電池モジュールは、以下のような構成である。表面の保護ガラス(カバーガラスともいう)は、耐衝撃性を重んじて強化ガラスが用いられており、封止材(通常、エチレン-ビニルアセテートコポリマーを主成分とする樹脂、充填材ともいう)との密着性をよくするために、片面はエンボス加工による凹凸模様が施されている。
 また、その凹凸模様は内側に形成されており、太陽電池モジュールの表面は平滑である。なお、太陽光の導入効率を高めるため、外側にも凹凸形状が施されている場合もある。また保護ガラスの下側には太陽電池セル、タブ線を保護封止するための封止材及びバックフィルムが設けられている。
 蛍光物質を用い、太陽光スペクトルのうち、発電に寄与の少ない紫外域又は赤外域の光を波長変換することにより、発電に寄与の大きい波長域の光を発光する層を太陽電池受光面側に設ける手法は、例えば、特開2000-328053号公報など多数提案されている。
 また、特開2006-303033号公報には、波長変換材料として、蛍光物質である希土類錯体を封止材中に含有させる方法の提案がされている。
 前出の特開2006-303033号公報に記載の、発電に寄与の少ない波長域の光を発電に寄与の大きい波長域の光に波長変換する方法では、波長変換層に蛍光物質が含有されている。この蛍光物質としては有機蛍光体、有機金属錯体、無機蛍光体等が用いられており、高価である。また、波長変換層を封止材として用いる場合、セル保護の観点からその膜厚は600μm程度必要とされる。
 しかし、十分な波長変換効果を持った蛍光物質を含む封止材を600μmの厚さで作製すると、蛍光物質の含有量が多くなり、コスト高になるのを免れず、工業的に利用するには必ずしも適当なものとはいえない。
 そこで、本発明の課題は、太陽電池モジュールに適用したときに、発電効率を維持又は向上しつつ、安価な波長変換型太陽電池封止材を提供することにある。
 本発明者等は上記課題を解決すべく鋭意検討した結果、蛍光物質が同一濃度で膜厚が薄い波長変換層と厚い波長変換層とにおいて、入射した太陽光に対する発電される電力の割合(発電効率)を比較した場合、膜厚が薄くても厚い場合と同等もしくはそれ以上の発電効率を示すという結果が得られた。この結果に鑑み、波長変換型太陽電池モジュールの受光側の封止材層を、蛍光物質が含まれる層と蛍光物質が含まれない層の二層にわけて形成すると、発電効率を維持又は向上しつつ、抵コスト化が実現できることを見出した。
 即ち、本発明は以下の通りである。
<1> 蛍光物質を含有しない第一の封止層と、蛍光物質を含有する第二の封止層と、を有する波長変換型太陽電池封止材。
<2> 前記蛍光物質が、ユーロピウム錯体である前記<1>に記載の波長変換型太陽電池封止材。
<3> 前記蛍光物質が、ビニル化合物をモノマー化合物とする樹脂粒子に内包されている、前記<1>又は<2>に記載の波長変換型太陽電池封止材。
<4> 太陽電池セルと、
 前記太陽電池セルの受光面側に設けられた、前記<1>~<3>のいずれか1項に記載の波長変換型太陽電池封止材と、
を有する太陽電池モジュール。
 本発明によれば、太陽電池モジュールに適用したときに、発電効率を維持又は向上しつつ、安価な波長変換型太陽電池封止材を提供することができる。
本発明の太陽電池モジュールを示す概略断面図である。 実施例及び比較例で得られた波長変換型太陽電池封止材の膜厚とΔJscの関係を示すグラフである。
 本発明の太陽電池モジュールは、少なくとも、太陽電池セルと、この太陽電池の受光面側に光透過性層の一つとして設けられた波長変換型太陽電池封止材(波長変換型太陽電池封止シート)と、を有する。本発明では、波長変換型太陽電池封止材(以下、単に「封止材」と称する場合がある)は、蛍光物質を含まない第一の封止層と蛍光物質を含む第二の封止層とが積層されてなる。なお、蛍光物質を含まない第一の封止層は、1層であっても、2層以上で形成されていてもよいが、コストや製造工程の簡易化などの観点から、蛍光物質を含む第二の封止層は1層で構成されていることがよい。
 波長変換型太陽電池封止材が、蛍光物質を含まない第一の封止層と蛍光物質を含む第二の封止層とから構成されることで、蛍光物質の含有量を減らすことができ、従来のものよりも製造コストが抑えられる。また、このような二層構造の波長変換型太陽電池封止材とすると、蛍光物質の含有量を減らしたにも拘らず、発電効率が維持又は向上する。この理由は明らかではないが、以下のように推測される。
 太陽電池モジュールに光が入射すると、受光面側に設けられた封止材の中に含有される蛍光物質が光を吸収する。このとき、蛍光物質の光の吸収は、封止材の膜厚方向に深くなるにつれて減衰するものと推測される。よって、封止材の膜厚を厚くしても膜厚方向に深い部分で存在する蛍光物質は、波長変換への寄与が少ないものと考えられる。事実、蛍光物質の濃度が同一であって膜厚が異なる封止材を比較したときに、発電効率は、膜厚が薄くても厚い場合と同等もしくはそれ以上の発電効率を示すという結果が得られた。
 更に、蛍光物質の含有量の低減は、蛍光物質による光の散乱を抑え、可視光透過率を増大させる。よって、太陽電池セルに到達する光量が増加し、太陽電池モジュールの光利用効率が高くなり、発電効率を向上させることができる。
 本発明の波長変換型太陽電池封止材は、第一の封止層及び第二の封止層の総厚が、10μm~1000μmであることが封止効果の観点から好ましく、200μm~800μmであることがより好ましい。
 また、蛍光物質を含む第二の封止層の厚さは、波長変換効率の観点から、1μm~800μmであることが好ましく、10μm~600μmであることがより好ましい。
 更に、第一の封止層及び第二の封止層の総厚に対する、蛍光物質を含む第二の封止層の厚さの割合は、0.1%~80%であることが好ましく、1%~50%であることがより好ましい。
 蛍光物質を含む第二の封止層中の蛍光物質の濃度は、蛍光物質の種類などによって適宜調整することが望ましい。一般には、第二の封止層中の蛍光物質の含有率は、分散媒樹脂100質量部に対し0.00001~30質量部であることが好ましく、0.0001~10質量部であることがより好ましい。0.0001質量部以上とすることで、波長変換効率がより充分なものとなり、また、10質量部以下とすることで、太陽電池セルに到達する光量の低下をより抑えることができる。
 更に図面を参照しながら、本発明の太陽電池モジュールを説明する。
 図1は、本発明の太陽電池モジュールの概略断面図である。
 図1の太陽電池モジュールでは、太陽電池セル10の受光面側の表面に、保護ガラス(カバーガラスともいう)20を備える。保護ガラス20としては特に制限されないが、耐衝撃性を考慮して強化ガラスが好んで用いられる。なお、下記に示す封止材(充填材ともいう)との密着性を向上させるために、保護ガラス20の封止材側の表面はエンボス加工による凹凸模様が施されることが好ましい。保護ガラス20の受光側表面は平滑であってもよいし、太陽光の導入効率を高めるため、凹凸形状が施されていてもよい。
 保護ガラス20と太陽電池セル10との間には、封止材30を備える。図1における封止材30は2層からなり、光入射側の第一の封止層32は蛍光物質を含まない層であり、太陽電池セル10側の第二の封止層34は蛍光物質を含む層である。封止材30を構成する材料についての詳細は後述する。
