WO2011148415A1 - 放電表面処理用電極及び放電表面処理皮膜 - Google Patents
放電表面処理用電極及び放電表面処理皮膜 Download PDFInfo
- Publication number
- WO2011148415A1 WO2011148415A1 PCT/JP2010/003524 JP2010003524W WO2011148415A1 WO 2011148415 A1 WO2011148415 A1 WO 2011148415A1 JP 2010003524 W JP2010003524 W JP 2010003524W WO 2011148415 A1 WO2011148415 A1 WO 2011148415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- film
- tic
- surface treatment
- powder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
Definitions
- the present invention uses a green compact obtained by compression molding a hard material powder as an electrode to generate a pulsed discharge between the electrode and the substrate, and the energy causes the electrode material or electrode material to discharge on the substrate surface.
- the present invention relates to a discharge surface treatment for forming a film made of a substance that reacts with energy.
- Japanese Patent Application Laid-Open No. 2005-21355 discloses a dense and relatively thick (on the order of 100 ⁇ m) surface treatment method that requires strength and lubricity in a high temperature environment.
- 1.5 to 5.0 wt% Si or 1.0 to 4.5 wt% B is mixed in the electrode, so that oxygen atoms in the film are removed by Si and B, and unnecessary oxygen atoms in the film disappear.
- This is a method of forming a dense and strong film by improving the adhesion between the powder materials.
- the surface of the discharge surface treatment is very hard at around 1700-2500 HV, but the surface roughness is a little as high as 6-12 ⁇ mRz, and it is smoother and harder for applications that require good surface roughness. There is a need for film formation.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a discharge surface treatment method capable of forming a smooth and high-hardness film.
- the discharge surface treatment electrode according to the present invention uses a green compact obtained by compression-molding a powder of an electrode material as an electrode to generate a pulsed discharge between the electrode and the substrate in the working fluid or in the air, and the energy
- a green compact obtained by compression-molding a powder of an electrode material as an electrode to generate a pulsed discharge between the electrode and the substrate in the working fluid or in the air, and the energy
- the discharge surface treatment electrode used for the discharge surface treatment for forming a film made of a material in which the electrode material or the electrode material reacts with the discharge energy on the substrate surface as the electrode material powder, the hard material powder, A mixed powder in which 10 to 75% by volume of Si powder is mixed is used.
- a smooth and high hardness film can be formed.
- Embodiment 1 FIG. 1
- TiC powder will be described as the hard material powder.
- An electrode for discharge surface treatment is created using a TiC + Si mixed powder in which the ratio of TiC powder and Si powder is changed little by little, and a voltage is applied between the electrode and the material to be processed (base material) for discharge. To form a film on the substrate.
- TiC powder having an average particle diameter of 5 ⁇ m or an average particle diameter of 1.3 ⁇ m and Si powder having an average particle diameter of 5 ⁇ m are used.
- FIG. 1 shows the relationship between the Si mixture ratio (wt%) to the electrode and the surface roughness of the film.
- FIG. 2 shows the relationship between the Si mixing ratio (wt%) to the electrode and the hardness of the film.
- the surface roughness of the film gradually decreases, so by using an electrode in which the Si weight ratio in the electrode is arbitrarily changed, The surface roughness of the film can be arbitrarily controlled between 2 and 6 ⁇ m Rz. Further, as Si is further mixed into the electrode as shown in FIG. 2, the film hardness gradually decreases. Therefore, by arbitrarily changing the Si weight ratio in the electrode, the film hardness can be increased to 800. Can be controlled arbitrarily between -1700HV.
- the method for measuring the surface roughness used in the present embodiment is as follows.
- the measuring apparatus used was a foam holyson made by Taylor Hobson, and was measured with a standard stylus with a measurement length of 4.8 mm, a high-frequency cut op length of 0.8 mm, a bandwidth ratio of 100: 1, and a filter type of Gaussian.
- the measured value was based on JIS B0601: 2001.
- the film hardness was measured from the film surface direction, and the measurement load was 10 gf.
- the measuring device is a micro hardness tester manufactured by Shimadzu Corporation.
- the Si concentration of the film treated with carbon steel S45C was measured with a TiC + Si electrode prepared by changing the ratio of TiC powder and Si powder
- the relationship between the Si weight ratio in the electrode and the Si concentration of the film was measured. Is as shown in FIG.
