WO2011148674A1 - Led光源、ledバックライト、液晶表示装置およびtv受信装置 - Google Patents
Led光源、ledバックライト、液晶表示装置およびtv受信装置 Download PDFInfo
- Publication number
- WO2011148674A1 WO2011148674A1 PCT/JP2011/052350 JP2011052350W WO2011148674A1 WO 2011148674 A1 WO2011148674 A1 WO 2011148674A1 JP 2011052350 W JP2011052350 W JP 2011052350W WO 2011148674 A1 WO2011148674 A1 WO 2011148674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- led
- phosphor
- light source
- green
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 48
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 103
- 230000005284 excitation Effects 0.000 claims abstract description 39
- 238000009792 diffusion process Methods 0.000 claims abstract description 38
- 229920005989 resin Polymers 0.000 claims abstract description 16
- 239000011347 resin Substances 0.000 claims abstract description 16
- 238000007789 sealing Methods 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 2
- 230000008023 solidification Effects 0.000 claims description 2
- 230000032554 response to blue light Effects 0.000 claims 2
- 230000001629 suppression Effects 0.000 abstract 1
- 238000002156 mixing Methods 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101710162453 Replication factor A Proteins 0.000 description 1
- 102100035729 Replication protein A 70 kDa DNA-binding subunit Human genes 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133609—Direct backlight including means for improving the color mixing, e.g. white
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/08—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
- G02F1/133607—Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/508—Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
Definitions
- the present invention relates to a backlight that irradiates light from the back of a liquid crystal panel, a liquid crystal display device including the backlight, and a TV receiver, and in particular, an LED light source using an LED as a light source, an LED backlight, a liquid crystal display device, and a TV.
- the present invention relates to a receiving device.
- an LED backlight provided with this white LED light source is used as a backlight of a liquid crystal display device equipped with a liquid crystal panel or a TV receiver.
- these backlights include a direct type and a backlight in which a light source is disposed on the rear surface of the display screen, a light source is disposed on the side of the display screen, and a light guide plate is disposed on the rear surface of the display screen.
- the edge-light type backlight has a light source section on the side of the display screen and a plate-shaped light guide plate on the back of the display screen, making it easy to reduce the thickness of liquid crystal display devices.
- the direct type backlight is preferable because a light source is installed on the rear surface of the display screen to directly illuminate, so that high-luminance illumination is easy and control of light emission luminance for each area is easy.
- an optical member such as a diffusion plate or a lens sheet is arranged between the LED backlight and the liquid crystal panel in order to diffuse and make the light emitted from the LEDs uniform and increase the luminance.
- each LED creates uneven brightness in the area, so an optical member such as a diffusion plate or a lens sheet is disposed between the LED backlight and the liquid crystal panel. Even in such a case, luminance unevenness may occur due to variations in emission chromaticity of each LED light source or variations in irradiation angle.
- a lighting device that obtains white light by combining a blue LED and a fluorescent sheet is provided, and a diffusion plate is provided on each of the light incident side surface and the light output side surface of the fluorescent sheet to change the chromaticity of incident light.
- a lighting device that suppresses the variation in chromaticity due to the viewing angle of the emitted light has already been disclosed (see, for example, Patent Document 1).
- the LED light source is a white LED light source having a configuration in which a blue LED chip is sealed with a transparent resin containing a phosphor, the emission peak of a predetermined wavelength exhibited by the blue LED chip and the predetermined wavelength of light emitted by the phosphor Light having an emission peak is emitted. Therefore, the light emitted from such a white LED light source has a relatively narrow light output characteristic.
- the particle size of the phosphor blended in the LED light source varies in the manufacturing process, it is selected and used in advance within a predetermined size range. However, even if the variation is within a predetermined range, when blended in the resin, the blending position varies depending on the particle diameter, and the emission chromaticity varies depending on the injection direction. .
- the LED direct type backlight having a configuration in which a plurality of LED light sources are arranged on the back surface of the liquid crystal panel due to the narrow light emission characteristics and the variation in light emission chromaticity of each LED light source as described above, the light emission is Color unevenness occurs on the surface, which is a problem.
- a backlight of a liquid crystal panel using direct type LEDs, it is possible to suppress variations in the light emission characteristics of individual LED light sources with a simpler structure and to reduce the emission light emitted from the light emitting surface. It is desired to use an LED backlight that does not cause color unevenness in chromaticity, to reduce color unevenness due to manufacturing errors of individual LED light sources, and to make the luminance uniform on the display screen.
- the present invention can suppress variations in light output characteristics of individual LED light sources with a simpler structure in a direct type LED backlight and a liquid crystal display device and a TV receiver including the backlight. It is an object of the present invention to provide an LED backlight that provides a uniform LED light source and does not cause color unevenness in chromaticity of emitted light emitted from a light emitting surface, and makes the luminance uniform on a display screen.
- the present invention provides an LED chip that emits light with a first light of a predetermined color, a mounting substrate on which the LED chip is mounted, and an excitation light wavelength of a predetermined color that receives light from the LED chip.
- An LED light source that includes a sealing resin containing a phosphor that emits second light in a range and emits third light that is a mixture of the first light and the second light from an emission surface, the phosphor Has a plurality of types of phosphors that emit excitation light of a plurality of different wavelengths within the excitation light wavelength range of the predetermined color, and the emission surface is formed in the shape of a diffusing lens that adjusts the emission light distribution It is characterized by that.
- the configuration since the excitation light of a predetermined color emitted from the phosphor has a plurality of emission peaks, the configuration has a relatively wide light emission characteristic, and even if there is a variation in the composition of the phosphor in each LED light source The variation in the light output characteristics of the LED light source is reduced. That is, it becomes an LED light source capable of suppressing variations in light output characteristics of individual LED light sources with a simple configuration.
- the exit surface is formed in the shape of a diffusing lens, the intensity of light emitted from the exit surface is adjusted so that it can be diffused and emitted to a predetermined range, and light emission between adjacent LED light sources can be performed. It is easy to mix and average, and an LED light source capable of reducing the occurrence of color unevenness can be obtained.
- the present invention is characterized in that, in the LED light source configured as described above, the sealing resin is solidified into a shape having a light emission peak at a high diffusion angle to form the diffusion lens portion. According to this configuration, since the hue is averaged using the sealing resin solidified into a shape having a light emission luminance peak at a high diffusion angle, an LED light source capable of reducing the occurrence of uneven color with a simpler configuration is obtained. be able to.
- the first light is blue light
- the LED chip emits blue light
- the second light is red light and green light
- the fluorescent light is emitted.
- the body is a red phosphor that receives blue light and emits red excitation light
- a green phosphor that receives blue light and emits green excitation light
- the green phosphor emits a plurality of different wavelengths of green. It is characterized by having a green phosphor. According to this structure, it becomes the structure which has the light emission characteristic over the wide range of the green light emission wavelength area
- the present invention is also characterized in that, in the LED light source having the above-described configuration, the green phosphor is composed of a first green phosphor and a second green phosphor having different excitation wavelengths. According to this configuration, by blending two types of green phosphors, an LED light source capable of suppressing variations in light output characteristics of the LED light source is obtained.
- the first light is blue light
- the LED chip emits blue light
- the second light is red light and green light
- the fluorescent light is emitted.
- a red phosphor that emits red excitation light upon receiving blue light
- the red phosphor emits a plurality of reds having different wavelengths.
- a red phosphor is provided. According to this structure, it becomes a structure which has a some light emission peak in a red light emission wavelength area
- the present invention is also characterized in that, in the LED light source configured as described above, the red phosphor comprises a first red phosphor and a second red phosphor having different excitation wavelengths. According to this configuration, by blending two types of red phosphors, an LED light source capable of suppressing variations in light output characteristics of the LED light source is obtained.
- the first light is blue light
- the LED chip emits blue light
- the second light is red light and green light
- the fluorescent light is emitted.
- a red phosphor that emits red excitation light upon receiving blue light
- a green phosphor that emits green excitation light upon receiving blue light
- the red phosphor emits a plurality of reds having different wavelengths.
- a red phosphor is provided, and the green phosphor includes a plurality of green phosphors emitting green having different wavelengths.
- the LED light source has a plurality of light emission peaks in the red and green light emission wavelength regions, and the LED light source can further suppress variation in the light output characteristics of the LED light source.
- the solidification shape of the sealing resin may include a central concave portion in which the upper portion of the LED chip is recessed in a concave shape and an annular convex shape protruding around the central concave portion. It is characterized by having a shape including an annular convex portion formed in a curved surface shape having a predetermined curvature for increasing the light intensity.