 太陽電池モジュールにおいて、太陽電池セル10の裏面側にはバックフィルム40を備える。バックフィルム40と太陽電池セル10との間には、モジュール裏面からの衝撃などから太陽電池セルを保護封止するための裏面用封止材36を備える。裏面用封止材36は太陽電池セルを保護封止できるものであれば特に制限されず、例えば、蛍光物質を含まない第一の封止層32と同じのものを適用することも可能である。
 図1では図示しないが、更に本発明の太陽電池モジュールでは、反射防止膜など通常太陽電池モジュールに設けられる部材を有していてもよい。
<波長変換型太陽電池封止材>
 以下では、本発明の波長変換型太陽電池封止材に用いる物質について、詳細に説明する。
(蛍光物質)
 本発明に用いる好適な蛍光物質としては、希土類金属の有機錯体が挙げられる。なかでもユーロピウム錯体又はサマリウム錯体が好ましく、ユーロピウム錯体がより好ましい。
 蛍光物質にユーロピウム錯体を用いることで、高い発電効率を有する太陽電池モジュールを実現できる。ユーロピウム錯体は、紫外線域の光を高い波長変換効率で赤色の波長域の光に変換し、この変換された光が太陽電池セルで発電に寄与する。
 ユーロピウム錯体は、中心元素のユーロピウム(Eu)の他、配位子となる分子が必要であるが、本発明では配位子の種類は制限されず、ユーロピウムと錯体を形成する分子であれば、いずれであってもよい。
 このようなユーロピウム錯体からなる蛍光物質の一例としては、希土類錯体、たとえばEu(TTA)phen等が利用できる。Eu(TTA)Phenの製造法は、例えば、Masaya Mitsuishi, Shinji Kikuchi, Tokuji Miyashita, Yutaka Amano, J.Mater.Chem.2003, 13, 2875-2879に開示されている方法を参照できる。
 本発明では、錯体の配位子を限定するものではないが、中性配位子として、カルボン酸、含窒素有機化合物、含窒素芳香族複素環式化合物、β-ジケトン類、又はホスフィンオキサイドが好ましい。
 希土類錯体の配位子として一般式:RCOCHRCOR(式中、Rはアリール基、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アラルキル基又はそれらの置換体を、Rは、水素原子、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アラルキル基又はアリール基を、Rはアリール基、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アラルキル基又はそれらの置換体をそれぞれ示す)で表わされるβ-ジケトン類を含有してもよい。
 β-ジケトン類としては、具体的にはアセチルアセトン、パーフルオロアセチルアセトン、ベンゾイル-2-フラノイルメタン、1,3-ビス(3-ピリジル)-1,3-プロパンジオン、ベンゾイルトリフルオロアセトン、ベンゾイルアセトン、5-クロロスルホニル-2-テノイルトリフルオロアセトン、ジ(4-ブロモ)ベンゾイルメタン、ジベンゾイルメタン、d,d-ジカンフォリルメタン、1,3-ジシアノ-1,3-プロパンジオン、p-ビス(4,4,5,5,6,6,6-ヘプタフルオロ-1,3-ヘキサンジノイル)ベンゼン、4,4’-ジメトキシジベンゾイルメタン、2,6-ジメチル-3,5-ヘプタンジオン、ジナフトイルメタン、ジピバロイルメタン、ビス(パーフルオロ-2-プロポキシプロピオニル)メタン、1,3-ジ(2-チエニル)-1,3-プロパンジオン、3-(トリフルオロアセチル)-d-カンファー、6,6,6-トリフルオロ-2,2-ジメチル-3,5-ヘキサンジオン、1,1,1,2,2,6,6,7,7,7-デカフルオロ-3,5-ヘプタンジオン、6,6,7,7,8,8,8-ヘプタフルオロ-2,2-ジメチル-3,5-オクタンジオン、2-フリルトリフルオロアセトン、ヘキサフルオロアセチルアセトン、3-(ヘプタフルオロブチリル)-d-カンファー、4,4,5,5,6,6,6-ヘプタフルオロ-1-(2-チエニル)-1,3-ヘキサンジオン、4-メトキシジベンゾイルメタン、4-メトキシベンゾイル-2-フラノイルメタン、6-メチル-2,4-ヘプタンジオン、2-ナフトイルトリフルオロアセトン、2-(2-ピリジル)ベンズイミダゾール、5,6-ジヒドロキシ-10-フェナントロリン、1-フェニル-3-メチル-4-ベンゾイル-5-ピラゾール、1-フェニル-3-メチル-4-(4-ブチルベンゾイル)-5-ピラゾール、1-フェニル-3-メチル-4-イソブチリル-5-ピラゾール、1-フェニル-3-メチル-4-トリフルオロアセチル-5-ピラゾール、3-(5-フェニル-1,3,4-オキサジアゾール-2-イル)-2,4-ペンタンジオン、3-フェニル-2,4-ペンタンジオン、3-[3’,5’-ビス(フェニルメトキシ)フェニル]-1-(9-フェナンチル)-1-プロパン-1,3-ジオン、5,5-ジメチル-1,1,1-トリフルオロ-2,4-ヘキサンジオン、1-フェニル-3-(2-チエニル)-1,3-プロパンジオン、3-(t-ブチルヒドロキシメチレン)-d-カンファー、1,1,1-トリフルオロ-2,4-ペンタンジオン、1,1,1,2,2,3,3,7,7,8,8,9,9,9-テトラデカフルオロ-4,6-ノナンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、4,4,4-トリフルオロ-1-(2-ナフチル)-1,3-ブタンジオン、1,1,1-トリフルオロ-5,5-ジメチル-2,4-ヘキサンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、2,2,6,6-テトラメチル-3,5-オクタンジオン、2,2,6-トリメチル-3,5-ヘプタンジオン、2,2,7-トリメチル-3,5-オクタンジオン、4,4,4-トリフルオロ-1-(チエニル)-1,3-ブタンジオン(TTA)、1,3-ジフェニル-1,3-プロパンジオン、べンゾイルアセトン、ジべンゾイルアセトン、ジイソブチロイルメタン、ジビパロイルメタン、3-メチルペンタン-2,4-ジオン、2,2-ジメチルペンタン-3,5-ジオン、2-メチル-1,3-ブタンジオン、1,3-ブタンジオン、3-フェニル-2,4-ペンタンジオン、1,1,1-トリフロロ-2,4-ペンタンジオン、1,1,1-トリフロロ-5,5-ジメチル-2,4-ヘキサンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、3-メチル-2,4-ペンタンジオン、2-アセチルシクロペンタノン、2-アセチルシクロヘキサノン、1-ヘプタフロロプロピル-3-t-ブチル-1,3-プロパンジオン、1,3-ジフェニル-2-メチル-1,3-プロパンジオン、及び1-エトキシ-1,3-ブタンジオン等が挙げられる。
 希土類錯体の中性配位子の含窒素有機化合物、含窒素芳香族複素環式化合物、ホスフィンオキサイドとしては、たとえば、1,10-フェナントロリン、2-2’-ビピリジル、2-2’-6,2”-ターピリジル、4,7-ジフェニル-1,10-フェナントロリン、2-(2-ピリジル)ベンズイミダゾール、トリフェニルホスフィンオキサイド、トリ-n-ブチルホスフィンオキサイド、トリ-n-オクチルホスフィンオキサイド、トリ-n-ブチルホスフェート等が挙げられる。