- the Si amount referred to here is a value measured from the film surface direction by energy dispersive X-ray spectroscopy (EDX), and the measurement conditions are an acceleration voltage of 15.0 kV and an irradiation current of 1.0 nA.
- the mechanism by which the rise of each discharge trace is reduced by increasing the Si concentration contained in the coating is considered as follows. That is, since Si has a smaller viscosity than other metals (0.94 mN ⁇ s / m 2 ), when Si is mixed, the electrode material melted by the discharge moves to the base material and solidifies. The increase in the Si concentration in the molten part decreases the viscosity of the molten part, and solidifies while spreading more flatly.
- FIG. 9 shows XRD diffraction measurement results of a film formed with a TiC + Si (8: 2) electrode, a TiC + Si (7: 3) electrode, and a TiC + Si (5: 5) electrode.
- FIG. 10 shows the relationship between the Si mixture ratio to the electrode and the Ti concentration of the film.
- FIG. 11 summarizes the effects of increasing the Si concentration of the film by mixing Si with the electrode. That is, when the Si mixture ratio to the electrode is small, the melted part (film) by the discharge surface treatment has a lot of defects such as cracks, and the discharge marks are greatly raised. On the other hand, as the Si mixing ratio increases, defects such as cracks decrease, and the rise of each discharge trace decreases.
- the film is in the form of a film in which the simple substance of Si and the base material component form an alloy or are in an amorphous state, and TiC is dispersed therein. Yes.
- the coating has diffused to a position lower than the base material height.
- the film is about 5 to 20 ⁇ m in total including the diffusion part.
- each film was evaluated for erosion resistance with respect to the film treated with the TiC + Si electrode prepared by mixing the TiC powder and the Si powder while changing the ratio little by little.
- the base material was SUS630 (H1075).
- the erosion resistance was evaluated by applying a water jet to the film. Note that erosion resistance is generally said to have a strong correlation with hardness. On the other hand, there are many points that cannot be explained only by hardness, and as a factor other than hardness, the surface properties are affected, and it has been found that a smooth surface is more resistant to erosion than a rough surface. ing.
- FIG. 12 is a diagram showing the relationship between the Si mixture ratio to the electrode and the erosion resistance. When 20% by weight or more is mixed, there is no variation in evaluation, and the state of high erosion resistance is shown. Yes.
- each film was evaluated for corrosion resistance.
- the base material was SUS316. It is known that high corrosion resistance can be obtained with the film treated with the Si electrode, but the film treated with the electrode mixed with 5% by weight or more of Si in the TiC electrode has high corrosion resistance. In addition, when the weight was about 5% by weight, there were some defects on the surface, and the evaluation was not uniform. Therefore, if the mixing ratio is further increased, a sufficient effect can be imparted at 10% by weight or more, and more desirably 20% by weight or more should be mixed. When 20% by weight or more was mixed, the evaluation had no variation and had high corrosion resistance.
- FIG. 14 is a diagram schematically showing the relationship between the Si mixture ratio to the electrode and the corrosion resistance.
- the surface state of a film treated with a TiC + Si (8: 2) electrode, a TiC + Si (7: 3) electrode, and a TiC + Si (5: 5) electrode after immersion in a corrosive solution: aqua regia for 1 hour is observed.
- the results are shown in FIG.
- the results are also shown for only the base material, the film with the TiC electrode, and the film with the Si electrode. Corrosion is greatly caused only by the base material, and the surface treated with the TiC electrode is also corroded.
- the horizontal axis indicates the Si mixing ratio (weight ratio) in the discharge surface treatment electrode
- the vertical axis indicates the film characteristics (surface roughness, hardness) obtained by processing with the electrode.
- Erosion resistance, corrosion resistance is as shown in FIG. That is, when the Si mixing ratio is 5 to 60% by weight, the film is smooth and high in hardness, and a film having higher erosion resistance and corrosion resistance can be formed. When the Si mixing ratio is 5% by weight or less, the surface roughness is the same as that of the film on the TiC electrode, and sufficient erosion resistance and corrosion resistance cannot be obtained. Further, when the Si weight ratio is 60% by weight or more, the hardness is about the same as the film on the Si electrode, and the other characteristics are about the same as the film on the Si electrode, or particularly inferior in terms of surface roughness. .