- the light intensity in the normal direction emitted from the LED light source decreases, the light intensity at the diffusion position opened by a predetermined angle increases, and when a plurality of LED light sources are arranged in parallel, adjacent LEDs
- the irradiation ranges of the light sources so as to overlap each other, it becomes possible to easily mix and average the light from the plurality of LED light sources.
- the curvature of the central concave portion and the annular convex portion is solidified into a shape having a light emission peak at a high diffusion angle and exhibiting a predetermined light emission intensity in the normal direction. It is characterized by having. According to this structure, it becomes an LED light source suitable for the LED backlight which can improve the front luminance on the display screen by setting the light intensity in the normal direction to a predetermined light emission intensity.
- this invention was described in any one of Claim 1 to 9 as said LED light source in the direct type
- An LED light source is provided. According to this configuration, variation in light output characteristics of individual LED light sources is suppressed and light emitted from the LED light sources can be diffused and emitted, so that light emitted from adjacent LED light sources is likely to be mixed. Further, it is possible to suppress color unevenness of chromaticity. Therefore, even if the light emission characteristics of the LED light source are color-dependent, it is possible to obtain a direct type LED backlight that can suppress color unevenness as backlight light and stabilize the color reproduction range of the emitted color. Can do.
- the present invention is characterized in that, in the LED backlight having the above-described configuration, the plurality of LED light sources are arranged such that irradiation areas of adjacent LED light sources overlap with each other. According to this configuration, the light from adjacent LED light sources can be mixed and averaged, the brightness on the display screen is likely to be uniform, and the color unevenness in the chromaticity of the emitted light is less likely to occur. It becomes a light.
- the present invention is characterized in that a liquid crystal display device including a liquid crystal panel and the LED backlight according to claim 10 or 11 is provided.
- the LED backlight that suppresses the variation in the light output characteristics of the individual LED light sources, does not cause color unevenness in the chromaticity of the emitted light emitted from the light emitting surface, and makes the luminance uniform on the display screen By using this, it is possible to obtain a liquid crystal display device with improved display quality by suppressing color unevenness of the entire display screen.
- the present invention is characterized in that it is a TV receiver provided with the liquid crystal display device according to claim 12.
- the LED backlight that suppresses the variation in the light output characteristics of the individual LED light sources, does not cause color unevenness in the chromaticity of the emitted light emitted from the light emitting surface, and makes the luminance uniform on the display screen Can be used to obtain a TV receiver with improved display quality by suppressing color unevenness of the entire display screen.
- the LED light source which can suppress the dispersion
- this LED backlight it is possible to obtain a liquid crystal display device and a TV receiver with improved display quality by suppressing color unevenness of the entire display screen.
- FIG. 1 It is expansion explanatory drawing of the LED light source with which the LED backlight which concerns on this invention is provided. It is an enlarged explanatory view showing a modification of the LED light source shown in FIG. It is a light intensity figure explaining the light emission characteristic of said LED light source which shows a light-diffusion angle on a horizontal axis, and light intensity on a vertical axis
- the LED light source according to the present invention is a light source used for a direct type LED backlight of a liquid crystal display device, and a plurality of LED light sources are arranged on the back surface of the liquid crystal panel.
- the LED light source 1 according to this embodiment will be described with reference to FIG.
- An LED light source 1 shown in FIG. 1 has an LED chip 3 mounted on a mounting substrate 2 (submount substrate), and has a plurality of phosphors (GF1, GF2, RF) having translucency such as silicone resin and epoxy resin.
- GF1, GF2, RF phosphors having translucency
- a synthetic light third compounded in a predetermined ratio in the transparent sealing resin 4, and the first light emitted from the LED chip 3 and the second light emitted when the phosphor is excited by the first light. It is a light source that emits light.
- the first light is, for example, blue light
- the LED chip 3 is a blue LED chip that emits light having a predetermined blue light wavelength.
- the phosphors are, for example, a red phosphor RF that emits red excitation light when receiving blue light emitted from the LED chip 3, and a green phosphor GF that emits green excitation light when receiving blue light.
- the blue light which is the 1st light which LED chip 3 light-emits, and red and blue which are the 2nd light which a fluorescent substance emits are mixed, and the white light as a synthesized 3rd light is inject
- the phosphors that emit light in the excitation light wavelength range of a predetermined color further emit a plurality of types of phosphors that emit excitation light of different wavelengths within the excitation light wavelength range of the predetermined color. It has composition which has.
- the exit surface is formed in the shape of a diffusing lens that adjusts the exit light distribution. For this reason, the intensity of light emitted from the emission surface is adjusted to be diffused and emitted within a predetermined range, and light emission between adjacent LED light sources can be easily mixed and averaged. It is possible to obtain an LED light source that can reduce the occurrence of.
- a method of forming the exit surface in the form of a diffusing lens there are a method of attaching a diffusing lens to the exit surface, a method of solidifying the sealing resin 4 in the shape of a diffusing lens, etc., but with a simpler configuration and low cost, In order to obtain an LED light source capable of reducing the occurrence of color unevenness, it is preferable to use the sealing resin by solidifying it into a shape having a light emission luminance peak at a high diffusion angle.
- the sealing resin 4 is solidified into a shape including a central concave portion 41 in which the upper portion of the LED chip 3 is recessed in a concave shape and an annular convex portion 42 in which the periphery projects into an annular convex shape. ing.
- the shape of the exit surface of the sealing resin 4 is a shape including the central concave portion 41 and the annular convex portion 42
- the light emitted is predetermined according to the curvature of the curved surface due to the lens effect of the annular convex portion 42.
- the light intensity in the direction diffused by a predetermined angle is increased. That is, the LED light source 1 has a light emission peak at a high diffusion angle.
- the light B1 shown in the drawing represents direct light from the LED chip 3 that passes through the central recess 41, and the lights B2, B3, and B4 pass through the annular protrusion 42, and the annular protrusion 42 It represents diffused light converged in a direction diffused by a predetermined angle due to the lens effect.
- the light intensity in the normal direction emitted from the LED light source 1 is formed by forming the annular convex portion 42 into a curved surface shape having a predetermined curvature that increases the light intensity in the predetermined diffusion direction. Can be kept low without being too high, and the light intensity at the diffusion position opened by a predetermined angle can be increased. Moreover, since it radiate
- the LED light source 1 having the above-described configuration As shown in FIG. 1, the light intensity H1 emitted from the LED light source 1 in the normal direction is low, and the light intensity H2 at the diffusion position where the angle is widened is high. Thus, the light diffused at a predetermined angle can be emitted. That is, the LED light source 1 having the above configuration is a diffused LED light source.
- the diffusion type LED light source 1 having the shape shown in FIG.
- the light having P2 is emitted.
- the light emission characteristic HR2 indicated by a broken line in the figure exhibits a small third light emission peak P3 by slightly increasing the light intensity in the direct light direction of the LED light source, that is, the normal direction, using the LED light source 1A described later.
- This light emission characteristic HR2 has a shape in which the curvature of the central concave portion 41 and the annular convex portion 42 described above has a light emission peak at a high diffusion angle and is solidified into a shape that exhibits a predetermined light emission intensity in the normal direction. This is possible.
- the LED light source 1A shown in FIG. 2 has a central concave portion 41A and an annular convex portion 42A solidified into a shape having a light emission peak at a high diffusion angle and exhibiting a predetermined light emission intensity in the normal direction. Different from the LED light source 1 described above. Other configurations are the same and will not be described in detail.
- the light beams B2, B3, and B4 that pass through the annular convex portion 42A are converged in a direction diffused by a predetermined angle due to the lens effect of the annular convex portion 42A, and emit diffuse light having a strong light intensity H2.
- the central concave portion 41A having a curvature that also exhibits a predetermined light emission intensity in the normal direction in addition to the direct light B1 from the LED chip 3, light B1a emitted in the normal direction is added, and the light intensity H1A is increased. Can be a little stronger.
- the LED light source 1A includes the central concave portion 41A and the annular convex portion 42A solidified into a shape having a light emission peak at a high diffusion angle and exhibiting a predetermined light emission intensity also in the normal direction. It is possible to improve the display quality by suppressing the front luminance from becoming too weak and making the luminance on the display screen uniform.
- FIG. 3 is an example in which the light emission characteristics of the LED light source 1 shown in FIG. 1 and the LED light source 1A shown in FIG. 2 are measured, and the horizontal axis indicates the light diffusion angle and the vertical axis indicates the light intensity.
- the light emission characteristic HR1 exhibited by the LED light source 1 has emission peaks P1 and P2 at the diffusion position opened by a predetermined angle.
- the light emission characteristic HR2 exhibited by the LED light source 1A has a small third light emission peak P3 in the direct direction of the center in addition to the light emission peaks P1A and P2A at the diffusion position opened by a predetermined angle.