 前記蛍光物質は、樹脂粒子に内包されていることがより好ましい(球状蛍光体ともいう)。前記樹脂粒子を構成するモノマー化合物としては特に制限はないが、光の散乱抑制の観点から、ビニル化合物であることが好ましい。
 また前記蛍光物質を樹脂粒子に内包する方法としては、通常用いられる方法を特に制限はなく用いることができる。例えば、前記蛍光物質と樹脂粒子を構成するモノマー化合物の混合物を調製し、これを重合することで調製することができる。具体的には、例えば、蛍光物質およびビニル化合物を含む混合物を調製し、ラジカル重合開始剤を用いてビニル化合物を重合することで、蛍光物質が内包された樹脂粒子(球状蛍光体)として波長変換用蛍光材料を構成することができる。尚、本発明において波長変換用蛍光材料とは、蛍光物質を含んだビニル化合物を重合して得られる状態のものを指す。
 前記波長変換用蛍光材料の平均粒子径は、光利用効率向上の観点から0.001μm~600μmであることが好ましく、0.005μm~300μmであることがより好ましく、0.01μm~250μmであることがさらに好ましい。
 波長変換用蛍光材料の平均粒子径は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS13320)を用いて行なうことができる。
 本発明においてビニル化合物とは、エチレン性不飽和結合を少なくとも1つ有する化合物であれば特に制限はなく、重合反応した際にビニル樹脂、特にアクリル樹脂又はメタクリル樹脂になり得るアクリルモノマー、メタクリルモノマー、アクリルオリゴマー、メタクリルオリゴマー等を特に制限なく用いることができる。本発明において好ましくは、アクリルモノマー、およびメタクリルモノマー等が挙げられる。
 アクリルモノマー、およびメタクリルモノマーとしては、例えば、アクリル酸、メタクリル酸、これらのアルキルエステルが挙げられ、またこれらと共重合し得るその他のビニル化合物を併用してもよく、1種単独でも、2種類以上を組み合わせて用いることもできる。
 アクリル酸アルキルエステル、およびメタクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸2-エチルヘキシル等のアクリル酸無置換アルキルエステルおよびメタクリル酸無置換アルキルエステル;ジシクロペンテニル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート;ベンジル(メタ)アクリレート;多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(例えば、ポリエチレングリコールジ(メタ)アクリレート(エチレン基の数が2~14のもの)、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2~14のもの)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジ(メタ)アクリレート、ビスフェノールAジオキシエチレンジ(メタ)アクリレート、ビスフェノールAトリオキシエチレンジ(メタ)アクリレート、ビスフェノールAデカオキシエチレンジ(メタ)アクリレート等);グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物(例えば、トリメチロールプロパントリグリシジルエーテルトリアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート等);多価カルボン酸(例えば、無水フタル酸)と水酸基及びエチレン性不飽和基を有する物質(例えば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化物;ウレタン(メタ)アクリレート(例えば、トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物、トリメチルヘキサメチレンジイソシアネートとシクロヘキサンジメタノールと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物等);これらのアルキル基に水酸基、エポキシ基、ハロゲン基等が置換したアクリル酸置換アルキルエステル又はメタクリル酸置換アルキルエステル;等が挙げられる。
 また、アクリル酸、メタクリル酸、アクリル酸アルキルエステル又はメタクリル酸アルキルエステルと共重合し得るその他のビニル化合物としては、アクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、スチレン、ビニルトルエン等が挙げられる。これらのビニルモノマーは、1種単独でも、2種類以上を組み合わせて用いることができる。
 本発明におけるビニル化合物としては、アクリル酸アルキルエステルおよびメタクリル酸アルキルエステルから選ばれる少なくとも1種を用いることが好ましく、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、およびメタクリル酸エチルから選ばれる少なくとも1種を用いることがより好ましい
 本発明においてはビニル化合物を重合させるためにラジカル重合開始剤を用いることが好ましい。ラジカル重合開始剤としては、特に制限なく通常用いられるラジカル重合開始剤を用いることができる。例えば、過酸化物等が好ましく挙げられる。具体的には、熱により遊離ラジカルを発生させる有機過酸化物が好ましい。
 有機化酸化物としては例えば、イソブチルパーオキサイド、α,α’ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ジ-2-エトキシエチルパーオキシジカーボネート、ビス(エチルヘキシルパーオキシ)ジカーボネート、t-ヘキシルネオデカノエート、ジメトキシブチルパーオキシジカーボネート、ビス(3-メチル-3-メトキシブチルパーオキシ)ジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、サクニックパーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオノイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサノン、2,2-ビス(4,4-ジブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキシ、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン等を使用することができる。
 ラジカル重合開始剤の使用量は、前記ビニル化合物の種類や形成される樹脂粒子の屈折率等に応じて適宜選択することができ、通常用いられる使用量で使用される。具体的には例えば、ビニル化合物100質量部に対して0.1~15質量部で使用することができ、0.5~10質量部で使用することが好ましい。
 本発明における波長変換用蛍光材料は、上記の蛍光物質及びビニル化合物、必要に応じて過酸化物等のラジカル重合開始剤等を混合して、蛍光物質をビニル化合物中に溶解又は分散し、これを重合することで得られる。混合の方法としては特に制限はなく、例えば、攪拌することで行えばよい。
 蛍光物質の好ましい含有量は、ビニル化合物100質量部に対し0.001~30質量部であることが好ましく、0.01~20質量部であることがより好ましく、0.01~10質量部であることが更に好ましい。
(分散媒樹脂)