- the Si concentration, the TiC concentration, and the base material of the film treated on the carbon steel S45C with the TiC + Si electrode prepared by mixing the Si powder by changing the ratio little by little to the TiC powder The (Fe) concentration is as shown in FIG. As described above, when the Si mixing ratio is 5 to 60% by weight, the concentration of each component of the coating film formed on the carbon steel S45C using this electrode is smooth and hard, and has higher erosion resistance and corrosion resistance.
- the Si concentration was 1 to 11% by weight
- the TiC concentration was 10 to 75% by weight
- the base component (Fe) concentration was 20 to 90% by weight.
- Si is used as the material to be mixed, but the same effect can be obtained even if metal powder having a low viscosity is mixed.
- a material having a low viscosity for example, K, Li, Na, Ge, Ca, Mg, Al, P, Bi, Sn, In, or the like may be used instead of Si.
- TiC and Si are mixed at a constant weight ratio in a powder state, but even if a discharge surface treatment electrode is manufactured using a powder containing TiC and Si at a constant ratio in advance. Good. In that case, TiC and Si can be mixed uniformly, which is more desirable.
- the Fe-based material is used as the base material, but the same effect can be obtained with other materials.
- the same effect can be obtained even when the base material is a Ni-based alloy or Co-based alloy whose heat-resistant alloy is used.
- the coating with the TiC electrode tends to have a larger surface roughness than when the base material is Fe group, but the same effect is obtained when using the TiC + Si electrode. Is obtained.
- Japanese Patent Laid-Open No. 56-51543 discloses an invention for adding Si to an electrode material.
- This is an invention related to an electrode for ordinary electric discharge machining, and is intended to increase the machining speed, and forms a hard material film.
- this is an invention in a field different from the present invention in which Si is mixed so as to reduce the viscosity by smoothing the coating.
- Japanese Patent Application Laid-Open No. 2005-21355 establishes a surface treatment method for a dense and relatively thick film (metal material on the order of 100 ⁇ m or more) without pores, which requires strength and lubricity in a high temperature environment.
- an electrode for discharge surface treatment containing 1.0 to 4.5% by weight of B (boron) or 1.5 to 5.0% by weight of Si (silicon) for depriving oxygen atoms is disclosed as an electrode material.
- the purpose of the present invention is to establish a surface treatment method for a 5 to 20 ⁇ m film of a hard material having a smooth and high hardness, and the weight ratio of Si mixing is about 5 to 60% by weight, which is different from the above publication. It is a field invention.
- the discharge surface treatment electrode according to the present invention is suitable for use in discharge surface treatment work on a mold, a steam turbine, or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
この技術は、金属炭化物の粉末であるTiC粉末と金属水素化物の粉末であるTiH2粉末とを混合し、圧縮成形後に加熱処理を行い、前記TiH2粉末中の水素を放出させて、Ti粉末とし、適度な強度及び崩れやすさ並びに安全性を持った実用的な放電表面処理用電極を製造する方法である。
この技術は、電極中に1.5~5.0重量%のSi、或いは1.0~4.5重量%のBを混入することで、皮膜中の酸素原子をSiやBが奪い、皮膜中の不要な酸素原子がなくなり、粉末材料同士の密着がよくなることで、緻密で強固な皮膜を形成する方法である。
一方、放電表面処理面の硬さは1700~2500HV程度で非常に硬質であるが、面粗さは6~12μmRzとやや大きく、良好な面粗さが必要とされる用途では、より平滑な硬質皮膜の形成が求められている。
実施の形態1.