- the light quantity reduction portions D1 and D2 having a slightly reduced light intensity are generated. Therefore, by changing the curvatures of the central concave portion 41 and the annular convex portion 42, the direct light direction of the LED light source and the light intensity in the vicinity thereof can be adjusted.
- the central concave portion 41 is provided to suppress the light intensity in the direct light source direction of the LED light source, or the annular convex portion 42 having a predetermined curvature is provided to increase the light intensity in the direction diffused by a predetermined angle.
- the outgoing light distribution is adjusted to any direction The light intensity can be increased, and the light can be emitted in a desired direction with a desired light intensity.
- the phosphor used in the present embodiment is, for example, a red phosphor RF that emits red excitation light upon receiving blue light emitted from the LED chip 3, and a green excitation light upon receiving blue light.
- Green phosphor GF Green phosphor GF.
- a plurality of green phosphors emitting green of different wavelengths for example, two types of first green phosphor GF1 and second green phosphor GF2 are blended. With this configuration, it has a configuration that has emission characteristics over a wide range of the green emission wavelength region, and even if the LED emission characteristics are color-dependent, it suppresses color unevenness of the entire backlight and reproduces the color of the emission color. The range can be stabilized.
- a phosphor e.g., first green phosphor GF1 that exhibits a light emission characteristic GK1 having an emission peak near about 540 nm and a light emission characteristic GK2 that has an emission peak near about 530 nm.
- the phosphor to be used (for example, the second green phosphor GF2) is mixed and used.
- the green phosphor GF obtained by mixing the first green phosphor GF1 and the second green phosphor GF2 exhibits the emission characteristics GK (GK1 + GK2) and exhibits emission characteristics over a wide range of the green emission wavelength region. become.
- GK1 + GK2 emission characteristics
- the green phosphor GF only needs to be a phosphor that receives blue light and emits light in the green wavelength region, and may be a silicate phosphor, a sulfide phosphor, or a nitride phosphor.
- the components are not particularly limited.
- the types of phosphors within the same emission wavelength region to be blended are not limited to the two types described above, and a configuration may be adopted in which two or more types, for example, three types of phosphors are blended.
- a configuration may be adopted in which two or more types, for example, three types of phosphors are blended.
- the phosphor is a red phosphor RF that receives blue light and emits red excitation light and a green phosphor GF that receives blue light and emits green excitation light
- the red phosphor RF A plurality of red phosphors emitting red light having different emission peak wavelengths may be provided.
- a first red phosphor having an emission peak around 620 nm and a second red phosphor having an emission peak around 640 nm are mixed and used. If it is this structure, it will become a structure which has a some light emission peak in a red light emission wavelength area
- the red phosphor RF may be a mixture of two or more types of red phosphors having different excitation wavelengths.
- the red phosphor RF only needs to be a phosphor that receives blue light and emits light in the red wavelength region.
- a silicate phosphor may be a sulfide-based phosphor.
- the phosphor may be a nitride-based phosphor, and its components are not particularly limited.
- the red phosphor when the phosphor is a red phosphor that emits red excitation light upon receiving blue light and a green phosphor that emits green excitation light upon receiving blue light, the red phosphor has different wavelengths.
- a plurality of red phosphors that emit red light may be provided, and the green phosphor may further include a plurality of green phosphors that emit green having different wavelengths.
- the phosphor may be a yellow phosphor that emits yellow excitation light upon receiving blue light, and may be configured to synthesize white by blue emitted from the blue LED chip 3 and yellow emitted from the phosphor.
- the yellow phosphor includes a plurality of yellow phosphors that emit yellow light having different wavelengths. If it is this structure, it will become the structure which has a several light emission peak in a yellow light emission wavelength area
- the yellow phosphor may be any phosphor that receives blue light and emits light in the yellow wavelength region, and may be a YAG phosphor, another oxide phosphor, or a sulfide phosphor.
- a nitride-based phosphor may be used, and its components are not particularly limited.
- the LED light sources 1 and 1A of the present embodiment have a diffusing lens-shaped exit surface that adjusts the exit light distribution, have a high diffusion type emission characteristic, and have a plurality of emission peaks that differ in the emission wavelength region of the same color.
- an LED backlight using this LED light source is an LED backlight that suppresses variations in light output characteristics of individual LED light sources and does not cause color unevenness in chromaticity of emitted light emitted from the light emitting surface.
- An area A1 surrounded by a broken line is an irradiation area of the LED light source 1a
- A2 is an irradiation area of the LED light source 1b
- A3 is an irradiation area of the LED light source 1c.
- Reference numerals 1A, 1B, and 1C denote high diffusion type LED light sources
- B1 is an irradiation area of the LED light source 1A
- B2 is an irradiation area of the LED light source 1B
- B3 is an irradiation area of the LED light source 1C. is there.
- B2 of the LED light source 1B surrounded by a thick broken line in the figure
- it is a high diffusion type that diffuses to the portions of the LED light sources 1A and 1C adjacent to both sides.
- the emitted light from the LED light source 1B is mixed with the light emitted from the LED light source 1A and the LED light source 1C.
- the LED light sources 1A, 1B, and 1C of the high diffusion type are LED backlights BL1 in which a plurality of LED light sources are arranged so that the irradiation areas of the adjacent LED light sources overlap with each other, thereby adjacent LED light sources. Can be mixed and averaged, the luminance on the display screen is likely to be uniform, and the LED backlight is more unlikely to cause color unevenness in the chromaticity of the emitted light.
- each LED light source by combining a plurality of phosphors having different emission peaks in the emission wavelength region of the same color, in addition to individually reducing color unevenness, they are adjacent to each other. By mixing the light from the light source, it is possible to further promote the reduction of color unevenness and make the backlight emission color uniform.
- luminance unevenness in a certain area is created by superimposing the light emission of a plurality of LED light sources, so even if the light output characteristics of the LED light sources are color-dependent, the entire LED backlight As a result, it is possible to effectively suppress uneven color.
- the liquid crystal display device 10 includes an LED backlight BL 1 having a plurality of LED light sources 1 mounted on a substrate 5 at a predetermined pitch, a diffusion plate 6, a lens sheet 7, and a liquid crystal panel 8 that are integrally assembled to a frame 11. It has been configured.
- the diffusing plate 6 and the lens sheet 7 are thin plate-like or film-like optical members for diffusing incident light to make it uniform and increasing the luminance, and diffuse the light emitted from the LED light source 1.
- the liquid crystal panel 8 has a function of spreading light.
- the liquid crystal panel 8 has a configuration in which a liquid crystal material is enclosed between two transparent glass substrates in a sandwich shape, and a color filter and a polarizing filter are stacked, and is formed in a lattice shape via switching elements formed in a lattice shape. A large number of pixels are formed, and the liquid crystal orientation is changed by changing the voltage supplied to each switching element, and the amount of light transmitted through each pixel is controlled to display a predetermined image on the upper surface of the liquid crystal panel 8. It is configured.
- the liquid crystal panel 8 is a non-light emitting display panel, the display function is exhibited by receiving light from the backlight (backlight light). Therefore, if the light from the LED backlight BL1 can irradiate the entire surface of the liquid crystal panel 8 uniformly without color unevenness, the display quality of the liquid crystal display device 10 is improved.
- Each of the light sources from the LED light source which is a point light source, diffuses the light through the diffusion plate 6 and the lens sheet 7 to make the light uniform and illuminate the liquid crystal panel 8.
- the LED backlight if the irradiation region of each LED light source does not overlap with the irradiation region of the adjacent LED light source and the color mixture is not mixed, color unevenness due to the color of each LED light source may occur.
- each LED light source is of a high diffusion type, and a plurality of phosphors emitting different colors emit excitation light having a plurality of different wavelengths within the excitation light wavelength range of a predetermined color.
- a simple configuration in which various types of phosphors are blended it is possible to suppress variations in the light output characteristics of the respective LED light sources.
- the colors can be easily mixed and averaged, and an LED backlight capable of suppressing the occurrence of color unevenness as the entire display screen is obtained. Therefore, according to the present embodiment, a liquid crystal display device in which color unevenness is less likely to occur, luminance on the display screen is likely to be uniform, and color unevenness of the entire display screen is suppressed to improve display quality. Obtainable.
- the LED light source according to the present invention can suppress variations in light output characteristics of individual LED light sources with a simple configuration.
- the direct type LED backlight provided with this LED light source can mix and average the light from the LED light source, and the luminance on the display screen tends to be uniform, and the chromaticity of the emitted light can be improved.
- the LED backlight is more unlikely to cause color unevenness.