 本発明の波長変換型太陽電池封止材は、前記蛍光物質又は前記波長変換用蛍光材料を分散させる分散媒樹脂を含有する。分散媒樹脂の具体的な例としては、アクリル系樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、ポリビニルアセタール系樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、これらの共重合体等が挙げられる。
 前記分散媒樹脂は1種単独で、又は2種以上を組み合わせて使用してもよい。
 前記アクリル系樹脂としては、(メタ)アクリル酸エステル樹脂等が挙げられる。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン等が挙げられる。ポリビニルアセタール系樹脂としては、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB等が挙げられる。
 また、(メタ)アクリル酸エステル樹脂とは、アクリル酸エステル又はメタクリル酸エステルに由来する構成単位を有するものを意味し、アクリル酸アルキルエステル又はメタクリル酸アルキルエステルとしては、例えば、アクリル酸無置換アルキルエステル又はメタクリル酸無置換アルキルエステルや、これらのアルキル基に水酸基、エポキシ基、ハロゲン基等が置換したアクリル酸置換アルキルエステル及びメタクリル酸置換アルキルエステル等が挙げられる。
 アクリル酸エステル又はメタクリル酸エステルは、アクリル酸又はメタクリル酸の炭素数1~10のアルキルエステルが好ましく、炭素数2~8のアルキルエステルがより好ましい。
 アクリル酸エステル又はメタクリル酸エステルとして具体的には、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジルなどを例示することができる。
 (メタ)アクリル酸エステル樹脂は、アクリル酸エステル又はメタクリル酸エステルのほかに、これらと共重合可能な不飽和単量体を用いて共重合体としてもよい。
 前記不飽和単量体としては、メタクリル酸、アクリル酸のような不飽和酸類;スチレン、α-メチルスチレン、アクリルアミド、ジアセトンアクリルアミド、アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド等が挙げられ、必要に応じてそれらの2種以上を用いることもできる。
 これらの不飽和単量体は、1種単独で又は2種類以上を組み合わせて用いることができる。
 これらのなかでも、(メタ)アクリル酸エステル樹脂としては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、及びメタクリル酸n-ブチルに由来する構成単位を有するものが好ましく、耐久性や汎用性の観点からは、メタクリル酸メチルに由来する構成単位を有するものがより好ましい。
 共重合体の樹脂としては、例えば、(メタ)アクリル酸エステル-スチレン共重合体、エチレン-酢酸ビニル共重合体(以下EVAと略称する)等が挙げられる。
 分散媒樹脂としては、耐湿性や、コスト、汎用性の点でEVAが好ましく、また耐久性と表面硬度の点からは(メタ)アクリル酸エステル樹脂が好ましい。更に、EVAと(メタ)アクリル酸エステル樹脂との併用が、両者の利点を兼ね備える観点からより好適である。
 EVAとしては、酢酸ビニル単位の含有率が1~50質量%であることが好ましく、3~35質量%であることが、蛍光物質の封止材への均一分散性の点から好ましい。
 なお、シート成形の観点からは、EVAにおける酢酸ビニル単位の含有率が10~50質量%であることが好ましく、20~35質量%であることがより好ましい。
 EVAは市販されているものを適用でき、市販品としては、例えば、東ソー(株)製のウルトラセン、三井・デュポンポリケミカル株式会社製のエバフレックス、旭化成ケミカルズ社製のサンテックEVA、宇部丸善ポリエチレン社製のUBE EVAコポリマー、住友化学社製のエバテート、日本ポリエチレン社製のノバテックEVAなどを挙げることができる。
 EVAとメタクリル酸メチルを併用する場合には、EVAとメタクリル酸メチルの総量100質量部に対して、EVAの含有率が50質量部以上であることが好ましく、70質量部以上であることがより好ましい。
 更に前記分散媒樹脂は、架橋性モノマーを加えて、架橋構造を有する樹脂としてもよい。
 架橋性モノマーとしては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(例えば、ポリエチレングリコールジ(メタ)アクリレート(エチレン基の数が2~14のもの)、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2~14のもの)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジ(メタ)アクリレート、ビスフェノールAジオキシエチレンジ(メタ)アクリレート、ビスフェノールAトリオキシエチレンジ(メタ)アクリレート、ビスフェノールAデカオキシエチレンジ(メタ)アクリレート等);グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物(例えば、トリメチロールプロパントリグリシジルエーテルトリアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート等);多価カルボン酸(例えば、無水フタル酸)と水酸基及びエチレン性不飽和基を有する物質(例えば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化物;ウレタン(メタ)アクリレート(例えば、トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物、トリメチルヘキサメチレンジイソシアネートとシクロヘキサンジメタノールと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物等);等を挙げることができる。
 特に好ましい架橋性モノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジメタクリレートが挙げられる。
 なお、上記架橋性モノマーは1種単独で又は2種以上を組み合わせて用いられる。
 前記分散媒樹脂は、上記モノマーにラジカル重合開始剤を加えて、加熱又は光照射することで重合し、或いは架橋構造を持たせることができる。
 前記ラジカル重合開始剤としては、特に制限なく通常用いられるラジカル重合開始剤を用いることができる。例えば、上述の過酸化物等が挙げられる。
 前記分散媒樹脂の重量平均分子量は、流動性の観点から10,000~100,000であることが好ましく、10,000~50,000であることがより好ましい。
 本発明の波長変換型太陽電池封止材には、上記のほか、必要に応じて、紫外線吸収剤、カップリング剤、可塑剤、難燃剤、酸化防止剤、光安定剤、防錆剤、加工助剤等を含有してもよい。
 本発明の波長変換型太陽電池封止材は、公知の技術を利用して製造することができる。例えば、少なくとも前記蛍光物質又は波長変換用蛍光材料(球状蛍光体)及び分散媒樹脂、更に必要に応じてその他の添加剤を溶融混練した組成物をシート状に成型する方法、或いは、前記分散媒樹脂をワニス化し前記蛍光物質又は波長変換用蛍光材料(球状蛍光体)を添加した後、シート状に成型し、溶媒を除去する方法等が利用できる。