TiC粉とSi粉とを割合を少しずつ変化させて混合したTiC+Si混合粉を用いて放電表面処理用電極を作成し、電極と被処理材(基材)との間に電圧を印加して放電を発生させ、基材に皮膜を形成する。
なお、本実施の形態では、平均粒径5μm或いは平均粒径1.3μmのTiC粉、平均粒径5μmのSi粉を用いた。
TiC粉に混合するSi粉の割合を変化させて作成したTiC+Si電極で炭素鋼S45Cに処理した皮膜の面粗さを測定した結果、電極へのSi混合比が大きくなるほど、皮膜の面粗さは小さくなっている。
なお、本実施の形態では、皮膜の面粗さは2~6μmRzの範囲で変化している。
TiC粉に混合するSi粉の割合を変化させて作成したTiC+Si電極で炭素鋼S45Cに処理した皮膜の硬さを測定した結果、Si混合比が60重量%以下では、電極へのSi混合比が大きくなるほど、皮膜の硬さは小さくなっている。
また、Si混合比が60重量%以上では皮膜の硬さはほとんど変わっていない。
なお、本実施の形態では、皮膜の硬さは800~1700HVの範囲で変化している。
また、図2のように電極にSiをより混入しておくほど、皮膜硬さは徐々に小さくなっていくため、電極中のSi重量比を任意に変化させることで、皮膜の硬さを800~1700HVの間で任意にコントロールできる。
測定装置はTaylor Hobson製フォームタリサーフを用い、スタンダードのスタイラスで、測定長さを4.8mm、高域カットオプ長0.8mm、バンド幅比100:1、フィルタタイプをガウシアンとして測定した。測定した値はJISのB0601:2001に準拠した。
測定装置は島津製作所製微小硬度計である。
電極内のSi重量比が大きくなると、皮膜のSi濃度も大きくなっている。
なお、ここで言うSi量は、エネルギー分散型X線分光分析法(EDX)により、皮膜表面方向から測定した値であり、測定条件は、加速電圧15.0kV,照射電流1.0nAである。
その結果、Si濃度が大きくなるにつれて、皮膜にクラックなどの欠陥が少なくなり、また放電痕一つ一つの盛り上がりが小さくなっていることが観察された。
図4で示されるTiC電極での処理面では、クラック(図における黒い線)などの欠陥が非常に多く、放電痕一つ一つの盛り上がりが大きい点が観察される。
一方、図5~7に示されるTiC+Si(8:2)電極、TiC+Si(7:3)電極、TiC+Si(5:5)電極の順に、処理面にクラックなどの欠陥は少なくなり、放電痕一つ一つの盛り上がりが小さくなる点が観察される。
なお、比較として図8に示されるSi電極での処理面では、クラックなどの欠陥は全く見られず、放電痕一つ一つの盛り上がりが非常に小さいことが観察できる。
すなわち、Siは粘性率が他の金属に比べて小さい(0.94mN・s/m2)ため、Siが混入されることで、放電により溶融した電極材質が基材に移行して凝固する際に、溶融部分のSi濃度が大きくなることで、溶融部分の粘性率が小さくなり、より扁平に拡がりながら凝固するため、盛り上がりが小さくなると考えられる。
なお、Ti単体の回折ピークは確認されない。
例として、図9にTiC+Si(8:2)電極、TiC+Si(7:3)電極、TiC+Si(5:5)電極で成膜した皮膜のXRD回折測定結果を示す。
また、図10は、電極へのSi混合比と皮膜のTi濃度の関係を示している。
電極のSi混合比が大きくなる、すなわち電極のTiC混合比が小さくなると、皮膜のTi濃度は小さくなる。
XRD回折測定結果より、Ti単体のピークは見られないため、電極時のTiCは一部放電表面処理時に分解している可能性はあるが、大部分はそのままTiCの状態で皮膜内に存在していると考えられる。
以上より、電極のSi混合比が大きくなる、すなわち電極のTiC混合比が小さくなると、皮膜のTiC濃度も相対的に小さくなっていると推察される。
すなわち、電極へのSi混合比が小さいとき、放電表面処理による溶融部(皮膜)にクラックなどの欠陥が非常に多く、放電痕一つ一つの盛り上がりが大きい。
一方、Si混合比が大きくなるにつれて、クラックなどの欠陥は少なくなり、放電痕一つ一つの盛り上がりは小さくなる。
また、皮膜は、Si単体と基材成分が合金を形成している、もしくは非晶質状態になっていると推察され、そこにTiCが分散している皮膜形態になっていると推察している。
なお、皮膜は一部基材高さよりも低い位置まで拡散している。
皮膜は拡散部分まで合わせて、5~20μm程度である。
ここでは、基材はSUS630(H1075)とした。
また、耐エロージョン性はウォータージェットを皮膜に当てることにより評価した。
なお、耐エロージョン性は、一般的には硬さと相関が強いと言われている。一方、硬さだけでは説明がつかない点も多く、硬さ以外の要素としては、表面の性状が影響しており、粗い面より平滑な面の方が、耐エロージョン性が上がることが分かってきている。
Si電極で処理した皮膜では高い耐エロージョン性が得られることが分かっていたが、今回評価した結果、TiC電極にSiを5重量%以上混入した電極で処理した皮膜で耐エロージョン性の向上が現れ始めた。
なお、5重量%程度では表面に欠陥が多少存在していることから評価にバラツキが見られたことから、そこで、さらに混入比を大きくすると、10重量%以上で十分な効果を付与することができ、より望ましくは20重量%以上混入した方がよいことが判明した。
図12は、電極へのSi混合比と耐エロージョン性の関係を示した図であり、20重量%以上混入した場合、評価にばらつきもなく、高い耐エロージョン性を有している状態を示している。
・皮膜が非晶質になっていることから、粒界からの破壊が起こりにくい。
・TiCが分散していることで、高硬度になっている。
・Siが混入されることで、平滑になっている。
比較として、基材のみ、TiC電極での皮膜、Si電極での皮膜での結果も示している。基材のみでは大きく損傷が発生し、TiC電極での処理面でも損傷が発生している。
一方、TiC+Si(8:2)電極、TiC+Si(7:3)電極、TiC+Si(5:5)電極で処理したいずれの皮膜において損傷は発生していない。
Si電極で処理した皮膜では高い耐食性が得られることが知られているが、TiC電極にSiを5重量%以上混入した電極で処理した皮膜において高い耐食性を有していた。