- the LED backlight according to the present invention has a simpler configuration, suppresses variation in light output characteristics of individual LED light sources, and does not cause color unevenness in chromaticity of emitted light emitted from the light emitting surface. It becomes a light.
- the liquid crystal display device and the TV receiver according to the present invention are a liquid crystal display device and a TV receiver with improved display quality by suppressing color unevenness of the entire display screen using the LED backlight.
- the LED light source and the LED backlight according to the present invention are used for LED backlights of liquid crystal display devices and TV receivers that are required to reduce screen color unevenness, stabilize light emission luminance, and improve image quality. It can be suitably used.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Planar Illumination Modules (AREA)
- Led Device Packages (AREA)
- Liquid Crystal (AREA)
Abstract
直下型のLEDバックライトおよびこのバックライトを備える液晶表示装置およびTV受信装置において、より簡単な構成で、個々のLED光源の出光特性のばらつきを抑制可能なLED光源を提供し、発光面から射出される射出光の色度に色むらが発生せず、表示画面上での輝度を均一にするLEDバックライトを提供するために、所定の色で発光するLEDチップ3と、この光を受けて所定色の励起光波長範囲の光を発する蛍光体が配合された封止樹脂4を備えると共に、蛍光体は、所定色の励起光波長範囲内の異なる複数の波長の励起光を発する複数種類の蛍光体を有し、出射面が、出射配光を調整する拡散レンズ部状に形成されている構成のLED光源1とし、隣り合うLED光源同士の照射領域が重なるようにして複数のLED光源1を配設したLEDバックライトBL1とした。
Description
本発明は、液晶パネルの背面から光を照射するバックライトおよびこのバックライトを備える液晶表示装置、TV受信装置に関し、特に、光源としてLEDを用いたLED光源、LEDバックライト、液晶表示装置およびTV受信装置に関する。
近年、発光効率の向上や発光量の増加と共に、寿命が長く消費電力が小さくて、環境にやさしいとされるLED(発光ダイオード)を用いた照明装置が実用化されつつある。また、青色LEDチップが開発されて以来、この青色LEDチップと、このLEDチップからの光に励起されて所定波長の励起光を発光する蛍光体と、を組み合わせて白色発光する白色LED光源や、青色LEDチップと緑色LEDチップと赤色LEDチップとの三原色のLEDチップを用いて白色光を合成する白色LED光源が開発されている。
そのために、液晶パネルを備えた液晶表示装置やTV受信装置などのバックライトとして、この白色LED光源を配設したLEDバックライトが用いられている。また、これらのバックライトとしては、表示画面の後面に光源を配置する直下型とバックライトと、表示画面の側部に光源を配置し表示画面の後面に導光板を設置して、表示画面の側部から導光板に光を入射して、導光板内を反射させながら導光板の発光面から面状に発光させるエッジライト型のバックライトが知られている。
エッジライト型のバックライトは、表示画面の側部に光源部を設け、表示画面の背面に板状の導光板を設置する構成なので、薄型化が容易であり、液晶表示装置などの薄型化にとって好ましい。また、直下型のバックライトは、表示画面の後面に光源を設置して直に照明しているので、高輝度照明が容易であり、発光輝度のエリア毎の制御も容易となって好ましい。
また、LEDを用いたバックライトにおいて、LEDから発光される光を拡散して均一にすると共に輝度を高めるために、LEDバックライトと液晶パネルの間に拡散板やレンズシートなどの光学部材を配設している。
しかし、LEDを用いた直下型のバックライトにおいては、個々のLEDがエリアの輝度ムラを作るため、LEDバックライトと液晶パネルの間に拡散板やレンズシートなどの光学部材を配設した構成であっても、それぞれのLED光源の発光色度のばらつきや照射角度のばらつきなどにより、輝度ムラが生じることがある。
そのために、青色LEDと蛍光シートを組み合わせて白色光を得る照明装置とし、蛍光シートの光入射側の面と光出射側の面との両方にそれぞれ拡散板を設け、入射光の色度の変動に対応すると共に出射光の視野角による色度の変動を抑制するとした照明装置が既に公開されている(例えば、特許文献1参照)。
LED光源が、青色LEDチップを蛍光体を含有した透明樹脂で封止した構成の白色LED光源であれば、青色LEDチップが発揮する所定波長の発光ピークと、蛍光体が発する光の所定波長の発光ピークとを有する光が射出される。そのために、このような白色LED光源から発光される光は、その出光特性が比較的狭くなっている。
また、LED光源に配合される蛍光体は、その製造工程において粒径がばらつくので、予め所定のサイズ範囲の粒径に選別して使用する。しかし、所定範囲内のばらつきであっても、樹脂に配合する際に、その粒子径に応じた配合位置のばらつきが生じてしまい、射出方向に応じて発光色度にばらつきが発生する問題を生じる。
そのために、上記したような出光特性の狭さと個々のLED光源の発光色度のばらつきによって、複数のLED光源を液晶パネルの背面部に配設する構成のLED直下型バックライトにおいては、その発光面で色むらが生じてしまい問題となる。
また、特許文献1に記載された照明装置のように、青色LED光源と、光入射面と光出射面との両方の面に拡散板を備えた蛍光シートとを用いたものは、色度の変動を抑制することは可能であるが、二枚の拡散板に加えて所定の蛍光体を配合した蛍光シートを製造することが必要となって、コスト高となって好ましくない。
そのために、直下型のLEDを用いて液晶パネルのバックライトを構築する際には、より簡単な構成で、個々のLED光源の出光特性のばらつきを抑制し、発光面から射出される射出光の色度に色むらが発生しないLEDバックライトとし、個々のLED光源の製造誤差に起因する色むらを低減し、表示画面上での輝度を均一にすることが望まれる。
そこで本発明は、上記問題点に鑑み、直下型のLEDバックライトおよびこのバックライトを備える液晶表示装置およびTV受信装置において、より簡単な構成で、個々のLED光源の出光特性のばらつきを抑制可能なLED光源を提供し、発光面から射出される射出光の色度に色むらが発生せず、表示画面上での輝度を均一にするLEDバックライトを提供することを目的とする。
上記目的を達成するために本発明は、所定の色の第一光で発光するLEDチップと、該LEDチップを実装する実装基板と、前記LEDチップからの光を受けて所定色の励起光波長範囲の第二光を発する蛍光体が配合された封止樹脂を備え、出射面から前記第一光と前記第二光とを混色した第三光を発光するLED光源であって、前記蛍光体は、前記所定色の励起光波長範囲内の異なる複数の波長の励起光を発する複数種類の蛍光体を有し、前記出射面は、出射配光を調整する拡散レンズ部状に形成されていることを特徴としている。
この構成によると、蛍光体が発する所定の色の励起光が複数の発光ピークを有するので、比較的広い出光特性を有する構成となって、個々のLED光源に蛍光体の配合ばらつきが生じても、LED光源の出光特性のばらつきが低減される。つまり、簡単な構成で、個々のLED光源の出光特性のばらつきを抑制可能なLED光源となる。また、出射面が、拡散レンズ状に形成されているので、出射面から射出される光の強さを調整して所定範囲に拡散して出射可能となって、隣り合うLED光源同士の発光を混色して平均化することが容易となり、色むらの発生を低減可能なLED光源を得ることができる。
また本発明は上記構成のLED光源において、前記封止樹脂が高拡散角度に発光ピークを有する形状に固化されて前記拡散レンズ部を形成していることを特徴としている。この構成によると、高拡散角度に発光輝度ピークを有する形状に固化された封止樹脂を用いて色合いを平均化しているので、より簡単な構成で色むらの発生を低減可能なLED光源を得ることができる。
また本発明は上記構成のLED光源において、前記第一光が青色光で、前記LEDチップが青色光を発光する青色LEDチップであって、前記第二光が赤色光および緑色光で、前記蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であり、この緑色蛍光体が、異なる波長の緑色を発する複数の緑色蛍光体を備えていることを特徴としている。この構成によると、緑色の発光波長領域の広範囲に亘る発光特性を有する構成となって、LED光源の出光特性のばらつきを抑制可能なLED光源となる。
また本発明は上記構成のLED光源において、前記緑色蛍光体が、互いに励起波長が異なる第一緑色蛍光体と第二緑色蛍光体からなることを特徴としている。この構成によると、二種類の緑色蛍光体を配合することで、LED光源の出光特性のばらつきを抑制可能なLED光源となる。