 具体的には、例えば、スペーサーを介して2枚の離型シートを対向させ、2枚の離型シート間に形成された空隙に前記溶融混練した組成物を付与し、両側から熱プレスして第二の封止層を形成し、更に同様の方法で但し蛍光物質を含有しない第一の封止層を形成し、この第二の封止層と第一の封止層を積層して、これを離型シートに挟んで両側から熱プレスすることで、波長変換型太陽電池封止材が得られる。
<太陽電池モジュール>
 本発明において、太陽電池モジュールは、反射防止膜(図示せず)、保護ガラス20、上記説明の波長変換型太陽電池封止材30、太陽電池セル10、裏面用封止材36、バックフィルム40、セル電極(図示せず)、タブ線(図示せず)等の必要部材から構成される。
 これらの部材の中で、太陽電池セル10よりも光入射側に存在するものは、反射防止膜(図示せず)、保護ガラス20、本発明の波長変換型太陽電池封止材30であり、この順に設けられる。
 本発明の太陽電池モジュールにおいて、あらゆる角度から入り込む外部光が反射損失少なく、効率よく太陽電池セル内に導入されるために、波長変換型太陽電池封止材30の屈折率が、該波長変換型太陽電池封止材30より光入射側に配置される光透過性層、すなわち、反射防止膜、保護ガラス20等の屈折率より高く、且つ該波長変換型太陽電池封止材30よりも反光入射側に配置される光透過性層、すなわち、セル反射防止膜(図示せず)及びSi等からなる太陽電池セル10の屈折率よりも低くすることが好ましい。
 つまり、本発明の太陽電池モジュールでは、太陽電池セル10及び太陽電池セル10よりも光入射側に設けられる層(例えば、保護ガラス20、保護ガラス20よりも光入射側に設けられる反射防止膜(図示せず)など)において、太陽電池セル10に近い側に設けた層の屈折率は、それに隣接して光入射側に設けた層の屈折率と同程度か或いはそれよりも高いことが望ましい。
 詳細には、太陽電池セル10及び太陽電池セル10よりも光入射側に設けられる層がm層(mは2以上)からなり、前記m個の層のそれぞれの屈折率を、光入射側から順にn、n、・・・、nm-1、nとしたときに、n≦n≦・・・・≦nm-1≦nが成り立つことが望ましい。なお、本発明の波長変換型太陽電池封止材30は、2層以上の封止層で構成されるため、2層の封止層の屈折率も上記関係を満たすことが望ましい。
 具体的には、波長変換型太陽電池封止材30より光入射側に配置される光透過性層、すなわち、反射防止膜の屈折率は、1.25~1.45、保護ガラス20の屈折率は、通常1.45~1.55程度のものが用いられる。該波長変換型太陽電池封止材の反光入射側に配置される光透過性層、すなわち、太陽電池セルのセル反射防止膜の屈折率は、通常1.9~2.1程度、及び太陽電池セルを構成するSi層等の屈折率は、通常3.3~3.4程度のものが用いられる。
 なお、光透過性層のその他の層の好ましい屈折率は、以下に示す通りである。例えば、光透過性層の光入射側から3層をa層、b層、c層としたとき、それぞれの層の屈折率na、nb、ncが、下記式(1)を満たすか、近似していることが好ましい。
   nb=(na・nc)0.5
 なお、日本出願2010-120647の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以下に、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1]
<蛍光物質の合成>
 4,4,4-トリフルオロ-1-(チエニル)-1,3-ブタンジオン(TTA)200mgを7mlのエタノールに溶解し、ここへ1Mの水酸化ナトリウム1.1mlを加え混合した。7mlのエタノールに溶かした6.2mgの1,10-フェナントロリンを先の混合溶液に加え、1時間攪拌した後、EuCl・6HOを103mg含む3.5ml水溶液を加え、沈殿物を得た。これを濾別し、エタノールで洗浄し、乾燥して、蛍光物質Eu(TTA)Phenを得た。
<波長変換用蛍光材料(球状蛍光体)の調製>
 蛍光物質として上記で得られたEu(TTA)Phenを0.3質量部、ビニル化合物としてメタクリル酸メチルを60質量部、連鎖移動剤としてn-オクタンチオールを0.012質量部用い、これらを混合攪拌してモノマー混合液を用意した。また、イオン交換水を300質量部、界面活性剤として花王(株)製アルキルベンゼンスルホン酸ナトリウム、G-15を3.65質量部加え、ここに前述したモノマー混合液を加え、還流管、窒素流下のフラスコを用い、攪拌をしながら、60℃に保ち、ラジカル重合開始剤として過硫酸カリウムを0.03質量部加え、乳化重合を4時間行い、最後に90℃に昇温して、重合反応を完結させた。
 ここで得られた波長変換用蛍光材料は、一次粒子径が100nm程度の粒子状となり、イソプロピルアルコールなどで適宜後処理をし、これを濾別、乾燥し、適宜ふるいわけをし、粒子状の波長変換用蛍光材料(球状蛍光体)を得た。
<波長変換用樹脂組成物の調製>
 透明分散媒樹脂として東ソー(株)製のエチレン-酢酸ビニル樹脂(EVA):NM30PWを100質量部、アルケマ吉富(株)製の過酸化物熱ラジカル重合開始剤(本実施例では、架橋剤としても働く):ルペロックス101を1.5質量部、東レ・ダウコーニング(株)製のシランカップリング剤:SZ6030を0.5質量部、及び蛍光物質として0.01質量部〔波長変換用蛍光材料(球状蛍光体)の形態で添加した。波長変換用蛍光材料1質量部が、蛍光物質に関しては0.005質量部に相当する〕を90℃のロールミルで混練して、波長変換用樹脂組成物を得た。
<蛍光物質を含まない第一の封止シートの作製>
 上記、波長変換用樹脂組成物の調製において、波長変換用蛍光材料(球状蛍光体)を添加しない以外は同様にして樹脂組成物を調製した。この樹脂組成物を約6g離型シートに挟み、ステンレス製スペーサーを用い、熱板を90℃に調整したプレス機により、約328μmの厚みで蛍光物質を含有しない第一の封止シートを作製した。
<蛍光物質を含有する第二の封止シートの作製>
 上記で得られた波長変換用樹脂組成物を、スペーサーの厚みを変えた以外は上記第一の封止シートの作成と同様にして、約272μmの厚みで蛍光物質を含有する第二の封止シートを得た。
<波長変換型太陽電池封止材の作製>
 上記第一の封止シートと第二の封止シートを離型シートに挟み、ステンレス製スペーサーを用い、熱板を90℃に調整したプレス機により、2層構造の波長変換型太陽電池封止材を得た。得られた波長変換型太陽電池封止材の厚さは600μmであった。
<裏面用太陽電池封止シートの作製>
 上記第一の封止シートと同様の組成であって厚さが600μmとなるように調節した以外は同様の方法で、裏面用太陽電池封止シートを作製した。
<波長変換型太陽電池モジュールの作製>
 保護ガラスとしての強化硝子(旭硝子(株)製)の上に、波長変換用蛍光材料(球状蛍光体)を含まない第一の封止シートが強化硝子に接するようにして上記波長変換型太陽電池封止材を載せ、その上に起電力を外部に取り出せるようにした太陽電池セル上を載せ、さらに裏面用太陽電池封止シート、及びバックフィルムとしてPETフィルム(東洋紡(株)製、商品名:A-4300)を載せ、太陽電池用真空加圧ラミネータ((株)ネヌ・ピー・シー、LM-50x50-S)を用いて、熱板150℃、真空10分、加圧15分の条件でラミネートし、実施例1の太陽電池モジュールを作製した。