なお、5重量%程度では表面に欠陥が多少存在していることから評価にバラツキが見られた。そこで、さらに混入比を大きくすると、10重量%以上で十分な効果を付与することができ、より望ましくは20重量%以上混入した方がよい。
20重量%以上混入した場合、評価にばらつきもなく、高い耐食性を有していた。図14は、電極へのSi混合比と耐食性の関係を模式的に示した図である。
・皮膜が非晶質になっていることから、粒界からの腐食が起こりにくい。
・Siが混入されることで、クラックなどの欠陥が少なくなっている。
比較として、基材のみ、TiC電極での皮膜、Si電極での皮膜での結果も示している。
基材のみでは大きく腐食し、TiC電極での処理面でも腐食されている。
一方、TiC+Si(8:2)電極、TiC+Si(7:3)電極、TiC+Si(5:5)電極で処理したいずれの皮膜において腐食は発生していない。
すなわち、Si混合比が5~60重量%のとき、皮膜は平滑かつ高硬度であり、さらに高い耐エロージョン性、耐食性を有した皮膜を形成することができる。
Si混合比が5重量%以下のとき、面粗さはTiC電極での皮膜と同程度であり、また十分な耐エロージョン性、耐食性が得られない。また、Si重量比が60重量%以上のとき、硬さはSi電極での皮膜と同程度であり、他の特性はSi電極での皮膜と同程度もしくは、特に面粗さに関しては劣っている。
前述した通り、Si混合比が5~60重量%のとき、この電極を用いて炭素鋼S45Cに形成した、平滑かつ高硬度であり、さらに高い耐エロージョン性、耐食性を有した皮膜の各成分濃度は、Si濃度:1~11重量%、TiC濃度:10~75重量%、基材成分(Fe)濃度:20~90重量%の範囲であった。
なお、絶縁物を用いる場合は、Siを多めに入れて導電性を確保できるようにすることで同様の効果が得られる。
すなわち、硬質な他の材料に対して、Siを10~75体積%で混合することで、平滑かつ高硬度であり、さらに高い耐エロージョン性、耐食性を有した皮膜を形成することができる。
例えば、基材が耐熱合金のNi基合金やCo基合金でも同様の効果が得られる。
また、基材がAl基やCu基の場合は、TiC電極での皮膜は、基材がFe基の場合に比べて面粗さが大きくなる傾向があるが、TiC+Si電極を用いると同様の効果が得られる。
しかし、本発明では平滑かつ高硬度な硬質材料の5~20μm皮膜の表面処理方法を確立することを目的とし、Siの混入の重量比は5~60重量%程度であり、上記公報とは異なる分野の発明である。
Claims (6)
- 電極材料の粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極と基材の間にパルス状の放電を発生させ、そのエネルギにより、基材表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる皮膜を形成する放電表面処理に使用する放電表面処理用電極おいて、
電極材料の粉末として、硬質材料の粉末に、10~75体積%のSi粉末を混合した混合粉を用いることを特徴とする放電表面処理用電極。 - 硬質材料の粉末として、TiC、もしくはW、Moの金属、もしくはWC、Cr3C2、MoC、SiC、TaCのセラミックス、もしくはTiN、SiNの窒化物、もしくはAl2O3の酸化物とすることとを特徴とする請求項1に記載の放電表面処理用電極。
- 電極材料の粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極と基材の間にパルス状の放電を発生させ、そのエネルギにより、基材表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる皮膜を形成する放電表面処理に使用する放電表面処理用電極おいて、
電極材料の粉末として、硬質材料成分及び10~75体積%のSi成分を含有する粉末を用いることを特徴とする放電表面処理用電極。 - 硬質材料の成分としてTiC、もしくはW、Moの金属、もしくはWC、Cr3C2、MoC、SiC、TaCのセラミックス、もしくはTiN、SiNの窒化物、もしくはAl2O3の酸化物とすることとを特徴とする請求項3に記載の放電表面処理用電極。
- Si粉末或いはSi成分を、粘性率が小さい金属であるK、Li、Na、Ge、Ca、Mg、Al、P、Bi、Sn、Inの何れかに置換したことを特徴とする請求項1乃至4の何れかに記載の放電表面処理用電極。
- 電極材料の粉末を圧縮成形した圧粉体を電極として、加工液中あるいは気中において電極と基材の間にパルス状の放電を発生させ、そのエネルギにより、基材表面に電極材料あるいは電極材料が放電エネルギにより反応した物質からなる皮膜を形成する放電表面処理被膜であって、鉄基基材において、Siを1~11重量%含み、その中にTiCが10~75重量%分散していることを特徴とする放電表面処理皮膜。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/699,794 US20130069015A1 (en) | 2010-05-26 | 2010-05-26 | Electrode for electric-discharge surface treatment and electric-discharge surface treatment coating |
CN201080067036.1A CN102906308B (zh) | 2010-05-26 | 2010-05-26 | 放电表面处理用电极及放电表面处理覆膜 |
DE112010005590.4T DE112010005590B4 (de) | 2010-05-26 | 2010-05-26 | Elektrode für eine Funkenerosionsoberflächenbehandlung und Funkenerosionsoberflächenbehandlungsbeschichtung |
PCT/JP2010/003524 WO2011148415A1 (ja) | 2010-05-26 | 2010-05-26 | 放電表面処理用電極及び放電表面処理皮膜 |