また本発明は上記構成のLED光源において、前記第一光が青色光で、前記LEDチップが青色光を発光する青色LEDチップであって、前記第二光が赤色光および緑色光で、前記蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であり、この赤色蛍光体が、異なる波長の赤色を発する複数の赤色蛍光体を備えていることを特徴としている。この構成によると、赤色の発光波長領域において複数の発光ピークを有する構成となって、LED光源の出光特性のばらつきを抑制可能なLED光源となる。
また本発明は上記構成のLED光源において、前記赤色蛍光体が、互いに励起波長が異なる第一赤色蛍光体と第二赤色蛍光体からなることを特徴としている。この構成によると、二種類の赤色蛍光体を配合することで、LED光源の出光特性のばらつきを抑制可能なLED光源となる。
また本発明は上記構成のLED光源において、前記第一光が青色光で、前記LEDチップが青色光を発光する青色LEDチップであって、前記第二光が赤色光および緑色光で、前記蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であり、前記赤色蛍光体が、異なる波長の赤色を発する複数の赤色蛍光体を備え、前記緑色蛍光体が、異なる波長の緑色を発する複数の緑色蛍光体を備えていることを特徴としている。この構成によると、赤色および緑色の発光波長領域においてそれぞれ複数の発光ピークを有する構成となって、LED光源の出光特性のばらつきをさらに抑制可能なLED光源となる。
また本発明は上記構成のLED光源において、前記封止樹脂の固化形状は、前記LEDチップの上部が凹状にへこんだ中央凹部と、その周囲を環状の凸状に突出して、所定の拡散方向の光強度を高くする所定の曲率を有する曲面状に形成した環状凸部を備える形状であることを特徴としている。この構成によると、LED光源から射出される法線方向の光強度が低くなり、所定角度開いた拡散位置での光強度が強くなって、複数のLED光源を並設する際に、隣り合うLED光源の照射範囲を重ね合わせて配設することで、複数のLED光源の光を混色して容易に平均化することが可能となる。
また本発明は上記構成のLED光源において、前記中央凹部と前記環状凸部の曲率が、高拡散角度に発光ピークを有し、さらに法線方向にも所定の発光強度を発揮する形状に固化されていることを特徴としている。この構成によると、法線方向の光の強度を所定の発光強度にすることで、表示画面上の正面輝度を向上することが可能なLEDバックライトに好適なLED光源となる。
また本発明は、液晶パネルの背面に設置される複数のLED光源から前記液晶パネルに光を照射する直下型のLEDバックライトにおいて、前記LED光源として請求項1から9のいずれかに記載されたLED光源を備えたことを特徴としている。この構成によると、個々のLED光源の出光特性のばらつきを抑制し、LED光源から射出される光を拡散して出射可能となるので、隣り合うLED光源から射出される光が混色され易くなって、色度の色むらが抑制可能となる。そのために、LED光源の出光特性に色依存性があっても、バックライト光としての色むらを抑制し発光色の色再現範囲を安定させることが可能となる直下型のLEDバックライトを得ることができる。
また本発明は上記構成のLEDバックライトにおいて、前記複数のLED光源は、隣り合うLED光源同士の照射領域が重なるようにして配設されていることを特徴としている。この構成によると、隣り合うLED光源からの光を混色して平均化することができ、表示画面上での輝度が均一になり易く、射出光の色度に色むらがさらに発生し難いLEDバックライトとなる。
また本発明は、液晶パネルと請求項10または11に記載されたLEDバックライトを備えた液晶表示装置としたことを特徴としている。この構成によると、個々のLED光源の出光特性のばらつきを抑制し、発光面から射出される射出光の色度に色むらが発生せず、表示画面上での輝度を均一にするLEDバックライトを用いて、表示画面全体の色むらを抑制して表示品位が向上した液晶表示装置を得ることができる。
また本発明は、請求項12に記載された液晶表示装置を備えたTV受信装置としたことを特徴としている。この構成によると、個々のLED光源の出光特性のばらつきを抑制し、発光面から射出される射出光の色度に色むらが発生せず、表示画面上での輝度を均一にするLEDバックライトを用いて、表示画面全体の色むらを抑制して表示品位が向上したTV受信装置を得ることができる。
本発明によれば、直下型のLEDバックライトおよびこのバックライトを備える液晶表示装置において、出光特性のばらつきを抑制可能なLED光源を得ることができ、表示画面上での輝度が均一になり易く、射出光の色度に色むらが発生し難いLEDバックライトを得ることができる。また、このLEDバックライトを用いて、表示画面全体の色むらを抑制して表示品位が向上した液晶表示装置およびTV受信装置を得ることができる。
以下に本発明の実施形態を図面を参照して説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。
本発明に係るLED光源は液晶表示装置の直下型のLEDバックライトに用いる光源であって、液晶パネルの背面に複数のLED光源が配設されている。この本実施形態に係るLED光源1について図1を用いて説明する。
図1に示すLED光源1は、実装基板2(サブマウント基板)にLEDチップ3を搭載し、複数の蛍光体(GF1、GF2、RF)を、シリコーン樹脂やエポキシ樹脂などの透光性を有する透明な封止樹脂4中に所定割合で配合しており、LEDチップ3が発光する第一光と、蛍光体が第一光に励起されて発する第二光とが合成された合成光第三光を射出する光源である。
前記第一光は、例えば、青色光であって、LEDチップ3は、所定の青色光波長の光を発光する青色LEDチップである。また、蛍光体は、例えば、LEDチップ3が発光する青色光を受けて赤色の励起光を発する赤色蛍光体RFと、青色光を受けて緑色の励起光を発する緑色蛍光体GFである。そして、LEDチップ3が発光する第一光である青色と、蛍光体が発する第二光である赤色と青色とを混色して、合成された第三光としての白色光を射出する。
この際に、本実施形態においては、所定色の励起光波長範囲の光を発する蛍光体が、さらに、所定色の励起光波長範囲内の異なる複数の波長の励起光を発する複数種類の蛍光体を有する構成としている。
また、出射面を、出射配光を調整する拡散レンズ状に形成している。そのために、出射面から射出される光の強さを調整して所定範囲に拡散して出射可能となって、隣り合うLED光源同士の発光を混色して平均化することが容易となり、色むらの発生を低減可能なLED光源を得ることができる。
出射面を拡散レンズ状に形成する方法としては、出射面に拡散レンズを取り付ける方法や、封止樹脂4を拡散レンズ状に固化させる方法などがあるが、より簡単な構成で且つ低コストで、色むらの発生を低減可能なLED光源を得るためには、封止樹脂を高拡散角度に発光輝度ピークを有する形状に固化して用いることが好ましい。
そのために、本実施形態において、封止樹脂4は、LEDチップ3の上部が凹状にへこんだ中央凹部41と、その周囲が環状の凸状に突出した環状凸部42を備えた形状に固化されている。このように、封止樹脂4の出射面形状を中央凹部41と環状凸部42を備えた形状とすると、この環状凸部42のレンズ効果によって、射出される光が曲面の曲率に応じた所定の方向に収斂され、所定角度拡散した方向の光強度が強くなる。すなわち、LED光源1は、高拡散角度に発光ピークを有する。
例えば、図中に示す光B1は、中央凹部41を通過するLEDチップ3からの直射光を表しており、光B2、B3、B4は環状凸部42を通過して、該環状凸部42のレンズ効果を受けて所定角度拡散した方向に収斂される拡散光を表している。
そのために、環状凸部42の形状を、所定の拡散方向の光強度を高くする所定の曲率を有する曲面状に形成した形状とすることで、LED光源1から射出される法線方向の光強度が高くなり過ぎず低く抑えることができ、所定角度開いた拡散位置での光強度を強くすることができる。また、それぞれのLED光源から高拡散状態に出射するので、隣り合う複数のLED光源の光を混色して容易に平均化することが可能となる。
上記した構成のLED光源1であれば、図1に示すように、LED光源1から射出される法線方向の光強度H1が低くなり、角度の開いた拡散位置での光強度H2が強くなって、所定の角度に拡散した光を射出可能となる。つまり、上記の構成のLED光源1は拡散型LED光源となる。
例えば、図1に示す形状の拡散型LED光源1であれば、図3の実線で示す発光特性HR1のように、法線方向の光強度が弱く、所定角度開いた拡散位置で発光ピークP1、P2を有する光を射出する。
また、図中の破線で示す発光特性HR2は、後述するLED光源1Aを用いてLED光源の直射方向、つまり、法線方向の光強度を少し強くして小さな第三の発光ピークP3を発揮する例を示す。この発光特性HR2は、前述した中央凹部41と環状凸部42の曲率が、高拡散角度に発光ピークを有し、さらに法線方向にも所定の発光強度を発揮する形状に固化された形状とすることで実現可能である。
この法線方向の光強度を少し強くした変形例について図2を用いて説明する。
図2に示すLED光源1Aは、高拡散角度に発光ピークを有し、さらに法線方向にも所定の発光強度を発揮する形状に固化された中央凹部41Aと環状凸部42Aを備えた点が前述したLED光源1と異なる。その他の構成は同一であるので詳述しない。
この構成でも、環状凸部42Aを通過する光B2、B3、B4は環状凸部42Aのレンズ効果を受けて所定角度拡散した方向に収斂されて強い光強度H2の拡散光を発光する。また、法線方向にも所定の発光強度を発揮するような曲率の中央凹部41Aでは、LEDチップ3からの直射光B1に加えて、法線方向に射出する光B1aが加わり、光強度H1Aを少し強くすることができる。
上記したように、高拡散角度に発光ピークを有し、さらに法線方向にも所定の発光強度を発揮する形状に固化された中央凹部41Aと環状凸部42Aを備えたLED光源1Aであれば、正面輝度が弱くなり過ぎることを抑制して表示画面上での輝度を均一にして表示品位を向上図ることが可能となる。