 なお、前記起電力を外部に取り出せるようにした太陽電池セルとは、日立化成工業(株)製太陽電池用導電フィルム、CF-105を用い、専用の圧着装置によりタブ線(厚み0.14mm、幅2mm、亜鉛めっきしたもの)を表2本、裏2本接続し、さらにこれら表裏それぞれを横タブ線(日立電線(株)製、A-TPS 0.23x6.0)を用い、外部取り出し線とした太陽電池セルのことである。また、起電力を外部に取り出せるようにした太陽電池セルについては、モジュール化する前に、ワコム電創(株)製ソーラーシミュレータWXS-155S-10,AM1.5G、英弘精機(株)製ソーラーシミュレータ用I-Vカーブトレーサー、MP-160を用い、太陽電池I-V特性を得た。Jsc(短絡電流密度)は、JIS-C-8914に準拠して測定し得られたものをJsc(セル)とした。
[実施例2]
<2層構造の波長変換型太陽電池封止材の作製>
 実施例1における第一、第二の封止シートの作製において、厚みが表1となるように変更した以外は同様にして、実施例2の波長変換型太陽電池封止材を作製した。
<波長変換型太陽電池モジュールの作製>
 実施例1と同様にして、但し上記実施例2の波長変換型太陽電池封止材に変えて、実施例2の波長変換型太陽電池モジュールを作製した。
[比較例1,2]
<1層構造の波長変換型太陽電池封止材の作製>
 実施例1における第二の封止シートの作製において、厚みが表1となるように変更した以外は同様にして、比較例1及び比較例2の波長変換型太陽電池封止材を作製した。
<波長変換型太陽電池モジュールの作製>
 保護ガラスとしての強化硝子(旭硝子(株)製)の上に、上記比較例1又は比較例2の波長変換型太陽電池封止材を載せ、その上に起電力を外部に取り出せるようにした太陽電池セル上を載せ、さらに裏面用太陽電池封止シート、及びバックフィルムとしてPETフィルム(東洋紡(株)製、商品名:A-4300)を載せ、太陽電池用真空加圧ラミネータ((株)ネヌ・ピー・シー、LM-50x50-S)を用いて、熱板150℃、真空10分、加圧15分の条件でラミネートし、比較例1及び比較例2の太陽電池モジュールを作製した。
〔太陽電池モジュールの評価〕
 上記作製した波長変換型太陽電池モジュールをワコム電創(株)製ソーラーシミュレータWXS-155S-10,AM1.5G、英弘精機(株)製ソーラーシミュレータ用I-Vカーブトレーサー、MP-160を用い、太陽電池I-V特性を得、JIS-C-8914に準拠して測定し得られたJsc(モジュール)とした。ΔJscは、この値とあらかじめ測定されたJsc(セル)を用いて、下記式から算出した。
  ΔJsc = Jsc(モジュール)- Jsc(セル)
 得られた結果を表1に、波長変換用蛍光材料(球状蛍光体)を含む波長変換型太陽電池封止シートの膜厚とΔJscとの関係を図2にまとめた。
Figure JPOXMLDOC01-appb-T000001
 表1及び図2に見られるように、蛍光物質を含む層と含まない層の二層からなる波長変換型太陽電池封止材であれば、蛍光物質を含むシートの膜厚が300μm以下であっても、波長変換型太陽電池封止材が蛍光物質を含有する1層からなりその膜厚が590μmのシートよりも波長変換効果があることが実証された。つまり、蛍光物質の使用量が半分以下に抑えられ、且つ変換効率が向上していることが明らかとなった。
[実施例3]
<波長変換用蛍光材料(球状蛍光体)2の調製>
 上記で得られた蛍光物質Eu(TTA)Phenを0.05g、メタクリル酸メチルを95g、エチレングリコールジメタクリレートを5g、熱ラジカル開始剤である2,2’-アゾビス(2,4-ジメチルバレロニトリル)を0.5g、それぞれ量り取って200mlスクリュー管に入れ、超音波洗浄器とミックスローターを用いて、攪拌混合した。冷却管をつけたセパラブルフラスコにイオン交換水500g、界面活性剤としてポリビニルアルコール1.69%溶液59.1gを加え、攪拌した。これに先に調製したメタクリル酸メチルとエチレングリコールジメタクリレートの混合液を加え、これを350rpmで攪拌しながら、50℃に加熱し、4時間反応させた。この懸濁液をベックマン・コールター社製Beckman Coulter LS13320(高分解能型レーザー回折散乱法 粒度分布測定装置)を用い、粒径を測定したところ、体積平均径が104μmであった。沈殿物を濾別し、イオン交換水で洗浄し、60℃で乾燥させ、懸濁重合による波長変換用蛍光材料(球状蛍光体)2を得た。
<波長変換用樹脂組成物2の調製>
 透明分散媒樹脂として東ソー(株)製のエチレン-酢酸ビニル樹脂(EVA):NM30PWを100質量部、アルケマ吉富(株)製の過酸化物熱ラジカル重合開始剤(本実施例では、架橋剤としても働く):ルペロックス101を1.5質量部、東レ・ダウコーニング(株)製のシランカップリング剤:SZ6030を0.5質量部、及び前記で得られた重合後の波長変換用蛍光材料(球状蛍光体)2を1質量部(波長変換用蛍光材料1質量部が蛍光物質濃度に関しては、0.0005質量部に相当する)を90℃のロールミルで混練して、波長変換用樹脂組成物2を得た。
<2層構造の波長変換型太陽電池封止材の作製>
 実施例1における第一の封止シートの作製において、上記波長変換用樹脂組成物2に変更した以外は同様にして、実施例3の波長変換型太陽電池封止材を作製した。
<波長変換型太陽電池モジュールの作製>
 実施例1と同様にして、但し上記実施例3の波長変換型太陽電池封止材に変えて、実施例3の波長変換型太陽電池モジュールを作製した。
〔太陽電池モジュールの評価〕
 実施例3の波長変換型太陽電池モジュールの評価を上記方法により行ったところ、ΔJscは0.73mA/cmであり、実施例1よりも変換効率に優れることが分かった。
10 太陽電池セル
20 保護ガラス
30 波長変換型太陽電池封止材
32 第一の封止層
34 第二の封止層
36 裏面用封止材
40 バックフィルム

Claims (4)

  1.  蛍光物質を含有しない第一の封止層と、蛍光物質を含有する第二の封止層と、を有する波長変換型太陽電池封止材。
  2.  前記蛍光物質が、ユーロピウム錯体である請求項1に記載の波長変換型太陽電池封止材。
  3.  前記蛍光物質が、ビニル化合物をモノマー化合物とする樹脂粒子に内包されている請求項1又は請求項2に記載の波長変換型太陽電池封止材。
  4.  太陽電池セルと、
     前記太陽電池セルの受光面側に設けられた、請求項1~請求項3のいずれか1項に記載の波長変換型太陽電池封止材と、
    を有する太陽電池モジュール。
PCT/JP2011/061903 2010-05-26 2011-05-24 波長変換型太陽電池封止材、及び太陽電池モジュール WO2011148951A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800255912A CN102918654A (zh) 2010-05-26 2011-05-24 波长转换型太阳能电池密封材料及太阳能电池组件
JP2012517283A JP5920215B2 (ja) 2010-05-26 2011-05-24 波長変換型太陽電池封止材、及び太陽電池モジュール