JP2012516990A JP5408349B2 (ja) | 2010-05-26 | 2010-05-26 | 放電表面処理用電極及び放電表面処理皮膜 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/003524 WO2011148415A1 (ja) | 2010-05-26 | 2010-05-26 | 放電表面処理用電極及び放電表面処理皮膜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011148415A1 true WO2011148415A1 (ja) | 2011-12-01 |
Family
ID=45003427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003524 WO2011148415A1 (ja) | 2010-05-26 | 2010-05-26 | 放電表面処理用電極及び放電表面処理皮膜 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130069015A1 (ja) |
JP (1) | JP5408349B2 (ja) |
CN (1) | CN102906308B (ja) |
DE (1) | DE112010005590B4 (ja) |
WO (1) | WO2011148415A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112011105866T5 (de) * | 2011-11-22 | 2014-08-28 | Mitsubishi Electric Corporation | Elektrode für eine elektrische Entladungs-Oberflächenbehandlung und Verfahren zur Bildung einer Elektrode für die elektrische Entladungs-Oberflächenbehandlung |
CN103620089B (zh) * | 2012-06-26 | 2015-12-23 | 三菱电机株式会社 | 放电表面处理装置及放电表面处理方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005213555A (ja) * | 2004-01-29 | 2005-08-11 | Mitsubishi Electric Corp | 放電表面処理用電極および放電表面処理方法 |
JP2006257556A (ja) * | 2003-06-11 | 2006-09-28 | Mitsubishi Electric Corp | 放電表面処理方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5651543A (en) | 1979-09-28 | 1981-05-09 | Mitsubishi Electric Corp | Discharge working electrode |
BG41809A1 (en) * | 1984-08-13 | 1987-08-14 | Peev | Protective coating on graphite electrodes |
JP4020169B2 (ja) | 1997-10-03 | 2007-12-12 | 株式会社石塚研究所 | 燃焼合成反応を用いる火花溶着用の電極棒、その製法及びこの電極を用いた火花溶着金属被覆法 |
WO1999046423A1 (fr) * | 1998-03-11 | 1999-09-16 | Mitsubishi Denki Kabushiki Kaisha | Electrode compacte pour traitement de surface par decharge et son procede de fabrication |
WO2001005545A1 (fr) | 1999-07-16 | 2001-01-25 | Mitsubishi Denki Kabushiki Kaisha | Electrode pour traitement de surface par decharge et procede de production de celle-ci |
RU2294397C2 (ru) * | 2002-07-30 | 2007-02-27 | Мицубиси Денки Кабусики Кайся | Электрод для обработки поверхности электрическим разрядом, способ обработки поверхности электрическим разрядом и устройство для обработки поверхности электрическим разрядом |
CA2484285C (en) * | 2002-09-24 | 2012-10-02 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for coating sliding surface of high temperature member, and high-temperature member and electrode for electric-discharge surface treatment |
JP2005021355A (ja) | 2003-07-01 | 2005-01-27 | Olympus Corp | 手術支援装置 |
CN1802453B (zh) * | 2003-06-11 | 2010-10-20 | 三菱电机株式会社 | 放电表面处理方法 |
JP4534633B2 (ja) * | 2004-07-02 | 2010-09-01 | 三菱電機株式会社 | 放電表面処理方法及び表面処理が施された金型 |
US8080335B2 (en) * | 2006-06-09 | 2011-12-20 | Canon Kabushiki Kaisha | Powder material, electrode structure using the powder material, and energy storage device having the electrode structure |
-
2010
- 2010-05-26 JP JP2012516990A patent/JP5408349B2/ja active Active