図3は、図1に示すLED光源1と図2に示すLED光源1Aの発光特性を実測した例であり、横軸に光拡散角度、縦軸に光強度を示している。この図から明らかなように、LED光源1が発揮する発光特性HR1は所定角度開いた拡散位置で発光ピークP1、P2を有する。また、LED光源1Aが発揮する発光特性HR2は所定角度開いた拡散位置での発光ピークP1A、P2Aに加えて、中央部の直射方向に小さな第三の発光ピークP3を有する。
また、第三の発光ピークP3を設ける構成とすると、少し光強度が低下した光量低下部D1、D2が生成される。そのために、中央凹部41と環状凸部42の曲率を変えることで、LED光源の直射方向、および、この近辺の光強度をも調整可能となる。
このように、中央凹部41を設けてLED光源直射方向の光強度を抑制することも、所定の曲率の環状凸部42を設けて、所定角度拡散した方向の光強度を強くすることも、中央凹部41と環状凸部42の曲率を変えてLED光源1の直射方向の光強度を少し強くするなど、封止樹脂4の固化形状を調整することで、出射配光を調整して任意の方向の光強度を強くすることができ、所望の方向に所望の光強度で射出可能となる。
また、本実施形態で使用している蛍光体は、例えば、LEDチップ3が発光する青色光を受けて赤色の励起光を発する赤色蛍光体RFと、青色光を受けて緑色の励起光を発する緑色蛍光体GFである。また、この緑色蛍光体GFとして、異なる波長の緑色を発する複数の緑色蛍光体(例えば、第一緑色蛍光体GF1、第二緑色蛍光体GF2の二種類)を配合している。この構成であれば、緑色の発光波長領域の広範囲に亘る発光特性を有する構成となって、LED出光特性に色依存性があっても、バックライト全体の色むらを抑制し発光色の色再現範囲を安定させることが可能となる。
例えば、図4に示すように、約540nm付近に発光ピークを有する発光特性GK1を発揮する蛍光体(例えば、第一緑色蛍光体GF1)と、約530nm付近に発光ピークを有する発光特性GK2を発揮する蛍光体(例えば、第二緑色蛍光体GF2)とを混合して使用する。
すると、第一緑色蛍光体GF1と第二緑色蛍光体GF2とを混合した緑色蛍光体GFは、発光特性GK(GK1+GK2)を発揮して、緑色の発光波長領域の広範囲に亘る発光特性を示すことになる。このように、異なる発光ピークを有する二種類の緑色蛍光体を配合することで、緑色の発光波長領域内の広範囲の発光特性を発揮して、バックライト全体の色むらを抑制し発光色の色再現範囲を安定させることが可能となる。
この緑色蛍光体GFは、青色光を受けて緑色の波長領域の光を発光する蛍光体であればよく、シリケート系の蛍光体でも、硫化物系の蛍光体でも、窒化物系の蛍光体でもよく、特にその成分は限定されない。
また、この配合する同一の発光波長領域内の蛍光体の種類は、上記した二種類に限定されず、二種以上の複数種、例えば三種の蛍光体を配合する構成としてもよい。このように、多種類の緑色蛍光体を配合することで、バックライト全体の色むらをさらに抑制し発光色の色再現範囲を安定させることが可能となる。
また、蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体RFと、青色光を受けて緑色の励起光を発する緑色蛍光体GFであるときに、この赤色蛍光体RFが、異なる発光ピーク波長の赤色を発する複数の赤色蛍光体を備えていてもよい。
例えば、約620nm付近に発光ピークを有する第一赤色蛍光体と、約640nm付近に発光ピークを有する第二赤色蛍光体とを混合して使用する。この構成であれば、赤色の発光波長領域において複数の発光ピークを有する構成となって、赤色の発光波長領域の広範囲に亘る発光特性を有する構成なる。そのために、LED出光特性に色依存性があっても、バックライト全体の色むらを抑制し発光色の色再現範囲を安定させることが可能となる。
この場合でも、赤色蛍光体RFは、二種以上の互いに励起波長が異なる複数種類の赤色蛍光体を混合してもよい。また、この赤色蛍光体RFは、青色光を受けて赤色の波長領域の光を発光する蛍光体であればよく、前述した緑色蛍光体GFと同様に、シリケート系の蛍光体でも、硫化物系の蛍光体でも、窒化物系の蛍光体でもよく、特にその成分は限定されない。
また、蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であるときに、この赤色蛍光体が、異なる波長の赤色を発する複数の赤色蛍光体を備え、さらに、緑色蛍光体が、異なる波長の緑色を発する複数の緑色蛍光体を備えていてもよい。このような構成であれば、赤色および緑色の発光波長領域においてそれぞれ複数の発光ピークを有する構成となって、複数の発光波長領域の広範囲に亘る発光特性を有する構成なる。そのために、LED出光特性に色依存性があっても、バックライト全体の色むらをさらに抑制し、発光色の色再現範囲をさらに安定させることが可能となる。
また、蛍光体が、青色光を受けて黄色の励起光を発する黄色蛍光体であって、青色LEDチップ3が発光する青色と蛍光体が発する黄色とで白色を合成する構成であってもよく、この場合には、黄色蛍光体が、異なる波長の黄色を発する複数の黄色蛍光体を備えた構成とする。この構成であれば、黄色の発光波長領域において複数の発光ピークを有して、広範囲に亘る発光特性を有する構成なる。そのために、LED出光特性に色依存性があっても、バックライト全体の色むらをさらに抑制し、発光色の色再現範囲をさらに安定させることが可能となる。
この黄色蛍光体は、青色光を受けて黄色の波長領域の光を発光する蛍光体であればよく、YAG系蛍光体でも、その他の酸化物系の蛍光体でも、硫化物系の蛍光体でも、窒化物系の蛍光体でもよく、特にその成分は限定されない。
本実施形態のLED光源1、1Aは、出射配光を調整する拡散レンズ状の出射面を備えて高拡散タイプの発光特性を有すると共に、同色の発光波長領域内において異なる発光ピークを有する複数の蛍光体を配合する構成とすることで、色再現性の自由度を広げることが可能となる。そのために、このLED光源を用いたLEDバックライトは、個々のLED光源の出光特性のばらつきを抑制し、発光面から射出される射出光の色度に色むらが発生しないLEDバックライトとなる。
次に、図5を用いて、高拡散タイプとしたLED光源について、また、本実施形態に係るLEDバックライトについて説明する。
図中の1a、1b、1cは高拡散タイプでない標準タイプのLED光源を示す。また、破線で囲んだ領域A1はLED光源1aの照射領域であり、A2はLED光源1bの照射領域であり、A3はLED光源1cの照射領域である。
また、1A、1B、1Cは、それぞれ高拡散タイプのLED光源を示し、B1はLED光源1Aの照射領域であり、B2はLED光源1Bの照射領域であり、B3はLED光源1Cの照射領域である。例えば、図中の太い破線で囲んだLED光源1Bの照射領域B2のように、両隣のLED光源1A、1Cの部位まで拡散する高拡散タイプとされている。この状態であれば、LED光源1Bからの出射光は、LED光源1A、およびLED光源1Cから出射される光と混色される構成となる。
そのために、高拡散タイプのLED光源1A、1B、1Cを、隣り合うLED光源同士の照射領域が重なるようにして複数のLED光源を配設したLEDバックライトBL1とすることで、隣り合うLED光源からの光を混色して平均化することができ、表示画面上での輝度が均一になり易く、射出光の色度に色むらがさらに発生し難いLEDバックライトとなる。
上記したように、それぞれのLED光源において、同色の発光波長領域内において異なる発光ピークを有する複数の蛍光体を配合する構成とすることで、色むらを個別に低減することに加えて、隣り合う光源の光を混色することで、色むらの低減をさらに促進して、バックライト発光色の均一化を図ることが可能となる。
そのために、本実施形態によれば、あるエリアの輝度ムラを複数個のLED光源の発光の重ね合わせで作成することから、LED光源の出光特性に色依存性があっても、LEDバックライト全体としての色むらを効果的に抑制することが可能である。
次に、本実施形態に係るLED光源を備えたLEDバックライトBL1、および、このLEDバックライトBL1を備えた液晶表示装置10について図6を用いてさらに説明する。図に示すように、液晶表示装置10は、複数のLED光源1を基板5に所定ピッチで搭載したLEDバックライトBL1と拡散板6とレンズシート7と液晶パネル8を枠体11に一体に組み付けた構成とされている。
拡散板6およびレンズシート7は、入射される光を拡散して均一にすると共に輝度を高めるための薄板状、または、フィルム状の光学部材であって、LED光源1が発光する光を拡散させて、液晶パネル8の全域に光をいきわたらせる機能を有する。
液晶パネル8は、二枚の透明なガラス基板の間に液晶材料をサンドイッチ状に封入し、カラーフィルタや偏光フィルタを積層した構成であって、格子状に形成されるスイッチング素子を介して格子状に多数の画素を形成し、各スイッチング素子に供給する電圧を変化して液晶配向を変化させ、各画素の透過する光の量を制御して、液晶パネル8の上面に所定の画像を表示する構成とされている。
液晶パネル8は非発光型の表示パネルであるので、バックライトからの光(バックライト光)を受光することで表示機能を発揮する。そのために、LEDバックライトBL1からの光が液晶パネル8の全面を色むらなく均一に照射できれば、液晶表示装置10の表示品位が向上する。
それぞれが点光源であるLED光源からの光を、拡散板6とレンズシート7を介して、光を拡散して均一にして輝度を高めて液晶パネル8に照射する構成ではあるが、直下型のLEDバックライトにおいて、それぞれのLED光源の照射領域が隣り合うLED光源の照射領域と重なっていなく、混色しない構成であれば、それぞれのLED光源の色合いに起因する色むらが生じる場合がある。
しかし、本実施形態のように、それぞれのLED光源を高拡散タイプとし、さらに、それぞれの色合いを発する蛍光体を、所定の色の励起光波長範囲内の異なる複数の波長の励起光を発する複数種類の蛍光体を配合する簡単な構成とすることで、それぞれのLED光源の出光特性のばらつきを抑制可能となる。また、隣り合うLED光源の照射領域を重ならせることで容易に混色し平均化して、表示画面全体としての色むらの発生を抑制可能なLEDバックライトとなる。そのために、本実施形態によれば、色むらが発生し難くなって、表示画面上での輝度が均一になり易く、表示画面全体の色むらを抑制して表示品位が向上した液晶表示装置を得ることができる。