US13/699,631 US20130125985A1 (en) 2010-05-26 2011-05-24 Wavelength conversion type photovoltaic cell sealing material and photovoltaic cell module
EP11786650.9A EP2579329A1 (en) 2010-05-26 2011-05-24 Wavelength conversion-type solar cell sealing material, and solar cell module
KR1020127031153A KR20130084978A (ko) 2010-05-26 2011-05-24 파장 변환형 태양 전지 봉지재, 및 태양 전지 모듈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010120647 2010-05-26
JP2010-120647 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011148951A1 true WO2011148951A1 (ja) 2011-12-01

Family

ID=45003940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061903 WO2011148951A1 (ja) 2010-05-26 2011-05-24 波長変換型太陽電池封止材、及び太陽電池モジュール

Country Status (7)

Country Link
US (1) US20130125985A1 (ja)
EP (1) EP2579329A1 (ja)
JP (1) JP5920215B2 (ja)
KR (1) KR20130084978A (ja)
CN (1) CN102918654A (ja)
TW (1) TWI542024B (ja)
WO (1) WO2011148951A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683467A (zh) * 2012-05-15 2012-09-19 中国科学院半导体研究所 太阳能电池模块
JP2013535843A (ja) * 2010-08-07 2013-09-12 イノバ ダイナミックス, インコーポレイテッド 表面埋込添加物を有する素子構成要素および関連製造方法
EP2680315A1 (en) * 2011-02-23 2014-01-01 Hitachi Chemical Company, Ltd. Wavelength conversion-type photovoltaic cell sealing material and photovoltaic cell module using the same
WO2015129177A1 (ja) * 2014-02-26 2015-09-03 パナソニックIpマネジメント株式会社 太陽電池モジュール
KR20160083008A (ko) * 2013-11-04 2016-07-11 다우 글로벌 테크놀로지스 엘엘씨 다층 다운-컨버팅 캡슐화제 필름 및 상기 필름을 포함하는 전자 디바이스
US10224448B2 (en) 2014-06-13 2019-03-05 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US10930807B2 (en) 2014-02-26 2021-02-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640564B (zh) * 2013-02-21 2018-11-11 三菱化學股份有限公司 Resin composition and sealing material for crosslinking
EP3093738A4 (en) * 2014-01-08 2017-06-21 Sony Corporation Information processing system, information processing method, and program
CN107124900A (zh) * 2015-12-25 2017-09-01 松下知识产权经营株式会社 触摸面板和使用该触摸面板的显示装置
CN106750529B (zh) * 2016-11-11 2019-04-19 南京工业大学 选择性近红外光响应形状记忆聚合物复合材料及其制备方法
CN114763416A (zh) * 2021-01-15 2022-07-19 上海共城通信科技有限公司 一种介于表面带tco层的光伏电池和光伏组件封装胶膜之间的转光薄膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202243A (ja) * 1993-12-28 1995-08-04 Bridgestone Corp 太陽電池モジュール
JP2007147431A (ja) * 2005-11-28 2007-06-14 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及びその製造方法
JP2009249445A (ja) * 2008-04-03 2009-10-29 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置並びに画像表示装置
JP2011014725A (ja) * 2009-07-02 2011-01-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止材、これを用いた太陽電池モジュール及びこれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411661A (ja) * 1990-02-09 1992-01-16 Showa Electric Wire & Cable Co Ltd 螢光性熱可塑性樹脂組成物
JPH0853666A (ja) * 1994-08-10 1996-02-27 Mitsubishi Chem Corp 重合体により被覆された蛍光体粒子の製造方法
US6562460B1 (en) * 2001-11-20 2003-05-13 Encap Technologies, Llc Microencapsulated particles and process for manufacturing same
JP2010034502A (ja) * 2008-06-30 2010-02-12 Hitachi Chem Co Ltd 波長変換フィルム、これを用いた太陽電池モジュール及びこれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202243A (ja) * 1993-12-28 1995-08-04 Bridgestone Corp 太陽電池モジュール
JP2007147431A (ja) * 2005-11-28 2007-06-14 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及びその製造方法