- 2010-05-26 WO PCT/JP2010/003524 patent/WO2011148415A1/ja active Application Filing
- 2010-05-26 CN CN201080067036.1A patent/CN102906308B/zh active Active
- 2010-05-26 US US13/699,794 patent/US20130069015A1/en not_active Abandoned
- 2010-05-26 DE DE112010005590.4T patent/DE112010005590B4/de active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006257556A (ja) * | 2003-06-11 | 2006-09-28 | Mitsubishi Electric Corp | 放電表面処理方法 |
JP2005213555A (ja) * | 2004-01-29 | 2005-08-11 | Mitsubishi Electric Corp | 放電表面処理用電極および放電表面処理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102906308B (zh) | 2016-05-11 |
JP5408349B2 (ja) | 2014-02-05 |
DE112010005590T5 (de) | 2013-03-14 |
DE112010005590B4 (de) | 2022-10-27 |
CN102906308A (zh) | 2013-01-30 |
JPWO2011148415A1 (ja) | 2013-07-22 |
US20130069015A1 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3454998B1 (en) | Additive manufacturing method for depositing a metal paste | |
JP3537939B2 (ja) | 液中放電による表面処理方法 | |
US8377339B2 (en) | Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment | |
JP3271844B2 (ja) | 液中放電による金属材料の表面処理方法 | |
CA2906892C (en) | Ternary ceramic thermal spraying powder and coating method | |
Aramian et al. | A review on the microstructure and properties of TiC and Ti (C, N) based cermets | |
US7834291B2 (en) | Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment | |
US8287968B2 (en) | Coating film and coating-film forming method | |
US11673194B2 (en) | Slidable component including wear-resistant coating and method of forming wear-resistant coating | |
CN107234235B (zh) | 烧结用粉末和烧结体 | |
WO2020090280A1 (ja) | 超硬合金、切削工具および超硬合金の製造方法 | |
WO2008014801A1 (en) | A method for deposition of dispersion-strengthened coatings and composite electrode material for deposition of such coatings | |
JP2006322034A (ja) | 放電表面処理用電極及び放電表面処理被膜並びに処理方法 | |
JP4563318B2 (ja) | 放電表面処理用電極、放電表面処理装置および放電表面処理方法 | |
JP5408349B2 (ja) | 放電表面処理用電極及び放電表面処理皮膜 | |
JP4984015B1 (ja) | 放電表面処理用電極および放電表面処理用電極の製造方法 | |
Muttamara et al. | Effect of TiN powder mixed in electrical discharge machining | |
JP4504691B2 (ja) | タービン部品およびガスタービン | |
RU2810417C1 (ru) | Способ получения сплава из порошка свинцовой латуни ЛС58-3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080067036.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10852088 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012516990 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9903/CHENP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13699794 Country of ref document: US Ref document number: 1120100055904 Country of ref document: DE Ref document number: 112010005590 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10852088 Country of ref document: EP Kind code of ref document: A1 |