そのために、この液晶表示装置を備えたテレビ受信装置であれば、個々のLED光源の出光特性のばらつきを抑制し、発光面から射出される射出光の色度に色むらが発生せず、表示画面上での輝度を均一にするLEDバックライトを用いて、表示画面全体の色むらを抑制して表示品位が向上したTV受信装置を得ることができる。
上記したように、本発明に係るLED光源は、簡単な構成で、個々のLED光源の出光特性のばらつきを抑制可能となる。また、このLED光源を備えた直下型のLEDバックライトは、LED光源からの光を混色して平均化することができ、表示画面上での輝度が均一になり易く、射出光の色度に色むらがさらに発生し難いLEDバックライトとなる。
そのために、本発明に係るLEDバックライトは、より簡単な構成で、個々のLED光源の出光特性のばらつきを抑制し、発光面から射出される射出光の色度に色むらが発生しないLEDバックライトとなる。
また、本発明に係る液晶表示装置およびTV受信装置は、このLEDバックライトを用いて、表示画面全体の色むらを抑制して表示品位が向上した液晶表示装置およびTV受信装置となる。
そのために、本発明に係るLED光源およびLEDバックライトは、画面の色むらを低減し、発光輝度を安定させて画質の向上を図ることが求められる液晶表示装置やTV受信装置のLEDバックライトに好適に利用可能となる。
1 LED光源
2 実装基板
3 LEDチップ
4 封止樹脂
41、41A 中央凹部
42、42A 環状凸部
5 基板
6 拡散板
8 液晶パネル
10 液晶表示装置
BL1 LEDバックライト
GF 緑色蛍光体
GF1 第一緑色蛍光体
GF2 第二緑色蛍光体
RF 赤色蛍光体
P1、P2 発光ピーク
P3 第三の発光ピーク
2 実装基板
3 LEDチップ
4 封止樹脂
41、41A 中央凹部
42、42A 環状凸部
5 基板
6 拡散板
8 液晶パネル
10 液晶表示装置
BL1 LEDバックライト
GF 緑色蛍光体
GF1 第一緑色蛍光体
GF2 第二緑色蛍光体
RF 赤色蛍光体
P1、P2 発光ピーク
P3 第三の発光ピーク
Claims (13)
- 所定の色の第一光で発光するLEDチップと、該LEDチップを実装する実装基板と、前記LEDチップからの光を受けて所定色の励起光波長範囲の第二光を発する蛍光体が配合された封止樹脂を備え、出射面から前記第一光と前記第二光とを混色した第三光を発光するLED光源であって、
前記蛍光体は、前記所定色の励起光波長範囲内の異なる複数の波長の励起光を発する複数種類の蛍光体を有し、
前記出射面は、出射配光を調整する拡散レンズ部状に形成されていることを特徴とするLED光源。 - 前記封止樹脂が高拡散角度に発光ピークを有する形状に固化されて前記拡散レンズ部を形成していることを特徴とする請求項1に記載のLED光源。
- 前記第一光が青色光で、前記LEDチップが青色光を発光する青色LEDチップであって、前記第二光が赤色光および緑色光で、前記蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であり、この緑色蛍光体が、異なる波長の緑色を発する複数の緑色蛍光体を備えていることを特徴とする請求項1または2に記載のLED光源。
- 前記緑色蛍光体が、互いに励起波長が異なる第一緑色蛍光体と第二緑色蛍光体からなることを特徴とする請求項3に記載のLED光源。
- 前記第一光が青色光で、前記LEDチップが青色光を発光する青色LEDチップであって、前記第二光が赤色光および緑色光で、前記蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であり、この赤色蛍光体が、異なる波長の赤色を発する複数の赤色蛍光体を備えていることを特徴とする請求項1または2に記載のLED光源。
- 前記赤色蛍光体が、互いに励起波長が異なる第一赤色蛍光体と第二赤色蛍光体からなることを特徴とする請求項5に記載のLED光源。
- 前記第一光が青色光で、前記LEDチップが青色光を発光する青色LEDチップであって、前記第二光が赤色光および緑色光で、前記蛍光体が、青色光を受けて赤色の励起光を発する赤色蛍光体と、青色光を受けて緑色の励起光を発する緑色蛍光体であり、前記赤色蛍光体が、異なる波長の赤色を発する複数の赤色蛍光体を備え、前記緑色蛍光体が、異なる波長の緑色を発する複数の緑色蛍光体を備えていることを特徴とする請求項1または2に記載のLED光源。
- 前記封止樹脂の固化形状は、前記LEDチップの上部が凹状にへこんだ中央凹部と、その周囲を環状の凸状に突出して、所定の拡散方向の光強度を高くする所定の曲率を有する曲面状に形成した環状凸部を備える形状であることを特徴とする請求項2から7のいずれかに記載のLED光源。
- 前記中央凹部と前記環状凸部の曲率が、高拡散角度に発光ピークを有し、さらに法線方向にも所定の発光強度を発揮する形状に固化されていることを特徴とする請求項8に記載のLED光源。
- 液晶パネルの背面に設置される複数のLED光源から前記液晶パネルに光を照射する直下型のLEDバックライトにおいて、前記LED光源として請求項1から9のいずれかに記載されたLED光源を備えたことを特徴とするLEDバックライト。
- 前記複数のLED光源は、隣り合うLED光源同士の照射領域が重なるようにして配設されていることを特徴とする請求項10に記載のLEDバックライト。
- 液晶パネルと請求項10または11に記載されたLEDバックライトを備えたことを特徴とする液晶表示装置。
- 請求項12に記載された液晶表示装置を備えたことを特徴とするTV受信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/699,469 US20130070168A1 (en) | 2010-05-26 | 2011-02-04 | Led light source, led backlight, liquid crystal display device and tv reception device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-120427 | 2010-05-26 | ||
JP2010120427 | 2010-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148674A1 true WO2011148674A1 (ja) | 2011-12-01 |
Family
ID=45003669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052350 WO2011148674A1 (ja) | 2010-05-26 | 2011-02-04 | Led光源、ledバックライト、液晶表示装置およびtv受信装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20130070168A1 (ja) |
WO (1) | WO2011148674A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150116984A1 (en) * | 2013-10-28 | 2015-04-30 | Hon Hai Precision Industry Co., Ltd. | Lens with light-diffusion capping layers and backlight module incorporating the same |
CN105042342A (zh) * | 2015-05-26 | 2015-11-11 | 湖北菲戈特医疗科技有限公司 | 防眩光可视手术室无影灯系统 |
JP2017090625A (ja) * | 2015-11-09 | 2017-05-25 | 日本碍子株式会社 | 光学部品及びその製造方法 |
JP2018056140A (ja) * | 2013-03-04 | 2018-04-05 | シチズン電子株式会社 | 発光装置及び発光装置の製造方法 |
JP2018166199A (ja) * | 2017-03-28 | 2018-10-25 | 株式会社朝日ラバー | 疑似白色系led装置及びシリコーンキャップ |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10656319B2 (en) * | 2013-02-28 | 2020-05-19 | Ns Materials Inc. | Liquid crystal display device |
JP2015050207A (ja) * | 2013-08-29 | 2015-03-16 | 東芝ライテック株式会社 | 発光モジュールおよび照明装置 |
KR102320143B1 (ko) | 2015-02-13 | 2021-11-02 | 삼성디스플레이 주식회사 | 표시장치 |
US20190361294A1 (en) * | 2018-05-22 | 2019-11-28 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Planar backlight module and lcd panel |
CN109270735B (zh) * | 2018-10-25 | 2021-08-17 | 厦门天马微电子有限公司 | 一种背光模组及显示装置 |
CN111341765A (zh) * | 2018-12-18 | 2020-06-26 | 深圳Tcl新技术有限公司 | 一种背光模组 |
TWI728873B (zh) * | 2020-07-21 | 2021-05-21 | 隆達電子股份有限公司 | 發光二極體裝置 |
US11294238B1 (en) | 2020-10-29 | 2022-04-05 | Lextar Electronics Corporation | Low blue light backlight module |
KR20220081845A (ko) * | 2020-12-09 | 2022-06-16 | 엘지디스플레이 주식회사 | 발광 표시 장치 |