JP2009249445A (ja) * 2008-04-03 2009-10-29 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置並びに画像表示装置
JP2011014725A (ja) * 2009-07-02 2011-01-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止材、これを用いた太陽電池モジュール及びこれらの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535843A (ja) * 2010-08-07 2013-09-12 イノバ ダイナミックス, インコーポレイテッド 表面埋込添加物を有する素子構成要素および関連製造方法
EP2680315A1 (en) * 2011-02-23 2014-01-01 Hitachi Chemical Company, Ltd. Wavelength conversion-type photovoltaic cell sealing material and photovoltaic cell module using the same
JPWO2012114627A1 (ja) * 2011-02-23 2014-07-07 日立化成株式会社 波長変換型太陽電池封止材、及びこれを用いた太陽電池モジュール
EP2680315A4 (en) * 2011-02-23 2015-04-22 Hitachi Chemical Co Ltd PHOTOVOLTAIC CELL ENCAPSULATING MATERIAL, WAVE LENGTH CONVERTING TYPE, AND PHOTOVOLTAIC CELL MODULE USING THE SAME
JP5915642B2 (ja) * 2011-02-23 2016-05-11 日立化成株式会社 波長変換型太陽電池封止材、及びこれを用いた太陽電池モジュール
CN102683467A (zh) * 2012-05-15 2012-09-19 中国科学院半导体研究所 太阳能电池模块
KR20160083008A (ko) * 2013-11-04 2016-07-11 다우 글로벌 테크놀로지스 엘엘씨 다층 다운-컨버팅 캡슐화제 필름 및 상기 필름을 포함하는 전자 디바이스
JP2016538716A (ja) * 2013-11-04 2016-12-08 ダウ グローバル テクノロジーズ エルエルシー 多層下方変換封止材フィルム及びそれを含む電子デバイス
KR102155926B1 (ko) * 2013-11-04 2020-09-14 다우 글로벌 테크놀로지스 엘엘씨 다층 다운-컨버팅 캡슐화제 필름 및 상기 필름을 포함하는 전자 디바이스
WO2015129177A1 (ja) * 2014-02-26 2015-09-03 パナソニックIpマネジメント株式会社 太陽電池モジュール
US10930807B2 (en) 2014-02-26 2021-02-23 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US10224448B2 (en) 2014-06-13 2019-03-05 Panasonic Intellectual Property Management Co., Ltd. Solar cell module

Also Published As

Publication number Publication date
TWI542024B (zh) 2016-07-11
EP2579329A1 (en) 2013-04-10
JP5920215B2 (ja) 2016-05-18
JPWO2011148951A1 (ja) 2013-07-25
CN102918654A (zh) 2013-02-06
TW201201384A (en) 2012-01-01
US20130125985A1 (en) 2013-05-23
KR20130084978A (ko) 2013-07-26

Similar Documents

Publication Publication Date Title
JP5920215B2 (ja) 波長変換型太陽電池封止材、及び太陽電池モジュール
TWI474490B (zh) 波長變換型太陽電池密封片及太陽電池模組
KR20120053534A (ko) 파장 변환용 형광 재료, 이것을 포함하는 파장 변환용 수지 조성물, 이들을 사용한 태양전지 모듈, 파장 변환용 수지 조성물의 제조 방법 및 태양전지 모듈의 제조 방법
US8860165B2 (en) Wavelength conversion-type photovoltaic cell sealing material and photovoltaic cell module using the same
JP5716319B2 (ja) 波長変換型太陽電池用球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
KR101383532B1 (ko) 태양 전지용 파장 변환성 수지 조성물 및 태양 전지 모듈
JP2013087243A (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5712550B2 (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013077705A (ja) 波長変換型太陽電池モジュールおよびその製造方法
JP2013065595A (ja) 波長変換型太陽電池封止材、及び太陽電池モジュール
JP2014060418A (ja) 太陽電池モジュール
JP5799487B2 (ja) 波長変換型太陽電池封止材用球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2015122511A (ja) 太陽電池モジュール
JP2013046986A (ja) 波長変換型太陽電池封止材の製造方法及び太陽電池モジュール
JP2012033605A (ja) 発熱低減太陽電池封止シート、及びこれを用いた太陽電池モジュール
JP2013087242A (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013087241A (ja) 被覆蛍光材料、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025591.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517283

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127031153

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011786650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011786650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13699631

Country of ref document: US