CN115171549B (zh) * | 2022-06-29 | 2023-12-22 | 上海勤宽科技有限公司 | 基于Mini LED的VR显示屏及VR设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006278675A (ja) * | 2005-03-29 | 2006-10-12 | Toshiba Corp | 半導体発光装置 |
JP2007049019A (ja) * | 2005-08-11 | 2007-02-22 | Koha Co Ltd | 発光装置 |
JP2007180377A (ja) * | 2005-12-28 | 2007-07-12 | Sharp Corp | 発光装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2262006A3 (en) * | 2003-02-26 | 2012-03-21 | Cree, Inc. | Composite white light source and method for fabricating |
US7152988B2 (en) * | 2004-03-30 | 2006-12-26 | Chi Mei Optoelectronics Corp. | Direct point-light type backlight module and liquid crystal display using the same |
JP3875247B2 (ja) * | 2004-09-27 | 2007-01-31 | 株式会社エンプラス | 発光装置、面光源装置、表示装置及び光束制御部材 |
KR20060030350A (ko) * | 2004-10-05 | 2006-04-10 | 삼성전자주식회사 | 백색광 발생 유닛, 이를 갖는 백라이트 어셈블리 및 이를갖는 액정표시장치 |
KR101214934B1 (ko) * | 2005-01-27 | 2012-12-24 | 삼성디스플레이 주식회사 | 광학 렌즈, 이를 갖는 광학 모듈, 이를 갖는 백라이트어셈블리 및 이를 갖는 표시장치 |
US8310146B2 (en) * | 2005-10-27 | 2012-11-13 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, liquid crystal display and illuminating device |
JP4863357B2 (ja) * | 2006-01-24 | 2012-01-25 | 株式会社エンプラス | 発光装置、面光源装置、表示装置及び光束制御部材 |
TW200807096A (en) * | 2006-07-25 | 2008-02-01 | Coretronic Corp | Direct lighting device |
WO2008129998A1 (ja) * | 2007-04-20 | 2008-10-30 | Sharp Kabushiki Kaisha | 照明装置およびこれを備えた表示装置 |
KR101343390B1 (ko) * | 2007-06-12 | 2013-12-19 | 엘지디스플레이 주식회사 | 확산판을 포함하는 백라이트 유닛 및 이를 이용한액정표시장치 |
JP5077942B2 (ja) * | 2007-11-07 | 2012-11-21 | 株式会社エンプラス | 発光装置、面光源装置、及び表示装置 |
JP2009283438A (ja) * | 2007-12-07 | 2009-12-03 | Sony Corp | 照明装置、表示装置、照明装置の製造方法 |
KR101064036B1 (ko) * | 2010-06-01 | 2011-09-08 | 엘지이노텍 주식회사 | 발광 소자 패키지 및 조명 시스템 |
-
2011
- 2011-02-04 US US13/699,469 patent/US20130070168A1/en not_active Abandoned
- 2011-02-04 WO PCT/JP2011/052350 patent/WO2011148674A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006278675A (ja) * | 2005-03-29 | 2006-10-12 | Toshiba Corp | 半導体発光装置 |
JP2007049019A (ja) * | 2005-08-11 | 2007-02-22 | Koha Co Ltd | 発光装置 |
JP2007180377A (ja) * | 2005-12-28 | 2007-07-12 | Sharp Corp | 発光装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018056140A (ja) * | 2013-03-04 | 2018-04-05 | シチズン電子株式会社 | 発光装置及び発光装置の製造方法 |
US20150116984A1 (en) * | 2013-10-28 | 2015-04-30 | Hon Hai Precision Industry Co., Ltd. | Lens with light-diffusion capping layers and backlight module incorporating the same |
US9323095B2 (en) * | 2013-10-28 | 2016-04-26 | Hon Hai Precision Industry Co., Ltd. | Lens with light-diffusion capping layers and backlight module incorporating the same |
CN105042342A (zh) * | 2015-05-26 | 2015-11-11 | 湖北菲戈特医疗科技有限公司 | 防眩光可视手术室无影灯系统 |
JP2017090625A (ja) * | 2015-11-09 | 2017-05-25 | 日本碍子株式会社 | 光学部品及びその製造方法 |
JP2018166199A (ja) * | 2017-03-28 | 2018-10-25 | 株式会社朝日ラバー | 疑似白色系led装置及びシリコーンキャップ |
Also Published As
Publication number | Publication date |
---|---|
US20130070168A1 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011148674A1 (ja) | Led光源、ledバックライト、液晶表示装置およびtv受信装置 | |
KR101370372B1 (ko) | 조명 시스템 및 표시 디바이스 | |
USRE47887E1 (en) | Laser illuminated backlight for flat panel displays | |
TWI455374B (zh) | 白光發光二極體模組 | |
KR101460155B1 (ko) | 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치 | |
US8896767B2 (en) | Illumination device, display device, television receiving device | |
KR20060006727A (ko) | 발광 다이오드 및 발광 다이오드를 구비하는 백라이트 모듈 | |
CN102812395B (zh) | 显示装置和电视接收装置 | |
EP1708285A2 (en) | Light-emitting diode device and backlight apparatus and liquid-crystal display apparatus using light-emitting diode device | |
CN103629627A (zh) | 纳米磷光体片及背光装置 | |
JP2006252958A (ja) | 照明装置、及びこれを備えた液晶表示装置 | |
CN101405646A (zh) | 用于背光的具有荧光体片的白光led | |
JP2016070975A (ja) | 液晶表示装置用バックライトユニット及びこれを用いた液晶表示装置 | |
JP5220381B2 (ja) | 面状照明装置 | |
JP2006236701A (ja) | バックライト装置及び液晶表示装置 | |
US20130002963A1 (en) | Display device and television receiver | |
JP2011003488A (ja) | 面光源および液晶表示装置 | |
TWI539621B (zh) | Led封裝件及具有其之背光單元 | |
JP2006284906A (ja) | バックライト装置及び液晶表示装置 | |
US20080273141A1 (en) | Light-Emitting Diode Package | |
TW200938910A (en) | Backlight module containing a fine-tuning chromaticity function | |
JP5444919B2 (ja) | 照明装置、及び液晶表示装置 | |
JP2007073639A (ja) | 光源装置、表示装置 | |
GB2467664A (en) | Backlight assembly | |
WO2010112979A1 (en) | Backlight for a liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786374 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13699469 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11786374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |